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Abstract

In this paper we consider the specification and verifica-
tion of infinite-state systems using temporal logic. In partic-
ular, we describe parameterised systems using a new variety
of first-order temporal logic that is both powerful enough
for this form of specification and tractable enough for prac-
tical deductive verification. Importantly, the power of the
temporal language allows us to describe (and verify) asyn-
chronous systems, communication delays and more complex
liveness and fairness properties. These aspects appear diffi-
cult for many other approaches to infinite-state verification.

1. Introduction

The verification of infinite-state systems, particularly pa-
rameterised systems comprising of arbitrary numbers of
identical processes, is increasingly important. Practical
problems of an open, distributed nature often fit into this
model. In assessing the reliability of these systems, formal
verification is clearly desirable and so several approaches
have been developed. Two of the most popular aremodel
checking for parameterised and infinite state-systems[1, 2]
and constraint based verification using counting abstrac-
tions [8, 9, 13], but both suffer problems. Within the model
checking approach, formulae are translated into a Büchi
transducer. Techniques from regular model checking are
then used to search for models. This approach has been ap-
plied to several algorithms verifying safety properties and
some liveness properties. However, the logic LTL(MSO),
considered in [1], isnot recursively enumerable; so reg-
ular model checking is incomplete. Constraint-based ap-
proaches [9] provide complete procedures for checking
safety properties of broadcast protocols. However, these ap-
proaches have theoretically non-primitive recursive upper
bounds for decision procedures (although they work well
for small examples), are not suitable (or, have not been
used) for asynchronous systems with delayed broadcast,

and typically lead to undecidability problems if applied to
liveness properties.

Thus, there is need for an approach that can tackle the
verification of parameterised systems in acompleteandde-
cidable way, and also to tackle a wider class of system,
incorporating asynchrony, communication delay, etc. In
this paper we introduce a newfirst-order temporal logic,
FOTLX, that allows us to achieve this. This logic com-
bines previous work on the specification and verification of
parameterised systems usingmonodictemporal logic [15]
with more recent work on efficient temporal logics [11]. We
show that the complexity of reasoning inFOTLX is lower
than in unrestricted monodic first-order temporal logic. The
resulting formalism is new, and now allows us to describe,
and verify properties of, a wide and important class of pa-
rameterised systems.

The verification of concurrent systems often comes down
to the analysis of families of finite-state automata, for ex-
ample of the form given in Fig. 1(a). In describing such au-
tomata, both automata-theoretic (such as model checking)
and logical approaches may be used. Recently, a proposi-
tional, linear-time temporal logic with improved deductive
properties has been introduced [10, 11], providing the pos-
sibility of practical deductive verification in the future.The
essence of this approach is to provide constraints between
key propositions. These constraints state that exactly one
proposition from an subset of propositions can be true at
any moment in time. Thus, the automaton given in Fig. 1(a)
can be described by the clauses given in Fig. 1(b), which are
implicitly in the scope of a ‘ ’ (‘always in the future’) op-
erator. Here ‘g’ is a temporal operator denoting ‘at the next
moment’ and ‘start’ is a temporal operator which holds
only at the initial moment in time. The inherent assump-
tion is that at any moment in time exactly one ofsa, sb,
st or sw holds. With improved complexity results for such
logics then the properties of any finite collection of such
automata can be tractably verified using thispropositional
exactly-one temporal logic [10].

This naturally leads to the question of whether the
exactly-one approach can be extended tofirst-order tem-
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1. start ⇒ st

2. st ⇒ g(st ∨ sa)
3. sb ⇒ gst

4. sa ⇒ gsw

5. sw ⇒ g(sw ∨ sb)

Figure 1. Finite-State Automaton (a) and its
Propositional Temporal Specification (b)

poral logicsand, if so, whether a form of tractability still
applies. In such an approach, we can considerinfinitenum-
bers of finite-state automata (initially, all of the same struc-
ture). Previously, we have shown thatFOTL (without ex-
plicit exactly-one constraints) can be used to elegantly (but
with inherent complexity) specify such a system, simply by
assuming the argument to each predicate represents a par-
ticular automaton [15]. Thus, in the followingsa(x) is true
if automatonx is in statesa:

