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Abstract and typically lead to undecidability problems if applied to
liveness properties.

In this paper we consider the specification and verifica-  Thus, there is need for an approach that can tackle the
tion of infinite-state systems using temporal logic. Injgart  verification of parameterised systems in@npleteandde-
ular, we describe parameterised systems using a new varietytidable way, and also to tackle a wider class of system,
of first-order temporal logic that is both powerful enough incorporating asynchrony, communication delay, etc. In
for this form of specification and tractable enough for prac- this paper we introduce a nefirst-order temporal logic
tical deductive verification. Importantly, the power of the FOTLX, that allows us to achieve this. This logic com-
temporal language allows us to describe (and verify) asyn- pines previous work on the specification and verification of
chronous systems, communication delays and more Comp|ebarameterised systems usin‘g)nodictempora| |Ogic []_5]
liveness and fairness properties. These aspects appéiar dif with more recent work on efficient temporal logics [11]. We
cult for many other approaches to infinite-state verificatio  show that the complexity of reasoning ROTLX is lower

than in unrestricted monodic first-order temporal logiceTh
resulting formalism is new, and now allows us to describe,
and verify properties of, a wide and important class of pa-
1. Introduction rameterised systems.
The verification of concurrent systems often comes down

The verification of infinite-state systems, particularly pa to the analysis of families of finite-state automata, for ex-
rameterised systems comprising of arbitrary numbers of ample of the form given in Fig. 1(a). In describing such au-
identical processes, is increasingly important. Prakttica tomata, both automata-theoretic (such as model checking)
problems of an open, distributed nature often fit into this and logical approaches may be used. Recently, a proposi-
model. In assessing the reliability of these systems, forma tional, linear-time temporal logic with improved deduetiv
verification is clearly desirable and so several approachesProperties has been introduced [10, 11], providing the pos-
have been developed. Two of the most popularracelel sibility of practical deductive verification in the futuréhe
checking for parameterised and infinite state-systgmg] essence of this approach is to provide constraints between
and constraint based verification using counting abstrac- key propositions. These constraints state that exactly one
tions[8, 9, 13], but both suffer problems. Within the model Proposition from an subset of propositions can be true at
checking approach, formulae are translated intotet ~ @ny momentintime. Thus, the automaton given in Fig. 1(a)
transducer. Techniques from regular model checking arecan be described by the clauses given in Fig. 1(b), which are
then used to search for models. This approach has been agmplicitly in the scope of af ]’ (‘always in the future’) op-
plied to several algorithms verifying safety propertiesian erator. Here©'is atemporal operator denoting ‘at the next
some liveness properties. However, the logic LTL(MSO), moment’ and $tart’ is a temporal operator which holds
considered in [1]’ isnot recursively enumerable; so reg- only at the initial moment in time. The inherent assump-
ular model checking is incomplete. Constraint-based ap-tion is that at any moment in time exactly one ©f, sy,
proaches [9] provide complete procedures for checking s: Of s, holds. With improved complexity results for such
safety properties of broadcast protocols. However, these a 10gics then the properties of any finite collection of such
proaches have theoretically non-primitive recursive uppe automata can be tractably verified using thispositional
bounds for decision procedures (although they work well €xactly-one temporal logic [10].
for small examples), are not suitable (or, have not been This naturally leads to the question of whether the
used) for asynchronous systems with delayed broadcastexactly-one approach can be extendeditst-order tem-



model of time). The signature &fOTL (without equality

) and function symbols) consists of a countably infinite set of
1. start = s; variableszg, z1, ..., a countably infinite set afonstants
2. st = O(s:V5q) o, C1, - - -, @ NON-empty set @hredicate symbol®, Py, ...,
3. sp= Os; each with a fixed arity> 0, the propositional operatorsr,
4. s4= Osy -, V, the quantifiers3x; andVz;, and thetemporal oper-
& 5 5w = O(swVsp) ators [] (‘always in the future’),(> (‘eventually in the fu-
@ ture’), O (‘at the next moment’), andJ (‘until’). The set
of formulae of FOTL is defined as follows:T is aFOTL
formula; if P is ann-ary predicate symbol and, ..., t,
Figure 1. Finite-State Automaton (a) and its are variables or constants, thétit,, ...,t,) is anatomic
Propositional Temporal Specification (b) FOTL formula; if ¢ and« areFOTL formulae, then so are

