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Abstract. The clausal resolution method for propositional linear-time temporal
logics is well known and provides the basis for a number of temporal provers. The
method is based on an intuitive clausal form, called SNF, comprising three main
clause types and a small number of resolution rules. In this paper, we show how
the normal form can be radically simplified and, consequently, how a simplified
clausal resolution method can be defined for this important variety of logic.

1 Introduction

As computational systems become more complex, it is increasingly important to be
able toverify that the system behaves as required. While a computational system can
be tested in many ways, it is only throufdrmal verification that we have the possi-
bility of establishing the correctness of the systemalinpossible situations. However,
complex systems in turn require powerful formal notations, in particular logics such
astemporal logic Temporal logics are extensions of classical logic, with operators that
deal with time. They have been used in a wide variety of areas within Computer Science
and Artificial Intelligence, for example robotics [17], databases [18], hardware verifica-
tion [10] and agent based systems [16]. In particular, propositional temporal logics have
already made significant impact within Computer Science, having been applied to:

— the specification and verification of distributed or concurrent systems [14];
— the synthesis of programs from temporal specifications [15, 13];

— the semantics of executable temporal logic [9];

— algorithmic verification via model-checking [10, 2]; and

— knowledge representation and reasoning [6, 1, 20].

In developing such techniques, temporal proof is often required, and we base our work
on practical proof techniques on the clausal resolution approach to temporal logic.

The clausal resolution method for propositional linear-time temporal logics pro-
vides the basis for a number of temporal provers. The method is based on an intuitive
clausal form, called SNF, comprising three main clause types and a small number of
resolution rules [7]. While the approach has been shown to be competitive [11, 12], we
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here re-address the basic form of the resolution method. In particular, we here show
that the normal form can be radically simplified and, following on from this, a sim-
plified resolution method can be defined for this important variety of temporal logic.
Thus, the main benefits of the reductions described in this paper are that they produce a
temporal normal form that

— provides a cleaner separation between classical and temporal reasoning,

— ensures more streamlined use of simplified temporal resolvents (without the need
for further transformation),

— is simpler, involving only one (unconditional) eventuality formula, and

— since there is only one eventuality, then no heuristics/strategy is needed for choos-
ing which temporal formula to apply temporal resolution to.

It turns out that if a given problem contains only one conditional eventuality clause,
then the simplified resolution can be applied immediately without any reductions. At
the same time we show the necessity to reduce conditional eventuality clauses to un-
conditional ones if a problem contains more than one eventuality.

We believe that all of these factors, as well as simplifying the method itself, will
have significant impact upon practical temporal resolution tools.

The structure of the paper is as follows §By we provide an overview of the propo-
sitional temporal logic considered and the normal form used (see [7] for further detalils).
We then proceed to describe and analyse two key reductions:

1. fromconditionaleventuality clauses tonconditionaleventuality clauses4);
2. frommultipleunconditional eventuality clauses tsimgleunconditional eventual-
ity clause §7).

These reductions not only radically simplify the normal form and the resolution calcu-
lus, but initial results indicate that they can improve the speed of practical resolution
systems in certain cases.

The simplified clausal resolution procedure is give§3nands5. The case of one
eventuality is considered i§6. The results of these sections refine those given in [3];
an extension of the simplified resolution calculus to fragments of first-order temporal
logic has been considered in [4, 5].

2 Preliminaries

We define the temporal logic we use based on the following symbols:

— atomic propositions Prop = a,b,c...,p,q,7...;

— Boolean operators —, A, =, =, V, true (‘true’), false(‘false’);

— temporal operators start (‘at the initial moment of time’),[ ] (‘always in the
future’), ¢ (‘at sometime in the future’)O (‘at the next moment’)S (‘since’, a
past-time operator).

For the interpretation of the formulas in the logic, we use discrete strucllires-
(S, I whereS = s, s1, s2, ... is a linearly ordered infinite sequence of states such



that each state;; (0 < 4), represents those elementsfofop which are satisfied at the
it" moment of time, and is an interpretation functiofrop — 2°.

