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Abstract. First-order temporal logic is a concise and powerful notatiwith
many potential applications in both Computer Science arifiéial Intelligence.
While the full logic is highly complex, recent work anonodicfirst-order tem-
poral logics have identified important enumerable and eeerddble fragments.
In this paper we present the first resolution-based calcidusnonodic first-
order temporal logic. Although the main focus of the papeorisestablishing
completeness results, we also consider implementatioessand define a basic
loop-search algorithm that may be used to guide the tempesalution system.

1 Introduction

Temporal Logic has achieved a significant role in Computeéer®e, in particular,
within the formal specification and verification of concurreand distributed sys-
tems [13, 11, 9]. However, even thoufjist-order temporal logics have been studied
over a number of years and have been recognised as a condig@aarful formal-
ism, most of the temporal logics used remain essentiallpgsitional. The reason for
this is that it is easy to show that first-order temporal Idgjdn general, incomplete
(i.e. not recursively-enumerable [14]). In fact, until eadly, it has been difficult to find
any non-trivial fragment of first-order temporal logic that h@&asonable properties.
A breakthrough by Hodkinsoet. al.[8] showed thamonodicfragments of first-order
temporal logic could be complete, even decidable. (In spiteis, the addition of equal-
ity or function symbols leads to the loss of recursive enwahbitity [15].)

The definition of the monodic fragment holds great promis@foreasing the power
of logic-based formal methods. However, there were, untit,mo practical proof tech-
niques for monodic fragments of first-order temporal logigsgeneral framework,
which provides conditions to yield a tableau-based proceflr decidable monodic
fragments, and a number of its instantiations, has beereptedin [10]. In this paper,
we provide a complete resolution calculus for monodic finster temporal logic, based
on our work on clausal temporal resolution over a number efygs, 7, 1, 2].

Some technical proofs are omitted due to lack of space anteéound in the full
version of the paper available as a technical report [3].

2 First-Order Temporal Logic

First-Order (linear time) Temporal LogiEQTL, is an extension of classical first-order
logic with operators that deal with a linear and discrete eb@d time (isomorphic to
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N, and the most commonly used model of time). The first-ordapteral language is
constructed in a standard way [6, 8] fropredicate symbols@P;, ... each of which
is of some fixed arity (null-ary predicate symbols are cajpeabosition3; individual
variables %, X1, .. .; individual constantsg;cs,...; Boolean operatorg\, -, Vv, =, =
true (‘true’), false (‘false’); quantifiersvy and3; together withunary temporal opera-
tors, such a3 [ | (‘always in the future’){ (‘sometime in the future’), and® (‘at the
next moment’). There are no function symbols and equalipunFOTL language. For
a given formulag, cons{ @) denotes the set of constants occurring.in

Formulae inFOTL are interpreted irfirst-order temporal structuresf the form
M = (D, 1), whereD is a non-empty set, thdomainof 9t, and| is a function asso-
ciating with every moment of timey € IN, an interpretation of predicate and constant
symbols oveD. We require that the interpretation of constantsggl. Thus, for every
constant and all moments of time j > 0, we havd;(c) = I;(c).

A (variable) assignment overD is a function from the set of individual variables
to D. For every moment of time, there is a correspondiriigst-order structuredt, =
(D, In), wherelp = I(n). Intuitively, FOTL formulae are interpreted in sequences of
worlds 97%g, M1, ... with truth values in different worlds being connected by meaf
temporal operators.

Thetruth relation?t, =2 @in a structureDt, for an assignment, is defined induc-
tively in the usual way under the following understandingeshporal operators:

Mn = Oiff Mny1 = @
My =* O@iff there existsm > n such thatlty, =* @
My = oiff forall m>n, My =2 @.

M is amodelfor a formulag (or @ is true in 9N) if there exists an assignmemisuch
thatMy =* . A formula issatisfiableif it has a model. A formula isalid if it is true
in any temporal structure under any assignment.

This logic is complex. It is known that even “small” fragmemf FOTL, such as
thetwo-variable monadidragment (all predicates are unary), are not recursively en
merable [12, 8]. However, the set of validonodicformulae is known to be finitely
axiomatisable [15].

Definition 1. An FOTL-formula @ is called monodicif any subformulae of the form
Ty, where7 is one of O, [ ], ¢, contains at most one free variable.

3 Divided Separated Normal Form

Definition 2 (Temporal Step Clauses)A temporal step clauss a formula either in
the form p= OlI, where pis a proposition and | is a propositional literal, @x(P(x) =
OM(x)), where P is a unary predicate and M is a unary literal. We cadllause of
the first type an (originalgroundstep clause, and of the second type an (original)
non-groundstep clause.

3 W.r.t. satisfiability, binary temporal operatofg (‘until’) and W (‘week until’) can be repre-
sented using these operators [6, 1].



Definition 3 (Monodic Temporal Problem). Amonodic temporal problem in Divided
Separated Normal Form (DSNE)a quadruple U, 1,5, E), where

1. the universal partZl, is given by a set of arbitrary closed first-order formulae;

2. theiinitial part, I, is, again, given by a set of arbitrary closed first-ordenfariae;

3. the step partSs, is given by a set of original (ground and non-ground) tenagbor
step clauses; and

4. the eventuality partg, is given by a set of eventuality clauses of the foinix) (a
non-grounceventuality clause) andl (a ground eventualitglause), where | is a
propositional literal and I(x) is a unary non-ground literal.

