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Abstract. First-order temporal logic is a concise and powerful notation, with
many potential applications in both Computer Science and Artificial Intelligence.
While the full logic is highly complex, recent work on monodic first-order tem-
poral logics has identified important enumerable and even decidable fragments
including the guarded fragment with equality. In this paper, we specialise the
monodic resolution method to the guarded monodic fragment with equality and
first-order temporal logic over expanding domains. We introduce novel resolu-
tion calculi that can be applied to formulae in the normal form associated with
the clausal resolution method, and state correctness and completeness results.

1 Introduction

First-order temporal logic (FOTL) is a powerful notation with many applications in
formal methods. Unfortunately, this power leads to high complexity, most notably the
lack of recursive axiomatisations for generalFOTL. Recently, significant work has been
carried out in definingmonodicFOTL, a class of logics retaining finite axiomatisation,
with both tableau and resolution systems being under development [12, 3]. However,
until now, little work has been carried out concerning monodic FOTL with equality and
no practical proof technique for such logics has been proposed. In real applications of
formal specification, the notion of equality plays a key roleand so, in this paper, we
extend and adapt our clausal resolution approach, which hasalready been successfully
applied to a variety of monodic logics, to the case of monodicFOTL with equality. In
particular, we develop a decision procedure for the guardedmonodic fragment ofFOTL
with equality over constant and expanding domains; decidability of this fragment has
been established in [9]. However, decidability was given there using model-theoretic
techniques, and practical proof techniques were not considered. In this paper we address
the problem of producing a practical proof technique for this class of logic through
extension of the clausal resolution method for monodic temporal logics. A complete
temporal resolution calculus for the monodic temporal fragmentwithout equalityfor
the constant domain case has been presented in [3]. The expanding domain case has
been announced in [11] and proved in a technical report [4]. Finally, we also point to
a fine-grainedsuperposition calculus for the monodic guarded fragment with equality
interpreted over expanding domains. This suggests adapting our previous work on fine-
grained temporal resolution [11] and combining this with (parts of) the superposition
calculus for the (first-order) guarded fragment with equality given in [7].
⋆ On leave from Steklov Institute of Mathematics at St.Petersburg



2 First-Order Temporal Logic

First-Order (discrete linear time) Temporal Logic,FOTL, is an extension of classical
first-order logic with operators that deal with a linear and discrete model of time (iso-
morphic toN, and the most commonly used model of time). The first-order function-
free temporal language is constructed in a standard way [6, 10] from: predicate symbols
P0,P1, . . ., each of which is of some fixed arity (null-ary predicate symbols are called
propositions); equality, denoted by the symbol≈3; individual variables x0,x1, . . .; in-
dividual constants c0,c1, . . .; Boolean operators∧, ¬, ∨, ⇒, ≡, true (‘true’), false
(‘false’); quantifiers∀ and∃; together withunary temporal operators, such as4 (‘al-
ways in the future’),♦ (‘sometime in the future’), and❣(‘at the next moment’).

Formulae inFOTL are interpreted infirst-order temporal structuresof the form
M= 〈Dn, In〉, n∈N, where everyDn is a non-empty set such that whenevern<m, Dn⊆
Dm, andIn is an interpretation of predicate and constant symbols overDn. We require
that the interpretation of constants isrigid. Thus, for every constantc and all moments
of time i, j ≥ 0, we haveIi(c) = I j(c). The interpretation of≈ is fixed as the identity on
everyDn. The interpretation of predicate symbols is flexible. A(variable) assignment
a is a function from the set of individual variables to∪n∈NDn. (This definition implies
that variable assignments are also rigid.) We denote the setof all assignments byV.

For every moment of timen, there is a correspondingfirst-order structure,Mn =
〈Dn, In〉; the corresponding set of variable assignmentsVn is a subset of the set of
all assignments,Vn = {a ∈ V | a(x) ∈ Dn for every variablex}; clearly,Vn ⊆ Vm if
n< m. Intuitively,FOTL formulae are interpreted in sequences ofworlds, M0,M1, . . .

with truth values in different worlds being connected via temporal operators.
The truth relationMn |=a φ in a structureM, only for those assignmentsa that

satisfy the conditiona∈Vn, is defined inductively in the usual way under the following
understanding of temporal operators:

Mn |=
a ❣φ iff Mn+1 |=

a φ ;
Mn |=

a ♦φ iff there existsm≥ n such thatMm |=a φ ;
Mn |=

a φ iff for all m≥ n, Mm |=a φ .

M is amodelfor a formulaφ (or φ is true in M) if there exists an assignmenta such
thatM0 |=

a φ . A formula issatisfiableif it has a model. A formula isvalid if it is true
in any temporal structure under any assignment.

The models introduced above are known asmodels with expanding domains. An-
other important class of models consists ofmodels with constant domainsin which
the class of first-order temporal structures, where FOTL formulae are interpreted, is
restricted to structuresM = 〈Dn, In〉, n ∈ N, such thatDi = D j for all i, j ∈ N. The
notions of truth and validity are defined similarly to the expanding domain case. It is
known [14] that satisfiability over expanding domains can bereduced to satisfiability
over constant domains.
3 We are using the symbol≈ for equality in the object language in order to avoid confusion

with the symbol= for equality in the meta language.
4 W.r.t. satisfiability, the binary temporal operatorsU (‘until’) and W (‘weak until’) can be

represented using the unary temporal operators [6, 2] with alinear growth in the size of a
formula.
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Example 1.The formula∀xP(x)∧ (∀xP(x) ⇒ ❣∀xP(x))∧♦∃x¬P(x) is unsatisfi-
able over both expanding and constant domains; the formula∀xP(x)∧ (∀x(P(x) ⇒
❣P(x)))∧♦∃x¬P(x) is unsatisfiable over constant domains but has a model with an

expanding domain.

