1

Temporal logics have been used to describe a wide variety of (s,i) = O A iff
systems, from both Computer Science and Artificial Intelli- (o,i) = $A iff
gence. The basic idea of proof, within propositional, diser
temporal logics, is also both intuitive and appealing. How-
ever the complexity of satisfiability for such logics is high

Tractable Temporal Reasoning

Keywords: theorem proving; temporal reasoning; mathematcal foundations

Abstract

Temporal reasoning is widely used within both
Computer Science and Artificial Intelligence. The
basic idea of proof, within propositional, discrete
temporal logics, is both intuitive and appealing.
However, the underlying complexity of such dis-
crete temporal logics has led to use of either simpli-
fied formalisms, such as temporal interval algebras,
or simplified techniques, such as model checking.

In this paper we show that tractable sub-classes of
propositional linear temporal logic can be devel-
oped, based on the use of XOR fragments of the
logic. We not only show that such fragments can be
decided, tractably, via clausal temporal resolution,
but also show the benefits of combining multiple
XOR fragments. For such combinations we estab-
lish completeness and complexity (of the resolution
method), and also describe how such a temporal
language might be used in a number of application
areas, for example the verification of multi-agent
systems. This new approach to temporal reasoning
provides a framework in which tractable temporal
logics can be engineered by intelligently combining
appropriate XOR fragments.

Introduction

For example, the complexity of satisfiability for proposital

linear time temporal logic (PTL) is PSPACE-compléSastla
and Clarke, 1986 Consequently, model checkin@larke
et al, 1999 has received much attention it also allows user
to check that a temporal property holds for some underlyin

model of the system.

Often temporal problems involve an underlying structure
such as an automaton, where a key property is that the a
tomaton can be in exactly one state at each moment. Such

particular models of concurrency such as synchrony, asyn-
chrony etc., or particular coordination or cooperatioricans.

In this paper we consider a new fragment of PTL that incor-
porates the use of XOR operators, dendig@ ¢, ®. . .©qy,)
meaning that exactly ong holds forl < ¢ < n. Since
the complexity of unsatisfiability for XOR clauses in classi
cal propositional logic is lowSchaefer, 1978 there is the
potential to carry much of this over to the temporal case.

Thus, in this paper we provide several results. First, we in-
troduce the PTL fragment to be considered, called TLX, and
show a complete clausal resolution system for this. The frag
ment allows us to split the underlying set of propositiors in
distinct subsets such that each subset (except one) rafgese
a set of propositions where exactly one proposition can hold
(termedXOR set} the remaining set has no such constraints.
Then we show that deciding unsatisfiability of specificadion
in such a logic is, indeed, tractable.

2 XOR Temporal Logic

The logic we consider is called “TLX", and its syntax and se-
mantics essentially follow that of PTIGabbayet al., 1984,
with models (isomorphic to the Natural Numbek$), of the
form: o = tg,t1,1t2,%3,... Where each state,, is a set of
proposition symbols, representing those proposition sysb
which are satisfied in th&” moment in time. The notation
(0,1) = A denotes the truth (or otherwise) of formufain
the modeb at state index € N. This leads to semantic rules:
(o,i+1)=A
JkeN. (k >i)and(o, k) E A

(0,i) = [JA iff VjeN. if (j>1i) then(o,j) = A
For any formulad4, modelo, and state index € N, then
either(c,i) = A holds or(c,i) = A does not hold, denoted
by (0,7) [~ A. If there is somer such thats, 0) = A, then
A is said to besatisfiable If (0,0) = A for all models,o,
then A is said to bevalid and is written= A.

S The main novelty in TLX is that it is parameterised by
KOR-setsP;, Ps,..., and the formulae of TLX;, Ps, .. .)

are constructed under the restrictions tivedctlyone propo-

'sition from every seP; is true in every state. For example, if
Ye consider just one set of propositighswe have

(J(pr1 ®@p2® ... 0B pn).

problems frequently involve several process or agentd) eac
with underlying automaton-like structures, and we arerinte Furthermore, we assume that there exists a set of proposi-
ested in properties relating to how the agents progressrundéons in addition to those defined by the parameters, and that

these propositions are unconstrained as normal. Thus,)TLX@nd SRE$, involve XOR resolution. Note we can only ap-
is essentially a standard propositional, linear tempamgicl, ply IRES, and SRES between clauses with complementary
while TLX(P,Q,R) is a temporal logic containing &ast (non-XOR) literals on the right hand side. We can also apply
the propositions® U Q U R, whereP = {p1,p2,...,pi}, the IRES>, and SRES, rules to these clauses but the dis-

Q ={q,q2-,qm}, AR = {ry,75,...,m}, Ut also jynct A, v A, on the right hand side of the conclusion will be
satisfying equivalent tdrue.