The setstd, 1, S, andS are finite.

Note that, in a monodic temporal problem, we do not allow tiffecent temporal
step clauses with the same left-hand sides. A problem wihstime left-hand sides
can be easily transformed by renaming into one without. Tdeaonodic temporal
problem, we associate the formuld A [JUA [JVXS A [JVXE. Now, when we talk
about particular properties of temporal problems (e.gisfsability, validity, logical
consequences etc) we mean properties of the associatedléorm

Following [6, 7], it was noted in [1] that any monodt© TL formula can be reduced
to a normal form where, in addition to the parts abaanditionaleventuality clauses
of the form P(x) = OL(x) andp = ¢l are allowed. The translation can be described
as a number of steps.

1. Translate a given monodic formula to negation normal form

2. Recursively rename innermost temporal subformulag(x), ¢@(x), [J@(x), by
new unary predicates (x). Renaming introduces formulae definiRgx) as fol-
lows:

(a) OVX(P,(X) = O@(X));  (b) CIVX(P,(X) = 0®(X));
(c) CIvx(Py(x) = o(x)).

Formulae of the fornga) and(b) are in the normal forth formulae of the forrc)
require extra reduction by removing the temporal operaisisg their fixed point
definitions.

3. Use fixed point definitions.
CIVx(P(x) = [l@(x)) is satisfiability equivalent to

CIVX(P(X) = R(X)) A LIVX(R(X) = OR(X)) A [IVX(R(X) = @(x)),
whereR(x) is a new unary predicate.

In[2], areduction from conditional problems to unconditiones for the propositional
case is given. For the first-order case, satisfiabilitypaf { [ [Vx(P(x) = OL(x))} is
equivalent to satisfiability of

LIVX((P(x) A —L(x)) = waitforL(x)),
dU { LIvx((waitforL(x) A O-L(x)) = OwaitforL(x)), } ,
[ VxO—-waitforL(x)

4 pPossibly, after (first-order) renaming the complex expoesg(x); the formulae introduced by
renaming are put in the universal part.



wherewaitforL(x) is a new unary predicate symbol. (The second clause is &ials|
into a step and a universal clauses.)

Theorem 1 (Transformation). Every monodic first-order temporal formula can be re-
duced, in a satisfiability equivalence preserving way, toaadic temporal problem
with at most a linear increase in the size of the problem.

4 Temporal Resolution for Monodic Non-Ground Case

As in the propositional case [5, 2], our calculus works waiterged step clausgsut here
the notion of merged step clauses is much more complex. $hisf icourse, because
of the first-order nature of the problem and the fact thateskigation is not allowed
under temporal operators. First, we provide some requieéiditions.

Definition 4 (Derived Step Clauses)Let P be a monodic temporal problem, and let
R, (X) = OM;; (X),...,R,.(X) = OM; (x) be a subset of the set of its original non-
ground step clauses. Then

YX(Py (X) V- VB, (X)) = OYX(Miy (X) V-V M, (X)),
HX(Pll(X) ASRERA P'k(x)) = OEX(MM(X) ARRaNAN Mik(x))a
Plj (c= OMij (c)

are derived step clauses, where c is a constant occurrin@iand j=1...k.

Definition 5 (Merged Derived Step Clauses)Let{®1 = OWs,...,®, = OW,} be
n n
a set of derived step clauses or origirgabundstep clauses. ThenA @ = O A Wi

i=1 i=1
is called amerged derived step clausdlote that the left-hand and right-hand sides of
any merged derived step clause are closed formulae.

Definition 6 (Full Merged Step Clauses)Let 4 = OB be a merged derived step
clause, R(x) = OM1(x),...,P(X) = OM(x) be original step clauses, and® def

k k
A P(X), BX) %1 A Mi(x). Thenvx(AAAX) = O(BAB(X))) is called afull merged
i=1 i=1

step clause(In the case k=0, the conjunctions &), B(x) are empty, i.e., their truth
value istrue, and the merged step clause is just a merged derived stepeclau

Definition 7 (Constant Flooding).Let P be a monodic temporal probler®’ = P U
{0OL(c) | OL(x) € E,c € cons{P)} is theconstant flooded forfnof P. Evidently,P® is
satisfiability equivalent t@.

Inference Rules. In what follows, 2 = O3B and4; = O % denote merged derived
step clausesyx(A4 A A(X) = O(BAB(X))) andVx(4 A Ai(X) = O(B ABi(x))) de-
note full merged step clauses, atiddenotes the (current) universal part of the problem.

5 Strictly speakingP® is not in DSNF: we have to rename ground eventualities bygsivpns.
Rather than ‘flooding’, we could have introduced speciaiahce rules to deal with constants.



