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Abstract

When modelling realistic systems, physical constraints on the resources available are often required.
For example, we might say that at most N processes can access a particular resource at any
moment, exactly M participants are needed for an agreement, or an agent can be in exactly one
mode at any moment. Such situations are concisely modelled where literals are constrained such
that at most N , or exactly M , can hold at any moment in time. In this paper we consider a
logic which is a combination of standard propositional linear time temporal logic with cardinality
constraints restricting the numbers of literals that can be satisfied at any moment in time. We
present the logic and and show how to represent a number of case studies using this logic. We
propose a tableau-like algorithm for checking the satisfiability of formulae in this logic, provide
details of a prototype implementation and present experimental results using the prover.

Keywords: Temporal logic, Constraints, Theorem Proving, Tableau

1. Introduction

Temporal logic allows the concise specification of temporal order. However, if we need to
represent cardinality restrictions we have to introduce a large number of formulae to the specifi-
cation making it hard to read and understand, and difficult for provers to deal with. In addition,
while temporal logic has turned out to be a very useful notation across a number of areas, par-
ticularly the specification of concurrent and distributed systems [45, 44, 27], the complexity of
many temporal logics is often considered to be too high for practical verification (see for example
[11, 8]). Consequently, simple modal logics, finite state automata, or even Boolean satisfiability,
are typically used in the verification of such systems. This is because the decision problem for
propositional linear temporal logic (PTL) is PSPACE-complete [30] whereas techniques in many
of the above areas are much simpler.

So, the question we are concerned with in this work is the following: can we represent and
reason about such cardinality restrictions (here we use the term constraints) in a compact and
transparent way, retaining the useful descriptive powers of temporal logics, while making the
reasoning more efficient in practice? Here we propose and utilise a succinct way of specifying
cardinality constraints. We show that if examples are in (or close to) a particular normal form,
using this representation of constraints simplifies the reasoning. Additionally, we experiment with
an implemented prototype prover for this logic.

To specify the constraints we allow statements stating that up to k literals, or exactly k literals
from some subset of literals, are true at any moment in time. Note that this approach involves
reasoning in the presence of constraints rather than reasoning about them. Thus, the resulting
logic represents a combination of standard temporal logic with (fixed) constraints that restrict the
numbers of literals that can be satisfied at any moment in time. This new approach is particularly
useful for (for example):
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• ensuring that a fixed bound is kept on the number of propositions satisfied at any moment
to prevent overload;

• in finite collections of communicating automata, ensuring that no more than k automata are
in a particular state;

• modelling restrictions on resources, for example at most k vehicles are available or there are
at most k seats available;

• modelling the necessity to elect exactly k from n participants.

Motivating Example. Consider a fixed number, n, of robots that can each work, rest or recharge.
We assume that there are only k < n recharging points and only j < n workstations. Let:

• worki represent the fact that robot i is working;

• resti represent the fact that robot i is resting; and

• rechargei represent the fact that robot i is recharging.

Now, we typically want to specify that exactly j of the n robots are working at any one time. In
the syntax given later, such a logic might be defined as TLC(W=j ,R6k), where

W=j = {work1, . . . , workn}=j
R6k = {recharge1, . . . , rechargen}6k

This represents the logic with the constraints that exactly j robots must work at any moment and
at most k can recharge at any moment.

This paper extends preliminary material from our earlier paper [19]. The contributions of the
paper are: to define and analyse a logic which combines both temporal logic and constraints;
to show how a number of case studies can be elegantly modelled using this logic; to provide a
tableau-like satisfiability algorithm for formulae in this logic giving proofs of correctness; to provide
algorithms for a prototype implementation of this; and give experimental results comparing the
implementation with other temporal provers.

The paper is organised as follows. Section 2 gives the syntax and semantics of the constrained
temporal logic, together with a normal form for this logic. In Section 3 we provide a number of
case studies and show how they are specified in this logic. In Section 4 we provide an algorithm for
checking satisfiability of this logic and consider its complexity. In Section 5 we give details of an
implementation of the satisfiability checker for this logic and experimental details comparing this
implementation to other tableau reasoners for propositional linear time temporal logic. Finally,
in Section 6, we provide concluding remarks and discuss both related and future work.

2. A Constrained Temporal Logic

Temporal Logic with Cardinality Constraints (TLC) [19] is PTL with some additional con-
straints, which restrict the numbers of literals that can be satisfied at any moment in time. TLC
is parameterised by (not necessarily disjoint) sets C∝m where ∝∈ {=,6} and m ∈ N. The for-
mulae of TLC(C∝1m1

1 , C∝2m2
2 , · · · ) are constructed under the restriction that, depending on ∝i,

exactly mi literals from every set Ci are true in every state (∝i is =) or less than or equal to mi

literals from every set Ci are true in every state (∝i is 6). For example, consider TLC(C=2
1 , C61

2 ),

where C=2
1 = {p, q, r}=2 and C61

2 = {x, y, z}61. Then, at any moment of time, exactly two of p, q,
or r are true, and less than or equal to one of x, y, or z is true. In addition to these constrained
sets, there exists a set of propositions, A, which are standard, unconstrained propositions. Note
that, the ‘less than’ constraint C<m can be expressed as C6m−1 and the ‘more than or equal
to’ constraint C>m can be expressed as C̄6n−m, where n is the number of literals in C and by
definition C̄ = {x̄ | x ∈ C}, p̄ = ¬p and ¬p = p. Moreover by using both C6m and C>m (encoded
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as C̄6n−m) we could also obtain C=m. We choose not to do this however, as we aim for a clear
and intuitive way of expressing constraints and this appears to obscure the meaning. Further, the
constraint C=1 seems to be common in applications (see Section 3) which gives additional weight
for the = 1 construct to be primitive.

We note that we can express the information in our constrained sets as temporal formulae. For
example given the constraint C=2

1 = {p, q, r}=2 above, this can be represented by the following
temporal formula.

((p ∨ q) ∧ (p ∨ r) ∧ (q ∨ r)) ∧ (¬p ∨ ¬q ∨ ¬r).

2.1. TLC Syntax

A constraint C∝imi
i is a tuple (Ci,∝i,mi), where Ci is a set of literals with a cardinality restric-

tion ∝i mi, such that ∝i∈ {=,6} and mi ∈ N. For TLC, the future-time temporal connectives
we use include ‘ g’ (in the next moment) and ‘U ’ (until). Formally, TLC(C∝1m1

1 , · · · , C∝nmn
n )

formulae are constructed from the following elements:

• a set, Props = {p | p ∈ C∝imi
i } ∪ {p | ¬p ∈ C∝imi

i } ∪ A of propositional symbols (where
1 6 i 6 n and A are termed ‘unconstrained’ propositions);

• propositional connectives, true,¬,∧; and

• temporal connectives, g, and U .

We also write TLC(C), where C = {C∝1m1
1 , · · · , C∝nmn

n }.
The set of well-formed formulae (wff) of TLC, is defined as the smallest set satisfying the

following:

• any elements of Props and true are in wff;

• if ϕ and ψ are in wff, then so are ¬ϕ,ϕ ∧ ψ, gϕ,ϕ U ψ.
A literal is defined as either a proposition symbol or the negation of a proposition symbol. We
(ambiguously) assume that the negation of ¬p is p.

2.2. TLC Semantics

First we define the satisfiability of a constraint. The notation L |=PL ϕ denotes the truth of
propositional logic formula ϕ with respect to a set of propositions L. L |=PL p iff p ∈ L where p ∈
Props and the semantics of the operators ¬, ∧ is as usual. Let L be a set of propositions, C∝m a
constraint and

Eval(L, C∝m) = {p | p ∈ L and p ∈ C} ∪ {¬p | p 6∈ L and ¬p ∈ C}

then
L |=PL C

=m iff |Eval(L, C=m)| = m,
L |=PL C

6m iff |Eval(L, C6m)| 6 m.

Note that the operator |=PL is only defined for formulae from propositional logic (not from tempo-
ral logic). A set C of constraints is satisfiable (|=PL C) if, and only if, there is a set of propositions
L, such that, for each C∝imi

i ∈ C (i ∈ N), L |=PL C
∝imi
i .