L(p1®p2®. . .@p) N18¢®. . .Bgm) ANr1Brad®. . .Bry)]
" "" 3 Soundness and Completeness

2.1 Normal Form Similarly to [Fisheret al, 2001; Degtyareet al., 2006, one

Assume we haven sets of XOR propositions?, = can show that whenever the parent clauses are satisfiable the
{p_n, .- -p1N1},_-_- o Po = {pn1,...pnn,} and a set of ad- so is the resolvent. Since all the rulesimitial, andstepres-
ditional propositionsA = {a,...ax, }. In the following: olution follow the same pattern, we first prove the classical

ropositional counterpart of the completeness theorem, an
hen use it to prove the completeness of temporal resolution
N Consider the followingclassicalset of resolution rules con-
e Pt denotes a disjunction of (positive) XOR proposi- sisting of the ruleRES 4:

tions from the sef; (Phv...PhvA va)y (PLV.. PhLV AV -a)
(P V.. PLVPLV .. Phv AV A)
v

A normal form for TLX is of the form[_] A, C; where each
C; is aninitial, stepor sometimeslause (respectively) as fol-

° }A?i; denotes a conjunction of negated XOR proposition
from the setP;;

. 211» denotes a conjunction of non-XOR literals;

Vv Vv V
(Pl v...Phv...PHvA

Vv Vv V.
lows: (PE\/...P&V...P,,E\/AQ)
v v M Pt Pt P+ ot Pty Pty A v A
stat= Ptv...vPLVvA; (PILV PLV.ccom(Pl, PL) V... VP VEL VALV Ag)

A A A- \/+) v+ vv
Pyn.. Py hAj= O V...V E; VA, Lemma 1 If a set of classical propositional clauses is unsat-

true = (P V...V P VA isfiable than its unsatisfiability can be established by tiles

h NoVei
Note that due to the semantics of the XOR clauses#fk RESa andRESp, in O(Ny x Nz x - -+ x Ny x 27¢) time.
Proof: First we show that if an unsatisfiable set of clauses

ii \ ;i = false —pj; V T = true ; . X LTS
pfvzj Pik Pii N, Pik C does not contain non-XOR literals, then its unsatisfiapilit
o o can be established by ruléd’Sp, . Note that any such set of
and /\ ~pji = false \/ pji = true. clauseg is unsatisfiable if, and only if, for evely 0 < | <
A =t = n, and every set of propositions, ps, . .., pi, Wherep; €
so pi= N TPk TP = V Pk P;, the seC,, ., of clauses fron€, which contaimone of
Pjk EP; kL ik EP; ki P1,. .., P, IS NONEmMpty. Indeed, otherwise every clause from

allow us to maintain positive XOR propositions on the right C contains at least one of the propositigns . .p;, so making
hand sides of clauses and negated XOR propositions on thg. - - -, i true satisfieg.

left hand side of clauses. Assume all clauses frotconsist of propositions fromnf,
..., P only (originally, ¥ = n) and show that with the rule
2.2 Resolution Rules RESp, one can obtain an unsatisfiable set of claugem

