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Abstract. First-order temporal logic is a concise and powerful notatiwith
many potential applications in both Computer Science arifiéial Intelligence.
While the full logic is highly complex, recent work on monodirst-order tem-
poral logics has identified important enumerable and eveiddble fragments
including the guarded fragment with equality. In this papee specialise the
monodic resolution method to the guarded monodic fragméiht eguality and
first-order temporal logic over expanding domains. We iitice novel resolu-
tion calculi that can be applied to formulae in the normahfassociated with
the clausal resolution method, and state correctness anpleteness results.

1 Introduction

First-order temporal logicHOTL) is a powerful notation with many applications in
formal methods. Unfortunately, this power leads to high ptaxity, most notably the
lack of recursive axiomatisations for gendf@TL. Recently, significant work has been
carried out in definingnonodicFOTL, a class of logics retaining finite axiomatisation,
with both tableau and resolution systems being under dpusdat [12, 3]. However,
until now, little work has been carried out concerning mané® TL with equality and
no practical proof technique for such logics has been propdsea@al applications of
formal specification, the notion of equality plays a key ratel so, in this paper, we
extend and adapt our clausal resolution approach, whichlheasdy been successfully
applied to a variety of monodic logics, to the case of mon&€@id L with equality. In
particular, we develop a decision procedure for the guangenbdic fragment ofF OTL
with equality over constant and expanding domains; deditlabf this fragment has
been established in [9]. However, decidability was givesréhusing model-theoretic
techniques, and practical proof techniques were not censid In this paper we address
the problem of producing a practical proof technique fos ttliass of logic through
extension of the clausal resolution method for monodic @mlplogics. A complete
temporal resolution calculus for the monodic temporal finagtwithout equalityfor
the constant domain case has been presented in [3]. Thedirgatomain case has
been announced in [11] and proved in a technical report [#Rlfy, we also point to
a fine-grainedsuperposition calculus for the monodic guarded fragmetit eguality
interpreted over expanding domains. This suggests adppinprevious work on fine-
grained temporal resolution [11] and combining this witlargp of) the superposition
calculus for the (first-order) guarded fragment with eqyaliven in [7].

* On leave from Steklov Institute of Mathematics at St.Péiang



2 First-Order Temporal Logic

First-Order (discrete linear time) Temporal LogiQTL, is an extension of classical
first-order logic with operators that deal with a linear afgttete model of time (iso-
morphic tolN, and the most commonly used model of time). The first-ordection-
free temporal language is constructed in a standard wa@[@;dm: predicate symbols
Py, P, ..., each of which is of some fixed arity (null-ary predicate sytstare called
proposition3; equality denoted by the symbet?; individual variables % Xq,- - iN-
dividual constants gc,,...; Boolean operators\, -, V, =, =, true (‘true’), false
(‘false’); quantifiersvy and3; together withunary temporal operatorsuch a$ [] (‘al-
ways in the future”){ (‘sometime in the future’), and (‘at the next moment).

Formulae inFOTL are interpreted irirst-order temporal structuresf the form
M = (Dp,In), n€ N, where everyD, is a non-empty set such that whenewerm, D, C
Dm, andl,, is an interpretation of predicate and constant symbols byelVe require
that the interpretation of constantsigid. Thus, for every constawtand all moments
of timei, j > 0, we have;(c) =1;(c). The interpretation ok is fixed as the identity on
everyDy. The interpretation of predicate symbols is flexible(variable) assignment
a is a function from the set of individual variablesug_ Dn. (This definition implies
that variable assignments are also rigid.) We denote thef sditassignments b$3.

For every moment of time, there is a correspondirfgst-order structure M, =
(Dn, In); the corresponding set of variable assignmedtsis a subset of the set of
all assignmentsyn = {a € U | a(x) € Dy for every variablec}; clearly, Up C U, if
n < m. Intuitively, FOTL formulae are interpreted in sequencesvoflds 9y, M, ...
with truth values in different worlds being connected viap®ral operators.

The truth relationt, =* @ in a structuredt, only for those assignmenisthat
satisfy the condition € U, is defined inductively in the usual way under the following
understanding of temporal operators:

Mn = O@iff M =° @
Mn =* Q@ iff there existsm > n such thatity, =2 @;
My =* Ceiff forall m>n, My =2 @.

9 is amodelfor a formulag (or @ is true in 9) if there exists an assignmemisuch
thatdt, = @. A formula issatisfiablef it has a model. A formula isalid if it is true
in any temporal structure under any assignment.

The models introduced above are knowmasdels with expanding domain&n-
other important class of models consistsnabdels with constant domairs which
the class of first-order temporal structures, where FOTimfdae are interpreted, is
restricted to structure®t = (Dn, In), n € IN, such thaD; = DJ- foralli,j € N. The
notions of truth and validity are defined similarly to the arding domain case. It is
known [14] that satisfiability over expanding domains carrdéauced to satisfiability
over constant domains.