Below we define a relation=’, which evaluates temporal formulas at an index
i € N in a model?t abbreviating witth)t; (p) a subset of5 wherep is true (we omit
the standard definitions of the Boolean operators).

(M,i) Ep iff e Mi(p) [for p € Prop]

Estart  iff i=0

ELIB iff foreachy, if i < jthen(9,j) = B

E OB iff there existsj such that < j and(9, ;) = B

EOB ifft M,i+1)E=B

EASB iff thereexistsa € N, suchthab < k <iand(9,k) = B
and, forallj e N, if £ < j <ithen(™,j) = A

Definition 1 (Satisfiability). A formula R is satisfiable if, and only if, there exists a
modelt such that "1, 0) &= R.

Definition 2 (Validity). A formula R is valid if, and only if, it is satisfiable in every
possible model, i.e. for eaéht, (9,0) = R.

Clausal temporal resolutigrintroduced in [8], operates on formulas in Separated Nor-
mal Form (SNF):
D /\ Aia

where eachd; is known as #LTL-clauseand must be one of the following forms with
each particulak,, ky, I, l4, andl representing a literal.

start = \/l.  aninitial PLTL-clause
N ke = O V14 astepPLTL-clause

a d
Nky = Ol aeventuality (sometim@&LTL-clause
b

(For convenience, the outer T and ‘A’ connectives are usually omitted.)
An eventuality PLTL-clause is callashconditionalif it has the form{1.

It is known [7] that a PLTL-formula is satisfiable if, and only if, a set of temporal
clauses is satisfiable. When a temporal formula is translated into the SNF form (see [7]
for full details), we essentially apply a set of the transformation rules based upon the
renaming of complex expressions by new propositions and upon the substitution of
temporal operators by their fixpoint definitions.

3 Temporal Resolution for the unconditional eventuality case

We extend the notion of a PLTL-clause by allowing arbitrary Boolean combinations
of propositions and giving a simplified normal form calletvided Separated Normal
Form (DSNF) Further, we consider unconditional eventuality PLTL-clauses only (and
give a reduction to this case). We (ambiguously) refer to these new entitdsizes

A propositional temporal specificatipB8P, is a triple consisting of:



1. anuniversal part{/, given by a set of propositional formulas (clauses);
2. aninitial part,Z, with the same form as the universal part; and
3. astep partS, given by a set of propositional step temporal clauses of the form:

P=0Q (stepclause,

whereP and( are Boolean combinations of propositional symBols

(To relate these new clauses with the old ones, we note that the initial part corresponds
to initial PLTL-clauses, step part corresponds to step clauses, and any €l
the universal part can be represented by the ptart = C, true = OC\)

An unconditional eventuality temporal problei, whose satisfiability we are in-
terested in, consists of a temporal specifica®hwith

4. an eventuality par€, given by a set of unconditional eventuality clauses of the
form 01, wherel is a literal.

This combination is denotddl = SP U £.

A literal [ from an eventuality clause is called amentuality literal Step clauses will
also be referred to astep rules Without loss of generality, we can assume that there
are no two different temporal step clauses with the same left-hand sides.

In what follows we will not distinguish between a finite set of formufasand the
conjunction/\ X of formulas in it. To each unconditional eventuality temporal problem,
we associate the formula

INTLIUNTISALIE.

When we talk about particular properties of temporal problems (e.g., satisfiability, va-
lidity, logical consequences etc) we mean properties of the associated formula. The
similar agreement takes place for specifications.

The inference system we use consists of an (implioiyging operation
Pl ﬁOQl,...,Pn:>OQn ,
ANP=0AQi
j=1 j=1

(whose result is a logical consequence of its premises) and the following inference
ruleg. Due to our understanding of the temporal problem, the premises and conclusion
of the rules are (implicitly) closed undér] operator.

Let A = OB, A; = O B; be merged step rule&, be the (current) universal part of
the problem.

— Step resolution rule w.r.i4: # (O4,), wherel{ U {B} L.