We decide the validity of formulae in TLX using a form of Which all clauses consist of propositions fraf,..., P,
clausal temporal resolutiolFisheret al, 200]. The reso- only.) N
lution rules are split into three typeitial resolution, step Take arbitrary propositions; € P, p2 € P, ...pp—1 €
resolutionand temporal resolution These are presented in Fx-1 and take arbitrary clauseS: € Cpip2,...pi—1.pr1:
Fig. 1. Initial resolution resolves constraints holdingtiie €2 € Cp1,p2,...p1—1.pr2r - ONe € Cp1p2,.pi_1 i vy - AP-
initial momentin time. Step resolution involves resolviagp ~ Plying rule RESp, to Ci,..., C, one can obtain a clause
step clauses or deriving additional constraints when argent C’ consisting of propositions fron#,. .., P, only such
diction in the next moment is derived. Temporal resolutionthatC’ does not contain any qfy,...,px—1. The set’’ is
resolves a sometime clause with a constraint that ensuaes thformed from such clauses’ for all possible combinations
the right hand side of this clause cannot occur. of p1 € P1,pa € P, ...px—1 € Pr_1. Clearly, for everyi,
In the conclusion of the following resolution rules 0 < < n,and every set of propositiops, p», . .., p;, where

Y v .] / . 7 ofi_
com (P, P) denotes the disjunction of the propositions in Pi € i the ey, ., is nonempty, hencg’ is unsatisfi-
7o able. Applying this reasoning at mostimes, one can obtain

both]g’ij andléj,; or falseif there are no propositions common an empty clause.

to both. For examplesom(p: V p2,p2 V p3) = pa. Consider now a set of claus€swhich may contain non-
Observe that IRE$and SRES apply classical resolution XOR literals. For arbitraryp, € Pi,...p, € P, con-

to the right hand side of the parent clauses whereas HRES siderC,, Similarly to the previous case, every such

n*

Initial Resolution:
\/Jr V+ 4
stat = (PjV...PVAiVa)
\/+ \/+ 4
IRES, | stat = (PLV...P5 VA3V -a)
V

V+ \/+ \/+ Vv Vv
..P VP12\/,..Pn2\/A1\/A2)

nl

Vv
start = (P}
For everyk € {1,...,n} we have the rule.

+

\/+ \
\Y ..Fv’nlvzél)
V...Ph v Ag)
A% % Vv % vV vV vV
PhLV ... Veom(P, Ph)V...vPLVPL VA v Ay)

start = (f’l
v

IRESp, start = (P

—

+

[V)

Y
\Y
\%

+

start = (131

[,

Step Resolution:

<

A A _ Vv v
AiANPA...P = O(PV...P VA Va)
SRES A AP AP, = O V...PH v Ay V—a)
A 2 N g 12 Y - tna 2
A A A_ A_ A_ A_ v+ Y+ v+ v+ v Vv
ALNAGANPG AN PIANPLA...P, = OW@HV...PLVPLV...PLVALVA;)
For everyk € {1,...,n} we have the rule
A A A v v v
AIANPA.. P = OPLVv...vPLV...vPLVA)
A A A Vv Vv v
SRESp, Ay ANPLA.. Py = O(PhLV...VPLV...PLV Ap)
N A A A A AN 4 Vv 4 v 4 Vv
Ay NAG NP N...PyAPLA... Py = O(PVPLV...Veom(Pl,PL)V...VPLVEPLVA VA

A A A
AiANPLAN...P, = false
CONV 1 11 nl O _

start = (A} V=P V... ~P); true = O(=A7 V=P V...~P7)
Temporal Resolution:
L = D(—\Pfrl/\...A—\P:LrlA—\Al)

TRES tue = O(Pfv...vEPL VA

start = —L true = O-L

Figure 1: Resolution Rules for the XOR Fragment

Cp,...p, Should be nonempty. Consider the st _, 7 be the set of allstepclauses; andS be thesometime

of clauses obtained by deleting all XOR-propositions fromclauses.

clauses ofC,, . ,.. Every 5171 », Must be unsatisfiable Given a set of clauses over a set of propositional symbols

(otherwise, extending the satisfying <'3tssignmenC~gqr__.7,,w P, we construct a finite _d|rected grapli as fOIIOW.S' The

with p1,. .., p, we satisfy all the clauses i@). Then clas- nodes of7 are interpretations of the set of propositions, thaﬁ

sical binary resolution will be able to prove unsatisfiapili satisfy the XOR constraints over t'he XOR subsets. Notice
that, because of the XOR-constraints, exactly one proposi-

of 5p ..on- APPlyiNg RES, “in the same way”, one can oo srom each set of XOR .
015 P)) , X propositiois and any subset of
obtain a claus€”, which does not contain neither non-XOR o nositions inA are true inZ. This means that there at at

H /
literals, norpq, ..., p,. The seC’, formed from such clauses MOStN; x Ny x - - - X N, x 2N« nodes in the behaviour graph.