1. start ⇒ ∃x.st(x)
2. ∀x. (st(x) ⇒ g(st(x) ∨ sa(x)))
3. ∀x. (sb(x) ⇒ gst(x))
4. ∀x. (sa(x) ⇒ gsw(x))
5. ∀x. (sw(x) ⇒ g(sw(x) ∨ sb(x)))

The contributions of this paper are the introduction of an
exactly-one version of monodic first-order-temporal logic,
the related complexity result and its application to a sophis-
ticated process model. This allows us to not only specify
broadcast protocols between synchronous components [13],
but also to specify asynchronous systems with communica-
tion delays. We show that such a process model can be faith-
fully represented inFOTLX, making it possible to practi-
cally verify its properties.
Thus, in summary, we here tackle the problem of specifying
and verifying parameterised systems by introducing a new
temporal logic formalism. This logic not only allows us to
describe, and prove properties about, a wider range of sys-
tem, but also allows us to do so with improved complexity
over previous temporal logic approaches.

2. FOTLX

2.1. First-Order Temporal Logic

The language of First-Order (descrete, linear time) Tem-
poral Logic,FOTL, is an extension of classical first-order
logic by temporal operators for a discrete linear model of
time (isomorphic toN, that is, the most commonly used

model of time). The signature ofFOTL (without equality
and function symbols) consists of a countably infinite set of
variablesx0, x1, . . . , a countably infinite set ofconstants
c0, c1, . . . , a non-empty set ofpredicate symbolsP , P0, . . . ,
each with a fixed arity≥ 0, thepropositional operators⊤,
¬, ∨, thequantifiers∃xi and∀xi, and thetemporal oper-
ators (‘always in the future’),♦ (‘eventually in the fu-
ture’), g(‘at the next moment’), andU (‘until’). The set
of formulae ofFOTL is defined as follows:⊤ is a FOTL
formula; if P is ann-ary predicate symbol andt1, . . . , tn
are variables or constants, thenP (t1, . . . , tn) is anatomic
FOTL formula; if ϕ andψ areFOTL formulae, then so are
¬ϕ, ϕ ∨ ψ, ∃xϕ, ∀xϕ, ϕ, ♦ϕ, gϕ, andϕUψ. We
also use⊥, ∧, and⇒ as additional operators, defined us-
ing ⊤, ¬, and∨. Free and bound variables of a formula
are defined in the standard way, as well as the notions of
open and closed formulae. Given a formulaϕ, we write
ϕ(x1, . . . , xn) to indicate that all the free variables ofϕ are
amongx1, . . . , xn. As usual, aliteral is either an atomic
formula or its negation.

Intuitively, FOTL formulae are interpreted infirst-order
temporal structureswhich are sequencesM of worlds,
M = M0,M1, . . . with truth values in different worlds be-
ing connected via temporal operators.

More formally, for every moment of timen ≥ 0, there is
a correspondingfirst-orderstructure,Mn = 〈D, In〉, where
D is a non-empty set andIn is an interpretation of predicate
and constant symbols overD. We require that the interpre-
tation of constants isrigid. Thus, for every constantc and
all moments of timei, j ≥ 0, we haveIi(c) = Ij(c). A
(variable) assignmenta is a function from the set of indi-
vidual variables toD. We denote the set of all assignments
by V.

Thetruth relationMn |=a φ in a structureM, is defined
inductively on the construction ofφ, see Fig. 2 for details
(the semantics of Booleans is standard and is omitted from
the figure).

M is amodelfor a formulaφ (or φ is true in M) if, and
only if, there exists an assignmenta such thatM0 |=a φ.
A formula is satisfiableif, and only if, it has a model. A
formula is valid if, and only if, it is true in any temporal
structureM under any assignmenta.

2.2. Monodicity and Monadicity

The set of valid formulae ofFOTL is not recursively enu-
merable. Furthermore, it is known that even “small” frag-
ments ofFOTL, such as thetwo-variable monadicfragment
(where all predicates are unary), are not recursively enumer-
able [24, 20]. However, the set of validmonodicformulae
is known to be finitely axiomatisable [26].