3 We are using the symbok: for equality in the object language in order to avoid confuosi
with the symbol = for equality in the meta language.

4W.r.t. satisfiability, the binary temporal operatdgs (‘until’) and W (‘weak until’) can be
represented using the unary temporal operators [6, 2] withear growth in the size of a
formula.



Example 1.The formulavxP(x) A [J(VXP(x) = OVxP(x)) A 0Ix—P(x) is unsatisfi-
able over both expanding and constant domains; the forkéx) A LJ(VX(P(x) =
OP(x))) A 03Ix—P(x) is unsatisfiable over constant domains but has a model with an
expanding domain.

This logic is complex. It is known that even “small” fragmsmif FOTL, such as the
two-variable monadidragment (all predicates are unary), are not recursivelyresr-

able [13, 10]. However, the set of validonodicformulaewithout equalityis known to

be finitely axiomatisable [15].

Definition 1 (Monodic fragment). An FOTL-formula g is calledmonodicif any sub-
formulae of the formZ (), where.7 is one of O, [, ¢ (or ¢, 7 s,, where.7 is one
of U, W), contains at most one free variable.

The addition of either equality or function symbols to thermadic fragment leads to the
loss of recursive enumerability [15]. Moreover, it was pedn [5] that theéwo variable
monadic monodic fragment with equaligynot recursively enumerable. However, in [9]
it was shown that the guarded monodic fragment with equilitiecidablé.

Definition 2 (Guarded monodic fragment with equality). The formulae of the
guarded monodic fragment MGdfe inductively defined as follows:

1. If Ais an atom (which can be non-equational, of the forfty P. . ,tn) an equation,
of the form s t, as well as a logical constantrue or false), then A is inMGF,
wheret,... t,, st are constants or variables.

. MGF is closed under boolean combinations.

3. If p € MGF and G is an atom (possibly equation), for which every fregalde of
@ is among the arguments of G, therR(G = ¢) € MGF and 3x(G A @) € MGF,
for every sequenceof variables. The atom G is calledguard

4. If (x) € MGF and @(x) contains at most one free variable, théhg(x) € MGF,
Llo(x) € MGF, and$@(x) € MGF.

5. If ¢(x) € MGF and ¢(x) contains exactly one free variable x, therp(x) and
Ixp(x) are inMGF.

N

Note 1. Although the standard definition of the guarded fragmeng,(§& example,
[7]) does not contain item 5, its addition does not extendrtbgon of the guarded
fragment: we can always choose- x as the guard foyx and3x.

3 Divided Separated Normal Form (DSNF)

Definition 3. A temporal step clauss a formula either of the form+ Om, where |
and m are propositional literals, ofL(x) = OM(x)), where L(x) and M(x) are unary
literals. We call a clause of the the first type an (origingdpundstep clause, and of the
second type an (originahjon-groundstep clause.

5 All cases considered in [5] included formulae of the fofmvxvy ((P(x) AP(y)) D xay) or
similar non-guarded formulae.



Definition 4. A monodic temporal problenin Divided Separated Normal Form
(DSNF)is a quadruple7 ,.7,.7,&), where
1. the universal part7, is a finite set of arbitrary closed first-order formulae;
2. theinitial part,.#, is, again, a finite set of arbitrary closed first-order forlae;
3. the step part,”, is a finite set of original (ground and non-ground) tempastdp
clauses; and
4. the eventuality part£, is a finite set of eventuality clauses of the fopin(x) (a
non-grounceventuality clause) andl (a ground eventualitglause), where | is a
propositional literal and I(x) is a unary non-ground literal.

For a temporal problenk, cons{P) denotes the set of constants occurringin

Note that, in a monodic temporal problem, we disallow twdedént temporal step
clauses with the same left-hand sides. We also disallowroseces of equality in the
step and eventuality parts. These requirements can bg gasitanteed by renaming.

In what follows, we will not distinguish between a finite séfarmulae 2™ and the
conjunctionA 2" of formulae within the set. With each monodic temporal peob]we
associate the formulaZ A [ 1% A [ 1vxS A [[1¥x&. Now, when we talk about partic-
ular properties of a temporal problem (e.qg., satisfiabiigfidity, logical consequences
etc) we mean properties of the associated formula.

Arbitrary monodicFOTL-formulae can be transformed into DSNF in a satisfiability
equivalence preserving way using a renaming techniquacem non-atomic subfor-
mulae with new propositions and removing all occurrencethefU and W opera-
tors [6, 3]. If the given formula is a guarded monodic formukeen all parts of DSNF
(and the associated formula) are guarded monodic formlrahis case, we call the
result of the transformationguarded monodic problem

4 Calculi

In this section we present two resolution calciiandJe, for guarded monodic prob-
lems (including equality). These calculi are very similaut 3. is complete for prob-
lems featuring constant domains, whilg is complete for those involving expanding
domains. These resolution calculi are based on those intsatlin [3] for problems
without equality. Thus, the work described in this section extenésipus calculi to
allow consideration of equality in guarded monodic prokdem

We begin with a number of important definitions.