-, © V1, Jzp, Yee, [, Op, Op, andpUp. We
also usel, A, and=- as additional operators, defined us-
poral logicsand, if so, whether a form of tractability still ing T, -, andV. Free and bound variables of a formula

applies. In such an approach, we can consiadfamite num- are defined in the standard way, as well as the notions of
bers of finite-state automata (initially, all of the sameistr ~ open and closed formulae. Given a formyawe write
ture). Previously, we have shown tHa®TL (without ex- o(x1,...,z,) to indicate that all the free variables gfare
plicit exactly-one constraints) can be used to eleganty (b amongzy, ..., z,. As usual, diteral is either an atomic

with inherent complexity) specify such a system, simply by formula or its negation.
assuming the argument to each predicate represents a par- Intuitively, FOTL formulae are interpreted ffirst-order
ticular automaton [15]. Thus, in the following, () is true temporal structureswhich are sequence®t of worlds

if automatonz is in states,: M = My, My, . .. with truth values in different worlds be-
1. start = Jr.s,(x) ing I\;I:onnfectedI\lliaftemporal operat?rsf.t_ o there
2. V. (s:(z) = O(s:(x) V 5a())) ore formally, for every moment of time > 0, there is
3. Vi (sy(x) = Osi(2)) acorrespondm@rst-orderstructu_re,‘mn = <_D,In>, wht_are
4. V. (sa(z) = Osl (2)) D is anon-empty set anfj, is an interpretation of predicate
5. V. (sw(@) = O(s0(2) V 56(2))) and constant symbols ovér. We require that the interpre-

o ) ] ) tation of constants isgid. Thus, for every constantand
The contributions of this paper are the introduction of an 5| moments of timei,j > 0, we havel;(c) = I;(c). A

exactly-one version of monodic first-order-temporal 10giC  (ariaple) assignment is a function from the set of indi-
the related complexity result and its application to a sephi  iq,3) variables taD. We denote the set of all assignments
ticated process model. This allows us to not only specify ;. o;.

broadcast protocols between synchronous components [13], * thetruth relationt,, =2 ¢ in a structuret, is defined

but also to specify asynchronous systems with communicasjnqyctively on the construction af, see Fig. 2 for details
tion delays. We show that such a process model can be faith e semantics of Booleans is standard and is omitted from
fully represented ifFOTLX, making it possible to practi- o figure).

cally verify its properties. . oM is amodelfor a formula¢ (or ¢ is truein 9) if, and
Thus, in summary, we hgre tackle the prot_JIem of ;pemfymg only if, there exists an assignmemtsuch thatit, =° ¢.
and verifying parameterised systems by introducing a new a formula is satisfiableif, and only if, it has a model. A

temporal logic formalism. This logic not only allows us to  t5rmula is valid if, and only if, it is true in any temporal
describe, and prove properties about, a wider range of syS—icturednt under any assignment
tem, but also allows us to do so with improved complexity

over previous temporal logic approaches. 2.2. Monodicity and Monadicity

2.FOTLX The set of valid formulae dfOTL is not recursively enu-
merable. Furthermore, it is known that even “small” frag-
ments ofFOTL, such as théwo-variable monadifragment
(where all predicates are unary), are not recursively emume
able [24, 20]. However, the set of validonodicformulae

" is known to be finitely axiomatisable [26].

2.1. First-Order Temporal Logic

The language of First-Order (descrete, linear time) Tem
poral Logic, FOTL, is an extension of classical first-order
logic by temporal operators for a discrete linear model of Definition 1 AnFOTL-formula¢ is calledmonodicif, and
time (isomorphic toN, that is, the most commonly used only if, any subformula of the form+), where7 is one of



of monadicmonadic first-order temporal logic, makes this

approach difficult to use for larger applications [16, 15].
M, E° true M, £ false

M, E=° start iff n=0

M, E® P(tr,...,tm) Iff (I8(t1),... I%(ty)) € I,(P),
wherelt(t;) = L,(t;),
if ¢; is a constant, and
Ig(ti) = Cl(ti), if t; isa
variable