€ : - Set
¢’ for all F}SSS'b'.e comblneip?cnsblqﬁl te fPlf P2 € PtQ For each node/, we construct an edge in G to a nodle
---Pk—1 € Fp—1, IS an unsatishiable set o clauses not Con-i¢ 5,y only if, the following condition is satisfied:

taining non-XOR literals. .

Finally, one can see that it is possible to implement the ¢ Ff)r every step clausg’ = OQ) € 7, if [|= P then
described procedure (N; x Ny x - -- x N,, x 2Na) time. Q.
0 A node,I, is designated an initial node @¥ if I/ = Z. The

N ketch th f of | f | | behaviour grapltz of the set of clauses is the maximal sub-
Next we sketch the proot of completeness of temporal resolug a5 of(; given by the set of all nodes reachable from initial
tion, which is obtained combining the ideas|[Bisheret al.,

nodes.
2001; Degtyareet al., 2004 and Lemma 1. . _ o _

If G is empty then the séf is unsatisfiable. In this case there
Definition 1 (Behaviour Graph) We split the set of tempo- must exist a derivation by IRESand IRES, as described in
ral clauses into three groups. L&tdenote thenitial clauses; Lemma 1 (and irO(N; x Ny x --- x N,, x 2Va) time).

start = s;
st = O(st V sp) ('start")(tg
Sp = Osw

Sa = OSt

Sw = O (8w V 8q)
true = $-sy
start = ¢,

ts = Ot,

t. = O(t, Viy)
0. tp= Ot (finish") (‘&

("think")@ (%) ¢bic)

("receiving")

R e I AN

("assess'@ %("Wait“)

Figure 2: Automata for agentsandT’, together with corresponding clauses in normal form.

Now supposé&> is not empty. Letl be a node ofy which rule, in time polynomial inV; x Ny x --- x N,, x 2Ne,
has no successors. LgtP; = OQ;)} be the set of all

step clauses such thdt = P;, then AQ; is unsatisfiable. Proof: To find suchL, it suffices to find a strongly con-

Using Lemma 1, one can show that step resolution proVegected component in the behaviour graph of the set of clauses

AP, = Ofalse After the set of clauses is extended by the SUch that for every node of this component/ = A, —j.
conclusion of theCONV rule, V—P;, the nodel is deleted The simplest brute-force algorithm would analyse all pafrs
from the graph. nodes (and there af&V; x Ny x - - - x N,, x 2MVa)2 such pairs),

In the case when all nodes @f have a successor. a and this can be done more efficiently with step resolution as

contradiction can be derived with the help of the tempo-" [Degtyarewetal, 200§. O
ral resolution ruleTRES. Note that we impose no restric-
tion on this rule (it coincides with the temporal resolution
rule for the general calculi presented[Fisheret al, 2001;
Degtyarewvet al., 2004) and the proof of completeness is no
different from what is already publish¢8isheret al., 2001;

Theorem 4 If a set of temporal clauses is unsatisfiable, tem-
poral resolution will deduce a contradiction in time polyno
mial in Ny x Ny X --- x N,, x 2Na,

Degtyarewet al.,, 2004. 5 Example
Having described the underlying approach, we will now con-
4 Complexity sider an example that makes use of some of these aspects.

Again, we consider initial and step resolution first. In particular, we will have multiple XOR fragments, togethe

. _ _ .. with standard propositions (unconstrained by XOR clauses)
Lemma 2 Using the rules of initial and step resolution, it The example we will use is a simplification and abstraction
is possible to reduce a set of temporal clauses to one whosg 4gent negotiation protocols; see, for exar@allarini et

behaviour graph does not have‘nodes without successors D). 2004. Here, several (in our case, two) agents exchange
o ((Nl X Ny X -+ X Ny X 2Na)3) time. information in order to come to some agreement. Each agent
) . . essentially has a simple control cycle, which can be repre-
Proof: Consider the following resolution strategy. For every sented as a finite state machine. In fact, we have simplified
set of propositiong, € P,...,p, € P, anda € A, consider these still further, and sample basic control cycles arergiv

the set of all step-clauses in Fig. 2 (for both agent$ andT).
fAh A 131_1 A --1351 N O(]Bﬂ v }v);i \//L) Thus, we aim to use these automata as models of the