Definition 5 (Equational augmentation).Let P be a temporal problem. Its (equa-
tional) augmentation s the satig_( P) of step clauses. For every constamt const P),
the following clauses are iaug_(P).

(x~c) = O(x~c), Q)
(x7c) = O(x#c). (2)

Note that clauses originating from such augmentation ageotily step clauses that
contain equality.



Definition 6 (Derived/E-Derived Step Clauses)Let P be a monodic temporal prob-
lem, and let
Li, () = OM,_ (),-.,L;, () = OM, (X (3)

be a subset of the set of its original non-ground step clguseadauses fronaug_(P).
Then formulae of the form
EJx(Lil(x) AN Lik(x)) = Oﬂx(Mil(x) AN Mik(x)), 4)
Vx(Lil(x) V...V Lik(x)) = OVX(Mil(x) V...V Mik(x)) (5)
are calledderivedstep clauses. Formulae of the forf#) are called e-derivedstep
clauses.

Note that formulae of the forn¥) are logical consequences (&) in the expanding
domaincase; while formulae of the forif#) and(5) are logical consequences(@) in
theconstant domaicase. As Example 1 show@) is not a logical consequence (&)
in the expanding domain case.

Definition 7 (Merged Derived/E-Derived Step Clausesl.et{®, = OW,,..., &y =
OW,} be a set of derived (e-derived) step clauses or origgnalindstep clauses. Then

n n
A @ = O A ¥ is called amerged derived (merged e-derived) step clause
i=1 i=1

Note 2. In [3], where no equality was considered, instead augmgtiproblem with
clauses of the fornil) and(2), we defined another derived step clause

L(c) = OM(c), (6)
wherec € constP). Note that this clause is equivalent to an e-derived stagsela
IX(L(X) AX=c) = OIX(M(X) AX = C).

Definition 8 (Full Merged/E-Merged Step Clauses)Let <7 = O% be a merged de-
rived (merged e-derived) step clausg(t) = OM,(x),.. L K (X) = OM, (X ) be orig-

inal step clausesr step clauses froraug_(P), and Ax) = def /\ L;(x), B(x )def /\ M; (X).

ThenVx(«/ ANA(X) = O(# AB(X))) is called afull merged step clausg@ull e merged
step clause, resp.). In the case=l0, the conjunctions &), B(x) are empty, i.e., their
truth value istrue, and the merged step clause is just a merged derived stepeclau

We now present two calculiic andJe, aimed at the constant and expanding domain
cases, respectively. The inference rules of these caloincitle; the only difference is

in the merging operation. The calculiisutilises merged derived and full merged step
clauses; whereds utilises merged e-derived and full e-merged step clauses.

Inference Rulesln what follows,.« = O% and.« = O%, denote merged derived
(e-derived) step clausegx(.«/ (x) = O(A(x))) andVx(<7(x) = O(%;(x))) denote
full merged (e-merged) step clauses, a#icdenotes the (current) universal part of the
problem. Thusg |= ¢ means thaty is a (first-order) logical consequenceqf
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— Step resolution rule w.r.t: %@9 (O, wherezz U{#B} =1.

— Initial termination rule w.r.t%: The contradictionL is derived and the derivation
is (successfully) terminated i”¥ U .Y =1
— Eventuality resolution rule w.r.tz :

(40 = O(B,(X))... ¥X(F(X) = O(Fa(¥))  OLK)
X A A (x)

i=1

(Ores)

where{L(x) € & andVx(+#(x) = O%;(x)) are full merged (full e-merged) step
clauses such that for dlle {1 .,n}, theloop side condition$/x(% A %;(X) =

-L(x)) andVx(Z A %;(X) = \/ («#(x))) are both valid first-order formulae.

— Eventuality termination rule W. r?Z/ The contradiction is derived and the deriva-
tion is (successfully) terminated# = Vx-L(x), whereQL(x) € &.

— Ground eventuality resolution w.r.% and Ground eventuality termination w.r.t.
7 . These rules repeat the eventuality resolution and evetyttaimination rules
with the only difference thaground eventualitieand mergedlerived step clauses
are used instead of non-ground eventualities and full ntestgp clauses.

A derivationis a sequence of universal pars,= %, C %, C %, C ..., extended little
by little by the conclusions of the inference rules. Sucitégermination means that
the given problem is unsatisfiable. Thg . and& parts of the temporal problem are
not changed in a derivation.