M, =° Voo iff 9, =° ¢ for every
assignmenb that may
differ from a only in =

M, = Jxg iff 9, =° ¢ for some
assignmenb that may
differ from a only in z

2.3. Exactly-One Restrictions

An additional restriction we make to the above logic
involves implicit exactly-one constraints over predicate
Such restrictions were introduced into propositional tem-
poral logics in [10], where the correspondence witicBi
automata was described, and generalised in [11]. In both
cases, the decision problem is of much better (polynomial
even in the first case) complexity than that for the standard,
unconstrained, logic. However, in these papers @nbpo-
sitional temporal logic was considered. We now add such
an exactly-one constraint to monodtOTL.

m, =* O iff M, . .
m }; qu(b it therglel(istsn ~ 1 such The set of predicate symbal§ = {Fy, Py, ...}, is now
" that,, —° ¢_ partitioned into a set of exactly-one subsets, X, ...,
Mm, = (o i for all 7’7’; > 0, My =5 6 X, with oneunconstrainedget N such that
M, = (9U9) iff  there existsm > n, such 1. all X; are disjoint with each other,
that,,, =* ¢ and, . .
foralli e N,n <i<m 2. N is disjoint with everyX;,
impliesO; =2 ¢ "
M, GWY) i M = (9U ) or 3.1= |JX; U N, and
S):nn |:a D¢ =1

4. for eachX;, exactlyonepredicate withinX; is satis-
fied (for any element of the domain) at any moment in
time.

Figure 2. FOTL semantics
Example 1 Consider two exactly-one setsX; =
O, [, ¢ (or Y1 T s, whereT is one ofU, W), contains {P1, P>} gndXQ = { Py, P7, P3}. Then for any element of
at most one free variable. the domaing, exactly one ofP; (a) or P»(a) must be sat-
isfied and exactly one dPy(a), P7(a) or Ps(a) must be
We note that the addition of either equality or function sym- satisfied.
bols to the monodic fragment generally leads to the loss of
recursive enumerability [26, 7, 18]. Further, even with its 2 4 Normal Form
recursive enumerability, monodkeOTL is generally unde-
cidable. To recover decidability, the easiest route is to re

strict the first order part to some decidable fragment of-first normal formin a satisfiability preserving way using a re-

order logic, such as the guarded, two-v_arlable or ”?O”ad"? naming and unwinding technique which substitutes non-
fragments. We here choose the latter, since monadic predi-

tes fit well with tended lication t et atomic subformulae and replaces temporal operators by
cates it wellwith ourintended application [o parametense . o, fyeaq point definitions as described, for example,
systems. Recall that monadicity requires that all prediat

have arity of at most ‘1’. Thus, w monadic, monodi in {14]
F?J'I?La[ﬁ]yo atmost L. Thus, we use monadic, monodic A monodic temporal problem in Divided Separated Nor-

The resolution theorem-prover TeMP [21] provides a a mal Form (DSNFJ6] is a quadruplet/, 7, 5, £), where:

practical approach to proving monodic temporal formulae. 1. the universal party, is a finite set of arbitrary closed
In the past, TeMP has been successfully applied to prob- first-order formulae:

lems from several domains [16], in particular, to examples
specified in the temporal logics of knowledge (the fusion of
propositional linear-time temporal logic with multi-mdda
S5). From this work it is clear that monodic first-order tem- 3. the step partS, is a finite set of step clauses of the
poral logic is an important tool for specifying complex sys- form Pi(z) A ... Pu(X) = OQ1(z) V...V Qix),
tems. However, it is also clear that the complexity, even whereP; and@ ;are unary predicate symbols;

Every monodicFOTLX formula can be translated to a

2. the initial part,Z, is, again, a finite set of arbitrary
closed first-order formulae;



4. the eventuality partg, is a finite set of eventuality = Proof Similar to [3], Proposition 6.2.9. d
clauses of the fornd L(x), whereL(z) is a unary lit-
eral. Proof [of Theorem 1, Sketch] For simplicity of presenta-
) o ) o tion, we assume the formula contains no propositions. Sat-