A model for TLC(C) formulae can be characterised as a sequence of states, σ, of the form
σ = s0, s1, s2, s3, . . . , where each state si is a set of propositional symbols representing those
propositions, which are satisfied at the ith moment in time. Every si should satisfy the set of
constraints, C, i.e., for all si we have si |=PL C (where si is a set of propositions).
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The notation (σ, i) |= ϕ denotes the truth of formula ϕ in the model σ at the state of index
i ∈ N and is defined as follows.

(σ, i) |= true
(σ, i) |= p iff p ∈ si where p ∈ Props
(σ, i) |= ¬ϕ iff it is not the case that (σ, i) |= ϕ
(σ, i) |= ϕ ∧ ψ iff (σ, i) |= ϕ and (σ, i) |= ψ
(σ, i) |= gϕ iff (σ, i+ 1) |= ϕ
(σ, i) |= ϕU ψ iff ∃k ∈ N. k > i and (σ, k) |= ψ and

∀j ∈ N, if i 6 j < k then (σ, j) |= ϕ

Note we can obtain false and the other Boolean operators via the usual equivalences and we define
‘ ’ (always in the future), ‘♦’ (sometime in the future) and ‘W ’ (unless or weak until) operators
as follows.

♦ϕ ≡ trueU ϕ
ϕ ≡ ¬♦¬ϕ

ϕW ψ ≡ (ϕU ψ) ∨ ( ϕ)

For any formula ϕ, model σ, and state index i ∈ N, either (σ, i) |= ϕ holds or (σ, i) |= ϕ does not
hold, denoted by (σ, i) 6|= ϕ. If there is some σ such that (σ, 0) |= ϕ, then ϕ is said to be satisfiable.
If (σ, 0) |= ϕ for all models, σ, then ϕ is said to be valid and is written |= ϕ. A set N of formulae
is satisfiable in the model σ at the state of index i ∈ N if, and only if, for all ϕ ∈ N , (σ, i) |= ϕ.

A formula of the form ♦ϕ or ψ U ϕ is called an eventuality. A formula of the form gϕ is
called a next-time formula.

2.3. Normal Form

It is often convenient to operate on formulae in a normal form. Separated Normal Form (SNF)
was first introduced for PTL in [26] (see also [28]); the normal form for TLC extends one from [28]
with ideas from [16]. To assist in the definition of the normal form we introduce a further (nullary)
connective ‘start ’ that holds only at the beginning of time, i.e.,

(σ, i) |= start iff i = 0.

This allows the general form of the (temporal clauses of the) normal form to be implications.
In the following, small Latin letters, ki, lj , m represent literals in the language Props where

i, j > 0. Note, on the left hand side, if i = 0 the empty conjunction represents true whereas, on
the right hand side, if j = 0 the empty disjunction represents false. A normal form for TLC is of
the form ∧

h

Xh

where h > 1 and each Xh is an initial, step, or sometime clause (respectively) as follows:

start ⇒
∨
j

lj (initial)∧
i

ki ⇒ g∨
j

lj (step)

true⇒ ♦m (sometime)

Sometime clauses defined above are also known as unconditional sometime clauses. SNF defined
in [28] allows for conditional sometime clauses—expressions of the form∧

i

ki ⇒♦m.

However, it was shown in [16] that any PTL formula can be translated into SNF with only
unconditional sometime clauses. We can rewrite a conditional sometime clause of the above form
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into an unconditional one, of the form we require here, using a new propositional variable wm.
Informally, the new proposition wm denotes waiting for m. The resulting clauses replacing the
conditional eventuality are as follows.

true ⇒ ♦¬wm
start ⇒ (

∨
i ¬ki ∨m ∨ wm)

true ⇒ g(
∨
i ¬ki ∨m ∨ wm)

wm ⇒ g(m ∨ wm)

Theorem 1 of [16] shows a set of clauses with the conditional sometime clauses replaced by the un-
conditional sometime clause and three additional clauses above preserves satisfiability and Lemma
1 of [16] shows this involves a linear increase in the size of the problem relating to the number of
eventualities occurring.

Since the constraints do not affect the normal form, we obtain the following theorem as a
corollary of [16].

Theorem 1. Any TLC formula can be transformed into an equi-satisfiable TLC formula in SNF
with at most a linear increase in the size of the formula.

When specifying the behaviour of systems, it is sometime convenient to consider ‘traditional’
clauses of the form ∨

j

lj (global)

Every global clause can, if necessary, be represented as a combination of an initial and a step
clause:

start ⇒
∨
j

lj and true⇒ g∨
j

lj

We will use global clauses in Section 3.
Transformation into the normal form may introduce new (unconstrained) propositions; how-

ever, as we will see in Section 3, many temporal formulae stemming from realistic specifications
are already in the normal form, or very close to the normal form and require few extra variables
for the translation (for other examples, also see [24]).

2.4. Encoding of Constraints

In the case of PTL the addition of constraints does not extend the logic, i.e. we can rewrite
any constraint C∝k into the syntax of PTL. However, our representation of constraints is succinct
and allows the prover to make use of this information in a global way. To compare with other
provers for PTL we must add formulae that represent these constraints. We use a direct encoding
of constraints, which does not introduce extra propositions. For S being a set of literals and k ∈ N
we define

pos(S, k) =
∧
U⊆S

|U |=|S|+1−k

∨
li∈U

li

and
neg(S, k) =

∧
U⊆S
|U |=k+1

∨
li∈U

¬li

For example, pos({p, q, r}, 2) = (p ∨ q) ∧ (p ∨ r) ∧ (q ∨ r) and neg({p, q, r}, 2) = ¬p ∨ ¬q ∨ ¬r.
Intuitively, neg(S, k) denotes that for a set of literals S, to make at most k true, for every subset
of size k+1 at least one of these must be false. Similarly, pos(S, k) denotes that for a set of literals
S, to make at most |S| − k false, for every subset of size |S|+ 1− k at least one of these must be
true.
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Lemma 2 ([52]). Given a set of propositions L, L |=PL C
=k if, and only if, L |=PL pos(C, k) ∧

neg(C, k) and L |=PL C
6k if, and only if, L |=PL neg(C, k).

To generate PTL formulae equivalent to the constraints, then:

• for a constraint of the form C=k we construct (pos(C, k)) ∧ (neg(C, k));

• for a constraint of the form C6k we construct (neg(C, k)).

For a constraint of the form C6k, such a direct encoding contains
(
n
k+1

)
clauses, which for k =

dn/2e − 1 reaches O
(

2n/
√
n/2

)
clauses [52].

We note that other translations are possible. For example we can use the fact that an n-bit
counter can represent 2n different values. If we required exactly one constraints (C=1) we could
represent a constraint of the form {p1, p2, p3, p4}=1 using just two propositional variables t′1, t

′
2 by

adding the following formulae.
(p1 ⇔ (t′1 ∧ t′2))
(p2 ⇔ (t′1 ∧ ¬t′2))
(p3 ⇔ (¬t′1 ∧ t′2))
(p4 ⇔ (¬t′1 ∧ ¬t′2))

Other translations based on different counter encodings can be found in the literature, see, for
example, [2, 5, 52]. The size of such encodings is typically linear in n and k.

3. Case Studies

Next we consider several case studies and show how they can be specified in TLC. For ease of
presentation some of the formulae presented are not strictly in SNF but can be transformed into
SNF using simple equivalences. The case studies here are necessarily simplified and are included
purely to exemplify the approach; clearly much larger examples can be constructed along similar
lines.

3.1. Five-A-Side Football

Consider a team of football playing agents. This could be either a team involving human
players or a RoboCup team. The rules say that at most 5 players (i.e. a “five-a-side” game) in the
team can be on the field of play at any time. However, other players can be off the field of play,
either resting or injured.

Let us begin to model such a scenario using temporal logic. We will describe the current
activity of a particular player, i, using the propositions playingi , restingi , and injuredi . Thus:

• playingi represents the fact that player i is actually playing;

• restingi represents the fact that player i is resting; and

• injuredi represents the fact that player i is injured.

Let us assume, for simplicity that our team has 6 players; to begin with, one is just resting:

start ⇒ playing1 ∧ playing2 ∧ playing3 ∧ playing4 ∧ playing5 ∧ resting6

We can describe the possible dynamic behaviours, for each i, as follows.