1 We could still restrict ourselves (e.g., for implementation purposes) to formulas in clausal
form: (pr Ap2 A...ApE) = O(@ Vg V...Vaq).

2 Note that, if the premises of the rules are given in clausal form, the result of applying these
rules is a clause (or set of clauses for the sometime resolution rule).



— Sometime resolution rule w.rit.

A1 :>OB1, ey AnjOBn <>l (<>Z/l )

(A —~4)

i=1

whereA; = O B; aremergedstep rules such that theop side conditions

UU{B;, I} L and UU{B;, \ ~4;}FL forall ie{l,...,n}
j=1

are satisfied. (The side conditions imply validity §fA; = [JO-l. Indeed,
\/Aj = \/OB = O\/Bj = O—‘l and\/Aj = \/OBJ = O\/Bj =
O V 4;; the formula\/ A; can be considered as @variant formula)

— Sometime termination rule w.rt
The contradictionL is derived and the derivation is (successfully) terminated if
U U{l} +L, wherel is an eventuality literal.

— Initial termination rule w.r.t2{
The contradictionl is derived and the derivation is (successfully) terminated if
UUTHL.

Successful termination means that a given problem is unsatisfiable.

Note 1. All clauses generated by our inference rules are universal. Hence, the proof
procedure does not change the Initial, Step and Eventuality parts of the temporal prob-
lem. As to the Universal part, it is extended step by step until one of termination rules

is applied.

Note 2. Thesometime resolution rulabove can be thought of as two separate rules:

— Induction rule w.r.tZ4
A1:>OB1, ey AnjOBn
(V A4) =001l
=1

(ind¥),

(with the same side conditions as the sometime resolution rule above).
— Pure sometime resolutién

(V A) =00~ ol
=1

n (Qres) .
¥4

3 We could as well formulate this rule in a more “traditional” form, wih¢! as the second
premise of the rule. However, note tiat\ [JO Ol is satisfiable if, and only ifp A [JO1is
satisfiable for any temporal formuia



4 Reduction to the unconditional eventuality case

Suppose we are interested in satisfiabilitypaf { [J(P = 0q)}, where® is a set of
propositional temporal formulas. Let us consider two clauses:

LI((P A —q) = waitforQ) Q)

L ((waitfor@ A O —q) = O waitforQ) 2

wherewaitfor@ is a new propositional symbol. The first clause is universal, the second
is translated into a step clauseitfor@ = O (q V waitfor@). Let us note that clauses
(1) and (2) are logical consequences of a formuldg = —~waitforQ).

Theorem1. @ U {[ (P = {q)} is satisfiable if, and only if® U {(1),(2)} U
{[1O—waitforQ} is satisfiable.

Proof. (=) Let 9t be a model oft U { [J(P = Oq)}. Let us extend this model
by a new propositiomwaitfor@ such that, in the extended mod#k’, formulas (1), (2)
and [_]O—waitfor@ would be true. In order to define the truth valuewafitfor@, in
n-th moment,n € N, we consider two cases depending on whefbiel= [ JOP or
m = o d-P.

— Assumeit = (1O P. Together with(](P = Oq), this implies thatt = [10q.
For everyn € N let us put

(M, n) | —waitforQ & (M,n)l=q (& (Mn) = q).

— Assumeit = ¢ []-P. There are two possibilities:
e M = []-P. Inthis case let us pytit’, n) = —waitfor@ foralln € N.
e There existsn € N such tha{, m) = P and, foralln > m, (M, n) = —-P.
These conditions imply, in particular, that theré&i& m such tha{d, k) = ¢
if the formula is satisfiable. Now we defin@itforQ in 9’ as follows:

(M n) E —~waitforQ < (M, n) =q if n <k,
(M, n) = —~waitfor@ if n>k.

It is easy to see th&@ft’ is a required model.