Example 2.Let us consider an unsatisfiable (over both constant andnetpg do-
mains) temporal problem given b
) temporal p gVenby 1. axPx)),

S ={il 3x(x#c)}, % = {uz vX(xaécAHyﬂP(y)éQ(X))}’
&={el. 0-Q(X) }, Z={sl Px) = O-Px)}

and apply temporal resolution to this. First, we produceftilewing e-derived step
clause fronsl:
dl. JyP(y) = OIJy-P(y).

Then, we mergel and(x 5 ¢ = O(x# c)) from aug.(P) to give
ml. VX(3yP(y) Ax% c= O(3y-P(y) AX#c)).
It can be immediately checked that the following formulae aalid

VX((7% A3y—P(y) AXx % c) = Q(X)) (seeu2),
Yx((7% N3y-P(y) Ax%c) = (FyP(y) Ax#¢c)) (seeul),

that is, the loop side conditions are valid foi. We apply the eventuality resolution
rule toel andml and derive a new universal clause

u3. (Vy=P(y) vV Vx(x~c))

which contradicts clausasl andil (consequently, the initial termination rule is ap-
plied).



Correctness of the presented calculi is straightforward.

Theorem 1. The rules ofi; andJe preserve satisfiability over constant and expanding
domains, respectively.

Proof Considering models, it follows that the temporal resolutioles preserve sat-
isfiability. Consider, for example, the step resolutiorerilet.s” = O% be a merged
derived clause and assume g =" [ (<7 = O%), but for some > 0,901, [~* —.o7.

ThenMt, ,, =* % in contradiction with the side condition of the rule. a

We formulate now completeness results and prove them ind®estwhich is entirely
devoted to this issue.

Theorem 2. If a guarded monodic temporal problem with equallyis unsatisfiable
over constant domains, then there exists a successfultyiriating derivation inJ¢
from P.

Theorem 3. If a guarded monodic temporal problem with equalfyis unsatisfiable
over expanding domains, then there exists a successfuthyrating derivation inJe
from P.

The calculi are complete in the sense that they provides tisavilecision procedure
when side conditions checks are decidable and with a secisida procedure else.

Corollary 1. Satisfiability of the guarded monodic temporal fragmenhweitjuality is
decidable by temporal resolution.

Proof Since there are only finitely many different merged clausesrte are only
finitely many different conclusions by the rules of tempamdolution. Now it suf-
fices to note that these side conditions are expressed byffist guarded formulae
with equality (mind our “extended” definition of the guardigdgment, Note 1), and

the first-order guarded fragment with equality is decidb)8]. a

A complete temporal resolution calculus for the monodicpenal fragmentwithout
equalityfor the constant domain case has been presented in [3]. Tamdig domain
case has been announced in [11] and proved in a technicat fépaNe show that the
calculiJ; andJe, that slightly differ from the calculi used in [3] and [4],eacomplete
for these cases. We briefly discuss the difference betweecatlculi in Section 5.3.

Theorem 4. Let an arbitrary monodic temporal problewithout equalityP be unsat-
isfiable over constant domains. Then there exists a sucdlyssfrminating derivation
in Jc from P.

Theorem 5. Let an arbitrary monodic temporal problewithout equalityP be unsatis-
fiable over expanding domains. Then there exists a sucdiggsfuninating derivation
in Je from P.



5 Completeness of Temporal Resolution

The proof of theorems 2 and 3, as well as of theorems 4 and Sheabtained by a
modification of the corresponding proof of completenesgterconstant domain case
without equality (see [3], Theorem 2). In short, the proof3hproceeds by building
a graph associated with a monodic temporal problem, thewisgahat there is a cor-
respondence between properties of the graph and of thegonolind that all relevant
properties are captured by the rules of the proof systemreftwe, if the problem is
unsatisfiable, eventually our rules will discover it.

The outlined proof relies on the theorem on existence of aah(see [3], Theo-
rem 3). In Section 5.1 we prove the theorem on existence ofdem®heorem 6, for
the constant domain guarded monodic fragment with equalfitpection 5.2 we re-
fine this reasoning for the expanding domain case; and indest3 we show that the
proofs of sections 5.1 and 5.2 can be transfered to arbitnaryodic fragments without
equality. It can be seen that the proof of completeness giv3] holds for all these
cases of the theorem on existence of a model consideredtinrses.1-5.3.

5.1 Guarded monodic fragment with equality over constant dmains

LetP = (%,7,¥,&) be a guarded monodic temporal problem with equality. Let
{P(X),...,Py(X)} and{p,,...,pn}, N,n > 0, be the sets of all (monadic) predicates
(including “predicates” of the form~ ¢ for every constant € const{P)) and all propo-
sitions, respectively, occurring i U & Uaug_ (P).