Definition 1 AnFOTL-formulaφ is calledmonodicif, and
only if, any subformula of the formT ψ, whereT is one of
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Mn |=a true Mn 6|=a false
Mn |=a start iff n = 0
Mn |=a P (t1, . . . , tm) iff 〈Ia

n(t1), . . . I
a
n(tm)〉 ∈ In(P ),

whereIa
n(ti) = In(ti),

if ti is a constant, and
Ia
n(ti) = a(ti), if ti is a

variable
Mn |=a ∀xφ iff Mn |=b φ for every

assignmentb that may
differ from a only in x

Mn |=a ∃xφ iff Mn |=b φ for some
assignmentb that may
differ from a only in x

Mn |=a gφ iff Mn+1 |=a φ

Mn |=a ♦φ iff there existsm ≥ n such
thatMm |=a φ

Mn |=a φ iff for all m ≥ n, Mm |=a φ

Mn |=a (φUψ) iff there existsm ≥ n, such
thatMm |=a ψ and,
for all i ∈ N, n ≤ i < m

impliesMi |=
a φ

Mn |=a (φWψ) iff Mn |=a (φUψ) or
Mn |=a φ.

Figure 2. FOTL semantics

g, , ♦ (or ψ1T ψ2, whereT is one ofU , W ), contains
at most one free variable.

We note that the addition of either equality or function sym-
bols to the monodic fragment generally leads to the loss of
recursive enumerability [26, 7, 18]. Further, even with its
recursive enumerability, monodicFOTL is generally unde-
cidable. To recover decidability, the easiest route is to re-
strict the first order part to some decidable fragment of first-
order logic, such as the guarded, two-variable or monadic
fragments. We here choose the latter, since monadic predi-
cates fit well with our intended application to parameterised
systems. Recall that monadicity requires that all predicates
have arity of at most ‘1’. Thus, we use monadic, monodic
FOTL [6].

The resolution theorem-prover TeMP [21] provides a a
practical approach to proving monodic temporal formulae.
In the past, TeMP has been successfully applied to prob-
lems from several domains [16], in particular, to examples
specified in the temporal logics of knowledge (the fusion of
propositional linear-time temporal logic with multi-modal
S5). From this work it is clear that monodic first-order tem-
poral logic is an important tool for specifying complex sys-
tems. However, it is also clear that the complexity, even

of monadicmonodic first-order temporal logic, makes this
approach difficult to use for larger applications [16, 15].

2.3. Exactly-One Restrictions

An additional restriction we make to the above logic
involves implicit exactly-one constraints over predicates.
Such restrictions were introduced into propositional tem-
poral logics in [10], where the correspondence with Büchi
automata was described, and generalised in [11]. In both
cases, the decision problem is of much better (polynomial
even in the first case) complexity than that for the standard,
unconstrained, logic. However, in these papers onlypropo-
sitional temporal logic was considered. We now add such
an exactly-one constraint to monodicFOTL.

The set of predicate symbolsΠ = {P0, P1, . . .}, is now
partitioned into a set of exactly-one subsets,X1, X2, . . .,
Xn, with oneunconstrainedsetN such that

1. allXi are disjoint with each other,

2. N is disjoint with everyXi,

3. Π =

n
⋃

j=1

Xj ∪ N , and

4. for eachXi, exactlyonepredicate withinXi is satis-
fied (for any element of the domain) at any moment in
time.

Example 1 Consider two exactly-one sets,X1 =
{P1, P2} andX2 = {P4, P7, P8}. Then for any element of
the domain,a, exactly one ofP1(a) or P2(a) must be sat-
isfied and exactly one ofP4(a), P7(a) or P8(a) must be
satisfied.

2.4. Normal Form

Every monodicFOTLX formula can be translated to a
normal form in a satisfiability preserving way using a re-
naming and unwinding technique which substitutes non-
atomic subformulae and replaces temporal operators by
their fixed point definitions as described, for example,
in [14].