(<) Letusshow that J(P = 0q) is a logical consequence @fU {(1), (2)} U
{0~ waitforQ}.
Let 9 be a model ofp U {(1), (2)} U { LI10—waitfor@}. By contradiction, suppose
M = LI(P = Oq), thatis, M = O(P A [1—q). Letm € N be an index such that
(O, m) = P and for alln > m, (M, n) = —q). Then from (1) and (2) we conclude
that for alln > m (9, n) = waitforQ) holds. However, this conclusion contradicts
the formula_|O—waitfor@ which is true indt’.

Lemma 1. The growth in size of the problem following the reduction from a conditional
to an unconditional eventuality temporal problem is linear in the number of conditional
eventualities occurring in the given problem.



Proof. Follows from the proof of Theorem 1.
Example 1.Consider the following set of formulas containing two eventuality literals:

a N _'ll A\ —|l2

(a = O(—|a A (ll V lg) A (‘!ll V —\lg)))
((—‘a ANl A —\lg) =0 (—|a ANl A ﬁlg))
((_‘a A=l A ZQ) = O("Cl A=l A lg))
(
(

We reduce it to an unconditional eventuality problem as given by Theorem 1.

I={lan-liA=lz} 2. 0= O(=a (Vi) A (=l V=)
U= 9. a/N-l] = wly 3. (—\a/\ll /\"lg) = O(—\a/\ll /\—\lg)
— ] 10. a A —ly = wls S =< 4. (‘!CL/\‘!ll /\12) = O(—\a/\—'ll /\lg)

5 _ ].]. <>_|'LUl]_ 7 'lUll = O(ll V wll)
o 12. <>_|'LU12 3. 'lUlQ = O(lg \Y wlg)

The derivation given below involves the following merged step clauses:

13. (a A wly A wlg) = O((—|a A=l Al A wll) vV (—‘a Al A=lg A wlg))
14. (—|a ANli A —ly A ’u)lg) = O(—|a AR YA wlg)
15. (—|a A=l ANlg A wll) = O(—|a A=l Nlg A wll)

(Clausel3 is obtained by merging clausés7 and8, clausel4 by merging3 ands,
and clausd5 by merging4 and7.)

Clausel4 gives a loop for resolution with2, and clausé5 gives a loop for resolu-
tion with 11 resulting in two new universal clauses:

16. a VvV —ly V iy V —wly [ sometime resolution 14 and 12 ]
17.a VIV —ly V—wly [ sometime resolution 15 and 11]

Letl/; bet/U{16,17}. Then the step resolution ®8 with respect té/, can be applied:
18. =a V —~wly V —wly [ step resolution 13 w.r.df ]
Letls, belt; U{18}. Becausél, UZ + L, the initial termination rule can be applied and

the derivation is terminated. It follows that the given set of formulas is unsatisfiable.

5 Completeness of simplified resolution

From consideration of the models, it straightforwardly follows that:
Theorem 2 (soundness)Temporal resolution rules preserve satisfiability.

To show completeness of the simplified system we adapt the completeness proof of the
original system [7] as follows.



Notation We consider interpretations (or valuations) of a set of propositional symbols
(or atoms)L as Boolean functions ovet, that is, functiond: £ — {0, 1}. A proposi-
tionp € Lis calledtruein I if, and only if, I(p) = 1 andfalseotherwise. This notion

of truth and falsehood is extended in the usual way to literals and formulas builover

If £ is an atom, literal, or formula such thatis true inI, then we writel = E, and

we write] = Eif E'is falseinl.

Definition 3 (behaviour graph). Given a specificatio®dP =< U,Z,S > over a set
of propositional symbolg, we construct a finite directed graghas follows. The nodes
of G are interpretations ofZ, and an interpretation/, is a node of+ if I = U.

For each node], we construct an edge in G to a nofieif, and only if, the following
condition is satisfied:

— Forevery step ruléP = OQ) € S,if I = P thenl’ = Q.

Anode,l, is designated an initial node ¢t if I = ZUU. Thebehavior graptH of SP
is the maximal subgraph @f given by the set of all nodes reachable from initial nodes.

It is easy to see the following relation between behavior graphs of two temporal prob-
lems when one of them is obtained by extending the universal part of the other.