In what follows, we will not distinguish between a finite set isfiability of a monodicFOTL formula is equivalent to a
of formulaet” and the conjunctio\ X of formulae within - rperty of thebehaviour graptfor the formula, checkable
the set. With each monodic temporal problem, we associatéjn time polynomial in the product of the number of different
the formulaZ A [JU A [JV2S A LIVzE. Now, whenwe  predicate colours and the size of the graph, see [6], Theorem
talk about particular properties of a temporal problem.(e.9 515, For unrestricte§OTL formulae, the size of the be-
satisfiability, validity, logical consequences etc) we mea nayiour graph is double exponential in the number of predi-

properties of the associated formula. cates. We estimate now the size of the behaviour graph and
To translate a formula into the normal form, we recur- time needed for its construction fSOTLX formulae.
sively rename each innermost open subforngiila), whose A predicate colour,y, is a set of unary literals such

main connective is a temporal operator, By(x), where  hat for every predicat@(x) from the set of all predicates
Pe(»y is @a new unary predlcate,. and rename gach innermosty ;. ,UX,,UN, eitherP(z) or ~P(z) belongs toy. Let
closed subformulg, whose main connective is a temporal 1 e g set of predicate colours apde a map from the set
operator, byp¢, wherep is a new propositional variable.  of constantsgonst(P), toT'. A pair (I, p) is called acolour

The translation linearly increases the size of the gchemeNodes of the behaviour graph are colour schemes.
formula—full details can be found e.g. in [14]. While Clearly, there are no more thal® (Ni-Na-.-N..-2V%) Giffer-

renaming mtroduc<_—:-s new, unconstraln(_-:-d predlcate_s_ andent colour schemes.
propositions, practical problems stemming from verifica-
tion are nearly in the normal form, see Section 3.

However, not every colour scheme
is a node of the behaviour graph: a colour schemis
a node if, and only if, a monadic formula of first-order
) (non-temporal) logic, constructed from the givE@TLX
2.5. Complexity formula and the colour scheme itself, is satisfiable (for de-
. ) ) ) tails see [6]). A similar first-order monadic condition dete

First-order temporal logics are notorious for being of & mines which nodes are connected with edges. So, the size
high complexity. Even decidable sub-fragments of monodic yf the formula is polynomial. By Lemma 3, satisfiability of
first-order temporal logic can be too complex for practical onadic first-order formulae can be decided in determinis-

use. For example, satisfiability of monodic monaB@TL tic 20(N1-Na-..- Ny 2N%) fima

logic is known to beEXPSPACE-complete [19]. However, Overall, the behaviour graph, representing all possi-
imposing exactly-one restrictions we obtain better comple  pja models, for afFOTLX formula can be constructed in
ity bounds. 9O(N1-Nz-.:Nu:2™) ime, O

Theorem 1 Satisfiability of monodic monadi¢=OTLX

formulae (in the normal form) can be decided in 3. Parameterised Systems

90(N1-N2+..-Nu:2%) tima whereN],.. ., N,, are cardinal-

ities of the sets of exactly-one predicates, ands the car- Next we present a model suitable for the specification

dinality of the set of the unconstrained predicates. of both synchronous and asynchronous systems (protocols)
with (possibly) delayed broadcast and give its faithfuhta

_Corollary 2 If the n_umt_)er,n, of sets of exactly-one pred- lation into FOTLX. This shows that the logic developed

|cate_s and _the_ cardma_htyNa_,_of the set of unconstrained does indeed achieve what we intended. In addition, given

predicates is fixed, satisfiability 5OTLX formulae can be the improved complexity results of the previous section, we

decided in deterministic exponential time (which i; an im- believe this approach provides a route towardsheti-
provement compared to the EXPSPACE complexity of thecal verification of temporal properties of such infinite state
general case). systems.

A parameterised finite state machine based model, suit-
able for the specification and verification of protocols over
arbitrary numbers of processes was defined in [13, 8]. Es-

sentially, this uses a family of identical, and synchrorpus

Before we sketch the proof of this result, we show how the
exactly-one restrictions influence the complexity of thie sa
isfiability problem for monadic first-order (non-temporal)

logic. executing, finite state automata with a rudimentary form of
Lemma 3 Satisfiability of monadic first-order formulae communication: if one automaton makes a transition (an
can be decided iNTime(O(m - Ny - Ny - ... - N, - 2Na)), action)a, then it is required thaall other automata simul-
wherem is the length of the formula, an®y,..., N, N, taneously make a complementary transition (reactiori

are as in Theorem 1. [15] we translated this automata model into monde@TL



and used automated theorem proving in that logic to verify

parameterised cache coherence protocols [9]. The modeto be a global configuration of the machine.
assumed not only synchronous behaviour of the communi-

cating automata, but instantaneous broadcast.