A monodic temporal problem in Divided Separated Nor-
mal Form (DSNF)[6] is a quadruple〈U , I,S, E〉, where:

1. the universal part,U , is a finite set of arbitrary closed
first-order formulae;

2. the initial part,I, is, again, a finite set of arbitrary
closed first-order formulae;

3. the step part,S, is a finite set of step clauses of the
form P1(x) ∧ . . . Pk(X) ⇒ gQ1(x) ∨ . . . ∨ Ql(x),
wherePi andQjare unary predicate symbols;
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4. the eventuality part,E , is a finite set of eventuality
clauses of the form♦L(x), whereL(x) is a unary lit-
eral.

In what follows, we will not distinguish between a finite set
of formulaeX and the conjunction

∧

X of formulae within
the set. With each monodic temporal problem, we associate
the formulaI ∧ U ∧ ∀xS ∧ ∀xE . Now, when we
talk about particular properties of a temporal problem (e.g.,
satisfiability, validity, logical consequences etc) we mean
properties of the associated formula.

To translate a formula into the normal form, we recur-
sively rename each innermost open subformulaξ(x), whose
main connective is a temporal operator, byPξ(x), where
Pξ(x) is a new unary predicate, and rename each innermost
closed subformulaζ, whose main connective is a temporal
operator, bypζ , wherepζ is a new propositional variable.

The translation linearly increases the size of the
formula—full details can be found e.g. in [14]. While
renaming introduces new, unconstrained predicates and
propositions, practical problems stemming from verifica-
tion are nearly in the normal form, see Section 3.

2.5. Complexity

First-order temporal logics are notorious for being of a
high complexity. Even decidable sub-fragments of monodic
first-order temporal logic can be too complex for practical
use. For example, satisfiability of monodic monadicFOTL
logic is known to beEXPSPACE-complete [19]. However,
imposing exactly-one restrictions we obtain better complex-
ity bounds.

Theorem 1 Satisfiability of monodic monadicFOTLX
formulae (in the normal form) can be decided in
2O(N1·N2·...·Nn·2Na ) time, whereN1,. . . ,Nn are cardinal-
ities of the sets of exactly-one predicates, andNa is the car-
dinality of the set of the unconstrained predicates.

Corollary 2 If the number,n, of sets of exactly-one pred-
icates and the cardinality,Na, of the set of unconstrained
predicates is fixed, satisfiability ofFOTLX formulae can be
decided in deterministic exponential time (which is an im-
provement compared to the EXPSPACE complexity of the
general case).

Before we sketch the proof of this result, we show how the
exactly-one restrictions influence the complexity of the sat-
isfiability problem for monadic first-order (non-temporal)
logic.

Lemma 3 Satisfiability of monadic first-order formulae
can be decided inNTime(O(m ·N1 ·N2 · . . . ·Nn · 2Na)),
wherem is the length of the formula, andN1,. . . ,Nn, Na

are as in Theorem 1.

Proof Similar to [3], Proposition 6.2.9. �

Proof [of Theorem 1, Sketch] For simplicity of presenta-
tion, we assume the formula contains no propositions. Sat-
isfiability of a monodicFOTL formula is equivalent to a
property of thebehaviour graphfor the formula, checkable
in time polynomial in the product of the number of different
predicate colours and the size of the graph, see [6], Theorem
5.15. For unrestrictedFOTL formulae, the size of the be-
haviour graph is double exponential in the number of predi-
cates. We estimate now the size of the behaviour graph and
time needed for its construction forFOTLX formulae.

A predicate colour,γ, is a set of unary literals such
that for every predicateP (x) from the set of all predicates
X1∪. . . ,∪Xn∪N , eitherP (x) or¬P (x) belongs toγ. Let
Γ be a set of predicate colours andρ be a map from the set
of constants,const(P), toΓ. A pair 〈Γ, ρ〉 is called acolour
scheme. Nodes of the behaviour graph are colour schemes.
Clearly, there are no more than2O(N1·N2·...·Nn·2Na ) differ-
ent colour schemes. However, not every colour scheme
is a node of the behaviour graph: a colour schemeC is
a node if, and only if, a monadic formula of first-order
(non-temporal) logic, constructed from the givenFOTLX
formula and the colour scheme itself, is satisfiable (for de-
tails see [6]). A similar first-order monadic condition deter-
mines which nodes are connected with edges. So, the size
of the formula is polynomial. By Lemma 3, satisfiability of
monadic first-order formulae can be decided in determinis-
tic 2O(N1·N2·...·Nn·2Na ) time.