This logic is complex. It is known that even “small” fragments of FOTL, such as the
two-variable monadicfragment (all predicates are unary), are not recursively enumer-
able [13, 10]. However, the set of validmonodicformulaewithout equalityis known to
be finitely axiomatisable [15].

Definition 1 (Monodic fragment). AnFOTL-formulaφ is calledmonodicif any sub-
formulae of the formT ψ , whereT is one of ❣, , ♦ (or ψ1T ψ2, whereT is one
of U , W ), contains at most one free variable.

The addition of either equality or function symbols to the monodic fragment leads to the
loss of recursive enumerability [15]. Moreover, it was proved in [5] that thetwo variable
monadic monodic fragment with equalityis not recursively enumerable. However, in [9]
it was shown that the guarded monodic fragment with equalityis decidable5.

Definition 2 (Guarded monodic fragment with equality). The formulae of the
guarded monodic fragment MGFare inductively defined as follows:

1. If A is an atom (which can be non-equational, of the form P(t1, . . . , tn) an equation,
of the form s≈ t, as well as a logical constant,true or false), then A is inMGF,
where t1, . . . , tn,s, t are constants or variables.

2. MGF is closed under boolean combinations.
3. If φ ∈ MGF and G is an atom (possibly equation), for which every free variable of

φ is among the arguments of G, then∀x(G ⇒ φ) ∈ MGF and∃x(G∧φ) ∈ MGF,
for every sequencex of variables. The atom G is called aguard.

4. If φ(x) ∈ MGF andφ(x) contains at most one free variable, then❣φ(x) ∈ MGF,
φ(x) ∈ MGF, and♦φ(x) ∈ MGF.

5. If φ(x) ∈ MGF and φ(x) contains exactly one free variable x, then∀xφ(x) and
∃xφ(x) are inMGF.

Note 1. Although the standard definition of the guarded fragment (see, for example,
[7]) does not contain item 5, its addition does not extend thenotion of the guarded
fragment: we can always choosex≈ x as the guard for∀x and∃x.

3 Divided Separated Normal Form (DSNF)

Definition 3. A temporal step clauseis a formula either of the form l⇒ ❣m, where l
and m are propositional literals, or(L(x)⇒ ❣M(x)), where L(x) and M(x) are unary
literals. We call a clause of the the first type an (original)groundstep clause, and of the
second type an (original)non-groundstep clause.

5 All cases considered in [5] included formulae of the form∀x∀y ((P(x)∧P(y))⊃ x≈ y) or
similar non-guarded formulae.
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Definition 4. A monodic temporal problemin Divided Separated Normal Form
(DSNF) is a quadruple〈U ,I ,S ,E 〉, where
1. the universal part,U , is a finite set of arbitrary closed first-order formulae;
2. the initial part,I , is, again, a finite set of arbitrary closed first-order formulae;
3. the step part,S , is a finite set of original (ground and non-ground) temporalstep

clauses; and
4. the eventuality part,E , is a finite set of eventuality clauses of the form♦L(x) (a

non-groundeventuality clause) and♦l (a ground eventualityclause), where l is a
propositional literal and L(x) is a unary non-ground literal.

For a temporal problem,P, const(P) denotes the set of constants occurring inP.
Note that, in a monodic temporal problem, we disallow two different temporal step

clauses with the same left-hand sides. We also disallow occurrences of equality in the
step and eventuality parts. These requirements can be easily guaranteed by renaming.

In what follows, we will not distinguish between a finite set of formulaeX and the
conjunction

∧

X of formulae within the set. With each monodic temporal problem, we
associate the formulaI ∧ U ∧ ∀xS ∧ ∀xE . Now, when we talk about partic-
ular properties of a temporal problem (e.g., satisfiability, validity, logical consequences
etc) we mean properties of the associated formula.

Arbitrary monodicFOTL-formulae can be transformed into DSNF in a satisfiability
equivalence preserving way using a renaming technique replacing non-atomic subfor-
mulae with new propositions and removing all occurrences ofthe U and W opera-
tors [6, 3]. If the given formula is a guarded monodic formula, then all parts of DSNF
(and the associated formula) are guarded monodic formulae.In this case, we call the
result of the transformation aguarded monodic problem.

4 Calculi

In this section we present two resolution calculi,Ic andIe, for guarded monodic prob-
lems (including equality). These calculi are very similar,but Ic is complete for prob-
lems featuring constant domains, whileIe is complete for those involving expanding
domains. These resolution calculi are based on those introduced in [3] for problems
without equality. Thus, the work described in this section extends previous calculi to
allow consideration of equality in guarded monodic problems.

We begin with a number of important definitions.

Definition 5 (Equational augmentation). Let P be a temporal problem. Its (equa-
tional) augmentation is the setaug=(P) of step clauses. For every constant c∈ const(P),
the following clauses are inaug=(P).