A predicate coloury is a set of unary literals such that for eveR(x) <
{P,(x),...,Py(X)}, eitherB(x) or —-P(x) belongs toy. A predicate colour is called
constantif x ~ ¢ € y for somec € constP). A propositional colour6 is a sequence
of propositional literals such that for evepy € {p,...,pn}, eitherp; or -p; belongs
to 6. Let I be a set of predicate colours. A cougle, 8) is called acolour scheme
for P. SinceP only determines the signature, we may ofivhen speaking of colour
schemes.

For every colour schenté = (I", 6) let us construct the formulag., <7 , %, in
the following way. For every € I and for every8, introduce the conjunctions:

F= A LK Fo= Al

L(x)ey led
Let
Ay(¥) = AML(X) [ L(x) = OM(x) € . Uaug_(P), L(x) €y},
By(x) = A{M(X) [ L(x) = OM(x) € . Uaug_(P), L(x) € v},
Ag=NMNl|1=0Ome 1€}, By=A{m|l=Ome.”, | €0}

Now <7, %, and.Z,, are of the following forms:

Ay = N\ IXAX)ANAGAIXV Ay(X), B, = N\ IxBy(X) ABg AVX V By(X),
yel yel

yel yel
Fp= N\ XF(X)ANFgAVXV Fy(X).
yel yel

8



We can consider the formul,, as a “categorical” formula specification of the quotient
structure given by a colour scheme. In turn, the formuda represents the part of
this specification which is “responsible” just for “trangieg” requirements from the
current world (quotient structure) to its immediate susoes, and%., represents the
result of this transferal.

Definition 9 (Canonical merged derived step clauses).et P be a first-order tempo-
ral problem, and¢” be a colour scheme fd?. Then the clause

(y = ORB.,),

is called acanonical merged derived step clafiseP (including thedegeneratelause
true = Otrue). If a conjunction A(x), y € I', is empty, that is its truth value tsue,
then the formulafx\/ye,- Ay(x) (or XV yer By(x)) disappears fromz7, (or from Z.,
respectively). In the propositional case, the clause, = O%,,) reduces taA, =
OBy).

Definition 10 (Canonical merged step clause).et " be a colour schemey, =
O%., be a canonical merged derived step clause, prds’.

VX(y AAY(X) = OB, ABy(X)))

is called acanonical merged step claugéthe truth value of the conjunctions ),
By(x) is true, then the canonical merged step clause is just a canonicejedederived
step clause. Herg; € ¢ abbreviatey € I, where? = (I, 0).

Now, given a temporal problefn= (%, .7,. &) we define a finite directed grajih
as follows. Every vertex d& is a colour schem®’ for P such thatz U.7,, is satisfiable.
For each vertest’ = (I, 0), there is an edge iG to ¢” = (', 0'), if % NF, NB,
is satisfiable. They are the only edges originating ffémA vertex? is designated as
aninitial vertex ofG if ¥ A% N 7, is satisfiable. Théehaviour graph Hof P is the
subgraph ofs induced by the set of all vertices reachable from the inititices.

Definition 11 (Path; Path Segment)A path m, through a behaviour graph, H, is a
function fromN to the vertices of the graph such that for any 0 there is an edge
(ri(i), (i + 1)) in H. In the similar way, we define path segmenas a function from

[m,n], m< n, to the vertices of H with the same property.

Lemmal. Let P, = (%,.7,.,&) and P, = (%,, 7,/ ,&) be two problems such
that%, C %,. Then the behaviour graph &%, is a subgraph of the behaviour graph of
P;.

Definition 12 (Suitability). For ¢ = (I",0) and%¢” = (I'',0'), let (¢’,%") be an or-
dered pair of colour schemes for a temporal probl®mAn ordered pair of predicate
colours(y,y’) wherey e I, y' € I'" is calledsuitableif the formulaZ% A3X(F, () A

By(x)) is satisfiable. Similarly, an ordered pair of propositiorwllours(68,6) is suit-
able if 7 ANFg4 N By is satisfiable.

Note that the satisfiability oﬁx(Fy, (X) ABy(x)) implies = VX(FV, (X) = By(x)) as the
conjunctionFy, (x) contains a valuation atof all predicates occurring iBy(X).

9



Note 3. If an ordered pairy, y') is suitable then for every constane constP) we
havex ~ c e yiff xa~ ce y. Itimplies that ifx ~ ¢ € y, then there exist not more than
oney and not more than ong’ such that the pair§y, y') and(y”, y) are suitable.