22:7/,?@ (OY), whereuu {B} =1

— Initial termination rule w.r.t.7:  The contradictionL is derived and the derivation
is (successfully) terminated it/U I =1
— Eventuality resolution rule w.r.t:

YX(A1 A AL(X) = O(BLAB1(X)))

— Step resolution rule w.r.:

OL(X)
YX(An A An(X) = O(Br ABy(X)))

¥ A (25 A (0)

(Ores)

whereVx(4 A Ai(X) = OB AB;j(x)) are full merged step clauses such that for all
i € {1,...,n}, theloop side conditions¥x(U A B; AB;j(X) = —L(x)) and¥x(UA

B ABi(x) = V{_1(4j AAj(x)) are both valid.

The set of merged step clauses, satisfying the loop sideteams] is called doop

in OL(x) and the formula/_; (4 (x) A Aj(x)) is called doop formula

— Eventuality termination ru‘e w.r.tZl: The contradictionL is derived and the deriva-
tion is (successfully) terminated it! = Vx-L(x), whereQL(x) € £ .

— Ground eventuality resolution w.rtl andGround eventuality termination w.r.:
These rules repeat the eventuality resolution and evetytteimination rules with
the only difference thaground eventualitieand mergedlerived step clausesre
used instead of non-ground eventualities and full mergeul dauses.

A derivationis a sequence of universal part$= U C U1 C U, C ..., extended little
by little by the conclusions of the inference rules. Suctgé$srmination means that the
given problem is unsatisfiable. ThHe § and £ parts of the temporal problem are not
changed in a derivation.

Example 1.Let us consider an unsatisfiable temporal problem given by
. ul. C3x(Pu(x) AP2(x))
(11 3@} 4= { 17 Eoa0 ) AP = L) |
sl. [vx(Pi(x) = O-Pw(Xx))
F — {el, [¥xO-L(X) }, S=1< 2. [IWX(P2(x) = O-Px(x))
3. [IVX(Q(x) = OQ(x))
and apply temporal resolution to this. First, we produce ftilowing derived step
clause fromsl ands2: gl. 3y(Pi(y) APx(y)) = O3Jy(=Pi(y) A—=Pa(y)).
Then mergeyl ands3 to give

ml. [Ivx(3y(Pu(y) AP2(Y)) AQ(X) = OEFy(=Pu(y) A —Pa(y)) AQ(X))).
It can be immediately checked that the loop side conditioawvalid formi, i.e.,

Sy(~Py(y) A —Pa(y)) AQX) = L(X) (seeu2),
SY(~Pu(y) A ~P2(y)) A Q(X) = Fy(PLY) APAY) AQX)  (seeud).

We apply the eventuality resolution ruleg¢h andml and derive a new universal clause
nul. LIVX(=(3y(Pu(y) AP(Y))) vV —Q(x))
which contradicts claused andil (the initial termination rule is applied).



Theorem 2 (Soundness and Completeness of Temporal Resotut). The rules of
temporal resolution preserve satisfiability. If a monodiostant flooded temporal prob-
lemP is unsatisfiable, then there exists a successfully termnigaterivation from it.

Proof From consideration of the models, it straightforwardlyduls that the temporal
resolution rules preserve satisfiability. Consider, foaraple, the step resolution rule.
Let 4 = OB be a merged derived rule and assumeMat=" [ (42 = OB), but for
somei > 0,90 £ - 4. Then9iiL1 =2 B in contradiction with the rule side condition.
The proof of completeness is difficult, and Section 5 is ehtidevoted to this issue.
a

5 Completeness of Temporal Resolution

In order to prove completeness of the temporal resolutiothate we introduce
additional concepts (some of which were already defined]n (et P = (U, 1,5, E)
be a monodic temporal problem. L&Py,...,Py} and{pi,...,pn}, N,n > 0, be the
sets of all (monadic) predicate symbols and all propositi@ymbols, respectively,
occurring inS U E. Let A be the set of all mappings frodt,...,N} to {0,1}, and
O be the set of all mappings frodt,...,n} to {0,1}. An elementd € A (B € ©) is
represented by the sequerdgl), ..., 8(N)] € {0,1}N ([6(1),...,8(n)] € {0,1}"). Let
us call elements ok and® predicate and propositionablours respectively. Lef be
a subset of\, 8 be an element o®, andp be a map from the set of constantshfo
. Atriple (I',8,p) is called acolour schemgandp is called aconstant distribution
If a predicateR (x) from S U E “occurs” in a predicate colouwy (i.e., y(i) = 1), we
also writeR (x) € y; and if y(i) = 0, we also writeP(x) ¢ y or =P(X) € y. The same
convention is used for propositional colours and constestitidutions.