A

agents, then formalise these within our logic. Importantly
such that fll,pﬁ’”_’_”ﬁ;l do not contain any of We willadd additional clauses (and propositions) charaste
a,pi,- .., pn (there are at mos¥; x Ny x -+ x N, x 2N« ing agreements or concurrency and, finally, we will show how

such sets of clauses), and try establishing the unsatisfiabioUr resolution method can be used to carry out verification.
ity of the conjunction of the right-hand sides together with e begin by characterising each agent separately as a set
the universal clauses by step resolution (as Lemma 1 show8f clauses within our logic. To achieve this, we use a set of
this can be done iO(N; x Ny x --- x N, x 2Ne) time. Propositions for each agent. Thus, the automaton desgribin
Then, all nodes without successors will be deleted from th@gdents is characterised through propositions of the form
behaviour graph (but some new such nodes may emerge). Afs, €iC., while the automaton describing agéhts charac-
ter Ny x Ny x - - - x N,, x 2Ne repetitions, we obtain a graph terised using propositions suchiast,, etc. Both these sets
in which every node has a successor. o are XOR sets. Thus, exactly one €f, sy, ..., and exactly

one oft,, t,, ..., must be true at any moment in time.
Lemma 3 Given a set of temporal clauses, it is possible to Now, the set of clauses characterising the two automata are

k that clause 6 ensures that the automaton is infinitely often i

start St

1. =

2. sy Asy As, = O(se Vosp) }(1) s /\t_‘tr = Ot

3. s Ay As, = Os ' rue = Qagree

1 w @ w 12. (agree A =sp A=sy A s A-ts A=tp) = Os,

- TstATs A sy = Osy 13 A= A sy A 18 Aty A -t Ot
5. —siAmspAsg = O(sy Vsa) - (agree A=se Aosy Nasg At Atp) - = f
¢ b
6 true = Ofsy V sy V sa) 14. (magree A —sg A —sp A —s,) = Osy
7 start — ¢ wr e 15. (magree AN —ts A—ty) = Ot,
) 3 16. (agree N —sg A —sp A s A—it) = Osy

8. “te Aty = Oty 17 (agree A —sy, A —ts A=ty) = Ot

9. —te Aty = Oty Vi) ' g w T AT r
18. true = O(spV sy Vsy Vi Vig)
19. (8¢ A—sp A sy A it At) = Ofalse 18,10,4 SRESp,]
20. true = O(stVspVsy, Vs Vi) 19 CONV]
21. (agree A —sy A =spy A—sq A —ts A—ty) = Ofalse 20,12,13 SRESp, |
22. true = O(—agree VsV sy V s, VisVity) 21 CONV]
23. (—agree A —sy A —sp A sg Atg Aty) = O-agree 22,14,15 SRESp, |
24. true = Ofagree Vs,V spV sq VisViy) 23,15,14,11 TRES]
25. true = Of(s:Vsp Vs, Vi Viy) 24,22 SRES 4]
26. (ms¢ A sy Asq) = Of(ts Vity) 25,3 SRESp,]
27, (—agree A sy A 8y A m8q At A—ty) = Ofalse 26,15 SRESp,]
28. true = Ofagree VsV s, V s, Vis Vit 27 CONV]
29. (agree A sy A sy A g A —its A—tp) = Ofalse 26,17 SRESp,]
30. true = Of(-agree Vs,V sy, VseVisViy) [29 CONV]
31. true = O(s;V sy VsqVisVity) 28,30 SRES 4]
32. asp A Sy Asq = Of(se Vi Vity) 31,2 SRESp, |
33. (—agree A sy A Sy Asg A—ts A=ty) = Osy 32,15 SRESp, |
34. (agree A =sp A 1Sy A sq At A—ty) = Osy 32,17 SRESp, |
35. true = O(spV sy Vs, VisViy) 33,15,34,17,6 TRES]
36. (—agree A —sg A sy A sy At A—ty) = Ofalse 35,15,4 SRESp, |
37. true = OfagreeV sV sy V sy, VisVity) 36 CONV]|
38. (agree A =sy A —sp A =8y A ts Aty) = Ofalse 35,17,4 SRESp, |
39. true = Of(-agreeV s;V sV s, Vis Vi) [38 CONV]
40. true = O(s¢VspV sy VisViy) 37,39 SRES 4]
41. true = Of(ts Viy) 40, 35,31, 25 SRES p, |
42. -t, Aty = Ofalse 41,8 SRESp, |
43. start = ¢, Viy 42 CONV]
44. start = false 43,7 IRESp, |

