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Abstract. The clausal resolution method for propositional linear-time temporal
logics is well known and provides the basis for a number of temporal provers. The
method is based on an intuitive clausal form, called SNF, comprising three main
clause types and a small number of resolution rules. In this paper, we show how
the normal form can be radically simplified and, consequently, how a simplified
clausal resolution method can be defined for this important variety of logic.

1 Introduction

As computational systems become more complex, it is increasingly important to be
able toverify that the system behaves as required. While a computational system can
be tested in many ways, it is only throughformal verification that we have the possi-
bility of establishing the correctness of the system inall possible situations. However,
complex systems in turn require powerful formal notations, in particular logics such
astemporal logic. Temporal logics are extensions of classical logic, with operators that
deal with time. They have been used in a wide variety of areas within Computer Science
and Artificial Intelligence, for example robotics [17], databases [18], hardware verifica-
tion [10] and agent based systems [16]. In particular, propositional temporal logics have
already made significant impact within Computer Science, having been applied to:

– the specification and verification of distributed or concurrent systems [14];
– the synthesis of programs from temporal specifications [15, 13];
– the semantics of executable temporal logic [9];
– algorithmic verification via model-checking [10, 2]; and
– knowledge representation and reasoning [6, 1, 20].

In developing such techniques, temporal proof is often required, and we base our work
on practical proof techniques on the clausal resolution approach to temporal logic.

The clausal resolution method for propositional linear-time temporal logics pro-
vides the basis for a number of temporal provers. The method is based on an intuitive
clausal form, called SNF, comprising three main clause types and a small number of
resolution rules [7]. While the approach has been shown to be competitive [11, 12], we
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here re-address the basic form of the resolution method. In particular, we here show
that the normal form can be radically simplified and, following on from this, a sim-
plified resolution method can be defined for this important variety of temporal logic.
Thus, the main benefits of the reductions described in this paper are that they produce a
temporal normal form that

– provides a cleaner separation between classical and temporal reasoning,
– ensures more streamlined use of simplified temporal resolvents (without the need

for further transformation),
– is simpler, involving only one (unconditional) eventuality formula, and
– since there is only one eventuality, then no heuristics/strategy is needed for choos-

ing which temporal formula to apply temporal resolution to.

It turns out that if a given problem contains only one conditional eventuality clause,
then the simplified resolution can be applied immediately without any reductions. At
the same time we show the necessity to reduce conditional eventuality clauses to un-
conditional ones if a problem contains more than one eventuality.

We believe that all of these factors, as well as simplifying the method itself, will
have significant impact upon practical temporal resolution tools.

The structure of the paper is as follows. In§2, we provide an overview of the propo-
sitional temporal logic considered and the normal form used (see [7] for further details).
We then proceed to describe and analyse two key reductions:

1. fromconditionaleventuality clauses tounconditionaleventuality clauses (§4);
2. frommultipleunconditional eventuality clauses to asingleunconditional eventual-

ity clause (§7).

These reductions not only radically simplify the normal form and the resolution calcu-
lus, but initial results indicate that they can improve the speed of practical resolution
systems in certain cases.

The simplified clausal resolution procedure is given in§3 and§5. The case of one
eventuality is considered in§6. The results of these sections refine those given in [3];
an extension of the simplified resolution calculus to fragments of first-order temporal
logic has been considered in [4, 5].

2 Preliminaries

We define the temporal logic we use based on the following symbols:

– atomic propositions Prop = a, b, c . . . , p, q, r . . .;
– Boolean operators ¬,∧,⇒,≡,∨, true (‘true’), false(‘false’);
– temporal operators start (‘at the initial moment of time’), (‘always in the

future’), ♦ (‘at sometime in the future’),❣(‘at the next moment’),S (‘since’, a
past-time operator).

For the interpretation of the formulas in the logic, we use discrete structuresM =
〈S, I〉 whereS = s0, s1, s2, . . . is a linearly ordered infinite sequence of states such



that each state,si (0 ≤ i), represents those elements ofProp which are satisfied at the
ith moment of time, andI is an interpretation functionProp → 2S .

Below we define a relation ‘|=’, which evaluates temporal formulas at an index
i ∈ N in a modelM abbreviating withMI(p) a subset ofS wherep is true (we omit
the standard definitions of the Boolean operators).

(M, i) |= p iff i ∈ MI(p) [for p ∈ Prop]
(M, i) |= start iff i = 0
(M, i) |= B iff for eachj, if i ≤ j then(M, j) |= B

(M, i) |= ♦B iff there existsj such thati ≤ j and(M, j) |= B

(M, i) |= ❣B iff (M, i+ 1) |= B

(M, i) |= AS B iff there exists ak ∈ N, such that0 6 k < i and(M, k) |= B

and, for allj ∈ N, if k 6 j < i then(M, j) |= A

Definition 1 (Satisfiability). A formulaR is satisfiable if, and only if, there exists a
modelM such that(M, 0) |= R.