• when playing, a player can either continue, stop to rest, or become injured:

(playing i ⇒ g(playing i ∨ resting i ∨ injured i))

• when resting, a player can either continue resting, or return to playing:

(restingi ⇒ g(playingi ∨ restingi))
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• once injured, a player remains injured:

(injuredi ⇒ ginjuredi)

We might also want to add some formulae describing details of the particular scenario, for example
we might want to state that any player resting will eventually get to play:

(restingi ⇒ ♦playingi)

Whilst the above formula is not part of the TLC normal form syntax it can be rewritten into the
following equi-satisfiable formulae (see Theorem 1).

(true ⇒ ♦¬wplayingi )

(start ⇒ ¬restingi ∨ playingi ∨ wplayingi )

(true ⇒ g(¬restingi ∨ playingi ∨ wplayingi ))

(wplayingi ⇒ g(playingi ∨ wplayingi ))

Of course there are a number of structural constraints that we must also describe for this
scenario concerning the relationships between these propositions. For example, we must specify
that there are at most 5 players playing at any moment. We do this by describing the constraint:

P65 = { playing1 , playing2 , playing3 , playing4 , playing5 , playing6 }65

Another obvious constraint is that each player can only be playing, resting or injured. So, for each
player, i, we would describe this constraint as

Mi
=1 = { playingi , restingi , injuredi }=1

Thus, in our notation, we can define a logic that has these structural constraints “built-in” as
follows:

TLC(P65, M=1
1 , M=1

2 , M=1
3 , M=1

4 , M=1
5 , M=1

6 )

This provides us with a logic in which the above structural constraints are implicitly enforced at
every moment in time and avoids the need to explicitly encode these as temporal formulae.

3.1.1. Viable Teams

Once we have this scenario we can embellish it in many ways. One is to consider not just the
rules of the game (i.e. that at most 5 players can be playing at any time) but the viability of the
team itself. For example, what if only 2 players are actually playing? Or even 1? Very likely the
team will lose quickly. So, we might add another constraint to ensure that the team is always
viable, for example:

V63 =

{
resting1 , resting2 , resting3 , resting4 , resting5 , resting6 ,
injured1 , injured2 , injured3 , injured4 , injured5 , injured6

}63

This ensures that at most 3 players are resting or injured, and so at least 3 players are actually
playing. Adding V63 to our TLC definition ensures that only viable teams are described.

3.1.2. Goalkeeper

Another embellishment might be to add a ‘goalkeeper’. This is a player who is designated to
defend the goal. Let us add another set of propositions, goalkeeperi , which is true if the player i
is the goalkeeper. Clearly, the goalkeeper must be playing:

(goalkeeperi ⇒ playingi)
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But the role of being a goalkeeper can move between players. So, if a player is not a goalkeeper
now they will eventually take on this role:

(¬goalkeeperi ⇒ ♦goalkeeperi)

The above needs to be rewritten into SNF similarly to that previously described. Finally, and most
obviously, we need structural constraints concerning the goalkeeper proposition. In particular,
at most one player can be the goalkeeper at any moment. (Note that we might not have any
goalkeeper!) So, we add the constraint set G61:

{ goalkeeper1 , goalkeeper2 , goalkeeper3 , goalkeeper4 , goalkeeper5 , goalkeeper6}61

3.1.3. Properties

There are many potential properties to prove. For example, we might show that if all the
players eventually become injured then the team is unviable. Thus, if we add

♦(injured1 ∧ injured2 ∧ injured3 ∧ injured4 ∧ injured5 ∧ injured6 )

then the whole set of formulae should be unsatisfiable.
Another property we might show is that, as long as there are no injuries, then eventually

every player will take a turn as the goalkeeper. Thus the specification so far, together with∧
i ¬injuredi , should imply

♦goalkeeper1 ∧ ♦goalkeeper2 ∧ ♦goalkeeper3 ∧
♦goalkeeper4 ∧ ♦goalkeeper5 ∧ ♦goalkeeper6

3.2. Cache Coherence Protocol

We next consider using our logic to specify a simple cache coherence protocol with a finite
number of processes. Each processor has its own private cache memory which holds local copies
of the main memory blocks. Cache coherence protocols aim to ensure the consistency of the cache
for different processors. Abstracting away from low level details we can describe such protocols as
a family of identical finite state systems together with a primitive form of communication.

We describe the MSI protocol (for more details see for example [34]) where each process can
be in one of the three states invalid (i), shared (s), or modified (m). At any moment one process
is active and, depending on its state, may carry out a read r, a write w or a local transition t.
The action is then broadcast to all the other processes, which carry out a reaction to what has
happened (denoted r̄, w̄ or t̄ respectively). This is shown in the transition system in Figure 1.

τ(i, w) = m τ(s, w) = m τ(m, w̄) = i
τ(i, w̄) = i τ(s, w̄) = i τ(m, r̄) = s
τ(i, r) = s τ(s, r̄) = s τ(m, t) = m
τ(i, r̄) = i τ(s, t) = s τ(m, t̄) = m
τ(i, t̄) = i τ(s, t̄) = s

Initially all processes are in the state i and we should show that

• it is never possible that one process is in state m while another is in state s (non co-occurrence
of states s and m);

• it is always the case that at most one process can be in state m.

We can represent this for a finite number of processes where

aj means that process j is active;

mj means that process j is in the state m;

sj means that process j is in the state s;
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sm it, t̄

r̄

w̄

t, r̄, t̄

w̄

w

w̄, r̄, t̄

r

w

Figure 1: Finite state machine for the MSI protocol.

ij means that process j is in the state i.

Rather than representing w, r and t for each process we will allow one for the system where if that
process is not active it means that the process is reacting, i.e. carrying out a w̄, r̄, or t̄ transition.
There are a number of constrained sets. Given n processes, for each process j we have

S=1
j = {mj , sj , ij}=1

To make exactly one process active at any moment we have

P=1 = {a1, a2, . . . an}=1

and to ensure only one of w, r and t holds we have

T =1 = {w, r, t}=1.

Thus for n processes we have TLC(S=1
1 , . . . ,S=1

n ,P=1, T =1). When a processor is active the
transitions can be formalised as follows.

((ii ∧ ai ∧ w) ⇒ gmi)
((ii ∧ ai ∧ r) ⇒ gsi)

((si ∧ ai ∧ w) ⇒ gmi)
((si ∧ ai ∧ t) ⇒ gsi)

((mi ∧ ai ∧ t) ⇒ gmi)

When the processor is not active the transitions can be formalised as follows.

((ii ∧ ¬ai ∧ w) ⇒ gii)
((ii ∧ ¬ai ∧ r) ⇒ gii)
((ii ∧ ¬ai ∧ t) ⇒ gii)

((si ∧ ¬ai ∧ w) ⇒ gii)
((si ∧ ¬ai ∧ r) ⇒ gsi)
((si ∧ ¬ai ∧ t) ⇒ gsi)

((mi ∧ ¬ai ∧ w) ⇒ gii)
((mi ∧ ¬ai ∧ r) ⇒ gsi)
((mi ∧ ¬ai ∧ t) ⇒ gmi)

The transitions that can be taken when a processor is active are as follows.

((ii ∧ ai) ⇒ (w ∨ r))
((si ∧ ai) ⇒ (w ∨ t))

((mi ∧ ai) ⇒ t)

The negation of the two required properties for 6 processes are given below, i.e. conjoining the
following with the specification should be unsatisfiable
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• non co-occurrence for s and m:

♦((m1 ∧ s2)∨ (m1 ∧ s3)∨ (m1 ∧ s4)∨ (m1 ∧ s5)∨ (m1 ∧ s6)∨ (m2 ∧ s3)∨ (m2 ∧ s4)∨ (m2 ∧
s5) ∨ (m2 ∧ s6) ∨ (m3 ∧ s4) ∨ (m3 ∧ s5) ∨ (m3 ∧ s6) ∨ (m4 ∧ s5) ∨ (m4 ∧ s6) ∨ (m5 ∧ s6));

• at most one process can be in state m:

♦((m1∧m2)∨(m1∧m3)∨(m1∧m4)∨(m1∧m5)∨(m1∧m6)∨(m2∧m3)∨(m2∧m4)∨(m2∧
m5)∨ (m2 ∧m6)∨ (m3 ∧m4)∨ (m3 ∧m5)∨ (m3 ∧m6)∨ (m4 ∧m5)∨ (m4 ∧m6)∨ (m5 ∧m6)).