Lemma 2. LetSP; =< U;,Z,S > andSPy, =< U>,Z,S > be two specifications
over the same set of propositional symbols suchithat Us. Then the behavior graph
H, of SP,, is a subgraph of the behavior gragi; of SP;.

Proof. The graphHs is the maximal subgraph dff; given by the set of all nodes
whose interpretations satisty, and that are reachable from the initial nodesFbf
whose interpretations also satigfy. a

Definition 4. Let I, I’ be nodes of a grap/. We denote the relationl” is an imme-
diate successor df' by I — I’, and the relation 7’ is a successor of” by I —* I’

Lemma 3 (existence of a model)LetP = SP U £ be an unconditional eventuality
temporal problem. Let! be the behavior graph &P such that both the set of initial
nodes off is non-empty and the following condition is satisfied:

VIVIAI'(I =T I'AT =), 3)
wherel,I’ are nodes off and{! € £. ThenP has a model.

Proof. It follows from the conditions of the lemma that all paths throufhare
infinite. We can construct a model fd? as follows. LetIy be an initial node
of H and l4,...,l,, be all eventuality literals off. Let = be the infinite path
Io, I, .o Iy Iy vy - oo Iy, -, Where for alli > O andj > 1, Iy, F ;. It
follows by the construction of the behavior graph that the sequence of interpretations
given by~ is a model forP.

Indeed, all nontemporal clauses and all step clausés are satisfied on this se-
quence immediately by the definition of the behavior grapBPf Now, let us take an
eventuality claus€!; and a nodd, on. By construction ofr, there is a nodéy,, ., ;
suchl, —* Iy, ., andI;,.. . k= I;. It implies that(l; is satisfied at the moment
V. O



Note This lemma remains valid in the case when a temporal problem does not contain
eventualities. In this case the (sufficient) condition assumes the form

vI3ra —+r), 4)
which simply says tha® has a model if all paths througdt are infinite.

Theorem 3 (completeness)f an unconditional eventuality problel = SP U £ is
unsatisfiable then the temporal resolution procedure will derive a contradiction when
applied to it.

Proof. The proof proceeds by induction on the number of nodes in the behavior graph
H of SP, which is finite. LetSP =< U,Z,S >. If H is empty then the se&{f U

7 is unsatisfiable. In this case the derivation is successfully terminated by the initial
termination rule.

Now supposée is not empty. Letl be a node off which has no successors. In this
case there exists a set of step rfés = OQ1, ..., P, = OQum}, m > 0, such that
forall1 <i < m,I | P; butthe set/ U {Q1,...Q.} is unsatisfiable. So, we can
derive by the step resolution rule a new claug®, Vv ...V —F,,. Adding this clause to
the set/ results in removing the nodebecausd [~ =P, V ...V —P,,. Let us note
that if m = 0 the set/ would be unsatisfiable in contradiction to the supposifibis
not empty.

Now we consider another possibility when all nodegbhave a successor. Note
that in this cas& cannot be empty. Becaugeis unsatisfiable the following condition
(the negation of condition (3) concerning the existence of a model given in lemma 3)
holds:

AN =T I =T D), (5)
wherel, I’ are nodes off and! € £.

Let I, be a node defined by the first quantifier in condition (5), nble an eventuality
literal defined by the second one.

Let Z be a finite nonempty set of indexes such that | n € Z} is the set of all
successors afy. (Itis possible tha0 € 7.) Let I,,, , . .. I,,, be the set of allimmediate
successors afy.

Let Ry (R,) be the set of all step rules 6f whose left-hand sides are satisfied by
Iy (1) Let Ay = O By (A, = O B,,) be the result of applying the merging operation
to all clauses iRy (R,,) simultaneously.

Consider the following two cases depending on the emptiness of dither any
R,,nel.

1. LetR, be empty. It implies, tha¥ + —!l. Indeed, sincd ,,, ... I,, is the set of all
immediate successors &f, it holds thatl,,,, ... I,,, are all possible models &f.
Because for alf € {ni,...,n;} itholdsI; (- I, we can conclude that - —l,.
Now, we can apply the sometime termination rule as this contrafligts
The same argument holds if any of the skts n € Z, is empty.