Definition 2 (Validity). A formulaR is valid if, and only if, it is satisfiable in every
possible model, i.e. for eachM, (M, 0) |= R.

Clausal temporal resolution, introduced in [8], operates on formulas in Separated Nor-
mal Form (SNF):

∧

i

Ai,

where eachAi is known as aPLTL-clauseand must be one of the following forms with
each particularka, kb, lc, ld, andl representing a literal.

start ⇒
∨

c

lc an initial PLTL-clause
∧

a

ka ⇒ ❣
∨

d

ld a stepPLTL-clause
∧

b

kb ⇒ ♦l a eventuality (sometime)PLTL-clause

(For convenience, the outer ‘ ’ and ‘∧’ connectives are usually omitted.)
An eventuality PLTL-clause is calledunconditionalif it has the form♦l.

It is known [7] that a PLTL-formula is satisfiable if, and only if, a set of temporal
clauses is satisfiable. When a temporal formula is translated into the SNF form (see [7]
for full details), we essentially apply a set of the transformation rules based upon the
renaming of complex expressions by new propositions and upon the substitution of
temporal operators by their fixpoint definitions.

3 Temporal Resolution for the unconditional eventuality case

We extend the notion of a PLTL-clause by allowing arbitrary Boolean combinations
of propositions and giving a simplified normal form calledDivided Separated Normal
Form (DSNF). Further, we consider unconditional eventuality PLTL-clauses only (and
give a reduction to this case). We (ambiguously) refer to these new entities asclauses.

A propositional temporal specification, SP, is a triple consisting of:



1. an universal part,U , given by a set of propositional formulas (clauses);
2. an initial part,I, with the same form as the universal part; and
3. a step part,S, given by a set of propositional step temporal clauses of the form:

P ⇒ ❣Q (stepclause),

whereP andQ are Boolean combinations of propositional symbols1.

(To relate these new clauses with the old ones, we note that the initial part corresponds
to initial PLTL-clauses, step part corresponds to step clauses, and any clauseC from
the universal part can be represented by the pair:start ⇒ C, true ⇒ ❣C.)

An unconditional eventuality temporal problem, P, whose satisfiability we are in-
terested in, consists of a temporal specificationSP with

4. an eventuality part,E , given by a set of unconditional eventuality clauses of the
form♦l, wherel is a literal.

This combination is denotedP = SP ∪ E .

A literal l from an eventuality clause is called aneventuality literal. Step clauses will
also be referred to asstep rules. Without loss of generality, we can assume that there
are no two different temporal step clauses with the same left-hand sides.

In what follows we will not distinguish between a finite set of formulasX and the
conjunction

∧

X of formulas in it. To each unconditional eventuality temporal problem,
we associate the formula

I ∧ U ∧ S ∧ E .

When we talk about particular properties of temporal problems (e.g., satisfiability, va-
lidity, logical consequences etc) we mean properties of the associated formula. The
similar agreement takes place for specifications.

The inference system we use consists of an (implicit)merging operation

P1 ⇒ ❣Q1, . . . , Pn ⇒ ❣Qn

n
∧

j=1

Pi ⇒ ❣
n
∧

j=1

Qi

,

(whose result is a logical consequence of its premises) and the following inference
rules2. Due to our understanding of the temporal problem, the premises and conclusion
of the rules are (implicitly) closed under operator.

Let A ⇒ ❣B, Ai ⇒ ❣Bi be merged step rules,U be the (current) universal part of
the problem.

– Step resolution rule w.r.t.U :
A ⇒ ❣B

¬A
( ❣U

res
) , whereU ∪ {B} ⊢⊥.

1 We could still restrict ourselves (e.g., for implementation purposes) to formulas in clausal
form: (p1 ∧ p2 ∧ . . . ∧ pk) ⇒ ❢(q1 ∨ q2 ∨ . . . ∨ ql).

2 Note that, if the premises of the rules are given in clausal form, the result of applying these
rules is a clause (or set of clauses for the sometime resolution rule).



– Sometime resolution rule w.r.t.U

A1 ⇒ ❣B1, . . . , An ⇒ ❣Bn ♦l

(
n
∧

i=1

¬Ai)

(♦U
res

) ,

whereAi ⇒ ❣Bi aremergedstep rules such that theloopside conditions

U ∪ {Bi, l} ⊢⊥ and U ∪ {Bi,

n
∧

j=1

¬Aj} ⊢⊥ for all i ∈ {1, . . . , n}

are satisfied. (The side conditions imply validity of
∨

Aj ⇒ ❣¬l. Indeed,
∨

Aj ⇒
∨

❣Bj ≡ ❣
∨

Bj ⇒ ❣¬l and
∨

Aj ⇒
∨

❣Bj ≡ ❣
∨

Bj ⇒
❣
∨

Aj ; the formula
∨

Aj can be considered as aninvariant formula.)
– Sometime termination rule w.r.t.U

The contradiction⊥ is derived and the derivation is (successfully) terminated if
U ∪ {l} ⊢⊥, wherel is an eventuality literal.