3.1. Process Model

An elementG € Q. X (2 U {idle})™ x £ is said

A run of
a global machineM is a possibly infinite sequence
(st, ot By) (s, 0%, E;) of global configura-
tions of M satisfying the properties (1)—(6) listed be-
low. In this formulation we assumgé = (s, ..., s!) and

ol =(ol,...,0%).

We now describe both the asynchronous model, and the

delayed broadcast approach.

Definition 2 (Protocol) A protocol, P is a

(Q,I,%, 1), where

tuple

e () is afinite set of states;
e [ C (Qis aset of initial states;
e ¥ =X, UX) UZy, where
¥, is a finite set of local actions;

Y IS a finite set of broadcast actions, i.e. “send a
message”;

Yy = {6 | 0 € B} isthe set of broadcast reactions,
i.e. “receive a message”;

7 C Q x X x @ is a transition relation that satisfies
the following property

Vo € Y. Vg € Q. 3¢ € Q. (¢,0,9") € T le,
“readiness to receive a message in any state”.

Further, we define a notion of global machine, which is a set

of n finite automata, where is a parameter, each following

the protocol and able to communicate with others via (possi-
bly delayed) broadcast. To model asynchrony, we introduce

a special automaton actiofile ¢ 3., meaning the automa-

ton is not active and so its state does not change. At any

moment an arbitrary group of automata may be idle and all
non-idle automata perform their actions in accordance with
the transition functionr; different automata may perform
different actions.

Definition 3 (Asynchronous Global Machine) Given a
protocol, P = (Q,I,%, ), the global machineM of
dimensiom is the tuple{Q ry , Ime Tme , €), Where

L QMG = Qn

o IMG ="

e Tre C Qe X (BU{idle})™ x Q. IS atransition
relation that satisfies the following property

(81, Sn)s (01, .on), (8], ..
iff V1<i<n.
((0'7; 7& idle = <Si70'i782> S ’7')/\
(0; =idle = s; = s})).

/

’ Sn>> € TMg

e £ = 2¥M js a communication environment, that is a
set of possible sets of messages in transit.

1. st € I" (“initially all automata are in initial states”);

2.1 =10

Vil (st ot st € T,
can fire”);

(“initially there are no messages transit”);
(“an arbitrary automaton

4.Va € Xy Vi Vi ((0} = a) = Vk. 3L > i. (0}, =
a)) (“delivery to all participants is guaranteed”);
5. Va € ¥y Vi. Vj. (0} =a) = (a € E;) V 3k. 0}, =

a)] (“one can receive only messages kept by the envi-
ronment, or sent at the same moment of time )

In order to formulate further requirements we introduce the
following notation:

Sent; = {a € Xy | 3j. 0 = a}

Deliveredy, =

Fi < k. (a € Sent;) A

(VM. (1 <l < k)— a¢Sent;) A
(V4.3 (i <1< k) A (o} =a))

a € Xy

Then, the final requirement the run should satisfy is
6. Vi. E;v1 = (E; U Sent;) — Delivered;

This process model is quite expressive, capturing many in-
teresting and useful systems. In particular, it is rich ejiou

to allow us to describe, for example, such diverse systems
as cache coherence protocols, multi-agent swarms, and dis-
tributed atomic commitment protocols including the two-
and three-phase commit protocols [17, 25] and their mod-
ifications [5, 4]. For the sake of space, however, we will
only consider a simple asynchronous distributed consensus
example, called thEloodSet protocqlin Section 3.3

3.2. Temporal Translation

Given a protocolP = (Q, I, %, ), we define its trans-
lation to FOTLX as follows. For eacly € @, introduce a
monadic predicate symbat, and for eaclr € ¥ U {idle}
introduce a monadic predicate symbé). For eacho €
Y we introduce also a propositional symbal,. Intu-
itively, elements of the domain in the temporal representa-
tion will represent exemplars of finite automata, and the for
mula P, (z) is intended to represent “automaton x is in state
q". The formula 4, (z) is going to represent “automaton
2 performs actiors”. Propositionm, will denote the fact



“message is in transit” (i.e. it has been sent but not all par-
ticipants have received it). Because of the intended meanin
we define two exactly-one setX; = {P, | ¢ € Q} and

X2 = {4, | 0 € ¥ U {idle}}. All other predicates belong
to the set of unconstrained predicates.