Lemma 2. Let H be the behaviour graph for the problém= (% ,.7,.%, &) with an
edge from a vertex’ = (I",0) to a vertexs” = (I, 0’). Then

1. for everyy € I" there exists g’ € ' such that the paity, y’) is suitable;
2. for everyy’ € I’ there exists ¢ € I" such that the paity, y’) is suitable;
3. the pair of propositional colourg, 8’) is suitable;

Definition 13 (Run/E-Run). Let 1T be a path through a behaviour graph H of a tem-
poral problempP, andri(i) = (I;,6). By arunin rwe mean a function(n) from N to
Uien [ such that for every g N, r(n) € I', and the pair(r(n),r(n+1)) is suitable. In

a similar way, we define muin segmenas a function fromim,n}, m< n, to{UJ; . [; with
the same property.

Arunr is called are-runif for alli > 0 and for every non-ground eventualipy.(x) € &
there exists j> i such that I(x) € r(j).

Let it be a path, the set of all runs imis denoted byZ (1), and the set of all e-runs in
mris denoted byZq(m). If Tis clear, we may omit it.

A runr is called aconstant runif X~ c € r(i) for somei > 0. Note that if a run is
constantand~ c e r(i) for somei > 0, thenx~cer(j) forall j € N. If, for two runs
r andr’, a constant, and someé > 0 we havex= cer(i) andx~cer'(i), thenr =r’.

Letp,, be a mapping from condt) to I" such thak ~ c € p..(c). Then the function
defined as¢(n) = p, (c) is the unique constant run “containing”

Theorem 6 (Existence of a model)Let P = (% ,.7,.,&) be a temporal problem.
Let H be the behaviour graph & If both the set of initial vertices of H is non-empty
and the following conditions hold

1. For every vertes’ = (I", 8), predicate coloury € I, and non-ground eventuality
OL(x) € &, there exist a vertex” = (I, 0) and a predicate colouy’ € I’ such
that((¢,y) =" (¢",y') AL(X) € ¥');

2. For every vertexg = (I",0) and ground eventualitpl € & there exist a vertex
€' =(I',0) suchthat¢ =" ¢ Al € 6);

then P has a modef. Here (¢, y) —* (¢”,y’) denotes that there exists a pattfrom
¢ to ¢’ such thaty andy’ belong to a run inr; 4 —* ¢’ denotes that there exists a
path from% to ¢”.

6 Following [3], in the original version of this paper, Theord contained one more condition:
for every vertexé = (I',0), non-ground eventuality(x) € &, and constant € constP)
there exists a vertex” = (I, 6) such that(¢' —* 6" AL(x) € p,, (c)). This condition was
essential for the completeness of the calculus without legymesented in [3], and it led to
the introduction of so calledonstant floodingsee [3]. However, one of the referees noticed
that, under definitions of this paper (after including edyahto consideration), condition (1)
already implies the additional condition leading to theadscence of constant flooding.

10



Proof The proof relies on the following lemma, whose proof was giwve[3].
Lemma 3. Under the conditions of Theorem 6, there exists a pathrough H where:

(a) m(0) is an initial vertex of H;

(b) for every colour schem& = (i), i > 0, and every ground eventuality litergl €
& there exists a colour scher® = r1(j), j > i, such that le 6’;

(c) for every colour schem® = m(i), i > 0, and every predicate colour from the
colour scheme there exists an e-rua (1) such that fi) = y; and

(d) for every constant € constP), the function g(n) defined by ¢(n) = p, (c) is an
e-runinTt.

Let m=%,...,%n,... be a path throughl defined by Lemma 3. L&ty = .7 U{.7 }
and¥%, = fi‘% N, forn>1. According to the definition of a behaviour grapciﬂ, the

n-1
set% U{%} is satisfiable for everp > 0.

Now, Lemma 8 from [9], that captures properties of the guadifd@gment, can be re-
formulated as follows.

Lemma 4. Letk be a cardinalk > 0,. For every n> 0, there exists a modét, =
(D,In) of 7 U{%} such that for every € I, the set{ac D | M, |= Fy(a)} is of
cardinality 1 if y is a constant colour and of cardinality otherwise.

Following [10, 2, 9] take a cardinal > [, exceeding the cardinality of the s&t.
Letr be a run inZ.. We define the seb, as {(r,0)} if r is a constant run and as
{(r,&) | £ < Kk} otherwise.

Let us define a domai® = (J D,. For everyn € N we haveD = |J D(n

re%e yemn ?

WhereDmy> ={{ré)ebD]r(n) =y} = U Dr. Then ’Dm‘v)‘ =1lifyisa
) r€%e, r(n)=y '

y)’

constant colour aan(n y)’ = K otherwise.

Hence, by Lemma 4, for everye N there exists a structu®t, = (D, I,,) satisfying

U J{“%} such thaDmy) ={(r,§) e D|Mn = F,((r,€))}. Moreoverch = (r,0) for
every constart € constP). A potential first order temporal model1® = (D, | ), where
I(n) = I, for all n € N. To be convinced of this we have to check validity of the step
and eventuality clauses. (Recall that satisfiability/Gh 91, is implied by satisfiability

of &, in M,.)