– Initial termination rule w.r.t.U
The contradiction⊥ is derived and the derivation is (successfully) terminated if
U ∪ I ⊢⊥.

Successful termination means that a given problem is unsatisfiable.

Note 1. All clauses generated by our inference rules are universal. Hence, the proof
procedure does not change the Initial, Step and Eventuality parts of the temporal prob-
lem. As to the Universal part, it is extended step by step until one of termination rules
is applied.

Note 2. Thesometime resolution ruleabove can be thought of as two separate rules:

– Induction rule w.r.t.U

A1 ⇒ ❣B1, . . . , An ⇒ ❣Bn

(
n
∨

i=1

Ai) ⇒ ❣ ¬l
(indU ) ,

(with the same side conditions as the sometime resolution rule above).
– Pure sometime resolution3

(
n
∨

i=1

Ai) ⇒ ❣ ¬l ♦l

¬(
n
∨

i=1

Ai)

(♦res) .

3 We could as well formulate this rule in a more “traditional” form, with❢♦l as the second
premise of the rule. However, note thatΦ ∧ ❢♦l is satisfiable if, and only if,Φ ∧ ♦l is
satisfiable for any temporal formulaΦ.



4 Reduction to the unconditional eventuality case

Suppose we are interested in satisfiability ofΦ ∪ { (P ⇒ ♦q)}, whereΦ is a set of
propositional temporal formulas. Let us consider two clauses:

((P ∧ ¬q) ⇒ waitforQ) (1)

((waitforQ ∧ ❣¬q) ⇒ ❣waitforQ) (2)

wherewaitforQ is a new propositional symbol. The first clause is universal, the second
is translated into a step clausewaitforQ ⇒ ❣(q ∨ waitforQ). Let us note that clauses
(1) and (2) are logical consequences of a formula(q ≡ ¬waitforQ).

Theorem 1. Φ ∪ { (P ⇒ ♦q)} is satisfiable if, and only if,Φ ∪ {(1), (2)} ∪
{ ♦¬waitforQ} is satisfiable.

Proof. (⇒) Let M be a model ofΦ ∪ { (P ⇒ ♦q)}. Let us extend this model
by a new propositionwaitforQ such that, in the extended model,M

′, formulas (1), (2)
and ♦¬waitforQ would be true. In order to define the truth value ofwaitforQ , in
n-th moment,n ∈ N, we consider two cases depending on whetherM |= ♦P or
M |= ♦ ¬P .

– AssumeM |= ♦P . Together with (P ⇒ ♦q), this implies thatM |= ♦q.
For everyn ∈ N let us put

(M′, n) |= ¬waitforQ ⇔ (M′, n) |= q (⇔ (M, n) |= q).

– AssumeM |= ♦ ¬P . There are two possibilities:
• M |= ¬P . In this case let us put(M′, n) |= ¬waitforQ for all n ∈ N.
• There existsm ∈ N such that(M,m) |= P and, for alln > m, (M, n) |= ¬P .

These conditions imply, in particular, that there isk ≥ m such that(M, k) |= q

if the formula is satisfiable. Now we definewaitforQ in M
′ as follows:

(M′, n) |= ¬waitforQ ⇔ (M′, n) |= q if n < k,

(M′, n) |= ¬waitforQ if n ≥ k.

It is easy to see thatM′ is a required model.

(⇐) Let us show that (P ⇒ ♦q) is a logical consequence ofΦ ∪ {(1), (2)} ∪
{ ♦¬waitforQ}.
Let M′ be a model ofΦ ∪ {(1), (2)} ∪ { ♦¬waitforQ}. By contradiction, suppose
M

′ 6|= (P ⇒ ♦q), that is,M′ |= ♦(P ∧ ¬q). Let m ∈ N be an index such that
(M′,m) |= P and for alln ≥ m, (M′, n) |= ¬q). Then from (1) and (2) we conclude
that for alln ≥ m (M′, n) |= waitforQ) holds. However, this conclusion contradicts
the formula ♦¬waitforQ which is true inM′.

Lemma 1. The growth in size of the problem following the reduction from a conditional
to an unconditional eventuality temporal problem is linear in the number of conditional
eventualities occurring in the given problem.



Proof. Follows from the proof of Theorem 1.