Figure 3: Resolution Proof for Automata Agents Example.

a state other thag,, ensuring that the automaton can not re-Here, we say that agreememtdl occur infinitely often in
main in states, forever. the future (clausé1). Clausesl2 and13 capture the exact
We can also characterise how the computations within eacfynchronisation. Ifan agreement occurs while autom&isn
automaton relate. To begin with, we assume a simple, syrll! St&t€s,, and automatofi” is in .., then the automata make
chronous, concurrent model where both automata make ng\ansmons forward to states, and¢, respectively. Finally, -
transition at the same time (see Section 5 for variations off/2Usesl4-17 ensure that, if no synchronised agreement is
this). Next we add a key aspect in negotiation protocoIsPOSS'ble' then the automata remain in their relevant states
namely a description of what happens wheragreements The clauses above represent the specification of a simple sys
reached. In our example, this is characterised as a synchrgsm. As an example of how resolution can be used, we also
nised communication act. Logically, we use the propositionyish to verify that the system isimultaneouslyn statess,
agree to denote this, and add the following clauses. andt, infinitely often. To verify this, we add the negation of
this property, as characterised by clau8e

11. true = <agree

12. (agree A sy At,) = Os, 1.8' true = Q(_‘St v _'ts). _

13. (agree A sy At.) = Oty Thus, if we can derive a contrad_lctlon_from claue8 _then_

14. (—agree A sy) = O 8y we know the negated property is valid for this specification.
15. (—agree At,.) = Ot, We first rewrite clauses 1-18 in the correct format for the
16. (8w A agree A —it,.) = O sy normal form. The refutation is given in Figure 3. .

17. (=8 A agree At,) = Ot, The example above essentially captures activity within a

synchronous, truly concurrent, system. If we wish to move taSchnoebelen showed how PTL model checking can be seen
more complex models of computation, we can do so, esseras being tractable when we consider fragments of PTL, so

tially by introducing the notion of &urn. Thus, wheniitis au- we have been examining fragments of PTL that allow clausal

tomatonS’s turn to move turn, is true; when it is automaton resolution to be tractable.

T’s turn to move,turn; is true. Then, each clause describ- Related to the fragment presented in this paper is a more
ing an automaton transition, for example,s, = Os, is restricted case ihDixon et al,, 2004. In that paper, a par-

replaced by two clauses ticular fragment allowing two XOR sets of propositions but
where the allowable clauses were further restricted isidens
3a. (spAturns) = Osy ered and corresponding resolution calculus given. This re-
3b. (sp A—turng) = Osp. stricted fragment is used to represefiicBi Automata so that

an the set of clauses representingieBi Automaton is satis-

In the example abovern, and turn, are effectively b.Oth fiable if and only if the Bichi Automaton is non-empty. The
true [t_logepher (an(I:i forever).d HO\évelvera_\f{fve canf modn‘fy thecomplexity of applying the resolution calculus is polynaimi
synchronisation clauses and model a different form of congyner, it’is easy to show that every resolvent within the ca

Currency. For example, if we were to introdu.cmrleaVing CUIUS of[Dixon et a|_' 2006 can be derived by app|y|ng res-

concurrency, we might use the following clauses olution rules (possibly several times) from the resolutaf
culus proposed in this paper restricted to two XOR sets and
start = turn, turng = Qturng turng = O turng no additional propositions.