Let [Jvx(L;(x) = OM;(x)) be an arbitrary step clause; we show that it is true in
2,t. Namely, we show that for every> 0 and everyr, &) € D, if M, = L, ((r,€)) then
M, 1 = M((r,€)). Suppose(n) =ye lhandr(n+1) =y' €', where(y,y’) is a
suitable pair in accordance with the definition of a run. ltds that(r,&) € Diny
and(r,&) D(n+1,y’)’ in other wordsit, = Fy((r,€)) anddM,_ , = Fy,(<r,<f>). Since
Mn = L;((r,€)) thenl;(x) € y. It follows thatM; (x) is a conjunctive member &, (x).
Since the pairy,y’) is suitable, it follows that the conjunctio]a‘x(Fy, (X) ABy(x)) is
satisfiable and, moreoves VX(FV, (x) = By(x)). Together withd%, ., = Fy,(<r,E>)
this implies thatt,,, ; = M, ((r,€)).
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Let ([I¥x)OL(x) be an arbitrary eventuality clause. We show that for every0 and
every(r,&) € D, r € Ze, & < K, there existsn > n such thatliy, = L((r,&)). Sincer is
an e-run, there exist%’ = m(m) for somem > nsuch that(m) =y’ € " andL(x) € y'.
It follows that(r,&) € D myn: that is9tm = Fy,(<r, &)). In particulary, = L((r,&)).

Propositional step and eventuality clauses are treatedimitar way. a

5.2 Guarded monodic fragment with equality over expanding @mains

We here outline how to modify the proof of Theorem 6 for theecaexpanding do-
mains. All the definitions and properties from the previoestion are transfered here
with the following exceptions.

Now, the universally quantified part does not contributeasito.«” or %:

dy= N XAX)AAg, By = A IxXB,(X)ABg.
yel yelr

This change affects the suitability of predicate colours.

Lemma5 (analog of Lemma 2)Let H be the behaviour graph for the probletn=
(%,.7,.,&) with an edge from a vertex = (I",0) to a vertexs” = (I'',60’). Then

1. for everyy € I" there exists g’ € " such that the paity, y’) is suitable;
3. the pair of propositional colour§, 8’) is suitable;

Note that the missing conditidi2) of Lemma 2 does not hold in the expanding domain
case. However, under the conditions of Lemma ¥, & '’ containsx ~ ¢, there always
exists ay € I such that the paify, ') is suitable.

Since for a non-constant predicate colguhere may not exist a coloyt such that
the pair(y',y) is suitable, the notion of a run is reformulated.

Definition 14 (Non-constant run).Let 17 be a path through a behaviour graph H of a
temporal problemP. By anon-constant rum 7 we mean a function(n) mapping its
domain, donr) = {n€ N | n>n,} for some g € N, toJ; [; such that for every &
dom(r), r(n) € Iy, r(n) is not a constant predicate colour, and the pgitn),r(n+1))

is suitable. (Constant runs are defined as in the constantitonase.)

5.3 Monodic fragment without equality

Note that the only place where the proof of Theorem 6, giveSention 5.1, and its
counterpart for the expanding domain case, given in Seé&idnneed the problem to
be guarded is Lemma 4. If a monodic temporal probRmioes notcontain equality,
Lemma 4 holds regardless the problem being guarded or not.

Consider the constant domain case (similar reasoning fdées for the expanding
domain case). Le¥” U {%,} be satisfiable, and 1M, be its model. Le®, = (I, 6n).
For a constant € constP), let us defind to be{y € I | X~ c € y}; the setl; is a
singleton. Lef,] be obtained by eliminating all equations and disequatioma f,,. Let
us define now the formul&y, as
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/\ IXF(x) A N Fy(c) AFg AVX \ F(x)
yely ceconstP), yelc yeld

Analogously, we define the formul@ and¥, = F;, A%, . Itisnothard to see
that since7z U{%y} is satisfiablezz U{¥}, } is satlsflable AQ/ O jf%’} does not contain
equality, from classical model theory, there exists a mégigl= (D',1;,) of % U{¥;}
such that for every € I the setD’< ={aecD'| M = F/(a)} is of cardinalityk,
and for allc;, ¢, € constP), In(c,) =1, (cz) iff In(c;) =In(c,) . Note thatht, is a model
for 7 U{%,}. Obviously, a constant predicate colauis true on a single element of
the domairD; disequations such as# c exclude only finitely many elements.

As already mentioned in Section 4, Note 2, instead of extegiliwith step clauses
of the form(1) and(2), we could consider derived step clauses of the f@Bimn Com-
pleteness of the resulting calculus for the constant doroase has been presented
in [3]. Completeness for the expanding domain case can tzénalat by combining the
proof technique from [3] with the previous section.