Example 1.Consider the following set of formulas containing two eventuality literals:

1. a ∧ ¬l1 ∧ ¬l2
2. (a ⇒ ❣(¬a ∧ (l1 ∨ l2) ∧ (¬l1 ∨ ¬l2)))
3. ((¬a ∧ l1 ∧ ¬l2) ⇒ ❣(¬a ∧ l1 ∧ ¬l2))
4. ((¬a ∧ ¬l1 ∧ l2) ⇒ ❣(¬a ∧ ¬l1 ∧ l2))
5. (a ⇒ ♦l1)
6. (a ⇒ ♦l2)

We reduce it to an unconditional eventuality problem as given by Theorem 1.

I =
{

1. a ∧ ¬l1 ∧ ¬l2
}

U =

{

9. a ∧ ¬l1 ⇒ wl1
10. a ∧ ¬l2 ⇒ wl2

}

E =

{

11. ♦¬wl1
12. ♦¬wl2

}

S =























2. a ⇒ ❣(¬a ∧ (l1 ∨ l2) ∧ (¬l1 ∨ ¬l2))
3. (¬a ∧ l1 ∧ ¬l2) ⇒ ❣(¬a ∧ l1 ∧ ¬l2)
4. (¬a ∧ ¬l1 ∧ l2) ⇒ ❣(¬a ∧ ¬l1 ∧ l2)
7. wl1 ⇒ ❣(l1 ∨ wl1)
8. wl2 ⇒ ❣(l2 ∨ wl2)























The derivation given below involves the following merged step clauses:

13. (a ∧ wl1 ∧ wl2) ⇒ ❣((¬a ∧ ¬l1 ∧ l2 ∧ wl1) ∨ (¬a ∧ l1 ∧ ¬l2 ∧ wl2))
14. (¬a ∧ l1 ∧ ¬l2 ∧ wl2) ⇒ ❣(¬a ∧ l1 ∧ ¬l2 ∧ wl2)
15. (¬a ∧ ¬l1 ∧ l2 ∧ wl1) ⇒ ❣(¬a ∧ ¬l1 ∧ l2 ∧ wl1)

(Clause13 is obtained by merging clauses2, 7 and8, clause14 by merging3 and8,
and clause15 by merging4 and7.)

Clause14 gives a loop for resolution with12, and clause15 gives a loop for resolu-
tion with 11 resulting in two new universal clauses:

16. a ∨ ¬l1 ∨ l2 ∨ ¬wl2 [ sometime resolution 14 and 12 ]
17. a ∨ l1 ∨ ¬l2 ∨ ¬wl1 [ sometime resolution 15 and 11 ]

LetU1 beU∪{16, 17}. Then the step resolution of13with respect toU 1 can be applied:

18. ¬a ∨ ¬wl1 ∨ ¬wl2 [ step resolution 13 w.r.tU1]

LetU2 beU1∪{18}. BecauseU2∪I ⊢⊥, the initial termination rule can be applied and
the derivation is terminated. It follows that the given set of formulas is unsatisfiable.

5 Completeness of simplified resolution

From consideration of the models, it straightforwardly follows that:

Theorem 2 (soundness).Temporal resolution rules preserve satisfiability.

To show completeness of the simplified system we adapt the completeness proof of the
original system [7] as follows.



Notation We consider interpretations (or valuations) of a set of propositional symbols
(or atoms)L as Boolean functions overL, that is, functionsI :L → {0, 1}. A proposi-
tion p ∈ L is calledtrue in I if, and only if, I(p) = 1 andfalseotherwise. This notion
of truth and falsehood is extended in the usual way to literals and formulas built overL.
If E is an atom, literal, or formula such thatE is true inI , then we writeI |= E, and
we writeI 6|= E if E is false inI .

Definition 3 (behaviour graph). Given a specificationSP =< U , I,S > over a set
of propositional symbolsL, we construct a finite directed graphG as follows. The nodes
ofG are interpretations ofL, and an interpretation,I , is a node ofG if I |= U .

For each node,I , we construct an edge in G to a nodeI ′ if, and only if, the following
condition is satisfied:

– For every step rule(P ⇒ ❣Q) ∈ S, if I |= P thenI ′ |= Q.

A node,I , is designated an initial node ofG if I |= I ∪U . Thebehavior graphH of SP
is the maximal subgraph ofG given by the set of all nodes reachable from initial nodes.

It is easy to see the following relation between behavior graphs of two temporal prob-
lems when one of them is obtained by extending the universal part of the other.

Lemma 2. Let SP1 =< U1, I,S > and SP2 =< U2, I,S > be two specifications
over the same set of propositional symbols such thatU1 ⊆ U2. Then the behavior graph
H2 of SP2 is a subgraph of the behavior graphH1 of SP1.

Proof. The graphH2 is the maximal subgraph ofH1 given by the set of all nodes
whose interpretations satisfyU2 and that are reachable from the initial nodes ofH1

whose interpretations also satisfyU2. ⊓⊔

Definition 4. Let I, I ′ be nodes of a graphH . We denote the relation “I ′ is an imme-
diate successor ofI” by I → I ′, and the relation “I ′ is a successor ofI” by I →+ I ′.