Overall, the behaviour graph, representing all possi-
ble models, for anFOTLX formula can be constructed in
2O(N1·N2·...·Nn·2Na ) time. �

3. Parameterised Systems

Next we present a model suitable for the specification
of both synchronous and asynchronous systems (protocols)
with (possibly) delayed broadcast and give its faithful trans-
lation into FOTLX. This shows that the logic developed
does indeed achieve what we intended. In addition, given
the improved complexity results of the previous section, we
believe this approach provides a route towards thepracti-
cal verification of temporal properties of such infinite state
systems.

A parameterised finite state machine based model, suit-
able for the specification and verification of protocols over
arbitrary numbers of processes was defined in [13, 8]. Es-
sentially, this uses a family of identical, and synchronously
executing, finite state automata with a rudimentary form of
communication: if one automaton makes a transition (an
action)a, then it is required thatall other automata simul-
taneously make a complementary transition (reaction)ā. In
[15] we translated this automata model into monodicFOTL
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and used automated theorem proving in that logic to verify
parameterised cache coherence protocols [9]. The model
assumed not only synchronous behaviour of the communi-
cating automata, but instantaneous broadcast.

3.1. Process Model

We now describe both the asynchronous model, and the
delayed broadcast approach.

Definition 2 (Protocol) A protocol, P is a tuple
〈Q, I,Σ, τ〉, where

• Q is a finite set of states;

• I ⊆ Q is a set of initial states;

• Σ = ΣL ∪ ΣM ∪ Σ̄M , where

ΣL is a finite set of local actions;

ΣM is a finite set of broadcast actions, i.e. “send a
message”;

Σ̄M = {σ̄ | σ ∈ ΣM} is the set of broadcast reactions,
i.e. “receive a message”;

• τ ⊆ Q × Σ × Q is a transition relation that satisfies
the following property
∀σ ∈ ΣM . ∀q ∈ Q. ∃q′ ∈ Q. 〈q, σ̄, q′〉 ∈ τ i.e.,
“readiness to receive a message in any state”.

Further, we define a notion of global machine, which is a set
of n finite automata, wheren is a parameter, each following
the protocol and able to communicate with others via (possi-
bly delayed) broadcast. To model asynchrony, we introduce
a special automaton action,idle 6∈ Σ, meaning the automa-
ton is not active and so its state does not change. At any
moment an arbitrary group of automata may be idle and all
non-idle automata perform their actions in accordance with
the transition functionτ ; different automata may perform
different actions.

Definition 3 (Asynchronous Global Machine) Given a
protocol, P = 〈Q, I,Σ, τ〉, the global machineMG of
dimensionn is the tuple〈QMG

, IMG
τMG

, E〉, where

• QMG
= Qn

• IMG
= In

• τMG
⊆ QMG

× (Σ∪{idle})n ×QMG
is a transition

relation that satisfies the following property

〈〈s1, . . . , sn〉, 〈σ1, . . . σn〉, 〈s
′
1, . . . , s

′
n〉〉 ∈ τMG

iff ∀1 ≤ i ≤ n.

((σi 6= idle⇒ 〈si, σi, s
′
i〉 ∈ τ)∧

(σi = idle⇒ si = s′i)) .

• E = 2ΣM is a communication environment, that is a
set of possible sets of messages in transit.

An elementG ∈ QMG
× (Σ ∪ {idle})n × E is said

to be a global configuration of the machine. A run of
a global machineMG is a possibly infinite sequence
〈s1, σ1, E1〉 . . . . . . 〈s

i, σi, Ei〉 . . . . . . of global configura-
tions of MG satisfying the properties (1)–(6) listed be-
low. In this formulation we assumesi = 〈si

1, . . . , s
i
n〉 and

σi = 〈σi
1, . . . , σ

i
n〉.