3.3. Petri Nets

Consider now k-safe Petri Nets (see for example [22]), which are used to model systems with
limited resources. In k-safe Nets, every ‘place’ may contain at most k tokens. This restriction
allows us to represent k-safe Petri Nets, for a fixed value of k, in propositional temporal logic.
Encoding places as propositions (proposition pji is true if, and only if, place Pi contains j tokens),
given a k-safe Petri Net N , one can construct a PTL formula φN of the size polynomial in the
size of N , such that models of φN correspond to infinite trajectories of N .

A Net is a tuple N = (P, T ,F ,M0) where P is a set of places, T a set of transitions, F is the
flow relation and M0 is the initial marking such that

P = {P1, P2, . . . Pn};
T = {x1, x2, . . . xm};
F ⊆ (P × T ) ∪ (T × P);

and M0 : P → N. Generally, a mapping M : P → N is called a marking of N . A transition x ∈ T
is enabled at M if for every P such that (P, x) ∈ F we have M(P ) 6= 0. For markings M , M ′ we
write M −→M ′ if, and only if, some transition x ∈ T is enabled at M and for every place P ∈ P
we have

M ′(P ) = M(P ) + F (x, P )− F (P, x),

where F (x, y) is 1 if (x, y) ∈ F and 0 otherwise. We say that marking M ′ is reachable in N if
M0 −→∗ M ′, where the relation −→∗ is the reflexive transitive closure of −→. The reachability
problem is to determine given a Net N and a marking M whether M ′ is reachable in N .

A marking is k-safe if for every P ∈ P we have M(P ) ≤ k. We say that a Petri Net is
k-safe (or k-bounded) if all its reachable markings are k-safe. Deciding if a Net is k-safe is a
PSPACE-complete problem [41], however, for many interesting Nets k-safety can be guaranteed
by construction [7]. We can represent a k-safe Petri Net as follows. We abuse notation by letting
Pi denote both a place in the Petri Net and a proposition in its logical representation meaning
that the place contains one or more tokens. Similarly xj denotes both a transition in the Petri
Net and a proposition representing that transition xj is fired. Firstly the following constraint, for
each xi ∈ T , states that exactly one transition fires at any moment in time.

{x1, . . . xm}=1

For each Pi ∈ P exactly one of the propositions representing the number of tokens in this place
can be true.

{p0i , . . . pki }=1

We use Pi to show when there are tokens in a place. For Pi ∈ P

((p1i ∨ . . . pki )⇔ Pi)

For each (Pj , xi) ∈ F the pre-condition of transitions is represented as follows.

(xi ⇒ Pj)

For each (Pj , xi) ∈ F the effect of each transition is represented as follows for each 1 6 h 6 k

((phj ∧ xi)⇒ g(ph−1j ))
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Recall that for k-safe Petri Nets and (xi, Pj) ∈ F it is not possible that a transition xi fires when
place Pj already contains k tokens. Thus, for each (xi, Pj) ∈ F the effect of each transition can
be represented as follows for each 0 6 h < k

((phj ∧ xi)⇒ g(ph+1
j )).

Additionally we must add frame conditions so that the number of tokens in places unrelated
to the firing transition remain the same for each Pj ∈ P, for each 0 6 h 6 k.

((phj ∧
∧

(Pj ,xi)∈F

¬xi ∧
∧

(xi,Pj)∈F

¬xi) ⇒ gphj )

((¬phj ∧
∧

(Pj ,xi)∈F

¬xi ∧
∧

(xi,Pj)∈F

¬xi) ⇒ g¬phj )

For example, consider the 1-safe Petri Net (similar to one in [48]), given in Fig. 2, representing
the dining philosophers problem [36] for the case of four philosophers. This problem relates to

Fork1 Fork2

Fork3Fork4

E1

T1

y1 x1

E2T2

y2

x2

E3

T3

y3x3

E4 T4

y4

x4

Figure 2: Four dining philosophers Petri Net.

providing processes with concurrent access to a limited number of resources. Here as there is
only at most one token in each place we do not introduce the propositions (pji ) above but let the
propositions representing place names (eg Fork1) denote the presence of a token. This Petri Net
can be represented as the conjunction of transition representations

(x1 ⇒ E1) Pre-condition for transition x1
(x1 ⇒ g(¬E1 ∧ Fork1 ∧ Fork4 ∧ T1)) Effect of transition x1
(y1 ⇒ Fork1 ∧ Fork4 ∧ T1) Pre-condition for transition y1
(y1 ⇒ g(¬Fork1 ∧ ¬Fork4 ∧ ¬T1 ∧ E1)) Effect of transition x1

. . . (similarly for other transitions)
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frame conditions

(Fork1 ∧ ¬x1 ∧ ¬x2 ∧ ¬y1 ∧ ¬y2 ⇒ gFork1) Fork1 can only change due to
(¬Fork1 ∧ ¬x1 ∧ ¬x2 ∧ ¬y1 ∧ ¬y2 ⇒ g¬Fork1) transition x1, x2, y1 and y2

. . . (similarly for other places)

and the constraint
{x1, . . . , x4, y1, . . . , y4}=1,

which states that exactly one transition fires at any moment in time. Note that the representa-
tion of the transitions (the first four implications) shows the pre-conditions and effects of taking
particular transitions. For example given the situation shown in Figure 2 we can make the tran-
sition y1 hold as the pre-conditions for taking transition y1 are satisfied (the third formula). The
constraint means that no other transition can be taken at the same same. The effects are (in the
next moment in time) to remove the tokens from places Fork1, Fork4 and T1 and for a token to
be put at E1 so philosopher one can eat. Note that due to the well known frame problem we must
explicitly state that the tokens remain in all other places not affected by the selected transition.

Reachability in such Nets, for example the reachability of the state E4, corresponds to the
satisfiability of ♦E4 from an initial state. Since the reachability problem (as well as many other
interesting problems) already for 1-safe Nets is PSPACE-complete [22], such a translation is opti-
mal.

We can then use cardinality constraints to impose place invariants: for a subset of places in a
Petri Net, the total number of tokens in places from this subset remains constant. Such invariants
are used, for example, in the verification of distributed protocols with Petri Nets [42, 43]. Note
that imposing such extra restrictions actually makes the complexity of reasoning lower.

3.4. Other Examples

Other examples that have commonly been specified using temporal logics that may benefit from
the use of constraints are systems such as the modelling of train movement, see for example [25,
23, 47]. Typical constraints here, for example, require that each station can be occupied by at
most m trains, each section of the track can contain at most one train, the signals cannot be red
and green at the same time, etc. Similarly the specification of lift controllers for example [3, 58]
exhibit a number of constraints such as the lift may be at exactly one floor at any moment etc.

Robot swarms provide another area of possible applications. Swarm robots are a group of
simple robots often with simple control mechanisms that aim to stay together as a connected
group and carry out some task such as collecting food. In [56] we used temporal logic to specify
a particular robot control algorithm, known as the alpha algorithm [46], that depends on local
wireless communication, with the aim at showing that the robots maintain a connected group.
The robots have positions on a grid and move in particular directions. The problem gives rise to
a number of constraints for example that each robot is in exactly one location, each grid square
contains at most one robot, each robot is travelling is exactly one direction etc. Similarly in [4]
we formalise the algorithm for a swarm of foraging robots using a number of transition systems
for each robot and the food it is collecting. As well as the constraints that each robot can be in
exactly one mode at any moment there are additional constraints that synchronise the transition
systems for the food with those for the robots.

4. Satisfiability for TLC

Next we provide an algorithm for checking satisfiability of TLC formulae and also give the
upper complexity bound on satisfiability of TLC by the explicit construction of a directed graph
known as a behaviour graph.
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4.1. Behaviours Graphs

The notion of a behaviour graph for a set of temporal clauses was introduced in [28] and
adapted to the unconditional sometime clauses in [16]. It is a directed graph for a set of temporal
clauses such that (after reductions) any infinite path through the graph is a model for the set
of temporal clauses. Satisfiability of TLC formulae can be checked by being able to construct a
non-empty graph. In what follows, we estimate the size of the graph and time needed both for its
construction and for checking satisfiability.