We define the temporal translation ®f, calledTp, as a
conjunction of the formulae in Fig. 3. Note that, in order
to define the temporal translation of requirement (6) above,
(on the dynamics of environment updates) we introduce the
unary predicate symbaoReceived, for everyo € 3.
When an automaton receives message, Received,(a)
becomes true. WheReceived,, becomes true for alt, the

message is delivered and is not in transit any more, that is,

m, becomes false.

We now consider the correctness of the temporal transla-
tion. This translation of protocd? is faithful in the follow-

ing sense.

Proposition 1 Given a protocol?, and a global machine,
M, of dimensiom, then any temporal modal/,, Mo, ...
of T’ with the finite domairey, . . . ¢, of sizen represents
some run(st, ot B1) ... (s', 0% E;) ... of M as follows:

(815 -y Sn), (01,...,04), E) is i-th configuration of
the runiffM; = Py, (c1) A ... Py (¢n), M; = Ay, (c1) A
A (en)andE ={o € X, | M; = me}

Dually, for any run ofM there is a temporal model of
Tr with a domain of size representing this run.

Thus, given a parameterised system that fits into the
above model, we can translate its specification (faithjully
into FOTLX.

3.3. Example

We here consider a variant of tidoodSet algorithm
with alternative decision rulé€in terms of [22], p.105) de-
signed for solution of the Consensus problem.

The setting is as follows. There areprocesses, each
having aninput bit and anoutput bit The processes work
asynchronously, run the same algorithm and lusadcast
for communication. (The process is described graphically
in Fig. 4.) The broadcast messages are guaranteed to b
delivered, though possibly with arbitrary delays.

The goal of the algorithm is to eventually reach an agree-
ment, i.e. to produce an output bit, which would be the same
for all processes. Itis required also that if all processesh

Figure 4. Asynchronous FloodSet Protocol
Process.

e the original protocol assumed instantaneous message
delivery, while we allow arbitrary delays in delivery;
and

e although the original protocol was designed to work in
the presence of crash (or fail-stop) failures, we assume,
for simplicity, that there are no failures.

Because of the absence of failures the protocol is simplified
and, unlike the original, does not require “retransmission
of any value. We will show later (in Section 3.5) how to
include the case of crash failures in the specification (and
verification). Thus, the asynchronous FloodSet protocol is
defined, informally, as follows.

e At the first round of computations, every process
broadcasts its input bit.

e At every round the (tentative) output bit is set to the
minimum value ever seen so far.

The correctness criterion for this protocol is that, evetijil

the output bits of all processes will be the same (eithéer *
or‘1l).

Now we can specify the asynchronous FloodSet as a proto-
col (@, 1,3, ), where:

ee Q = {iOai1)00701};
o I ={ig,i1};

e X =Y,UX,Uxwithy,, ={0,1},%,, = {0,1},
Y = 0;and

the same input bit, that bit should be produced as an output ® the transition relationr = {(io,0,00), (00,0, 00),

bit.
The asynchronous FloodSet protocol we consider here is
adapted from [22], the main differences being:

e the original protocol was synchronous, while our vari-
ant is asynchronous;

<007 Ia O()>7 <7:17 ]-7 Ol>7 <Ol7 (_)7 00>7 <01a iv 01>} .
3.4. Verifying Properties of the Example

Now we have all the ingredients to perform the verifi-
cation of parameterised protocols. Given a protdéplve



I. Each automaton either performs one of the actions availalite state, or is idle:
U[Va. Py(x) — As () V...V Agy (2) V Ajqie(2)], where{o, ..o} ={oc € ¥ | Ir{q,0,7) € T}.

[I. Action effects (non-deterministic actions):
LVaPy(x) N As(2) = O Vg 5yer Pr(@)] forallg € Sando € X.

Ill. Effect of being idle:[][VzP,(z) A Ajgie () — O Py(z)], forallg € S

IV. Initially there are no messages in transit and all automegaraan initial state: start — —-m, forall o € ¥,, and
start — Vo \/ o Py(z).

V. All messages are eventually received (Guarantee of Dg)iver] [Ty A, (y) — Ve As(z)], forallo € ,,,.

VI. Only messages kept in the environment (in transit), or séntha same moment of time can be received:
[IVzAs(x) — me V IyA,(y)] forallo € X,,,.