Lemma 3 (existence of a model).Let P = SP ∪ E be an unconditional eventuality
temporal problem. LetH be the behavior graph ofSP such that both the set of initial
nodes ofH is non-empty and the following condition is satisfied:

∀I∀l∃I ′(I →+ I ′ ∧ I ′ |= l), (3)

whereI ,I ′ are nodes ofH and♦l ∈ E . ThenP has a model.

Proof. It follows from the conditions of the lemma that all paths throughH are
infinite. We can construct a model forP as follows. Let I0 be an initial node
of H and l1, . . . , lm be all eventuality literals ofE . Let π be the infinite path
I0, I1, . . . , Ik1

, Ik1+1, . . . , Ik2
, . . ., where for alli ≥ 0 and j ≥ 1, Ikmi+j

|= lj . It
follows by the construction of the behavior graph that the sequence of interpretations
given byπ is a model forP.

Indeed, all nontemporal clauses and all step clauses ofP are satisfied on this se-
quence immediately by the definition of the behavior graph ofSP. Now, let us take an
eventuality clause♦lj and a nodeIν onπ. By construction ofπ, there is a nodeIkmi+j

suchIν →+ Ikmi+j
andIkmi+j

|= lj . It implies that♦lj is satisfied at the moment
ν. ⊓⊔



Note This lemma remains valid in the case when a temporal problem does not contain
eventualities. In this case the (sufficient) condition assumes the form

∀I∃I ′(I →+ I ′), (4)

which simply says thatP has a model if all paths throughH are infinite.

Theorem 3 (completeness).If an unconditional eventuality problemP = SP ∪ E is
unsatisfiable then the temporal resolution procedure will derive a contradiction when
applied to it.

Proof. The proof proceeds by induction on the number of nodes in the behavior graph
H of SP, which is finite. LetSP =< U , I,S >. If H is empty then the setU ∪
I is unsatisfiable. In this case the derivation is successfully terminated by the initial
termination rule.

Now supposeH is not empty. LetI be a node ofH which has no successors. In this
case there exists a set of step rules{P1 ⇒ ❣Q1, . . . , Pm ⇒ ❣Qm}, m > 0, such that
for all 1 ≤ i ≤ m, I |= Pi but the setU ∪ {Q1, . . . Qm} is unsatisfiable. So, we can
derive by the step resolution rule a new clause¬P1 ∨ . . .∨ ¬Pm. Adding this clause to
the setU results in removing the nodeI becauseI 6|= ¬P1 ∨ . . . ∨ ¬Pm. Let us note
that if m = 0 the setU would be unsatisfiable in contradiction to the suppositionH is
not empty.

Now we consider another possibility when all nodes ofH have a successor. Note
that in this caseE cannot be empty. BecauseP is unsatisfiable the following condition
(the negation of condition (3) concerning the existence of a model given in lemma 3)
holds:

∃I∃l∀I ′(I →+ I ′ ⇒ I ′ 6|= l), (5)

whereI, I ′ are nodes ofH andl ∈ E .

Let I0 be a node defined by the first quantifier in condition (5), andl 0 be an eventuality
literal defined by the second one.

Let I be a finite nonempty set of indexes such that{In | n ∈ I} is the set of all
successors ofI0. (It is possible that0 ∈ I.) Let In1

, . . . Ink
be the set of all immediate

successors ofI0.
Let R0 (Rn) be the set of all step rules ofS whose left-hand sides are satisfied by

I0 (In). LetA0 ⇒ ❣B0 (An ⇒ ❣Bn) be the result of applying the merging operation
to all clauses inR0 (Rn) simultaneously.

Consider the following two cases depending on the emptiness of eitherR 0 or any
Rn, n ∈ I.

1. LetR0 be empty. It implies, thatU ⊢ ¬l. Indeed, sinceIn1
, . . . Ink

is the set of all
immediate successors ofI0, it holds thatIn1

, . . . Ink
are all possible models ofU .

Because for allj ∈ {n1, . . . , nk} it holdsIj 6|= l0, we can conclude thatU ⊢ ¬l0.
Now, we can apply the sometime termination rule as this contradicts♦l0.
The same argument holds if any of the setsRn, n ∈ I, is empty.

2. LetR0 andRn (for everyn ∈ I) be non empty. Then we have:



(a) U ∪ {B0} ⊢ ¬l0 andU ∪ {Bn} ⊢ ¬l0 for all n ∈ I.
Indeed, by arguments similar to given above at (1) we conclude that
In1

, . . . , Ink
are all interpretations ofU ∪ {B0}. SinceIn1

6|= l0, . . . , Ink
6|= l0

it follows thatU ∪ {B0} ⊢ ¬l0.
The same holds for every nodeIn and every conjunctionBn, n ∈ I.