Definition 3. (Behaviour Graph/Reduced Behaviour Graph) Given a formula ϕ in the normal
form over a set of (both constrained, C, and unconstrained) literals Props, we construct a finite
directed graph G as follows. The nodes I of G are interpretations (subsets) of Props, satisfying
the required constraints, i.e. I |=PL C.

A node, I, is designated an initial node of G if I |=PL

∨
i

li for every initial clause start ⇒
∨
i

li

of the given temporal formula. For each node, I, we construct an edge in G to a node I ′ if, and
only if, the following condition is satisfied:

• For every step rule,
∧
i

ki ⇒ g∨
j

lj, if I |=PL

∧
i

k then I ′ |=PL

∨
j

lj.

The behaviour graph, H, of ϕ is the maximal subgraph of G given by the set of all nodes reachable
from initial nodes. The reduced behaviour graph, HR, of ϕ is a graph obtained from the behaviour
graph of ϕ by repeated deletion of nodes I where

a) I does not have a successor; or

b) for some sometime clause true⇒♦m within ϕ, there is no path from I to a node J where
m is true, that is, J |=PL m.

Theorem 4. A TLC formula in the normal form ϕ is satisfied if, and only if, its reduced behaviour
graph is non-empty.

Proof. The definition of a TLC behaviour graph given above differs from the behaviour graph
for PTL, defined in [16], in that we never construct nodes that do not satisfy the set of constraints.
Since the expressive power of PTL and TLC is the same, as shown in Lemma 2, this restriction can
be imposed by encoding the constraint as a PTL formula. Let ψ be a propositional logic formula
equivalent to the constraints C, i.e. for any I, I |=PL C if, and only if, I |=PL ψ. Translating ψ
into temporal clauses will result in a number of initial and step clauses. In terms of the behaviour
graph in [16] by construction every initial node must satisfy the initial clauses derived from ψ
and every non-initial node must satisfy the step clauses derived from ψ. Hence we would never
construct an initial node that does not not satisfy ψ, further we would never construct an edge to
a node not satisfying ψ. That is, nodes not satisfying ψ would be unreachable and thus could not
form part of the behaviour graph. �

The link between the satisfiability of TLC formulae and properties of the behaviour graph allows
us to investigate the complexity of our logic. First we notice that the satisfiability problem for
PTL with just one proposition is already PSPACE-complete [17]; therefore, the complexity of
the satisfiability problem for TLC is also PSPACE-complete. Notice further that if we restrict
our consideration to formulae in Separated Normal Form, the size of the TLC behaviour graph is
exponential in the number of unconstrained propositions and only polynomial in the number of
constrained propositions.

Theorem 5. Satisfiability of a TLC(C∝1m1
1 , . . . C∝nmn

n ) formula ϕ in Separated Normal Form can
be decided in time

O

(
|ϕ| ×

(
|C∝1m1

1 |m1 × · · · × |C∝nmn
n |mn × 2|A|

)3)
where |ϕ| is the length of ϕ, |C∝imi

i | is the size of the set C∝imi
i of constrained literals, and |A| is

the size of the set A of unconstrained propositions occurring in ϕ.

13



Proof. There exist O(|C∝1m1 |m1×· · ·×|C∝nmn
n |mn×2|A|) different interpretations of propositions

from Props; moreover, they can all be enumerated in time O(|C∝1m1 |m1 ×· · ·× |C∝nmn
n |mn × 2|A|).

Let N be the number of such different interpretations of propositions from Props. The behaviour
graph G for φ can be constructed in O(N2) time.

To reduce the behaviour graph we do the following. A node without successors can be found in
O(N2) time. To find all nodes satisfying condition b), for every eventuality true =⇒ ♦m we first
mark all nodes containing m and then work backwards to mark all nodes with a path to a marked
node. Every unmarked node satisfies condition b). This can be done in O(|φ| × N2) time. (The
|φ| factor comes from the necessity to check this condition for every eventuality true =⇒ ♦m.)
This process should be repeated until there is no change. Clearly, the maximal number of nodes
to delete is N and thus the process can be repeated at most N times.

Overall, the complexity of reducing the behaviour graph, as well as the complexity of the entire
procedure, is O(|φ| ×N3). �

As the TLC formulae stemming from our case studies are all in, or close to, the normal form. In
practice, this result suggests that, by exploiting cardinality constraints in TLC, we can achive a
better performance on relevant problems than algorithms that have no built in facilities to handle
such constraints.

4.2. Incremental Algorithm

Based on Theorem 4 one can provide an algorithm checking the satisfiability of TLC formulae.
A straightforward approach is to construct the graph G representing all possible interpretations of
Props that satisfy the constraints, and then ‘carve’ the behaviour graph H from G. However, such
a procedure might consider some nodes that are actually unreachable from the initial nodes and,
thus, carry out excess work. Instead, in Algorithm 1, we present an incremental, tableaux-like
algorithm, which avoids building these unnecessary nodes.

Let Assignments(ϕ, C) be a function which, when given a formula ϕ and a set of constraints
C, returns the set of all interpretations within the language Props that both satisfy C and make
ϕ true. Clearly, Assignments(ϕ, {C∝1m1

1 , . . . , C∝nmn
n }) can be computed deterministically in time

O(int) where int = (|C∝1m1 |m1×· · ·×|C∝nmn
n |mn×2|A|) returning at most O(int) interpretations

for any ϕ.

Example. If Props = {p, q, r, s} then Assignments(p∨ q, {{p, q, r, s}=1}) will return two interpreta-
tions (where propositions not explicitly mentioned are assumed to be false): {p} and {q}; whereas
Assignments(p ∨ q, {{p, q}=1, {q, r, s}=2}) will return three: {p, r, s}, {q, r}, and {q, s} .

We use Assignments(ϕ, C) to construct nodes of the behaviour graph H for a formula ϕ incremen-
tally (see Algorithm 1 ConstructBehaviourGraph(ϕ, C)). Notice that the size of graph H is still
worst-case quadratic in int.

Nodes of H can be marked or unmarked. The for-loop in lines 8-13 selects an unmarked node,
marks it and adds its successors to H where they have not yet been added. Thus (outside this
loop) a node is marked if all its successors are already represented in H, otherwise, it is unmarked.
Note that if the set of temporal clauses contains no initial clauses, then the formula ψ in line 1 of
the algorithm is true, and if the conjunction in line 7 is empty then χ is true. After the behaviour
graph has been constructed, we compute the reduced behaviour graph in time cubic in the size of
the behaviour graph.

To construct the reduced behaviour graph we carry out deletions of nodes with no successors
and for any eventuality clause true ⇒ ♦m deletion of nodes where there is no path to a node
satisfying m (see Algorithm 2). To achieve the latter we must find a terminal subgraph Bm, where
¬m holds at each node, from the behaviour graph H. A terminal subgraph Bm is one such that
any edge from a node in Bm leads to a node also in Bm. Thus ♦m cannot be satisfied on any
path from any node in Bm. So the terminal subgraph must be deleted as it doesn’t satisfy the
eventuality clause true⇒♦m. In Algorithm 2 Delete(Bm), where Bm is a subset of nodes in H,
is a procedure that deletes all the nodes in Bm from H and any edges to, or from, a node in Bm.
Algorithm 3 constructs the graph and carries out the deletions.
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Algorithm 1 ConstructBehaviourGraph(ϕ, C)
1: Let ψ =

∧
{Rj | start ⇒ Rj is an initial clause in ϕ}

2: for all I in Assignments(ψ, C) do
3: Add an unmarked node I to H
4: end for

5: while Not all nodes in H are marked do
6: Pick an unmarked node I and mark I
7: Let χ =

∧
{Rk | Lk ⇒ gRk is a step clause in ϕ s.t. I |=PL Lk}

8: for all J in Assignments(χ, C) do
9: if J is not already in H then

10: Add an unmarked node J to H
11: end if
12: Add an edge (I, J) to H
13: end for
14: end while

Algorithm 2 EventualityDelete(H,m)

1: Let Bm = {nodes I ∈ H | I |=PL ¬m}
2: repeat
3: for all nodes I in Bm do
4: if (I, J) in H and J 6∈ Bm then
5: Bm = Bm − {I}
6: end if
7: end for
8: until Bm does not change
9: Delete(Bm)

Algorithm 3 ReducedBehaviourGraph(ϕ, C)
1: H = ConstructBehaviourGraph(ϕ, C)
2: repeat
3: if there exists I in H s.t. there is no J in H where (I, J) is an edge in H then
4: Delete({I})
5: end if
6: for each true⇒♦m in ϕ do
7: EventualityDelete(H,m)
8: end for
9: until H does not change
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Figure 3: Labelled transition system (a) and behaviour graph (b).