2. Let Ry andR,, (for everyn € 7) be non empty. Then we have:



(@ UU{Bo}F —lpandd U {B,} F -l foralln € 7.
Indeed, by arguments similar to given above at (1) we conclude that
I,,,...,I,, areallinterpretations @f U { By }. Sincel,, }~ lo, ..., In, F~ lo
it follows thatif U {Bg} - —lo.
The same holds for every nodg and every conjunctios,,, n € Z.
b uu{B.,}+ V A; forall ne{0}UZT.

je{oyuz
Again, consider the case= 0 (for other indexes arguments are similar). Since
I,,,...,I,, are all possible interpretations &f U {B,} and for everyj €

{n1,...,n} I; - A; holds we can conclude thiatu { By} - V A;.

j€{ni,....,ni}
Therefore, the sometime resolution rule

{4;=0OB;|j€{0}UI}  Olo
AN ~4)

je{oyuz

(017/"168 ) X

can be applied. Then, the nodigwill is removed fromH (recall thatl, - Ay by
construction ofd,) together with the set of its successors.
O

6 Conditional single eventuality

Our simplified resolution technique relies on the translation from conditional eventual-
ities to unconditional ones (Theorem 1). Here we show that, if a temporal problem is
given in DSNF with only one conditional eventuality rule of the fdrm

P = 0Ol,

then we do not actually need to carry @uty translation
Instead of the sometime termination rule, we now use

— Sometime negation rule for single eventuality w.r.t.

P l
£= 29 o)

where/ U {I} FL (orid  —i).

The modified sometime resolution rule now takes the following form

4 This is not the exact DSNF form—we here extend it to the conditional eventuality case. Note
further the following equivalencéP = ¢l) = (P = (I vV 0Ol)) = (P A1) = 0OI). If
we have more than one eventuality rule sharing the same eventuality literaRe=g.O O,
P, = O9l, we replace them with the combined ru{@(Vv P2) = O ¢l), which is equivalent
w.r.t. satisfiability to the given pair of eventuality rules.



— Sometime resolution rule for single eventuality WiAt.

Ai=0OBy, ..., A,= 0B, P= 09l Y )
(}L\ _‘Al) \/ _‘P S—Tes

=1

with the usual loop side conditions.

Theorem 4. Temporal resolution rules for the single eventuality case preserve satisfi-
ability.

Proof. Follows straightforwardly from consideration of the models. O

Lemma 4 (existence of a model: single eventualityletP = SP U {P = O{l} be
a single eventuality temporal problem. Liétbe the behavior graph &P such that all
paths throughH are infinite and the following condition is satisfied:

VI EP=3I'I—="IANT 1), (6)
wherel,I’ are nodes ofi. ThenP has a model.
Proof. Similar to the proof of Lemma 3. O

Theorem 5 (completeness: single eventualitylf. a problemP = SP U {P = O{l}
is unsatisfiable, then the temporal resolution procedure will derive a contradiction when
applied to it.

Proof. The proof is obtained by analysing the proof of Theorem 3 given above. It re-
mains the same for the case whgrcontains nodes with no successor.

If all nodes in H have a successor, because of Lemma 4, the counterpart of the
condition (6) now has the following form:

(T = PAVI(I =TT =TI ). ©
Let Iy be a node off determined by the first quantifier of (7).
If case (1) of the previous proof holds (i.}= —I), nodel will be deleted from the
graph because of the sometime negation rule (recalllthat P).