(x≈ c) ⇒ ❣(x≈ c), (1)

(x 6≈ c) ⇒ ❣(x 6≈ c). (2)

Note that clauses originating from such augmentation are the only step clauses that
contain equality.
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Definition 6 (Derived/E-Derived Step Clauses).LetP be a monodic temporal prob-
lem, and let

Li1
(x)⇒ ❣Mi1

(x), . . . ,Lik
(x)⇒ ❣Mik

(x) (3)

be a subset of the set of its original non-ground step clauses, or clauses fromaug=(P).
Then formulae of the form

∃x(Li1
(x)∧ . . .∧Lik

(x)) ⇒ ❣∃x(Mi1
(x)∧ . . .∧Mik

(x)), (4)

∀x(Li1
(x)∨ . . .∨Lik

(x)) ⇒ ❣∀x(Mi1
(x)∨ . . .∨Mik

(x)) (5)

are calledderivedstep clauses. Formulae of the form(4) are callede-derivedstep
clauses.

Note that formulae of the form(4) are logical consequences of(3) in the expanding
domaincase; while formulae of the form(4) and(5) are logical consequences of(3) in
theconstant domaincase. As Example 1 shows,(5) is not a logical consequence of(3)
in the expanding domain case.

Definition 7 (Merged Derived/E-Derived Step Clauses).Let{Φ1 ⇒
❣Ψ1, . . . ,Φn ⇒

❣Ψn} be a set of derived (e-derived) step clauses or originalgroundstep clauses. Then
n
∧

i=1
Φi ⇒

❣
n
∧

i=1
Ψi is called amerged derived (merged e-derived) step clause.

Note 2. In [3], where no equality was considered, instead augmenting a problem with
clauses of the form(1) and(2), we defined another derived step clause

L(c)⇒ ❣M(c), (6)

wherec∈ const(P). Note that this clause is equivalent to an e-derived step clause

∃x(L(x)∧x≈ c)⇒ ❣∃x(M(x)∧x≈ c).

Definition 8 (Full Merged/E-Merged Step Clauses).LetA ⇒ ❣B be a merged de-
rived (merged e-derived) step clause, L1(x)⇒

❣M1(x), . . . ,Lk(x)⇒
❣Mk(x) be orig-

inal step clausesor step clauses fromaug=(P), and A(x)
def
=

k
∧

i=1
Li(x), B(x)

def
=

k
∧

i=1
Mi(x).

Then∀x(A ∧A(x)⇒ ❣(B∧B(x))) is called afull merged step clause(full e-merged
step clause, resp.). In the case k= 0, the conjunctions A(x), B(x) are empty, i.e., their
truth value istrue, and the merged step clause is just a merged derived step clause.

We now present two calculi,Ic andIe, aimed at the constant and expanding domain
cases, respectively. The inference rules of these calculi coincide; the only difference is
in the merging operation. The calculusIc utilises merged derived and full merged step
clauses; whereasIe utilises merged e-derived and full e-merged step clauses.

Inference Rules.In what follows,A ⇒ ❣B andAi ⇒
❣Bi denote merged derived

(e-derived) step clauses,∀x(A (x) ⇒ ❣(B(x))) and∀x(Ai(x) ⇒
❣(Bi(x))) denote

full merged (e-merged) step clauses, andU denotes the (current) universal part of the
problem. Thus,φ |= ψ means thatψ is a (first-order) logical consequence ofφ .
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– Step resolution rule w.r.t.U :
A ⇒ ❣B

¬A
( ❣U

res) , whereU ∪{B} |=⊥.

– Initial termination rule w.r.t.U : The contradiction⊥ is derived and the derivation
is (successfully) terminated ifU ∪I |=⊥.

– Eventuality resolution rule w.r.t.U :

∀x(A1(x)⇒
❣(B1(x))) . . .∀x(An(x)⇒ ❣(Bn(x))) ♦L(x)

∀x
n
∧

i=1
¬Ai(x)

(♦U
res) ,

where♦L(x) ∈ E and∀x(Ai(x) ⇒
❣Bi(x)) are full merged (full e-merged) step

clauses such that for alli ∈ {1, . . . ,n}, the loop side conditions∀x(U ∧Bi(x) ⇒

¬L(x)) and∀x(U ∧Bi(x)⇒
n
∨

j=1
(A j(x))) are both valid first-order formulae.

– Eventuality termination rule w.r.t.U : The contradiction is derived and the deriva-
tion is (successfully) terminated ifU |= ∀x¬L(x), where♦L(x) ∈ E .

– Ground eventuality resolution w.r.t.U andGround eventuality termination w.r.t.
U : These rules repeat the eventuality resolution and eventuality termination rules
with the only difference thatground eventualitiesand mergedderived step clauses
are used instead of non-ground eventualities and full merged step clauses.

A derivationis a sequence of universal parts,U =U0 ⊆ U1 ⊆U2 ⊆ . . ., extended little
by little by the conclusions of the inference rules. Successful termination means that
the given problem is unsatisfiable. TheI , S andE parts of the temporal problem are
not changed in a derivation.

Example 2.Let us consider an unsatisfiable (over both constant and expanding do-
mains) temporal problem given by

I =
{

i1. ∃x(x 6≈ c)
}

, U =

{

u1. ∃x(P(x)),
u2. ∀x(x 6≈ c∧∃y¬P(y)⇒ Q(x))

}

,

E =
{

e1. ♦¬Q(x)
}

, S =
{

s1. P(x)⇒ ❣¬P(x)
}

and apply temporal resolution to this. First, we produce thefollowing e-derived step
clause froms1:

d1. ∃yP(y)⇒ ❣∃y¬P(y).

Then, we merged1 and(x 6≈ c⇒ ❣(x 6≈ c)) from aug=(P) to give

m1. ∀x(∃yP(y)∧x 6≈ c⇒ ❣(∃y¬P(y)∧x 6≈ c)).