Theorem 6. Given a TLC(C) formula ϕ in Separated Normal Form Algorithm 3 terminates and
constructs the reduced behaviour graph HR of ϕ.

Proof. First we show that the outcome of Algorithm 3 is the reduced behaviour graph for ϕ.
Let G, H and HR be as in Definition 3 and let H ′ be the outcome of Algorithm 1 and H ′R be the
outcome of Algorithm 3, respectively. It should be clear that H ′ is a subgraph of H.

Conversely, consider I1, . . . , In, a path in G such that I1 is an initial node. It can be seen
that I1 ∈ Assignments(ψ, C), where ψ =

∧
{Rj | start ⇒ Rj is an initial clause in ϕ} and Ii+1 ∈

Assignments(χi, C), where 1 6 i < n and χi =
∧
{Rk | Lk ⇒ gRk is a step clause in ϕ s.t. Ii |=PL

Lk}. Therefore, by lines 10 and 12 of Algorithm 1, every Ii is a node in H ′ and I1, . . . , In is a path
in H ′. Thus H is a subgraph of H ′. It can also be seen that if Algorithm 3 deletes a node I from
H ′, then I /∈ HR. Finally, it can be seen that if no node can be deleted from H ′R by Algorithm 3
H ′R is a reduced behaviour graph.

Next we show that Algorithms 1–3 terminate. Algorithm 1 constructs the behaviour graph.
This uses a finite set of clauses and constraints over a finite set of propositions (Props). Nodes are
interpretations of Props that satisfy the constraints so there are a finite number. In Algorithm 1
the nodes and edges are constructed incrementally. Nodes are marked once they are selected for
expansion (line 6) so will not be selected again. Additionally when successors are constructed
(lines 7-12) new nodes are only constructed if they do not already exist in the graph. Together
this ensures that the algorithm will terminate. Algorithm 2 takes a (finite) subset of nodes of
the behaviour graph and deletes those with the required property until there is no change. Hence
Algorithm 2 terminates. Algorithm 3 calls Algorithm 1 which terminates and repeatedly carries
out deletions until the graph does not change. Again, as the graph is finite this must terminate.
�

4.3. Example

We illustrate the concept of a behaviour graph and the working of the algorithms by modelling
a labelled transition system. Consider the transition system given in Fig. 3(a). Its evolution can
be characterised by the following TLC(C) formula in Separated Normal Form

start⇒ q0 (q0 ∧ l) ⇒ gq1 (q1 ∧ l) ⇒ gq1 (q2 ∧ l) ⇒ gq2
(q0 ∧m) ⇒ gq2 (q1 ∧m) ⇒ gq1 (q2 ∧m) ⇒ gq2,

where the set of constraints is

C = {{q0, q1, q2}=1, {l,m}=1}.

(That is, at every moment the system is in exactly one state performing exactly one transition.)
In addition, we require that the state q1 is visited infinitely often.

true⇒♦q1
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Now, for ψ = q0 (notice that start ⇒ q0 is the only initial clause),
Assignments(q0, C) = {{q0, l}, {q0,m}}. Thus, the behaviour graph for φ contains two initial nodes,
{q0, l}, {q0,m}, both of which are initially unmarked. Suppose {q0, l} is chosen first in line 6 of
Algorithm 1. Then χ = q1 and Assignments(q1, C) = {{q1, l}, {q1,m}}, which are added to the
graph. Similarly, {{q2, l}, {q2,m}} are introduced as successors of {q0,m}. The algorithm proceeds
and constructs the behaviour graph depicted in Fig. 3(b). It is not hard to see that the reduced
behaviour graph obtained in Algorithm 3 by eliminating nodes not satisfying the eventuality
only contains nodes {q0, l}, {q1, l} and {q1,m} shaded grey in Fig. 3(b), i.e. the formula and the
constraints are satisfiable.

5. BeTL: a Satisfiability Checker for TLC

BeTL (Behaviour graph for Temporal Logic) is a prototype satisfiability checker we have de-
veloped that implements the incremental behaviour graph construction algorithm given in Algo-
rithm 3 of Section 4. As input it accepts a TLC formula and a set of constraints. BeTL is written
in JavaTM programming language using JDK (J2SE Development Kit) 5.0.

5.1. Core Algorithm

BeTL implements the algorithms presented in Section 4. The function Assignments(ψ, C), where
ψ is a formula in conjunctive normal form (CNF) and C a set of constraints, is implemented using
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [14] to assign the truth values of each
proposition in the nodes. Here we require all the truth assignments of the propositions satisfying
both ψ and C so we need to modify DPLL to return these assignments rather than just the truth
or falsity of ψ and C. The sets of assignments that satisfy a constraint C is enumerated and then
merged with the set of assignments satisfying the already calculated constraints. Each assignment
is used to apply the usual unit propagation to ψ.

Algorithm 4 gives the function call DPmod(Γ,Σ) which implements Assignments(ψ, C). This
function takes Γ, a set of sets of literals which satisfy the constraints C, and Σ, a set of sets of
literals representing the CNF formula ψ. For example, to compute

Assignments((¬a ∨ b) ∧ (¬b ∨ ¬c), {{a, b, c}=1})

we would call call DPmod(Γ,Σ) where

Γ = {{a,¬b,¬c}, {¬a, b,¬c}, {¬a,¬b, c}} and Σ = {{¬a, b}, {¬b,¬c}}.

For each set of the literals that satisfy the constraints (α), the usual unit propagation algorithm,
UP(l,Σ) in Algorithm 5 is called for each l ∈ α. This deletes sets of literals from Σ that contain
l and deletes ¬l from any other sets. ∆ is used to store the sets of assignments that satisfy both
the sets of constraints and the CNF formula represented by Σ.

Algorithm 4 call DPmod(Γ,Σ)

1: Let ∆ = {}
2: for each α ∈ Γ do
3: Σα = Σ
4: for each literal l ∈ α do
5: Σα := UP(l,Σα)
6: end for
7: ∆ = ∆∪DPmod(α,Σα)
8: end for
9: return ∆

In Algorithm 6 the DPmod algorithm is given which is almost identical to the original DPLL
algorithm [14]. The difference is that, instead of returning ‘satisfiable’ or ‘unsatisfiable’, DPmod
returns all the possible assignments of propositions that both satisfy Σ and the given constraints.
This is called recursively until Σ is empty (Σ = {}) or unsatisfiability is derived, i.e. {} ∈ Σ.
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Algorithm 5 UP(l,Σ)

1: for each α ∈ Σ do
2: if α = {} then return {{}}
3: if l ∈ α then Σ := Σ− α
4: if ¬l ∈ α then α = α− {¬l}
5: end for
6: return Σ

Algorithm 6 DPmod(β,Σ)

1: (Sat) if Σ = {} then return {β}
2: (Empty) if {} ∈ Σ then return {}
3: (Unit propagation) if {l} ∈ Σ then return DPmod(β ∪ {l},UP(l,Σ))
4: (Split) if α ∈ Σ and l ∈ α then

return DPmod(β ∪ {l},UP(l,Σ)) ∪DPmod(β ∪ {¬l},UP(¬l,Σ))

5.2. Example

Continuing the example in section 4.3. Recall that

C = {{q0, q1, q2}=1, {l,m}=1}.

Using a semantic tree construction we evaluate the literals satisfying the constraints as follows.

Γ = {{q0,¬q1,¬q2, l,¬m}, {q0,¬q1,¬q2,¬l,m}, {¬q0, q1,¬q2, l,¬m}, {¬q0, q1,¬q2,¬l,m},
{¬q0,¬q1, q2, l,¬m}, {¬q0,¬q2, q3,¬l,m}}

To construct the initial nodes we must evaluate Assignments(q0, C) and do this by calling call DPmod(Γ, {{q0}}).
In step 1 of the Algorithm 4 we set ∆ = {}. Then in step 2 let α = {q0,¬q1,¬q2, l,¬m}, and in
step 3 set Σα = {{q0}}. Steps 4, 5, 6, unit propagate q0, ¬q1, ¬q2, l and ¬m through Σα in turn
as follows.