If case (2) holds, nodé, will be deleted because of the conclusion of the sometime

n
resolution rule for single eventuality:A\ —A4;) vV —P. O
i=1
Example 2.Let us replace the two eventuality clauses of the example 1 by a single
eventuality clause and show that the resulting problem is still unsatisfiable.

l.aA _'ll A —|l2

2. D(a = O(—|a A (ll V Zg) A (‘!ll V —\lg)))
3. D((—‘a ANl A —\lg) = O(—|a ANl A ﬁlg))
4. D((—‘a Al A Zg) = O(—|a A=l A lg))
5. \:‘(CL = OO(_‘ll A\ —\lg))



The following DSNF corresponds to this problém

IT={larn-hn-lz} 2.a= O(=an (I Vi) A (=l V —l2))
U= {6 lﬁll/\ﬁl2 = (—\ll A —\lg)} S=<3. (—‘a ANl A —\lg) = O(“G/\ A ﬁlg)
£=1{T.a= 00l inu) 4 (can-hinl) = Oan-hinl)

We see that step claus2s3, 4, taken together with the universal clawdorm a loop
for the single eventuality temporal resolution with claserhe resulting universal
clausea, contradicts the initial clause.

Example 3 (Example 1 contyVe show now that if the given DSNF contains more
than one eventuality clause, reduction to the unconditional case is necessary. (l.e. the
inference system described in this section is not complete for the general case.)

Consider the original set of temporal formulas from Example 1. The step resolution
rule cannot be applied to the problem. Clau8esnd 4 form a loop for eventuality
rules6 and5 respectively; however, the temporal resolvents (by the ¢fe,..,) are
tautologiesu \V —ly V ls V —a (resp.a V 11 V =l V —a).

Tes

Note 3. Instead of areventuality literalwe could introduce a notion of agventual-

ity expressiorgiving eventuality rules the forn? = ¢ OQ whereP,  are arbitrary
Boolean combinations of propositional symbols. It is not difficult to check that our
inference system is adapted to such reformulation straightforwardly—we do not dis-
tinguish between eventuality expressiagps andQ. if 4 + (Q1 = Q2), i.e. they are
equivalent with respect a given universal part. Let us remind that during the derivation
the universal part of a given problem is not narrowed. Alternatively, we could rename
these eventuality expressions taking into consideration the equivalence, and introducing
the same name for equivalent expressions.

7 Reduction to the single eventuality problem

We reduce now a temporal problem with several unconditional eventualities to a single
eventuality temporal problem (first, in the language with past-time opera&tjr *

Lemmab5. SP U {[10Q;}ics is satisfiable if, and only ifSP U {I A [J(I =
OO (A (RIS Q;) A1)} is satisfiable, wheréis a new propositional symbol.
iel
Proof. Let us reformulate the given problem in a two-sorted temporal language with
variables oveN for the temporal sort:

SPU{VnIm(n <m A Q;(m))}icr

(meaning that eact);,i € I, is satisfied infinitely often). This problem is equivalent
with respect to satisfiability to the following (this can easily be checked by considering
possible models):

SPU{Vndm(m >nA N ki(n < ki <mAQi(k:))} (8)
- iel
5 When introducing a new name for the positive occurrence of the subforaiula —lz, we
use implication rather than equivalence; this technique goes back to [19].



which states, informally, that for each moment of timgthere is a moment: > n,
such that all eventualitie®,, : € I, are satisfied “aften and beforen”.
We prove that given a model for (8) it is possible to find a model for

SPU{IA (= 0O(N\(-1SQi) A} 9)

icl

and vice versa.

First, consider a modéit for (8). We construct a modéit’ for (9) by extending
2 with a new propositiori and defining its value as follows. Formula (8) states that
for each moment of times, there exists a future moment, when a certain property
holds, defining thus a functiom(n). Let us construct a sequence of times defined by
(8) starting from0, i.e.mo = 0, ma = m(0),..., m;y1 = m(m;); and let us also
definey in 9V to betrue at those times anthlse everywhere else. Note that, for all
i € I andj > 0, there exists a momertt; : m; < k; < mj;1 such thatQ;(k;).
Therefore,(M, m;41) E /\ (-y S Qi); hence,(M, m;) = OO(A (HISQ:) A1),

iel
making (9)true in 2’.
Let 0t be a model for (9); we show that it is also a model for (8). It is enough to show

that for infinitely manyn’s there exists amn such that{: > n) and A 3k;(n <
el
k; < m A Qq(k;)) holds. Forj > 1, let us consider the sequenee; (m; > 0) of

all moments such thatt, m;) = /\ (=l S Q;) Al (note that there are infinitely many

such moments); letig = 0. We can see that for gJl > 0, n = m, andm = m;1, the
formula A\ 3k;(n < ki < mAQ(k;)) is true in9n. Indeed (M, n) =1, (M, m) E;

i€l
by semantics of the operator “sincéMt, m) = A (-l S Q;) means thatt, m) =
icl
N Fki(n <k <m A Qi(k:)). g
el