(b) U ∪ {Bn} ⊢
∨

j∈{0}∪I

Aj for all n ∈ {0} ∪ I.

Again, consider the casen = 0 (for other indexes arguments are similar). Since
In1

, . . . , Ink
are all possible interpretations ofU ∪ {B0} and for everyj ∈

{n1, . . . , nk} Ij ⊢ Aj holds we can conclude thatU ∪{B0} ⊢
∨

j∈{n1,...,nk}

Aj .

Therefore, the sometime resolution rule

{Aj ⇒ ❣Bj | j ∈ {0} ∪ I} ♦l0

(
∧

j∈{0}∪I

¬Aj)
(♦U

res
)
.

can be applied. Then, the nodeI0 will is removed fromH (recall thatI0 ⊢ A0 by
construction ofA0) together with the set of its successors.

⊓⊔

6 Conditional single eventuality

Our simplified resolution technique relies on the translation from conditional eventual-
ities to unconditional ones (Theorem 1). Here we show that, if a temporal problem is
given in DSNF with only one conditional eventuality rule of the form4

P ⇒ ♦ ❣l,

then we do not actually need to carry outany translation.
Instead of the sometime termination rule, we now use

– Sometime negation rule for single eventuality w.r.t.U

P ⇒ ❣♦l

¬P
(♦U

neg)

where U ∪ {l} ⊢⊥ (orU ⊢ ¬l).

The modified sometime resolution rule now takes the following form

4 This is not the exact DSNF form—we here extend it to the conditional eventuality case. Note
further the following equivalence(P ⇒ ♦l) ≡ (P ⇒ (l ∨ ♦ ❢l)) ≡ ((P ∧ ¬l) ⇒ ♦ ❢l). If
we have more than one eventuality rule sharing the same eventuality literal, e.g.,P1 ⇒ ❢♦l,
P2 ⇒ ❢♦l, we replace them with the combined rule ((P1∨P2) ⇒ ❢♦l), which is equivalent
w.r.t. satisfiability to the given pair of eventuality rules.



– Sometime resolution rule for single eventuality w.r.t.U

A1 ⇒ ❣B1, . . . , An ⇒ ❣Bn P ⇒ ❣♦l

(
n
∧

i=1

¬Ai) ∨ ¬P

(♦U
s−res)

with the usual loop side conditions.

Theorem 4. Temporal resolution rules for the single eventuality case preserve satisfi-
ability.

Proof. Follows straightforwardly from consideration of the models. ⊓⊔

Lemma 4 (existence of a model: single eventuality).Let P = SP ∪ {P ⇒ ❣♦l} be
a single eventuality temporal problem. LetH be the behavior graph ofSP such that all
paths throughH are infinite and the following condition is satisfied:

∀I(I |= P ⇒ ∃I ′(I →+ I ′ ∧ I ′ |= l)), (6)

whereI ,I ′ are nodes ofH . ThenP has a model.

Proof. Similar to the proof of Lemma 3. ⊓⊔

Theorem 5 (completeness: single eventuality).If a problemP = SP∪ {P ⇒ ❣♦l}
is unsatisfiable, then the temporal resolution procedure will derive a contradiction when
applied to it.

Proof. The proof is obtained by analysing the proof of Theorem 3 given above. It re-
mains the same for the case whenH contains nodes with no successor.

If all nodes inH have a successor, because of Lemma 4, the counterpart of the
condition (6) now has the following form:

∃I(I |= P ∧ ∀I ′(I →+ I ′ ⇒ I ′ 6|= l)). (7)

Let I0 be a node ofH determined by the first quantifier of (7).

If case (1) of the previous proof holds (i.e.U |= ¬l), nodeI 0 will be deleted from the
graph because of the sometime negation rule (recall thatI0 |= P ).

If case (2) holds, nodeI0 will be deleted because of the conclusion of the sometime

resolution rule for single eventuality:(
n
∧

i=1

¬Ai) ∨ ¬P . ⊓⊔

Example 2.Let us replace the two eventuality clauses of the example 1 by a single
eventuality clause and show that the resulting problem is still unsatisfiable.

1. a ∧ ¬l1 ∧ ¬l2
2. (a ⇒ ❣(¬a ∧ (l1 ∨ l2) ∧ (¬l1 ∨ ¬l2)))
3. ((¬a ∧ l1 ∧ ¬l2) ⇒ ❣(¬a ∧ l1 ∧ ¬l2))
4. ((¬a ∧ ¬l1 ∧ l2) ⇒ ❣(¬a ∧ ¬l1 ∧ l2))
5. (a ⇒ ♦ ❣(¬l1 ∧ ¬l2))



The following DSNF corresponds to this problem5:

I =
{

1. a ∧ ¬l1 ∧ ¬l2
}

U =
{

6. l¬l1∧¬l2 ⇒ (¬l1 ∧ ¬l2)
}

E =
{

7. a ⇒ ♦ ❣l¬l1∧¬l2

}

S =







2. a ⇒ ❣(¬a ∧ (l1 ∨ l2) ∧ (¬l1 ∨ ¬l2))
3. (¬a ∧ l1 ∧ ¬l2) ⇒ ❣(¬a ∧ l1 ∧ ¬l2)
4. (¬a ∧ ¬l1 ∧ l2) ⇒ ❣(¬a ∧ ¬l1 ∧ l2)







We see that step clauses2, 3, 4, taken together with the universal clause6, form a loop
for the single eventuality temporal resolution with clause7. The resulting universal
clause,¬a, contradicts the initial clause.