Σα = UP (q0,Σα) = {}
Σα = UP (¬q1, {}) = UP (¬q2, {}) = UP (¬m, {}) = UP (l, {}) = {}

On line 7 of Algorithm 4

DPmod({q0,¬q1,¬q2, l,¬m}, {}) = {{q0,¬q1,¬q2, l,¬m}}

so
∆ = {{q0,¬q1,¬q2, l,¬m}}.

Next time round the loop where

α = {q0,¬q1,¬q2,¬l,m}

similarly on line 7 we obtain

DPmod({q0,¬q1,¬q2,¬l,m}, {}) = {{q0,¬q1,¬q2,¬l,m}}

so
∆ = {{q0,¬q1,¬q2, l,¬m}, {q0,¬q1,¬q2,¬l,m}}.

Next when
α = {¬q0, q1,¬q2, l,¬m}

on line 6
Σα = UP (¬q0, {{q0}}) = {{}}
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and at the end of the for loop on line 6

Σα = {{}}.

Now on line 7
DPmod({¬q0, q1,¬q2,¬l,m}, {{}} = {}

so
∆ = {{q0,¬q1,¬q2, l,¬m}, {q0,¬q1,¬q2,¬l,m}} ∪ {}

= {{q0,¬q1,¬q2, l,¬m}, {q0,¬q1,¬q2,¬l,m}}.

The remaining values for α are similar and at the end of line 6, Σα = {{}} in each case. In line 7
DPmod(α, {{}} = {} and so

∆ = {{q0,¬q1,¬q2, l,¬m}, {q0,¬q1,¬q2,¬l,m}}

is returned. This is the same as the result returned from Assignments(q0, C) in Section 4.3. Similar
steps are carried out each time Assignments(χ, C) is called for different values of χ.

5.3. Experiments

We have successfully applied BeTL to the temporal specifications stemming from case studies
considered in Section 31. In all cases it took BeTL under 600 seconds to compute the expected
answer on a PC with a 2.13 GHz Intel Core 2 Duo E6400 processor, 3GB main memory, and 5GB
virtual memory running Fedora release 9 with a 32-bit Linux kernel. However, it is important to
re-affirm that BeTL is essentially a prototype. It is intended to be the first implementation of a
TLC satisfiability checker, and to provide a benchmark for subsequent, more efficient, systems.

In order to evaluate BeTL’s performance, we compared it with two existing PTL tableau the-
orem provers, the Logics Workbench (LWB) [39] and the Tableau Work Bench (TWB) [1], on a
number of randomly generated benchmark problems. The Logics Workbench [39] is a suite of logi-
cal tools for propositional modal and temporal logics including PTL. Here we use the satisfiability
function in the PTL module that implements Janssen’s tableau algorithm [40] which constructs a
tableau using a two pass style algorithm, first constructing the tableau and then deleting nodes.
The implementation of Janssen’s algorithm from the LWB is selected over that of Schwendimann’s
One Pass Tableau [50] (the LWB model function) as our implementation is also a two pass style.
The Tableau Workbench [1] is a framework for constructing tableau provers for arbitrary proposi-
tional logics. It has a several modules with pre-defined calculi for a number of modal and temporal
logics including PTL. We selected these implementations as they are both tableau-based, stable
and easily available. We have focussed on tableau-based implementations rather than other styles
of prover, eg resolution, so as to focus on the effect of the constraints rather than the algorithms
or engineering of particular implementations. There are other implementations of PTL provers we
could have compared with which are discussed further in Section 6.1. We translate the constraints
into PTL formulae as described in Section 2.4.

All of the experiments have been performed on the above mentioned PC. The time was limited
to 600 seconds so a time in the table of > 600 indicates it did not finish within the allocated time.
Any row in the table labelled constraints with entries n/m denotes that the problem contained n
constrained propositions and m unconstrained propositions.

Randomly Generated Formulae. We considered 10 sets of benchmarks, where each set contains
100 randomly generated formulae. All formulae are generated using the following criteria:

• The total number of propositions is 10.

• The total number of initial and step clauses added together is 4 clauses.

1Problem files can be found at http://www.csc.liv.ac.uk/~clare/software/constraints.html
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• The maximum length of each clause is 5, i.e., there can be at most 5 propositions in a clause
and, in the case of step clause, the number of propositions on the right and left hand sides
are randomly determined.

• Each proposition generated may be negated with the probability 0.5.

• There is only 1 constrained set.

• There are 10 sometimes clauses; one for each proposition in the specification.

The difference between each set is the number of constrained literals, meaning, in the first set, 1
literal is constrained and 9 unconstrained, where, in the sixth set, say, there are 6 constrained and
4 unconstrained propositions.

Below is the results of running BeTL, LWB [39] and TWB [1] on the 10 benchmark sets
mentioned above. Note that in most cases, TWB did not finish within the 10-minute running time
limit. Thus, in such cases, the value of ‘>600’ seconds is used for the purpose of this comparison.

1 2 3 4 5 6 7 8 9 10

BeTL 7.220 8.026 4.487 1.833 0.902 0.387 0.142 0.078 0.055 0.043

LWB 1.960 3.482 4.732 2.319 0.792 0.432 0.097 0.065 0.048 0.044

TWB 102.037 194.001 >600 >600 198.012 198.005 196.001 195.185 >600 196.034

Table 1: Average running time (in seconds) of BeTL, LWB and TWB on the benchmark sets

Figure 4: Comparison graph between BeTL and LWB on the benchmark sets

The experimental results in Table 1 show that the performance of BeTL gradually improves as
the number of constrained literals in the specification increases. Since the timings for TWB are
greater than for either BeTL or LWB, it is excluded in the comparison graph (Figure 4).

Random State Machines. In Table 2, we show BeTL’s performance on specifications representing
randomly generated state transition systems with 5, 10, 15 and 20 states. For example, if a state n1
in the transition system had edges to states n2 and n3 this would be represented by the temporal
formula, (pn1 ⇒ g(pn2 ∨ pn3)) where the proposition pni denotes being at the state ni in the
transition system. There is one constraint {pn1 , pn2 , . . . pnk

}=1 where k represents the number of
states in the transition system. Additionally we include formulae that specify that all the states in
the system are visited infinitely often. Note that TWB is not included, because its overall results
are very slow.
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5 states 10 states 15 states 20 states
BeTL 0.017 0.053 0.104 0.375
LWB 0.054 0.131 0.130 14.694

Table 2: Average running time (in seconds) of BeTL, LWB for the transition systems

Overlapping Constraints. We next consider three randomly generated sets of formulae where some
literals occur in more than one constraint. We provide three parameters for each experiment of
the form (sum, coverage, overlap) where if the three sets are C1, C2, C3

sum = |C1|+ |C2|+ |C3|
coverage = |(C1 ∪ C2 ∪ C3)|
overlap = |(C1 ∩ C2)|+ |(C1 ∩ C3)|+ |(C2 ∩ C3))|

One set of formulae is considered in each of Tables 3-5 with differing sets of constraints in each
column (a), (b) and (c).

Set1 contains 10 propositions, 10 initial clauses, 20 step clauses, 4 eventualities, maximum clause
length is 5. Each set has three constraints C=1

1 , C=1
2 , C=1

3 . All sets are satisfiable.

Set2 contains 10 propositions, 10 initial clauses, 20 step clauses, 4 eventualities, maximum clause
length is 5. Each set has three constraints C=2

1 , C=2
2 , C=2

3 . All sets are satisfiable.

Set3 contains 15 propositions, 10 initial clauses, 20 step clauses, 5 eventualities, maximum clause
length is 5. Each set has three constraints C=1

1 , C=1
2 , C=1

3 . All sets are satisfiable.

a b c
constraints (6,6,0) (9,6,3) (12,6,6)

BeTL 0.91 0.43 0.44
LWB 35.67 7.24 2.61
TWB >600 > 600 > 600

Table 3: Running time (in seconds) of BeTL, LWB and TWB on overlapping constraints Set1

a b c
constraints (9,9,0) (12,9,3) (15,9,6)

BeTL 0.77 0.40 0.39
LWB 2.60 3.24 1.54
TWB >600 > 600 > 600

Table 4: Running time (in seconds) of BeTL, LWB and TWB on overlapping constraints Set2

In each case TWB did not finish within the 10-minute running time limit and BeTL outperforms
LWB.