For every colour schemg = (I', 6, p) let us construct the formulag;, 4., B¢ in
the following way. For every € I" and for eveny, introduce the conjunctions:

R¥= A RXA A -RX, Fo= A pA A -—p
i<N,y(i)=1 i<N, y(i)=0 i<n,6(i)=1 i<n, 8(1)=0

Let us define two sets of indexes

Jy={i, 1 <i <NJy(i) = 1 andR(x) = OM;(x) belongs tas for someM;} and

Jo={j, 1<i<n|6(j)=1andpj; = Om belongs tas for somem;}.
(Recall that there are no two different step clauses withsdrae left-hand side.) Let
AX)= AR, ByX)= AMi(X), Ag= A p, Be= Am.

iedy iedy icty icJg

Now %, 4., B¢ are of the following forms:

Fe= N IXKF(X)AFsA A Foe)(€) AV V Fy(x),
yel ceC yer

Ac = N\ IAX) ANAGA N Ag(e)(C) AYX V. A(X),
yel ceC

yel
Be = N\ IXBy(X) ABg A A Bp<c)(c)/\Vx V By(X).
yer ceC yer

We can consider the formulg- as a “categorical” formula specification of the quotient
structure given by a colour scheme. In turn, the formljarepresents the part of this



Fig. 1. Behaviour graph for the problem from Example 2.

specification which is “responsible” just for “transfeminrequirements from the cur-
rent world (quotient structure) to its immediate successamdB- represents the result
of transfering.

Definition 8 (Canonical merged derived step clausesl.et P be a first-order tempo-
ral problem, C be a colour scheme fd?. Then the clause(4, = OB¢), is called

a canonical merged derived step cladseP. If all the sets ), forallye ', and }
are empty, the claused, = OB.) degenerate® (true = Otrue). If a conjunction
Ay(X), Y€T, is empty, thatis its truth value tsue, then the formularx\/yr Ay(x) (or
VX Vyer By(X)) disappears fron#. (or from B, respectively). In the propositional case,
the clausg 4, = OB.) reduces tqAg = OBy).

Definition 9 (Canonical merged step clause).et C be a colour schemeq, = OB,

be a canonical merged derived step clause, grelC. VX(A A Ay(X) = O(Be A
By(x))) is called acanonical merged step clauskthe set J is empty, the truth value
of the conjunctions @#x), By(x) is true, and the canonical merged step clause is just a
canonical merged derived step clauge. C abbreviates herge I', whereC = (I, 0,p).

Now, given a temporal problef = (U, I,.5, E) we define a finite directed gragihas
follows. Every vertex ofG is a colour scheme for P such thattiU ¥ is satisfiable.
For each vertexX = (I',0,p), thereisanedge i to ¢’ = (I",0',p'), if UA Frr A Be
is satisfiable. They are the only edges originating frtdmA vertex C is designated as
aninitial vertex of G if I A U A F is satisfiable. Théehaviour graph Hof P is the
subgraph ofs induced by the set of all vertices reachable from the inititices.

Example 2.Consider a monodic temporal proble®y,given by

I=0, U={l=3IXP(X)}, § ={P(X) = OP(X)}, £ = {0-P(x),0l}.
For this problem, there exist two predicate coloyis— [1] andy, = [0]; two propo-
sitional coloursh; = [1] and 6, = [0]; and six colour schemegy = ({y1},61), G2 =
({¥2}.01), Ga = ({v1,2},61). Ca= ({v1}.,62), G5 = ({¥2}.02), Go = ({V1.Y2},62).

Fe, = IXP(X) AVXP(X) Al Ag, = IXP(X) AVXP(X) B, = IXP(X) AVXP(X)
Fe, = IXAP(X) AVX-P(X) Al Ag, = true B, = true

Fez = IXP(X) AIX-P(X) Al A, = IXP(X) By, = IXP(X)

Feo = XPX) AYXP(X) Al Ap, = IXP(X) AVXP(X) B, = IXP(X) A VXP(X)



Fos = IAPX) AVX-P(X) A=l Ag =true By =true

Fes = IXP(X) AIX-P(X) A—l - Ap = IXP(X) B = IXP(X)
Note that¥., A U [=L. The behaviour graph fdp, given in Fig. 1, consists of five
vertices; all of them are initial.

Definition 10 (Path; Path Segment)A path 1, through a behaviour graph, H, is a
function fromIN to the vertices of the graph such that for any 0 there is an edge
(n(i),m(i+1)) in H. In the similar way, we define path segmenas a function from

[m,n], m< n, to the vertices of H with the same property.

Lemmal. LetPy = (1, I,5,E) andP2 = (U, I,S,E) be two problems such that
Uy C Uy,. Then the behaviour graph 8% is a subgraph of the behaviour graphef.

Definition 11 (Suitability). For ¢ = (I",0,p) and ¢’ = (I"',0,p’), let (C,C’) be an
ordered pair of colour schemes for a temporal problenfAn ordered pair of predicate
colours(y,y’) wherey € I', y" € I'" is called suitableif the formula 7 A 3x(Fy (x) A
By(x)) is satisfiable. Similarly, an ordered pair of propositior@dlours (8, 6’) is suit-
able if U A Fg A By is satisfiable, and an ordered pair of constant distribusidp, p’)
is suitable if, for every & C, the pair(p(c),p’(c)) is suitable.

Note that the satisfiability ofix(F,/(x) A By(x)) implies = ¥x(F,(x) = By(x)) as the
conjunctionf, (x) contains a valuation atof all predicates occurring iBy(x).
Lemma 2. Let H be the behaviour graph for the probldn= (U, 1,5, E) with an
edge from a verteK = (I",0,p) to a vertexC' = (I'",6',p’). Then for every e I there
exists ay’ € I’ such that the paify,y’) is suitable; for every’ € I’ there exists g € T
such that the paity,y’) is suitable; the pair of propositional colout$, 8') is suitable;
the pair of constant distribution@, p’) is suitable.