Example 3 (Example 1 cont.).We show now that if the given DSNF contains more
than one eventuality clause, reduction to the unconditional case is necessary. (I.e. the
inference system described in this section is not complete for the general case.)

Consider the original set of temporal formulas from Example 1. The step resolution
rule cannot be applied to the problem. Clauses3 and4 form a loop for eventuality
rules6 and5 respectively; however, the temporal resolvents (by the rule♦ U

s−res) are
tautologies:a ∨ ¬l1 ∨ l2 ∨ ¬a (resp.,a ∨ l1 ∨ ¬l2 ∨ ¬a).

Note 3. Instead of aneventuality literalwe could introduce a notion of aneventual-
ity expressiongiving eventuality rules the formP ⇒ ♦ ❣Q whereP,Q are arbitrary
Boolean combinations of propositional symbols. It is not difficult to check that our
inference system is adapted to such reformulation straightforwardly—we do not dis-
tinguish between eventuality expressionsQ1 andQ2 if U ⊢ (Q1 ≡ Q2), i.e. they are
equivalent with respect a given universal part. Let us remind that during the derivation
the universal part of a given problem is not narrowed. Alternatively, we could rename
these eventuality expressions taking into consideration the equivalence, and introducing
the same name for equivalent expressions.

7 Reduction to the single eventuality problem

We reduce now a temporal problem with several unconditional eventualities to a single
eventuality temporal problem (first, in the language with past-time operator ‘S ’).

Lemma 5. SP ∪ { ♦Qi}i∈I is satisfiable if, and only if,SP ∪ {l ∧ (l ⇒
♦ ❣(

∧

i∈I

(¬l S Qi) ∧ l))} is satisfiable, wherel is a new propositional symbol.

Proof. Let us reformulate the given problem in a two-sorted temporal language with
variables overN for the temporal sort:

SP ∪ {∀n∃m(n ≤ m ∧Qi(m))}i∈I

(meaning that eachQi, i ∈ I , is satisfied infinitely often). This problem is equivalent
with respect to satisfiability to the following (this can easily be checked by considering
possible models):

SP ∪ {∀n∃m(m > n ∧
∧

i∈I

∃ki(n ≤ ki < m ∧Qi(ki)))} (8)

5 When introducing a new name for the positive occurrence of the subformula¬l1 ∧ ¬l2, we
use implication rather than equivalence; this technique goes back to [19].



which states, informally, that for each moment of time,n, there is a momentm > n,
such that all eventualitiesQi, i ∈ I , are satisfied “aftern and beforem”.

We prove that given a model for (8) it is possible to find a model for

SP ∪ {l ∧ (l ⇒ ♦ ❣(
∧

i∈I

(¬l S Qi) ∧ l))} (9)

and vice versa.
First, consider a modelM for (8). We construct a modelM ′ for (9) by extending

M with a new propositionl and defining its value as follows. Formula (8) states that
for each moment of time,n, there exists a future moment,m, when a certain property
holds, defining thus a functionm(n). Let us construct a sequence of times defined by
(8) starting from0, i.e.m0 = 0, m2 = m(0), . . . , mj+1 = m(mj); and let us also
definey in M

′ to be true at those times andfalse everywhere else. Note that, for all
i ∈ I andj ≥ 0, there exists a momentki : mj ≤ ki < mj+1 such thatQi(ki).
Therefore,(M,mj+1) |=

∧

i∈I

(¬y S Qi); hence,(M,mj) |= ♦ ❣(
∧

i∈I

(¬l S Qi) ∧ l),

making (9)true in M
′.