6 Fine-grained temporal superposition

The main drawback of the calculi introduced in Section 4 & the notion of a merged
step clause is quite involved and the search for appropmatging of simpler clauses
is computationally hard. Findingetsof such full merged step clauses needed for the
temporal resolution rule is even more difficult.

This problem has been tackled for the expanding domain citb®wt equality
in [11]. The expanding domain case is simpler firstly becauseged e-derived step
clauses are simpler (formulae of the foff) do not contribute to them) and, secondly,
because conclusions of all inference rulegghre first-order clauses. We have intro-
duced in [11] a calculus where the inference ruleSoivere refined into smaller steps,
more suitable for effective implementation. We have alsowshthat the search for
premises for the eventuality resolution rule can be impleied by means of a search
algorithm based on step resolution. We called the resuttiigulusfine-grained reso-
lution.

In the same way as we have used first-order resolution torobtabmplete fine-
grained resolution calculus for the expanding domain manfodgment without equal-
ity, we can use first-order superposition to obtaifin@-grained superpositionalcu-
lus for the expanding domaguardedmonodic fragmentvith equality In order to do
that, we apply ideas from [11] to a first-order superpositienision procedure for the
guarded fragment with equality given in [7]. Fine-grainegarposition takes as input
an augmented temporal problem transformed in clausal forenuniversal and initial
parts are clausified, as if there is no connection with terldogic at all.

In contrast tdJe which generates only universal formulae, fine-grained gugs-
tion might generate initial, universal, or step clausefefformC = OD, whereCis a
conjunctionof propositional literals and unary literals of the fokrfx), x = ¢, orx# c;
and ground formulae of the forir(c), whereL(x), is a unary literal and is a constant
occurring in the originally given problend is adisjunctionof arbitrary literals.

Following [11], we allow only the right-hand side of steputes to be involved in an
inference rule and impose a restriction on mgus. For exartimstep paramodulation
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rule will take the following form:

C,= O(D,VL[g) C,= O(D,Vvt~u) C,= O(DyVL[g) D,vt=u
(C,AC)o = OMD,vD,vLW)o " Cio= OD,VD,VLW)o

whereC; = O(D; vL[g) andC, = O(D, Vt ~ u) are step clause§), Vt ~ uis a
universal clauseg is an mgu ofs andt such thato does not map variables from, ©r
C, (or just from Q) into a Skolem constant or a Skolem functional teFims restriction
justifies skolemisation: Skolem constants and functionsatdsneak” in the left-hand
side of step clauses, and, hence, Skolem constants froeratiff moments of time do
not interact.

Other rules of fine-grained superposition can be obtainadsimilar way from the
rules of the calculus given in [7]. Correctness and compkes of the resulting calculus
for the expanding domain guarded monodic fragment with Eguzan be proved just
as the corresponding properties of fine-grained resoltisbeen proved in [11].

Example 3.Consider a guarded monodic temporal probl@nunsatisfiable over ex-
panding domains:

S ={il.c#d}, % ={ul.¥x(—=P(x)vx=c)}
& ={sl.true = OP(d)}, & =0.

Although this problem is not in DSNF, it can be easily redueBSNF by renaming;
however, such a reduction would complicate understanding.

First, we give a “course-grained” refutation. The rightilaside of a merged e-
derived step clause

ml. Ix(x~dAx#c) = OIx(x~=dAx%cAP(d))

contradicts to the universal part, and, by the step reswlutile, we conclud&x(x %
d Vv x = ¢) which contradicts the initial part.

We show now how fine-grained superposition helps us to findehaired merged
e-derived step clausel. We need the following step clauses from a(ig):

al. y#d= QOy#d and a2 xx~c= Ox~Cc.

We now derive: 2. true = QOd=c (resolutionul andsl)
s3.y%d = Qys%c (paramodulatios2 andal)
A yzzdAx=c= Oxzy (paramodulatios3 anda2)

5. xzdAx~c= Ofalse (reflexivity resolutions4)
We convert the step claust into the universal clausg2. X ~ d VV x % ¢ and resolve
with i1 givingi2. c # c. Finally, we derive an empty clause by reflexivity resolatio

7 Concluding remarks

In this paper we have considered the basis for mechanisengxtension of monodic
FOTL by equality. In particular, we have presented resolutidoutefor the guarded
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monodic fragment with equality over both constant and egpapdomains. Provided
that there exists a first-order decision procedure for sihelitions of all inference rules,
then these calculi provide the basis for decision procedus indicated in section 6,
a more practical approach is being developed (for the eXpgrdbmain case) based
on fine-grained superposition for the guarded monodic feEgnExtension and imple-
mentation of this approach represents much of our futuréweinally, we acknowl-
edge support from EPSRC via research grant GR/L87491 am# tha (anonymous)
referees of the LPAR conference for their helpful and inigltomments.
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