It can be immediately checked that the following formulae are valid

∀x((U ∧∃y¬P(y)∧x 6≈ c)⇒ Q(x)) (seeu2),
∀x((U ∧∃y¬P(y)∧x 6≈ c)⇒ (∃yP(y)∧x 6≈ c)) (seeu1),

that is, the loop side conditions are valid form1. We apply the eventuality resolution
rule toe1 andm1 and derive a new universal clause

u3. (∀y¬P(y)∨∀x(x≈ c))

which contradicts clausesu1 and i1 (consequently, the initial termination rule is ap-
plied).
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Correctness of the presented calculi is straightforward.

Theorem 1. The rules ofIc andIe preserve satisfiability over constant and expanding
domains, respectively.

Proof Considering models, it follows that the temporal resolution rules preserve sat-
isfiability. Consider, for example, the step resolution rule. LetA ⇒ ❣B be a merged
derived clause and assume thatM0 |=

a (A ⇒ ❣B), but for somei ≥ 0,Mi 6|=
a ¬A .

ThenMi+1 |=
a B in contradiction with the side condition of the rule. ✷

We formulate now completeness results and prove them in Section 5, which is entirely
devoted to this issue.

Theorem 2. If a guarded monodic temporal problem with equalityP is unsatisfiable
over constant domains, then there exists a successfully terminating derivation inIc

fromP.

Theorem 3. If a guarded monodic temporal problem with equalityP is unsatisfiable
over expanding domains, then there exists a successfully terminating derivation inIe

fromP.

The calculi are complete in the sense that they provides us with a decision procedure
when side conditions checks are decidable and with a semi-decision procedure else.

Corollary 1. Satisfiability of the guarded monodic temporal fragment with equality is
decidable by temporal resolution.

Proof Since there are only finitely many different merged clauses,there are only
finitely many different conclusions by the rules of temporalresolution. Now it suf-
fices to note that these side conditions are expressed by first-order guarded formulae
with equality (mind our “extended” definition of the guardedfragment, Note 1), and
the first-order guarded fragment with equality is decidable[1, 8]. ✷

A complete temporal resolution calculus for the monodic temporal fragmentwithout
equalityfor the constant domain case has been presented in [3]. The expanding domain
case has been announced in [11] and proved in a technical report [4]. We show that the
calculiIc andIe, that slightly differ from the calculi used in [3] and [4], are complete
for these cases. We briefly discuss the difference between the calculi in Section 5.3.

Theorem 4. Let an arbitrary monodic temporal problemwithout equalityP be unsat-
isfiable over constant domains. Then there exists a successfully terminating derivation
in Ic fromP.

Theorem 5. Let an arbitrary monodic temporal problemwithout equalityP be unsatis-
fiable over expanding domains. Then there exists a successfully terminating derivation
in Ie fromP.
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5 Completeness of Temporal Resolution

The proof of theorems 2 and 3, as well as of theorems 4 and 5, canbe obtained by a
modification of the corresponding proof of completeness forthe constant domain case
without equality (see [3], Theorem 2). In short, the proof in[3] proceeds by building
a graph associated with a monodic temporal problem, then showing that there is a cor-
respondence between properties of the graph and of the problem, and that all relevant
properties are captured by the rules of the proof system. Therefore, if the problem is
unsatisfiable, eventually our rules will discover it.

The outlined proof relies on the theorem on existence of a model (see [3], Theo-
rem 3). In Section 5.1 we prove the theorem on existence of a model, Theorem 6, for
the constant domain guarded monodic fragment with equality; in Section 5.2 we re-
fine this reasoning for the expanding domain case; and in Section 5.3 we show that the
proofs of sections 5.1 and 5.2 can be transfered to arbitrarymonodic fragments without
equality. It can be seen that the proof of completeness givenin [3] holds for all these
cases of the theorem on existence of a model considered in sections 5.1–5.3.

5.1 Guarded monodic fragment with equality over constant domains

Let P = 〈U ,I ,S ,E 〉 be a guarded monodic temporal problem with equality. Let
{P1(x), . . . ,PN(x)} and{p1, . . . , pn}, N,n ≥ 0, be the sets of all (monadic) predicates
(including “predicates” of the formx≈ c for every constantc∈ const(P)) and all propo-
sitions, respectively, occurring inS ∪E ∪aug=(P).

A predicate colour γ is a set of unary literals such that for everyPi(x) ∈
{P1(x), . . . ,PN(x)}, eitherPi(x) or ¬Pi(x) belongs toγ. A predicate colour is called
constantif x ≈ c ∈ γ for somec ∈ const(P). A propositional colourθ is a sequence
of propositional literals such that for everypi ∈ {p1, . . . , pn}, eitherpi or ¬pi belongs
to θ . Let Γ be a set of predicate colours. A couple(Γ ,θ ) is called acolour scheme
for P. SinceP only determines the signature, we may omitP when speaking of colour
schemes.

For every colour schemeC = 〈Γ ,θ 〉 let us construct the formulaeF
C

, A
C

, B
C

in
the following way. For everyγ ∈ Γ and for everyθ , introduce the conjunctions:

Fγ(x) =
∧

L(x)∈γ
L(x); Fθ =

∧

l∈θ
l .

Let
Aγ(x) =

∧

{L(x) | L(x)⇒ ❣M(x) ∈ S ∪aug=(P), L(x) ∈ γ},
Bγ(x) =

∧

{M(x) | L(x)⇒ ❣M(x) ∈ S ∪aug=(P), L(x) ∈ γ},
Aθ =

∧

{l | l ⇒ ❣m∈ S , l ∈ θ}, Bθ =
∧

{m | l ⇒ ❣m∈ S , l ∈ θ}.