1. s1 ∈ In (“initially all automata are in initial states”);

2. E1 = ∅ (“initially there are no messages transit”);

3. ∀i. 〈si, σi, si+1〉 ∈ τMG
(“an arbitrary automaton

can fire”);

4. ∀a ∈ ΣM . ∀i. ∀j. ((σi
j = a) ⇒ ∀k. ∃l ≥ i. (σl

k =
ā)) (“delivery to all participants is guaranteed”);

5. ∀a ∈ ΣM . ∀i. ∀j. [(σi
j = ā) ⇒ (a ∈ Ei) ∨ ∃k. σi

k =
a)] (“one can receive only messages kept by the envi-
ronment, or sent at the same moment of time ”)

In order to formulate further requirements we introduce the
following notation:

Senti = {a ∈ ΣM | ∃j. σi
j = a}

Deliveredk =






∃i ≤ k. (a ∈ Senti) ∧
a ∈ ΣM (∀l. (i < l < k) → a 6∈ Sentl) ∧

(∀j.∃l. (i ≤ l ≤ k) ∧ (σl
j = ā))







Then, the final requirement the run should satisfy is

6. ∀i. Ei+1 = (Ei ∪ Senti) −Deliveredi

This process model is quite expressive, capturing many in-
teresting and useful systems. In particular, it is rich enough
to allow us to describe, for example, such diverse systems
as cache coherence protocols, multi-agent swarms, and dis-
tributed atomic commitment protocols including the two-
and three-phase commit protocols [17, 25] and their mod-
ifications [5, 4]. For the sake of space, however, we will
only consider a simple asynchronous distributed consensus
example, called theFloodSet protocol, in Section 3.3

3.2. Temporal Translation

Given a protocolP = 〈Q, I,Σ, τ〉, we define its trans-
lation to FOTLX as follows. For eachq ∈ Q, introduce a
monadic predicate symbolPq and for eachσ ∈ Σ ∪ {idle}
introduce a monadic predicate symbolAσ. For eachσ ∈
ΣM we introduce also a propositional symbolmσ. Intu-
itively, elements of the domain in the temporal representa-
tion will represent exemplars of finite automata, and the for-
mulaPq(x) is intended to represent “automaton x is in state
q”. The formulaAσ(x) is going to represent “automaton
x performs actionσ”. Propositionmσ will denote the fact
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“messageσ is in transit” (i.e. it has been sent but not all par-
ticipants have received it). Because of the intended meaning
we define two exactly-one sets:X1 = {Pq | q ∈ Q} and
X2 = {Aσ | σ ∈ Σ ∪ {idle}}. All other predicates belong
to the set of unconstrained predicates.
We define the temporal translation ofP, calledTP , as a
conjunction of the formulae in Fig. 3. Note that, in order
to define the temporal translation of requirement (6) above,
(on the dynamics of environment updates) we introduce the
unary predicate symbolReceivedσ for every σ ∈ Σm.
When an automatona receives messageσ, Receivedσ(a)
becomes true. WhenReceivedσ becomes true for allx, the
message is delivered and is not in transit any more, that is,
mσ becomes false.
We now consider the correctness of the temporal transla-
tion. This translation of protocolP is faithful in the follow-
ing sense.

Proposition 1 Given a protocol,P, and a global machine,
MG, of dimensionn, then any temporal modelM1,M2, . . .

of TP with the finite domainc1, . . . cn of sizen represents
some run〈s1, σ1, E1〉 . . . 〈s

i, σi, Ei〉 . . . ofMG as follows:
〈〈s1, . . . , sn〉, 〈σ1, . . . , σn〉, E〉 is i-th configuration of

the run iffMi |= Pq1
(c1) ∧ . . . Pqn

(cn), Mi |= Aσ1
(c1) ∧

. . . Aσn
(cn) andE = {σ ∈ Σm |Mi |= mσ}

Dually, for any run ofMG there is a temporal model of
TP with a domain of sizen representing this run.

Thus, given a parameterised system that fits into the
above model, we can translate its specification (faithfully)
into FOTLX.

3.3. Example

We here consider a variant of theFloodSet algorithm
with alternative decision rule(in terms of [22], p.105) de-
signed for solution of the Consensus problem.