Definition 12 (Run/E-Run). Letttbe a path through a behaviour graph H of a tempo-
ral problemP, andri(i) = (i, 6;,pi). By arunin twe mean a function(n) from N to
Uien i such that for every g N, r(n) € 'y and the pair(r(n),r(n+1)) is suitable. In
the similar way, we definerain segmenas a function fronim, n|, m< n, to{UJ;cy i with
the same property. A run r is called @arunif Vi > OvOL(x) € E3j > i(L(x) €r(j))®.

Letmtbe a path, the set of all runs imis denoted byg (11), and the set of all e-runs
in Ttis denoted byRe(T7). If TTiS clear, we may omit it.

Example 3.1t1= (3, Gs, G3, Gs, - - - IS @ path through the behaviour graph given in Fig. 1.
ri=Vyi,Vi,... andr> =vi,Ya,v1,Y2,... are both runsimt ry is an e-run, buty is not.

Theorem 3 (Existence of a model)LetP = (U, 1,5, E) be a temporal problem. Let
H be the behaviour graph &, let C and ' be vertices of H such that= (I',6,p) and
C' = (I",0,p). If both the set of initial vertices of H is non-empty and thiofving
conditions hold

WeTVCYOL(x) € £3y' e M'3C ((C,y) =T (CY)AL(X) €Y)), 1)

6 To make the presentation compact, we abuse the notatioridwirag the use of logical sym-
bols at meta-level.

" Here(C,y) = (C,y') denotes that there exists a path segrmenom ¢ to ¢’ such thay and
y’ belong to a run segmentn 1 i.e., (m) = C, (n) = ¢, r(m) =ye,andr(n)=y e’
for somem< n; ¢ =T (' denotes that there exists a path segment fgbta .



Ve e cons(P) VCVOL(x) € £ 3¢ (C—T C'AL(x) €p'(0)), (2)
VeYOl e £ 3C" (C—7 C'Aled), (3)

thenP has a model.
Note 1. For constant floode@roblems condition 3 of Theorem 3 implies condition 2.

This theorem generalises its ground eventuality countempdl] (Lemma 5) and its
proof, therefore, is omitted and given in full in [3]. Thisrggralisation is made possible
by the following intricate, but essential, lemma.

Lemma 3. Under the conditions of Theorem 3, there exists a pettirough H where:

(a) 1(0) is an initial vertex of H;

(b) forevery colourschemé=r(i), i >0, and every ground eventuality literél € £
there exists a colour schen@® = 11(j), j > i, such that lc ¢';

(c) for every colour schemé = (i), i > 0 and every predicate colow from the
colour scheme there exists an e-rua Re(1) such that (i) = y; and

(d) for every constant € L, the function g(n) defined by ¢(n) = pn(c), wherepy, is
the constant distribution frorm(n), is an e-run inr

Proof [of Lemma 3] LetOL1(x),...,0Lk(X) be all non-ground eventuality literals
from £; Olg,...,0lp be all ground eventuality literals fror; andcy,...,cq be all
constants ofP. Let (p be an initial vertex ofH. We construct the patit as fol-
lows. Let{yi,...,Ys} be all predicate colours frofis,. By condition (1) there ex-

ists a vertex¢\**) and a predicate colow” e T ity such that((o,y1) =7

(c) WYy and L1( ) € yi. In the same way, there exists a ver@éY ) and a
predicate colouyl” € I ko such that ¢ yiP) =+ (G2 y?)) andLy(x) €

v2. And so on. Fmally, there exists a verteg™"* and a predicate colouf ¢

o such that(G™ 5 Vi) —+ ("™ V) andLi(x) € ;. Clearly,ys,
0
. .,y<11),. . ,y<12),. . ,y<1k> forms a segment of a run and every non-ground eventuality is

satisfied along this segment.
Now, Iety(z0> be any successor g5 in FCwl,Lk). As above, there exists a sequence
0

of vertices(?™,..., c¥»") and a sequence of predicate coloyf$ YRR
0

y2> € I'C<V2>Lk) such thaty,... ,y(20>, ... ,y(21>, . ,y<2k> forms a segment of a run and every
non—gro&nd eventuality is satisfied along this segment. gmadn. At a certain point we

L
construct a segment of a path frafp to a vertexCéySO' g such that for every € (o

: L
there existy’ € Gy
ytoy'.

In a similar way we can construct a vertg§™"*) such thatCOySO’ -+ gt

andLi(x) € P 1) y(c1). And so on. Then we can construct a ver@é&) such that
0

such that all eventualities are satisfied on the run-segfremt

L1)

C(()CQva) —+ Y andl; e 6 1, - And s0 on.
0



Finally, we construct a verteg) = Cé'p) such thatCo —* ¢ and on this path seg-
ment all conditions of the theorem hold for= (%. Let us denote this path segment as
Ao, and let(y be any successor @f).