Now A
C

, B
C

, andF
C

are of the following forms:

A
C
=

∧

γ∈Γ
∃xAγ(x)∧Aθ ∧∀x

∨

γ∈Γ
Aγ(x), B

C
=

∧

γ∈Γ
∃xBγ(x)∧Bθ ∧∀x

∨

γ∈Γ
Bγ(x),

F
C
=

∧

γ∈Γ
∃xFγ(x)∧Fθ ∧∀x

∨

γ∈Γ
Fγ(x).
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We can consider the formulaF
C

as a “categorical” formula specification of the quotient
structure given by a colour scheme. In turn, the formulaA

C
represents the part of

this specification which is “responsible” just for “transferring” requirements from the
current world (quotient structure) to its immediate successors, andB

C
represents the

result of this transferal.

Definition 9 (Canonical merged derived step clauses).LetP be a first-order tempo-
ral problem, andC be a colour scheme forP. Then the clause

(A
C
⇒ ❣B

C
),

is called acanonical merged derived step clausefor P (including thedegenerateclause
true ⇒ ❣true). If a conjunction Aγ(x), γ ∈ Γ , is empty, that is its truth value istrue,
then the formula∀x

∨

γ∈Γ Aγ(x) (or ∀x
∨

γ∈Γ Bγ(x)) disappears fromA
C

(or from B
C

respectively). In the propositional case, the clause(A
C
⇒ ❣B

C
) reduces to(Aθ ⇒

❣Bθ ).

Definition 10 (Canonical merged step clause).Let C be a colour scheme,A
C
⇒

❣B
C

be a canonical merged derived step clause, andγ ∈ C .

∀x(A
C
∧Aγ(x)⇒ ❣(B

C
∧Bγ(x)))

is called acanonical merged step clause. If the truth value of the conjunctions Aγ (x),
Bγ(x) is true, then the canonical merged step clause is just a canonical merged derived
step clause. Here,γ ∈ C abbreviatesγ ∈ Γ , whereC = (Γ ,θ ).

Now, given a temporal problemP= 〈U ,I ,S ,E 〉 we define a finite directed graphG
as follows. Every vertex ofG is a colour schemeC forP such thatU ∪F

C
is satisfiable.

For each vertexC = (Γ ,θ ), there is an edge inG to C ′ = (Γ ′,θ ′), if U ∧F
C ′ ∧B

C

is satisfiable. They are the only edges originating fromC . A vertexC is designated as
an initial vertex ofG if I ∧U ∧F

C
is satisfiable. Thebehaviour graph Hof P is the

subgraph ofG induced by the set of all vertices reachable from the initialvertices.

Definition 11 (Path; Path Segment).A path, π , through a behaviour graph, H, is a
function fromN to the vertices of the graph such that for any i≥ 0 there is an edge
〈π(i),π(i +1)〉 in H. In the similar way, we define apath segmentas a function from
[m,n], m< n, to the vertices of H with the same property.

Lemma 1. Let P1 = 〈U1,I ,S ,E 〉 andP2 = 〈U2,I ,S ,E 〉 be two problems such
thatU1 ⊆ U2. Then the behaviour graph ofP2 is a subgraph of the behaviour graph of
P1.

Definition 12 (Suitability). For C = (Γ ,θ ) andC ′ = (Γ ′
,θ ′), let (C ,C ′) be an or-

dered pair of colour schemes for a temporal problemP. An ordered pair of predicate
colours(γ,γ ′) whereγ ∈ Γ , γ ′ ∈ Γ ′ is calledsuitableif the formulaU ∧∃x(Fγ ′(x)∧

Bγ(x)) is satisfiable. Similarly, an ordered pair of propositionalcolours(θ ,θ ′) is suit-
able ifU ∧Fθ ′ ∧Bθ is satisfiable.

Note that the satisfiability of∃x(Fγ ′(x)∧Bγ (x)) implies |= ∀x(Fγ ′(x) ⇒ Bγ(x)) as the
conjunctionFγ ′(x) contains a valuation atx of all predicates occurring inBγ(x).
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Note 3. If an ordered pair(γ,γ ′) is suitable then for every constantc ∈ const(P) we
havex≈ c∈ γ iff x≈ c∈ γ ′. It implies that ifx≈ c∈ γ, then there exist not more than
oneγ ′ and not more than oneγ ′′ such that the pairs(γ,γ ′) and(γ ′′,γ) are suitable.

Lemma 2. Let H be the behaviour graph for the problemP= 〈U ,I ,S ,E 〉 with an
edge from a vertexC = (Γ ,θ ) to a vertexC ′ = (Γ ′,θ ′). Then

1. for everyγ ∈ Γ there exists aγ ′ ∈ Γ ′ such that the pair(γ,γ ′) is suitable;
2. for everyγ ′ ∈ Γ ′ there exists aγ ∈ Γ such that the pair(γ,γ ′) is suitable;
3. the pair of propositional colours(θ ,θ ′) is suitable;

Definition 13 (Run/E-Run). Let π be a path through a behaviour graph H of a tem-
poral problemP, andπ(i) = (Γi ,θi). By arun in π we mean a function r(n) fromN to
⋃

i∈NΓi such that for every n∈N, r(n) ∈ Γn and the pair(r(n), r(n+1)) is suitable. In
a similar way, we define arun segmentas a function from[m,n], m< n, to

⋃

i∈NΓi with
the same property.