The setting is as follows. There aren processes, each
having aninput bit and anoutput bit. The processes work
asynchronously, run the same algorithm and usebroadcast
for communication. (The process is described graphically
in Fig. 4.) The broadcast messages are guaranteed to be
delivered, though possibly with arbitrary delays.

The goal of the algorithm is to eventually reach an agree-
ment, i.e. to produce an output bit, which would be the same
for all processes. It is required also that if all processes have
the same input bit, that bit should be produced as an output
bit.

The asynchronous FloodSet protocol we consider here is
adapted from [22], the main differences being:

• the original protocol was synchronous, while our vari-
ant is asynchronous;

i0 i1

o0 o1

0 1

1

1

0

0

Figure 4. Asynchronous FloodSet Protocol
Process.

• the original protocol assumed instantaneous message
delivery, while we allow arbitrary delays in delivery;
and

• although the original protocol was designed to work in
the presence of crash (or fail-stop) failures, we assume,
for simplicity, that there are no failures.

Because of the absence of failures the protocol is simplified
and, unlike the original, does not require “retransmission”
of any value. We will show later (in Section 3.5) how to
include the case of crash failures in the specification (and
verification). Thus, the asynchronous FloodSet protocol is
defined, informally, as follows.

• At the first round of computations, every process
broadcasts its input bit.

• At every round the (tentative) output bit is set to the
minimum value ever seen so far.

The correctness criterion for this protocol is that, eventually,
the output bits of all processes will be the same (either ‘0’
or ‘1’).
Now we can specify the asynchronous FloodSet as a proto-
col 〈Q, I,Σ, τ〉, where:

• Q = {i0, i1, o0, o1};

• I = {i0, i1};

• Σ = Σm ∪ Σ̄m ∪ΣL with Σm = {0, 1}, Σ̄m = {0̄, 1̄},
ΣL = ∅; and

• the transition relationτ = {〈i0, 0, o0〉, 〈o0, 0̄, o0〉,
〈o0, 1̄, o0〉, 〈i1, 1, o1〉, 〈o1, 0̄, o0〉, 〈o1, 1̄, o1〉} .

3.4. Verifying Properties of the Example

Now we have all the ingredients to perform the verifi-
cation of parameterised protocols. Given a protocolP, we
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I. Each automaton either performs one of the actions availablein its state, or is idle:
[∀x. Pq(x) → Aσ1

(x) ∨ . . . ∨Aσk
(x) ∨Aidle(x)], where{σ1, . . . σk} = {σ ∈ Σ | ∃r〈q, σ, r〉 ∈ τ}.

II. Action effects (non-deterministic actions):
[∀xPq(x) ∧Aσ(x) → g

∨

〈q,σ,r〉∈τ Pr(x)] for all q ∈ S andσ ∈ Σ.

III. Effect of being idle: [∀xPq(x) ∧Aidle(x) → gPq(x)], for all q ∈ S

IV. Initially there are no messages in transit and all automata are in an initial state: start → ¬mσ for all σ ∈ Σm and
start → ∀x

∨

q∈I Pq(x).

V. All messages are eventually received (Guarantee of Delivery): [∃yAσ(y) → ∀x♦Aσ̄(x)], for all σ ∈ Σm.

VI. Only messages kept in the environment (in transit), or sent at the same moment of time can be received:
[∀xAσ̄(x) → mσ ∨ ∃yAσ(y)] for all σ ∈ Σm.

VII. Finally, for all σ ∈ Σm, we have the conjunction of the following formulae specifying the communication model:

1. start → ∀x. ¬Receivedσ(x)

2. [∀x. (Aσ̄(x) ∧ ¬∀y. Receivedσ(y)) → gReceivedσ(x)]

3. [∀x. (Receivedσ(x) ∧ ¬∀y. Receivedσ(y) → gReceivedσ(x)]

4. [∀x. (¬(Aσ̄(x) ∨Receivedσ(x)) ∧ ¬∀y. Receivedσ(y)) → g¬Receivedσ(x)]

5. [∀x. Receivedσ(x) → g¬mσ]

6. [∃x. Aσ(x) ∧ ¬∀y. Receivedσ(y) → gmσ]

7. [¬∃x. Aσ(x) ∧ ¬∀y. Receivedσ(y) → (mσ ↔ gmσ)]

Figure 3. Temporal Specification of Abstract Protocol Struc ture.

can translate it into a temporal formulaTP . For the tempo-
ral representation,χ, of a required correctness condition, we
then check whetherTP → χ is a valid temporal formula. If
it is valid, then the protocol is correct for all possible values
of the parameter (sizes).