Let M be a model for (9); we show that it is also a model for (8). It is enough to show
that for infinitely manyn’s there exists anm such that (m > n) and

∧

i∈I

∃ki(n ≤

ki < m ∧ Qi(ki)) holds. Forj ≥ 1, let us consider the sequencemj (mj > 0) of
all moments such that(M,mj) |=

∧

i∈I

(¬l S Qi) ∧ l (note that there are infinitely many

such moments); letm0 = 0. We can see that for allj ≥ 0,n = mj , andm = mj+1, the
formula

∧

i∈I

∃ki(n ≤ ki < m∧Qi(ki)) is true inM. Indeed,(M, n) |= l, (M,m) |= l;

by semantics of the operator “since”,(M,m) |=
∧

i∈I

(¬lS Qi) means that(M,m) |=
∧

i∈I

∃ki(n ≤ ki < m ∧Qi(ki)). ⊓⊔

Lemma 6. Formula (A ⇒ (B S C)) is satisfiable if, and only if, the temporal spec-
ification

(¬s) ∧ (A ⇒ s) ∧ ((C ∨ (B ∧ s)) ≡ ❣s)

is satisfiable, wheres is a new propositional symbol. (The first clause goes into the
initial part, the second into the universal part, and the third can be represented by two
step clauses).

Proof. Follows straightforwardly from consideration of possible models. ⊓⊔

Corollary 1. Any propositional temporal problem with an arbitrary number of eventu-
ality clauses is equivalent, by satisfiability, to a single eventuality propositional tempo-
ral problem.

Lemma 7. The growth in size of the problem following the reduction from DSNF to a
single eventuality temporal problem is linear in the number of eventualities occurring
in the DSNF form.

Proof. Follows from the above transformation. ⊓⊔



Example 4 (Example 1 cont.).We reduce now the given set of formulas to a single
eventuality problem.

I =















1. a ∧ ¬l1 ∧ ¬l2
18.l
19. ¬s1
20. ¬s2















U =























13. a ∧ ¬l1 ⇒ wl1
14. a ∧ ¬l2 ⇒ wl2
15. Q1 ⇒ s1
16. Q2 ⇒ s2
17. l ∧ ¬Q ⇒ wQ























E = {21. ♦¬wQ}

S =







































































2. a ⇒ ❣(¬a ∧ (l1 ∨ l2) ∧ (¬l1 ∨ ¬l2))
3. (¬a ∧ l1 ∧ ¬l2) ⇒ ❣(¬a ∧ l1 ∧ ¬l2)
4. (¬a ∧ ¬l1 ∧ l2) ⇒ ❣(¬a ∧ ¬l1 ∧ l2)
5. wl1 ⇒ ❣(l1 ∨ wl1)
6. wl2 ⇒ ❣(l2 ∨ wl2)
7. Q ⇒ ❣(Q1 ∧Q2 ∧ l)
8. (¬wl1 ∨ ¬l ∧ s1) ⇒ ❣s1
9. wl1 ∧ (l ∨ ¬s1) ⇒ ❣¬s1
10. (¬wl2 ∨ ¬l ∧ s2) ⇒ ❣s2
11. wl2 ∧ (l ∨ ¬s2) ⇒ ❣¬s2
12. wQ ⇒ ❣(Q ∨ wQ)







































































The derivation of a contradiction is rather lengthy for this example; we omit it due
to lack of space. We note that it enjoys the following property: Instead of two loops
needed for Example 1, one is enough. However, the following example shows that it is
not always the case.

Example 5.The following single unconditional eventuality temporal problem

I =
{

1. a ∧ ¬l
}

U = ∅

E =
{

♦l
}

S =







2. a ∧ ¬l ⇒ ❣((a ∧ ¬l) ∨ (a ∧ l))
3. a ∧ l ⇒ ❣(¬a ∧ ¬l)
4. ¬a ∧ ¬l ⇒ ❣(¬a ∧ ¬l)







requires two applications of the sometime resolution rule.
Indeed, the behavior graph for this problem consists of three vertices,I 0, I1, I2 (see

Fig. 1). One application of the sometime resolution rule deletes the nodeI 2; then, the
nodeI1 can be deleted by the step resolution rule; after that, one more application of
the sometime resolution is needed to delete the nodeI0.

I0 I1 I2

Fig. 1.Behavior graph for the problem.I0 = {a,¬l}; I1 = {a, l}; I2 = {¬a,¬l}.

8 Conclusion

In this paper, we have addressed the problem of simplifying, still further, the clausal
resolution approach described in [7]. We have shown how to reduce conditional even-
tualities, i.e formulas of the form (P ⇒ ♦q), to unconditional eventualities, i.e.

♦q′, and how to reduce problems containing multiple formulate of the form♦r, to
problems containing just one. This not only allows us to simplify the normal form re-
quired (from that defined in [7]) to a more streamlined version, but has also allowed



us to introduce a set of simplified resolution rules. For example, in [7], the resolvent
generated by applying temporal resolution to the formulaA ⇒ ❣ ¬l and♦l will be
(¬A)U l, while we have here shown that the resolvent can be as simple as¬A.

In addition to providing both a much simpler normal form for temporal formula,
and a streamlined resolution process, the reductions described in this paper can, we
believe, form the basis of temporal resolution provers with greatly improved efficiency.
Thus, our future work in this area mainly involves the incorporation of the techniques
described here to develop improved temporal provers.
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