A run r is called ane-runif for all i ≥ 0 and for every non-ground eventuality♦L(x) ∈ E

there exists j> i such that L(x) ∈ r( j).

Let π be a path, the set of all runs inπ is denoted byR(π), and the set of all e-runs in
π is denoted byRe(π). If π is clear, we may omit it.

A run r is called aconstant runif x ≈ c ∈ r(i) for somei ≥ 0. Note that if a run is
constant andx≈ c∈ r(i) for somei ≥ 0, thenx≈ c∈ r( j) for all j ∈N. If, for two runs
r andr ′, a constantc, and somei ≥ 0 we havex≈ c∈ r(i) andx≈ c∈ r ′(i), thenr = r ′.

Let ρ
C

be a mapping from const(P) to Γ such thatx≈ c∈ ρ
C
(c). Then the function

defined asrc(n) = ρ
Cn
(c) is the unique constant run “containing”c.

Theorem 6 (Existence of a model).Let P = 〈U ,I ,S ,E 〉 be a temporal problem.
Let H be the behaviour graph ofP. If both the set of initial vertices of H is non-empty
and the following conditions hold

1. For every vertexC = (Γ ,θ ), predicate colourγ ∈ Γ , and non-ground eventuality
♦L(x) ∈ E , there exist a vertexC ′ = (Γ ,θ ) and a predicate colourγ ′ ∈ Γ ′ such
that ((C ,γ)→+ (C ′,γ ′)∧L(x) ∈ γ ′);

2. For every vertexC = (Γ ,θ ) and ground eventuality♦l ∈ E there exist a vertex
C ′ = (Γ ,θ ) such that(C →+ C ′∧ l ∈ θ ′);

thenP has a model.6 Here (C ,γ) →+ (C ′,γ ′) denotes that there exists a pathπ from
C to C ′ such thatγ andγ ′ belong to a run inπ ; C →+ C ′ denotes that there exists a
path fromC to C ′.

6 Following [3], in the original version of this paper, Theorem 6 contained one more condition:
for every vertexC = (Γ ,θ ), non-ground eventualityL(x) ∈ E , and constantc ∈ const(P)
there exists a vertexC ′ = (Γ ,θ ) such that

(

C →+ C ′∧L (x) ∈ ρ
C ′ (c)

)

. This condition was
essential for the completeness of the calculus without equality presented in [3], and it led to
the introduction of so calledconstant flooding, see [3]. However, one of the referees noticed
that, under definitions of this paper (after including equality into consideration), condition (1)
already implies the additional condition leading to the obsolescence of constant flooding.
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Proof The proof relies on the following lemma, whose proof was given in [3].

Lemma 3. Under the conditions of Theorem 6, there exists a pathπ through H where:

(a) π(0) is an initial vertex of H;
(b) for every colour schemeC = π(i), i ≥ 0, and every ground eventuality literal♦l ∈

E there exists a colour schemeC ′ = π( j), j > i, such that l∈ θ ′;
(c) for every colour schemeC = π(i), i ≥ 0, and every predicate colourγ from the

colour scheme there exists an e-run r∈ Re(π) such that r(i) = γ; and
(d) for every constant c∈ const(P), the function rc(n) defined by rc(n) = ρ

Cn
(c) is an

e-run inπ .

Let π = C0, . . . ,Cn, . . . be a path throughH defined by Lemma 3. LetG0 = I ∪{F
Co
}

andGn = F
Cn

∧B
Cn−1

for n≥ 1. According to the definition of a behaviour graph, the

setU ∪{Gn} is satisfiable for everyn≥ 0.

Now, Lemma 8 from [9], that captures properties of the guarded fragment, can be re-
formulated as follows.

Lemma 4. Let κ be a cardinal,κ ≥ ℵ0. For every n≥ 0, there exists a modelMn =
〈D, In〉 of U ∪ {Gn} such that for everyγ ∈ Γn the set{a ∈ D | Mn |= Fγ(a)} is of
cardinality1 if γ is a constant colour and of cardinalityκ otherwise.

Following [10, 2, 9] take a cardinalκ ≥ ℵ0 exceeding the cardinality of the setRe.
Let r be a run inRe. We define the setDr as {〈r,0〉} if r is a constant run and as
{〈r,ξ 〉 | ξ < κ} otherwise.

Let us define a domainD =
⋃

r∈Re

Dr . For everyn ∈ N we haveD =
⋃

γ∈Γn

D
(n,γ),

whereD(n,γ) = {〈r,ξ 〉 ∈ D | r(n) = γ} =
⋃

r∈Re, r(n)=γ
Dr . Then

∣

∣

∣
D(n,γ)

∣

∣

∣
= 1 if γ is a

constant colour and
∣

∣

∣
D(n,γ)

∣

∣

∣
= κ otherwise.

Hence, by Lemma 4, for everyn ∈ N there exists a structureMn = 〈D, In〉 satisfying
U ∪{Gn} such thatD(n,γ) = {〈r,ξ 〉 ∈ D |Mn |= Fγ(〈r,ξ 〉)}. Moreover,cIn = 〈rc,0〉 for

every constantc∈ const(P). A potential first order temporal model isM= 〈D, I〉, where
I(n) = In for all n ∈N. To be convinced of this we have to check validity of the step
and eventuality clauses. (Recall that satisfiability ofI in M0 is implied by satisfiability
of G0 in M0.)