Lemma 6. Formula [1(A = (B S ()) is satisfiable if, and only if, the temporal spec-
ification

(=s) AN HA=s) AN H(CV(BAs)=0s)
is satisfiable, where is a new propositional symbol. (The first clause goes into the

initial part, the second into the universal part, and the third can be represented by two
step clauses).

Proof. Follows straightforwardly from consideration of possible models. ad

Corollary 1. Any propositional temporal problem with an arbitrary number of eventu-
ality clauses is equivalent, by satisfiability, to a single eventuality propositional tempo-
ral problem.

Lemma 7. The growth in size of the problem following the reduction from DSNF to a
single eventuality temporal problem is linear in the number of eventualities occurring
in the DSNF form.

Proof. Follows from the above transformation. O



Example 4 (Example 1 contYVe reduce now the given set of formulas to a single
eventuality problem.

1.a N =l A=l 2.a= O("Cl/\(ll\/lg)/\(—\ll\/—\lg))
T — 18.1 3. (—‘a/\ll /\—\lg) = O(—|a/\l1 /\“lg)

19. =51 4. (—‘a A=l A lg) =0 (—|a Al A Zg)

20. —s9 5. wli = O(ll \Y wll)

6. wly = O(ZQ vV wlg)

13. a N —lp = wly S=7.Q=0QiAQzNI)

14. a A=y = wi 8. (—wly V=l Asy) = Osy
U=15.01= s 9. wlh A(IV =s1) = O-sy

16. Q2 = 52 10. (mwly V =LA s3) = O sy

17'ZA_‘Q:>’LUQ 11.11)12/\([\/—'82) :>O_‘$2
£ =1{21. O-wQ} 12. wQ = O(Q VwQ)

The derivation of a contradiction is rather lengthy for this example; we omit it due
to lack of space. We note that it enjoys the following property: Instead of two loops
needed for Example 1, one is enough. However, the following example shows that it is
not always the case.

Example 5.The following single unconditional eventuality temporal problem

I={lan-l} 2. an—l= O(ar—l)V(anl)
U=10 S§=<3.anl= O(man-l)
£=1{0l} 4. =a A=l = O(-a A -l)

requires two applications of the sometime resolution rule.

Indeed, the behavior graph for this problem consists of three verfiges,, I, (see
Fig. 1). One application of the sometime resolution rule deletes the hgdien, the
nodel; can be deleted by the step resolution rule; after that, one more application of
the sometime resolution is needed to delete the dgde

Fig. 1. Behavior graph for the problendy = {a, —l}; I = {a,l}; I = {—a, —l}.
8 Conclusion

In this paper, we have addressed the problem of simplifying, still further, the clausal
resolution approach described in [7]. We have shown how to reduce conditional even-
tualities, i.e formulas of the forni_l(P = ¢q), to unconditional eventualities, i.e.
[10q’, and how to reduce problems containing multiple formulate of the forino
problems containing just one. This not only allows us to simplify the normal form re-
quired (from that defined in [7]) to a more streamlined version, but has also allowed



us to introduce a set of simplified resolution rules. For example, in [7], the resolvent
generated by applying temporal resolution to the formita> O []1-1 and{! will be
(=A)U 1, while we have here shown that the resolvent can be as simpld as

In addition to providing both a much simpler normal form for temporal formula,
and a streamlined resolution process, the reductions described in this paper can, we
believe, form the basis of temporal resolution provers with greatly improved efficiency.
Thus, our future work in this area mainly involves the incorporation of the techniques
described here to develop improved temporal provers.
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