By analogy, we can construct a vert€kand a path segmehi from i to ] such
that all conditions of the theorem hold for= (1. An so forth. Eventually, we construct
a sequencep, C1,. . ., Cj such that there exists 0 < n < j and G, = (j because there
are only finitely many different colour schemes. Iigt= Ao, ..., Ap_1, T =Ap,... Aj_1.
Now, we define our patitasm (1p)*. Properties (a) and (b) evidently hold an

Let ¢ = (i) andy € .. Clearly, there exisy’ € (p andy” € G, such that
(Go.Y') =T (Cy) and(C.y) =7 (Gn,Y"). Since for every” € G, there existsy” €

anS"’Lk) such that all eventualities are satisfied on the run-segfremty” to y"” and

there exists/? € Gn, (G y") 5+ (G, Y@, then there is an e-rum, such that
r(i) =v, i.e., property (c) holds.

Note that, for every constanbf P the sequence:(n) is a run intt. By construction,
for everyQL(x) € E thereis a vertei™ in T, such that(x) € p b (c). Therefore,

re(n) is an e-run inrand property (d) holds. a

Proof [Theorem 2: completeness of temporal resolutignrhe proof proceeds by in-
duction on the number of vertices in the behaviour gridgr P = (U, 1,5, E), which

is finite. If H is empty then the setlU I is unsatisfiable. In this case the derivation is
successfully terminated by the initial termination rule.

Now supposeH is not empty. LetC be a vertex oH which has no successors. In
this case the setl U B, is unsatisfiable. Indeed, suppo&eJ { B.} is true in a model
(D’,1"). Then we can define a colour scheiesuch that{D’,1’) = #.. (Indeed, for
everyac D' lety(y) be amap fron{1,...,N} to {0, 1} such thay,) (i) = 1 if, and only
if, M = R(a) for every 1< i < N. Similarly, let® be a map from{1,...,n} to {0,1}
suchthad(j) = 1if, and only if, M |= p; for every 1< j <n. Definel” as{y(,) |ac D'},
andp(c) asy(cl/).) As Be A T is satisfiable, there exists an edge from the vegles
the vertexC’ in the contradiction with the choice @fas having no successor.

The conclusion of the step resolution rute4,, is added to the set; this implies
removing the vertexC from the behaviour graph because the §€t,—4.} is not
satisfiable.

Next, we check the possibility whekeis not empty and every verték has a successor.
Ought to Note 1, we consider two cases of violation of the @wrts of Theorem 3.

First condition of Theorem 3 does not hol@ihe negation of (1) gives the following:
ICIYeT LX) e EW e’V ((Cy) =T (CY)=LX) ¢Y). (4

Let (o, Yo, andOLo(X) be the vertex, colour and eventuality, respectively, aeiteed by
the existential quantifiers of (4). Létandy;i,i € J be finite nonempty sets of indexes
such thaf{ G | i € J} is the set ofll successors afp (possibly including itself) and
{vijelilied, jedi, o=V} is the set ofall predicate colours such that there
exists a run going througjy and the colour. (To unify notation, if @ J, we defin€Jo
as{0}, andyp o asyo; and if 0 J, we add the index ofg to Jo. ThereforeJo is always
defined and without loss of generality we may assumeydat= Yo.)



Let G,,..., G, be the set of allimmediate successorg’ef To simplify the proof,
we will represent canonical merged derived step cladkes> OB, (ﬂal = OQ%C”)
simply asq; = OB (4, = OB,), and formulaef; (Tal) simply as% ().

Consider two cases depending on whether the canonical chedegived step clause
A9 = OB (or any of 4, = OB, i € J) degenerates or not.

Let 4p = By = true. It follows that U |= ¥x—Lo(X). Indeed, suppos® U {3IxLo(x) }
has a modekD’,1’). Then we can construct a colour sche@such thatD’,1’) = .
Since(;,..., G, is the set of all immediate successors(gfand By = true, it holds
that there exist§, 1 < j <k, such tha, = C'. SinceBy,(x) = true, every pair(yo,Y’),
wherey’ € I, is suitable; henceLg(x) € y’ for everyy’ € I, and 7 | Vx—Lo(X)
leading to a contradiction. Thereforé] |= ¥x-Lo(X) and the eventuality termination
rule can be applied. The same holds if any ongliof> O B; degenerates.

Let none of theZ; = OB degenerate. We are going to prove that the eventuality
resolution rule can be applied. First, we have to check tthe sbnditions for such an
application.

1. VX(UN B ABy;(X) = —Lo(x)) foralli € JU{0}, j € Ji.
Consider the case whenr= j = O (for other indexes the arguments are similar).
We show that Vx(U A Bo A By, (X) = V Fy(x)) is valid (it fol-
le{l,...k} y'eri, y=y
lows, in particular, that’x(U A Bo A By, (X) = —Lo(x)) is valid). SupposeD’, 1)
is a model for 3x(U A By A By, (X) A A —Fy(x)). Then there ex-
le{l... Kk} Yeri, y=y
ists a colour schemeg’ such that(D’,1") = F.. Since(D’,l") = By A Frr, We
conclude thait’ is among(,,...,G,. Note that(D',l") = 7~ follows. In par-
ticular (D',1") = Vx V' Fy(x) and, hence(D’,1") = VX(By,(x) = V Fyu(x)).
y//erl y/ler/