Correctness conditions can, of course, be described us-
ing any legalFOTLX formula. For example, for the above
FloodSet protocol(s) we have a liveness condition to verify
that eventually all processes will agree on ‘0’ or will agree
on ‘1’:

♦(∀x. o0(x) ∨ ∀x. o1(x)).

3.5. Variations of the model

The above model allows us to introduce various exten-
sions and the corresponding version of Proposition 1 still
holds.

Determinism. The basic model allows non-deterministic
actions. To specify the case of deterministic actions only,
one should replace the “Action Effects” axiom in Fig. 3 by
the following variant (for all〈q, σ, r〉 ∈ τ ):

[∀x. Pq(x) ∧Aσ(x) → gPr(x)]

Explicit bounds on delivery. In the basic mode, no ex-
plicit bounds on delivery time are given. To introduce
bounds one has to replace the “Guarantee of Delivery” ax-
iom by:

[∃y.Aσ(y) → ∀x.Aσ̄(x)∨ gAσ̄(x)∨ . . .∨ gnAσ̄(x)]

for all σ ∈ Σm and somen (representing the maximal de-
lay).

In [15], we considered a deterministic model within-
stantaneous delivery(that is, the explicit bounds case with
n = 0).

Finite bounds on delivery. One may replace the “Guar-
antee of Delivery” axiom with (for allσ ∈ Σm) the follow-
ing:

[∃y. Aσ(y) → ♦∀x. Receivedσ̄(x)]

Guarded actions. One can also extend the model with
guarded actions, where actions can be performed depend-
ing on global conditions in global configurations.

Crashes. One may replace the “Guarantee of Delivery”
axiom by an axiom stating that only the messages sent by
normal (non-crashed) participants will be delivered to all
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participants. (See [15] for examples of such specifications
in aFOTL context.)

Returning to the FloodSet protocol, for example, one
may consider a variation of the asynchronous protocol suit-
able for resolving the Consensus problem in the presence of
crash failures. We can modify the above setting as follows.
Now, processes may fail and, from that point onward, such
processes send no further messages. Note, however, that the
messages sent by a processin the moment of failuremay be
delivered toan arbitrary subsetof the non-faulty processes.
Then the FloodSet protocol considered above is modified
by adding the following rule:

• At every round (after the first), a process broadcasts
any valuethe first time it sees it.

The goal of the algorithm also has to be modified, so only
non-faulty processes are required to eventually reach an
agreement:

♦

[

(∀x. Non-faulty(x) → o0(x))∨
(∀x. Non-faulty(x) → o1(x))

]

.

The above rules can be easily encoded in the model.

4. Concluding Remarks

In this paper, we have developed an exactly-one version
of FOTL, providing: its syntax and semantics; conditions
for decidability; and detailed complexity of the decision
procedure. As well as being an extension and combination
of the work reported in both [6] and [11], this work forms
the basis for tractable temporal reasoning over infinite state
problems. In particular, we have shown how the logic can
capture quite a strong model of parameterised systems, in-
corporating more complex aspects ofasynchronyandcom-
munication, and is also able to verify more sophisticated
livenessandfairnessproperties. Thus, in contrast to many
other approaches [23, 9, 2], not only safety, but also liveness
and fairness properties, can be verified through (complete)
automatic deductive verification.

Finally, our future work involves exploring further the
framework described in this paper, in particular the devel-
opment of an implementation to prove properties of proto-
cols in practice. Further, we would like to see if we can ex-
tend the range of systems we can tackle beyond the monodic
fragment. We also note that some of the variations we might
desire to include in Section 3.5 can lead to undecidable frag-
ments. However, for some of these variations, we have cor-
rect although (inevitably) incomplete methods, see [15]. We
aim to explore these boundaries further.
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