If we go further still, and introduce an asynchronous model
of concurrency, then we might get References

true = Oturn, true = Oturn, [Ballarini et al, 2004 P. Ballarin_i, M. Fisht_a_r, gnd M. Wooldrid_ge.
. Automated Game Analysis via Probabilistic Model Checking: a
In both the above cases if we want to ensure that exactly case study.Electronic Notes in Theoretical Computer Science
one of turn, and turn; hold at each moment we implic- 149(2):125-137, 2006.
itly have [](turns © turn,) and so we are effectively using [cjarkeetal, 1999 E.M. Clarke, O. Grumberg, and D. Peled.
TLX(S,T {turns, turn: }). Model CheckingMIT Press, December 1999.
. [Degtyarewet al, 2004 A. Degtyarev, M. Fisher, and B. Konev.
6 Concluding Remarks and Related Work A Simplified Clausal Resolution Procedure for Propositional

In this paper we have developed a tractable sub-class of tem- Linear-Time Temporal Logic. IProc. TABLEAUX-0ZLNCS

poral logic, based on the central use of XOR operators. This VO!- 2381, pages 85-99. Springer-Verlag, 2002.

logic can be decided, tractably, via clausal temporal tesol [Degtyarewetal, 2004 A. Degtyarev, M. Fisher, and B. Konev.

tion. Importantly, multiple XOR fragments can be combined. ~Monodic Temporal ResolutionACM Transactions on Compu-

This new approach to temporal reasoning provides a frame- tational Logic 7(1), January 2006.

work in which tractable temporal logics can be engineered byDemri and Schnoebelen, 2003. Demri and P. Schnoebelen. The

intelligently combining appropriate XOR fragments. Complexity of Propositional Linear Temporal Logic in Simple
The complexity result means that TLX is more amenable Casesinformation and Computatiqri74(1):84-103, 2002.

to efficient implementation than other similar temporal-log [Dixon et al, 2004 C. Dixon, M. Fisher, and B. Konev. Is There a

ics. Moreover, since no two propositions from the same XOR Future for Deductive Temporal Verification? Rroc. TIME-06

set can occur in the right- (or left-) hand side of any tempora |[EEE Computer Society Press, 2006.

clause, one can efficiently represent disjunctions of (8@3i [Fisheret al, 2004 M. Fisher, C. Dixon, and M. Peim. Clausal

propositions (and conjunctions of negated propositioagjita Temporal Resolution. ACM Transactions on Computational

vectors and the rules of temporal resolution as bit-wise-ope Logic, 2(1):12-56, January 2001.

ations on such bit vectors. Thus, temporal reasoning in TLXGabbayet al, 1980 D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.

can be efficient not only in theory, but also in practice. The Temporal Analysis of Fairness. Rroc. POPL-80 pages
Demri and Schnoebelen [2002] consider sub-fragments of 163-173, January 1980.

PTL, particularly those restricting the number of proposi-[.y,stadt and Konev, 2003U. Hustadt and B. Konev. TRP++

tions, the temporal operators allowed, and the depth of tem- 3 o: A Temporal Resolution Prover. Rroc. CADE-19 LNAI
poral nesting in formulae. Demri and Schnoebelen show that, vol. 2741, pages 274-278. Springer, 2003.

since the formulae tackled in practical model checkingrofte [Hustadtet al, 2004 U. Hustadt, B. Konev, A. Riazanov, and
fall within such fragments, then this provides a naturalaxp A. Voronkov. TeMP: A Temp’)orél Monodic Prover. IRroc.
nation for the viability of model checking in PTL. IJCAR-04 LNAI vol. 3097, pages 326—330. Springer, 2004.

prspeocsﬁgérr]gls‘tjg; ;%'gl'r}g;ic(’:saCcallﬁ”s:'fgi?ﬂE’%Zﬂeﬁ'fg'lus fOrSchaefer, 19787, J. Schaefer. The Complexity of Satisfiability
e Problems. IrProc. STOC-78pages 216-226, 1978.

2001; Hustadt and Konev, 2003; Hustadtl., 2004. Since) 8_p g _

deciding unsatisfiability of PTL is also PSPACE-complete, [Sistla and Clarke, 1985A. P. Sistla and E. M. Clarke. Complexity

then deductive verification of PTL formulae would seem to be ggé&??ggf?:;' JLL;Pef;;Semporal Logicslournal of the ACM

an impractical way to proceed. However, just as Demri and ' e '

INote that a different model of concurrency might also require
modification in theagreementlauses.