Together with the fact thdD’, 1) |= 3x(By,(x) A F#(x)) impliesyo — y”, we have
(D',1") = VX(Byy (X) = V F,»(X)). This contradicts the choice of the struc-
yllerlvyo_>y//
ture(D’,1").
2. VX(UNB ABy (X) = V (AcNAy,, (X)) foralli e JU{0}, j € Ji.
keIU{0}, €3k '
Again, consider the casé = j = 0. Suppose U A By A IX(By,(X) A
(=(A AN Ay, (x)))) is satisfied in a structuréD’,l’). Let ¢’ be a
keJU{0}, 13k '
colour scheme such théd’,l’) = F~. By arguments similar to the ones given
above, there is a verteg,, 1 <| <k, which is an immediate successor &,
such thatG, = (', and henceD’,1") = 4'. It suffices to note that(D',l") |=
VX(By, (X) = V' Ap(x)). (Asinthe case 1 abovél’,l’) |= Vx(By,(x) =
y”Er’,yo—)y”
V Fy7(x)), and for ally” € ", the formulavx(F,» (x) = Ay~ (x)) is valid.)
y”Er’,yo—)y”

After applying the eventuality resolution rule we add t@ its conclusion:
VX A (=4 V-Ay;(X). Then, the vertex(p will be removed from the be-
ieJuU{0}, j€Ji '

haviour graph (recall thafo = Ao A IXA, (X)).



Third condition of Theorem 3 does not holtihis case was already considered in [1].
We sketch here the proof. The negation of (2) gives the failgw

ICION € EVC (C—T C'=1¢9) 5)

Let (b, andlg be the vertex and eventuality determined by the existeqtiahtifiers
of (5). LetJ be a finite nonempty set of index€s; | i € J} be the set of all successors
of (b (possibly including(y itself). As in the previous case, one can show that

— Ifany of 4, = OB (wherei € J) degenerates theti |= —I, and the ground even-
tuality termination rule can be applied.
— If none of the canonical merged derived step clauses degiertbien the following
conditions hold
e foralli e JU{0} UJUB =g
e foralli e JU{0} UUBE V A4
. j€3uU{0} ,
and so the ground eventuality resolution rule can be applied a

Example 4 (example 2 contdW)e illustrate the proof of Theorem 2 on the temporal
problem introduced in Example 2. The behaviour graph of tiedlem is not empty;
every vertex has a successor. It is not hard to see that thedindition of Theorem 3
does not hold, and, following the proof, we can chooserso, andLg, for example,
C1, Y1, and—P(x), respectively. The set of all (and all immediate) successb(; is
{C1, C4}. Note that the canonical full merged step clauses correpgrio ¢; and Ca
are identical, and none of them degeneratesi Eof1,4}, the loop side conditions,

YX(((I = 3XP(X)) A (IXP(X) AVXP(X)) A P(X)) = P(X))

~—~
U B By, (%)
and
YX(((I = 3xP(x)) A (IXP(X) AVXP(X)) A P(X)) = \/ (IXP(X) AVXP(X) A P(X)))
~~ ; —_— -
U 3 B9 Y A, Ay, (%)

hold. Therefore, we can apply the eventuality resolutida whose conclusion can be
simplified todx—P(x). After the conclusion of the rule is added g veticesC: and (4
and edges leading to and from them are deleted from the mivayiaph.

For the temporal problem with the new universal part, aglanfirst condition of
Theorem 3 does not hold, for example, f6§ = C3, Yo = Y1, andLo(x) = -P(x). (Note
thatys is never a successor §f.) The set of all (and all immediate) successors of
(3 is { (3, Gs}- The canonical full merged step clauses correspondirg #nd (s are
identical, and none of them degenerates. In a similar waylgibp side conditions hold
and the conclusion of the eventuality resolution rule sifigd to Yx—P(x). This time,
vertices(z and (s are deleted from the behaviour graph.

For the new problem, the third condition of Theorem 3 doeshotd for (o = G,
lo =I. As the canonical full merged step clause degenerates@@ad-l), the ground
eventuality termination rule can be applied.

Note that if, in the beginning, instead gf we had selecteds (or Gs) as (o, ver-
tices (1, (3, G, and G5 would be deleted after the first application of the eventyali
resolution rule.



Input A temporal problenP and an eventuality clauggL(x) € .
Output A formulaH(x) with at most one free variable.
Method:1. LetHo(x) =true; No=0;i=0.
2. LetNiy = {Vx(ﬂj('H) (x) = O$§'+l> (x))}'j<:l be the set o&ll full merged step

clauses such that for everye {1...K}, ¥x(UA B! Y (x) = (=L(x) AHi(x)))
holds. (The sel;_ 1 possibly includes the degenerate clatise = Otrue in the
casel = Vx(—L(x) AH;(x)).)

(i+1)

k
3. If N1 1 =0, returnfalse else letHi11(x) = V (4 7 (X)).

4. 1f ¥x(Hi(x) = Hit1(x)) returnHi_1(x).
5. i=i+1; goto 2.

Fig. 2. Breadth First Search algorithm.