VII. Finally, for allo € ¥,,,, we have the conjunction of the following formulae specifythe communication model:

. start — Va. ~Received, ()

[I[Vx. (Az(x) A =Vy. Received,(y)) — O Received, ()]

[1[Vz. (Received, (x) A =Vy. Received, (y) — O Received, (z)]

[I[Vz. (-(As(z) V Received, (x)) A =Vy. Received,(y)) — O-Receivedy(x)]
L1[Vz. Received,(z) — O—my]

[1[Fz. Ay (x) A =Vy. Received,(y) — Omy]

[[-3x. As(z) A =Vy. Received,(y) — (my < Omy)]

No o~ wDdPRE

Figure 3. Temporal Specification of Abstract Protocol Struc ture.

can translate it into a temporal formulg. For the tempo-  Explicit bounds on delivery. In the basic mode, no ex-
ral representationy, of a required correctness condition, we plicit bounds on delivery time are given. To introduce
then check whethéfp, — y is a valid temporal formula. If ~ bounds one has to replace the “Guarantee of Delivery” ax-
it is valid, then the protocol is correct for all possible was iom by:
of the parameter (sizes).

Correctness conditions can, of course, be described us-L[3y. As(y) — Va. Az (z) VO As(z) V...V O" A5 ()]
ing any legalFOTLX formula. For example, for the above _ _
FloodSet protocol(s) we have a liveness condition to verify fOr @ll o € X, and some: (representing the maximal de-

that eventually all processes will agree éonor will agree lay). , L .
on ‘1" In [15], we considered a deterministic model witi
O(Vz. 0o(x) V ¥z 01(2)). ;ta:nge;neous deliverfthat is, the explicit bounds case with

3.5. Variations of the model Finite bounds on delivery. One may replace the “Guar-

antee of Delivery” axiom with (for alb- € 33,,,) the follow-
The above model allows us to introduce various exten- jng:

sions and the corresponding version of Proposition 1 still (1[3y. As(y) — OVa. Receiveds (x)]
holds.

Guarded actions. One can also extend the model with
Determinism. The basic model allows non-deterministic guarded actions, where actions can be performed depend-
actions. To specify the case of deterministic actions only, ing on global conditions in global configurations.
one should replace the “Action Effects” axiom in Fig. 3 by

the following variant (for allg, o, r) € 7): Crashes. One may replace the “Guarantee of Delivery”
axiom by an axiom stating that only the messages sent by
LVa. Py(z) A Ag(z) — O Py (2)] normal (non-crashed) participants will be delivered to all



participants. (See [15] for examples of such specifications 16th International Conference on Computer Aided Verifica-
in aFOTL context.) tion (CAV) volume 3114 of NCS pages 348-360. Springer,
Returning to the FloodSet protocol, for example, one 2004.
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crash failures We can modify the above setting as follows. volume 4137 oLNCS pages 95-109. Springer, 2006.
Now, processes may fail and, from that point onward, such [3] E'. Borger, E Gad_el, and Yu. GurevichThe Classical Deci-
processes send no further messages. Note, however, that the sion Pro_blem Springer, 1997. _
messages sent by a procasshe moment offarnay be 19 0, IMee . oomar, e an e e e
delivered toan arbitrary subseof th(_a non-faulty pr(.)cesse.s.. 3th International Conference on Formal gEnz;/ineering Méth-
Then t_he FloodSet protocol considered above is modified 45 (ICFEM 2000)pages 89-97, IEEE, 2000.
by adding the following rule: [5] D. Chkliaev, P. van der Stock, and J. Hooman. Mechanical
e At every round (after the first), a process broadcasts verification of a Non-Blocking Atomic Commitment Proto-
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A. Degtyarev, M. Fisher, and B. Konev. Monodic Tempo-
ral Resolution. ACM Transactions on Computational Logic
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(Va. Non-faulty(x) — oo(x))V [7] A. Deg_tyar(_av, M. Fisher, and A. Li_sitsa. _Equality and
O (Va. Non-faulty(z) — oy (z)) . Monodic First-Order Temporal Logic. Studia Logica
) ) 72(2):147-156, Nov. 2002.
The above rules can be easily encoded in the model. [8] G. Delzanno. Automatic Verification of Parameterized Cache
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capture quite a strong model of parameterised systems, in- soning. InProc. International Joint Conference on Atrtificial
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