Let ∀x(Li(x) ⇒
❣Mi(x)) be an arbitrary step clause; we show that it is true in

M. Namely, we show that for everyn≥ 0 and every〈r,ξ 〉 ∈ D, if Mn |= Li(〈r,ξ 〉) then
Mn+1 |= Mi(〈r,ξ 〉). Supposer(n) = γ ∈ Γn andr(n+1) = γ ′ ∈ Γ ′, where(γ,γ ′) is a
suitable pair in accordance with the definition of a run. It follows that〈r,ξ 〉 ∈ D

(n,γ)
and〈r,ξ 〉 ∈ D(n+1,γ ′), in other wordsMn |= Fγ(〈r,ξ 〉) andMn+1 |= Fγ ′(〈r,ξ 〉). Since

Mn |= Li(〈r,ξ 〉) thenLi(x) ∈ γ. It follows thatMi(x) is a conjunctive member ofBγ (x).
Since the pair(γ,γ ′) is suitable, it follows that the conjunction∃x(Fγ ′(x)∧Bγ(x)) is
satisfiable and, moreover,|= ∀x(Fγ ′(x) ⇒ Bγ(x)). Together withMn+1 |= Fγ ′(〈r,ξ 〉)
this implies thatMn+1 |= Mi(〈r,ξ 〉).
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Let ( ∀x)♦L(x) be an arbitrary eventuality clause. We show that for everyn≥ 0 and
every〈r,ξ 〉 ∈ D, r ∈ Re,ξ < κ , there existsm> n such thatMm |= L(〈r,ξ 〉). Sincer is
an e-run, there existsC ′ = π(m) for somem> n such thatr(m) = γ ′ ∈Γ ′ andL(x)∈ γ ′.
It follows that〈r,ξ 〉 ∈ D(m,γ ′), that isMm |= Fγ ′(〈r,ξ 〉). In particular,Mm |= L(〈r,ξ 〉).
Propositional step and eventuality clauses are treated in asimilar way. ✷

5.2 Guarded monodic fragment with equality over expanding domains

We here outline how to modify the proof of Theorem 6 for the case of expanding do-
mains. All the definitions and properties from the previous section are transfered here
with the following exceptions.

Now, the universally quantified part does not contribute either toA or B:

A
C
=

∧

γ∈Γ
∃xAγ(x)∧Aθ , B

C
=

∧

γ∈Γ
∃xBγ (x)∧Bθ .

This change affects the suitability of predicate colours.

Lemma 5 (analog of Lemma 2).Let H be the behaviour graph for the problemP =
〈U ,I ,S ,E 〉 with an edge from a vertexC = (Γ ,θ ) to a vertexC ′ = (Γ ′,θ ′). Then

1. for everyγ ∈ Γ there exists aγ ′ ∈ Γ ′ such that the pair(γ,γ ′) is suitable;
3. the pair of propositional colours(θ ,θ ′) is suitable;

Note that the missing condition(2) of Lemma 2 does not hold in the expanding domain
case. However, under the conditions of Lemma 5, ifγ ′ ∈Γ ′ containsx≈ c, there always
exists aγ ∈ Γ such that the pair(γ,γ ′) is suitable.

Since for a non-constant predicate colourγ there may not exist a colourγ ′ such that
the pair(γ ′,γ) is suitable, the notion of a run is reformulated.

Definition 14 (Non-constant run).Let π be a path through a behaviour graph H of a
temporal problemP. By anon-constant runin π we mean a function r(n) mapping its
domain, dom(r) = {n∈N | n≥ n0} for some n0 ∈N, to

⋃

i∈NΓi such that for every n∈
dom(r), r(n) ∈ Γn, r(n) is not a constant predicate colour, and the pair(r(n), r(n+1))
is suitable. (Constant runs are defined as in the constant domain case.)

5.3 Monodic fragment without equality

Note that the only place where the proof of Theorem 6, given inSection 5.1, and its
counterpart for the expanding domain case, given in Section5.2, need the problem to
be guarded is Lemma 4. If a monodic temporal problemP does notcontain equality,
Lemma 4 holds regardless the problem being guarded or not.

Consider the constant domain case (similar reasoning takesplace for the expanding
domain case). LetU ∪{Gn} be satisfiable, and letMn be its model. LetCn = (Γn,θn).
For a constantc∈ const(P), let us defineΓc to be{γ ∈ Γn | x ≈ c ∈ γ}; the setΓc is a
singleton. LetΓ ′

n be obtained by eliminating all equations and disequations fromΓn. Let
us define now the formulaF ′

Cn
as
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∧

γ∈Γ ′
n

∃xFγ(x)∧
∧

c∈const(P),γ∈Γc

Fγ(c)∧Fθn
∧∀x

∨

γ∈Γ ′
n

Fγ(x).

Analogously, we define the formulaeB′
Cn

andG ′
n = F ′

Cn
∧B′

Cn−1
. It is not hard to see

that sinceU ∪{Gn} is satisfiable,U ∪{G ′
n} is satisfiable. AsU ∪{G ′

n} does not contain
equality, from classical model theory, there exists a modelM′

n = 〈D′, I ′n〉 of U ∪{G ′
n}

such that for everyγ ∈ Γ ′
n the setD′

(n,γ ′) = {a∈ D′ |M′
n |= Fγ(a)} is of cardinalityκ ,

and for allc1,c2 ∈ const(P), I ′n(c1) = I ′n(c2) iff In(c1) = In(c2) . Note thatMn is a model
for U ∪{Gn}. Obviously, a constant predicate colourγ is true on a single element of
the domainD; disequations such asx 6≈ c exclude only finitely many elements.