6 Loop Search Algorithm

The notion of a full merged step clause is quite involved dredsearch for appropriate
merging of simpler clauses is computationally hard. Figdiatsof such full merged
clauses needed for the temporal resolution rule is even whffieult. In Fig. 2 we
present a search algorithm that findeap formula(cf. page 5)—a disjunction of the
left-hand sides of full merged step clauses that togethtér avi eventuality literal form
the premises for the temporal resolution rule. The algorithbased on a Dixon’s loop
search algorithm for the propositional case [4]. For theesafkspace, in what follows
we consider non-ground eventualities only. The algorithihthe proof of its properties
for the ground case can be obtained by considering mergaedestep clauses instead
of the general case and by deleting the parameteafid quantifiers. We are going
to show now that the algorithm terminates (Lemma 5), its outp a loop formula
(lemmas 6 and 7), and temporal resolution is complete if wesicker only the loops
generated by the algorithm (Theorem 4).

Lemma 4. For the formulae Kx), i > 0O, constructed by the BFS algorithm, the fol-
lowing holds:¥x(Hit+1(x) = Hi(x)).

Lemma 5. The BFS algorithm terminates.

Proof There are only finitely many differeht; (x). Therefore, either there exigksuch
thatHy(x) = falseand the algorithm terminates by step 3, or there éxist | < msuch
thatvx(H, (X) = Hm(X)). In the latter case, by Lemma 4 we hatgHm_1(x) = H(x)),
that isVx(Hm-1(X) = Hm(X)). By step 4, the algorithm terminates. a

Lemma 6. Let H(x) be a formula produced by the BFS algorithm. Théxd U A
H(x) = O [J-L(x)).

Lemma 7. LetP be a monodic temporal problem,be a loop inOL(x) € £, andL (x)
be its loop formula. Then for the formula(k), produced by the BFS algorithm on
OL(x), the following holds¥x(L (x) = H(Xx)).



The proof of the completeness theorem goes by showing thia gxists an eventuality
OL(x) € £ and a loopL = {¥x(4i(x) = OBi(x))}X ; such that the application of the
eventuality resolution rule t¢L(x) and £ leads to the deletion of some vertices from
the eventuality graph. A vertex is deleted if the categorical formul&,, together
with the universal part{/, is satisfiable, buff~ A Vx— V'j‘:lﬂj (X) A U is unsatisfiable.

Theorem 4. Temporal resolution is complete if we restrict ourselvel®tps found by
the BFS algorithm.

Note 2. The need to includall full merged step clauses satisfying some particular
conditions intoN; -1 might lead to quite extensive computations. Note howe\atrdhe

to the trivial fact that ifvx(A(x) = B(x)) then¥x((A(x) vV B(x)) = B(x)), we can restrict
the choice to only those full merged step clauses whosé&ft sides do not imply the
left-hand side of any other clauseN, ; yielding a formulaH/, ; (x) equivalent to the
original formulaH;_1(X).

Example 5.Let us consider an unsatisfiable monodic temporal probRngiven by
I={3xAX)}, U= {VX(B(X) = A(X) A—L(X))}, S = {AX) = OB(X)}, £ = {OL(X)}
and apply the BFS algorithm toL(X).

The set of all full merged step clauség, whose right-hand sides imphL(x), is

(WYA(Y)) = O(VyB(y)), (6)
(A(X) AVYA(Y)) = O(B(x) AVYB(Y)), (7)
(A(X) A YAY)) = O(B(x) AJyB(Y)). (8)

Note thatvx(VyA(y) = A(X) A YYA(Y)) andvx(A(X) AVYA(Y)) = A(X) AIyA(y)); there-
fore, clauseg6) and(7) can be deleted fror\; yielding N; = {(A(x) A 3yAly)) =
O(B(x) A 3yB(y))} andHj (x) = (AXX) A SyA(y)).

The set of all full merged step clauséswhose right-hand sides imply(x) AH; ()
coincides withN; and the output of the algorithm i$)(x) = H;(x). The conclusion of
the eventuality resolution rul&x—A(x) V -3yA(y), simplified tovx—A(x), contradicts
the initial part of the problem.

Note that all full merged step clauses fra¥a are loops inGL(x), but both con-
clusions of the eventuality resolution rule, applied to theps (6) and (7), can be
simplified to3x—A(x) which does not contradict the initial part.

7 Conclusion and future work

In this paper, we have introduced a resolution-based aaddal the monodic fragment
of first-order temporal logic. We have shown that the calsudusound and complete
and considered some problems of implementation. We havgested an algorithm
that “guides” the search for loops in order to avoid unnemgssnumeration of all
possibilities. We are going to refine also the step resalutide in a way similar to the
original temporal resolution method for the propositiocade [5] that could serve as a

basis for a practical implementation.
An alternative tableaux-based approach [10] also utibsmdlar “separation” ideas

dividing the proof search procedure inemporalandfirst-order parts. Note that the



method in [10] requires the first-order component to give aefirepresentation cll
possibldfirst-order models; whereas our method requires from itgnstes/noanswer
(to test side conditions of the rules of temporal resolyti@ur procedure is a deci-
sion procedure when the side condition checks are decidabtkis a semi-decision
procedure otherwise.
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