As already mentioned in Section 4, Note 2, instead of extendingP with step clauses
of the form(1) and(2), we could consider derived step clauses of the form(6). Com-
pleteness of the resulting calculus for the constant domaincase has been presented
in [3]. Completeness for the expanding domain case can be obtained by combining the
proof technique from [3] with the previous section.

6 Fine-grained temporal superposition

The main drawback of the calculi introduced in Section 4 is that the notion of a merged
step clause is quite involved and the search for appropriatemerging of simpler clauses
is computationally hard. Findingsetsof such full merged step clauses needed for the
temporal resolution rule is even more difficult.

This problem has been tackled for the expanding domain case without equality
in [11]. The expanding domain case is simpler firstly becausemerged e-derived step
clauses are simpler (formulae of the form(5) do not contribute to them) and, secondly,
because conclusions of all inference rules ofIe are first-order clauses. We have intro-
duced in [11] a calculus where the inference rules ofIe were refined into smaller steps,
more suitable for effective implementation. We have also shown that the search for
premises for the eventuality resolution rule can be implemented by means of a search
algorithm based on step resolution. We called the resultingcalculusfine-grained reso-
lution.

In the same way as we have used first-order resolution to obtain a complete fine-
grained resolution calculus for the expanding domain monodic fragment without equal-
ity, we can use first-order superposition to obtain afine-grained superpositioncalcu-
lus for the expanding domainguardedmonodic fragmentwith equality. In order to do
that, we apply ideas from [11] to a first-order superpositiondecision procedure for the
guarded fragment with equality given in [7]. Fine-grained superposition takes as input
an augmented temporal problem transformed in clausal form:the universal and initial
parts are clausified, as if there is no connection with temporal logic at all.

In contrast toIe which generates only universal formulae, fine-grained superposi-
tion might generate initial, universal, or step clauses of the formC⇒ ❣D, whereC is a
conjunctionof propositional literals and unary literals of the formL(x), x≈ c, or x 6≈ c;
and ground formulae of the formL(c), whereL(x), is a unary literal andc is a constant
occurring in the originally given problem;D is adisjunctionof arbitrary literals.

Following [11], we allow only the right-hand side of step clauses to be involved in an
inference rule and impose a restriction on mgus. For example, thestep paramodulation
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rule will take the following form:

C1 ⇒
❣(D1∨L[s]) C2 ⇒

❣(D2∨ t ≈ u)

(C1∧C2)σ ⇒ ❣(D1∨D2∨L[u])σ and
C1 ⇒

❣(D1∨L[s]) D2∨ t ≈ u

C1σ ⇒ ❣(D1∨D2∨L[u])σ
,

whereC1 ⇒ ❣(D1 ∨L[s]) andC2 ⇒
❣(D2∨ t ≈ u) are step clauses,D2∨ t ≈ u is a

universal clause,σ is an mgu ofsandt such thatσ does not map variables from C1 or
C2 (or just from C1) into a Skolem constant or a Skolem functional term. This restriction
justifies skolemisation: Skolem constants and functions donot “sneak” in the left-hand
side of step clauses, and, hence, Skolem constants from different moments of time do
not interact.

Other rules of fine-grained superposition can be obtained ina similar way from the
rules of the calculus given in [7]. Correctness and completeness of the resulting calculus
for the expanding domain guarded monodic fragment with equality can be proved just
as the corresponding properties of fine-grained resolutionhas been proved in [11].

Example 3.Consider a guarded monodic temporal problem,P, unsatisfiable over ex-
panding domains:

I = {i1. c 6≈ d}, U = {u1. ∀x(¬P(x)∨x≈ c)}
S = {s1. true ⇒ ❣P(d)}, E = /0.

Although this problem is not in DSNF, it can be easily reducedto DSNF by renaming;
however, such a reduction would complicate understanding.

First, we give a “course-grained” refutation. The right-hand side of a merged e-
derived step clause

m1. ∃x(x≈ d∧x 6≈ c)⇒ ❣∃x(x≈ d∧x 6≈ c∧P(d))

contradicts to the universal part, and, by the step resolution rule, we conclude∀x(x 6≈
d∨x≈ c) which contradicts the initial part.

We show now how fine-grained superposition helps us to find therequired merged
e-derived step clausem1. We need the following step clauses from aug=(P):

a1. y 6≈ d ⇒ ❣y 6≈ d and a2. x≈ c⇒ ❣x≈ c.

We now derive: s2. true ⇒ ❣d ≈ c (resolutionu1 ands1)
s3. y 6≈ d ⇒ ❣y 6≈ c (paramodulations2 anda1)
s4. y 6≈ d∧x≈ c ⇒ ❣x 6≈ y (paramodulations3 anda2)
s5. x 6≈ d∧x≈ c ⇒ ❣false (reflexivity resolutions4)

We convert the step clauses5 into the universal clauseu2. x ≈ d∨ x 6≈ c and resolve
with i1 giving i2. c 6≈ c. Finally, we derive an empty clause by reflexivity resolution.

7 Concluding remarks

In this paper we have considered the basis for mechanising the extension of monodic
FOTL by equality. In particular, we have presented resolution calculi for the guarded

14



monodic fragment with equality over both constant and expanding domains. Provided
that there exists a first-order decision procedure for side conditions of all inference rules,
then these calculi provide the basis for decision procedures. As indicated in section 6,
a more practical approach is being developed (for the expanding domain case) based
on fine-grained superposition for the guarded monodic fragment. Extension and imple-
mentation of this approach represents much of our future work. Finally, we acknowl-
edge support from EPSRC via research grant GR/L87491 and thank the (anonymous)
referees of the LPAR conference for their helpful and insightful comments.
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