Petri Nets. We give timings for running the four person dining philosophers problem. The columns
marked (a) is the Petri Net protocol (satisfiable), the column marked (b) is the Petri Net protocol
conjoined with the property that infinitely often each philosopher has a chance to eat (satisfiable)
(c) the Petri Net protocol conjoined with the property that sometime philosopher 1 and philosopher
2 will eat (at the same time) (unsatisfiable). Whilst LWB is faster than BeTL all times are less
than a second.
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a b c
constraints (12,12,0) (15,12,3) (18,12,6)

BeTL 4.30 2.12 1.48
LWB 273.37 155.27 59.38
TWB >600 > 600 > 600

Table 5: Running time (in seconds) of BeTL, LWB and TWB on overlapping constraints Set3

a b c
BeTL 0.42 0.33 0.44
LWB 0.05 0.05 0.05

Table 6: Running time (in seconds) of BeTL and LWB on the Petri Net with Four Philosophers

5.4. Discussion.

We must yet again highlight that BeTL is a prototype and was developed as a first imple-
mentation not focusing on any fine tuning of performance. However, we have found that BeTL
outperforms TWB on all the problems we considered—we note that that TWB was designed pri-
marily for modularity and extensibility rather than efficiency [1]. Further, from Table 1 where the
constraints include 8 or more of the 10 propositions BeTL’s performance is comparable to LWB,
which is highly optimised, both being less than 0.1 second. Table 1 also shows that BeTL’s per-
formance improves as the set of constraints includes a higher proportion of the set of propositions.
We note that Table 1 and Figure 4 show the times for both LWB and BeTL increasing until 2-3
constrained propositions and then decreasing. We believe that this is probably due to the phase
transition effect that has been studied in the area of SAT [31]. Essentially under-constrained
problems are easily found to be satisfiable by provers and over constrained problems are easily
found to be unsatisfiable. Here, adding more constraints makes the sets of formulae more likely
to be unsatisfiable and hence easier for both provers to solve. We believe that the time to solve
the problems goes up initially for both provers because the phase transition occurs at around 2-3
constraints.

Table 2 shows that BeTL has good performance results even compared to the LWB for for-
mulae derived from the transition system examples. Similarly the results from the overlapping
constraints, Tables 3-5 show BeTL having good performance as compared to LWB. We note that
BeTL is slower than LWB on the Petri Net examples possibly due to the fact that there are more
unconstrained propositions.

Whilst these results show the idea of incorporating constraints is promising, we note some
issues with the underlying algorithm. Firstly, formulae are required to be in a particular normal
form. This is not an issue for problems that are already or nearly in the normal form (e.g., the
state transition examples in Table 2). For problems that require translation into the normal form,
this may require introduction of some new propositions (to rename complex subformulae) and,
this adds to the set of unconstrained propositions, whereas the results above show, BeTL works
best when most propositions are constrained.

Regarding the algorithm, it constructs nodes that satisfy the set of constraints and a set of
(classical logic) clauses. This has two problems. First, we have to explicitly enumerate sets of
propositions that satisfy the set of constraints. Second, although the algorithm only generates
reachable states, we are often forced to construct all the states, e.g., when there are no initial
clauses. This immediately results in the worst case complexity. Inherently, the incremental be-
haviour graph construction adopts a breadth-first style that requires us to construct, and keep in
memory, a large number of nodes, resulting in an unavoidable inefficiency.

To try and overcome these problems whilst still maintaining the benefits of dealing with con-
straints separately we aim to develop a more traditional tableau algorithm that does not require
input in the normal form (see Section 6.2). Additionally, we could adopt a “branch by branch”
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construction method to avoid the breadth-first construction in the algorithm here. Finally such
a tableau would not always have to explicitly evaluate the sets of propositions satisfying the
constraints.

6. Concluding Remarks

In this paper we have introduced TLC, a propositional temporal logic that allows the specifier
to define constraints on how many literals from some set can be satisfied at any one time. This
logic represents a combination of standard propositional linear-time temporal logic with constraints
relating to restrictions on the number of literals, for particular subsets of literals, at each moment
in time. Work on TLC has uncovered a new, and potentially very sophisticated, approach to
temporal specification. Rather than concentrating solely on the behaviour of components, the use
of TLC encourages specifiers to partition the literals, and also to consider what constraints need
to be put upon these partitioned sets. Thus, this leads us towards the approach of engineering
the sets and constraints first, before even addressing the temporal specification of the component
behaviours.

We provide a graph construction algorithm to check satisfiability by enumerating only the
reachable nodes that satisfy the required constraints. Experiments show that an implementation
of this outperforms an existing temporal logic tableau reasoner, TWB. Additionally if a high
proportion of the propositions are constrained it can also outperform LWB. However we have
identified some issues with the algorithm in that it explicitly evaluates the constraints; in many
cases it is forced to construct all the states and it adopts a breath-first expansion style. Overall,
BeTL works as an initial prototype, providing the basis for more efficient future developments.

6.1. Related Work

We are not aware of others who have explicitly studied constraints directly in the logic itself,
such as those described in this paper, apart from ourselves in earlier work on constrained and
exactly one extensions of PTL [18, 19, 20]. Firstly we consider other provers for propositional
linear time temporal logic. We discuss two main approaches to theorem proving in PTL: tableau
and resolution. Both are refutation based i.e. to prove a formula (ϕ) is valid it is negated and if
the negation (¬ϕ) is unsatisfiable then the original must be valid.

Tableau algorithms for PTL, for example see [33, 57] generally have a construction phase
followed by a deletion phase. During the construction phase tableau rules are applied to formulae
occurring at nodes in the structure which expand the structure and (mostly) simplify formulae.
The deletion phase removes parts of the structure which could never be used to construct a
model, for example where eventualities cannot be satisfied. Tableau algorithms for PTL have
been implemented as part of both the Logics Workbench [39] and the Tableau Workbench [1].

The Logics Workbench [39] is a suite of logical tools for several propositional modal and
temporal logics including PTL. The PTL module offers a number of functions to manipulate
formulae including the satisfiability and model functions. The satisfiability function implements
Janssen’s tableau algorithm [40]. This is a two phase style algorithm as described above. The
model function implements Schwendimann’s One Pass Tableau [50] where the construction and
deletion phases are combined.

The Tableau Workbench [1] is a framework for constructing tableau provers for arbitrary
propositional logics. It allows users to specify their own tableau rules and provers based on these
rules. It has several modules with pre-defined calculi for a number of modal and temporal logics
including PTL. Implementations of both Wolper’s and Schwendimann’s tableau are also available
from the Automated Reasoning Group at the Australian National University2.

We have compared our prototype prover with LWB and TWB as they are tableau procedures
and ours is tableau-like in that it constructs a structure and then deletes parts of this. Our

2users.cecs.anu.edu.au/ rpg/PLTLProvers/
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construction method is different in that it requires formulae to be in a particular normal form,
and in the worst case may have to build all the nodes in the construction which will be exponential
in the number of unconstrained propositions.

Resolution approaches for PTL tend to first translate formulae into some normal form, termed
temporal clauses, for example the one provided in Section 2. Then resolution rules are applied
to formulae in the normal form that add new temporal clauses to the temporal clause set. The
process terminates when either false is derived or no new temporal clauses can be derived. The
temporal resolution algorithm from [28] has been implemented in the prover TRP++ [38]. The
behaviour graph construction we use here (without the constraints) was proposed in [28] as part
of the completeness proof. It was proposed as a way of dealing with constraints in [19]. A new
resolution decision procedure based on labelled superposition is described in [53]. Additionally
powerful tools for constructing automata from PTL formulae also exist [13, 32].

In recent years there has been an interest in the development and application of model check-
ers [12], for example, NuSMV [9], SPIN [37], Java Pathfinder [54] and PRISM [35]. Model checkers
take a model of the system, usually some form of directed graph, and a formula, often in a tem-
poral logic such as PTL or the branching time temporal logic CTL, and check that the formula
is satisfied on the model. Whilst, in general, there is no way to explicitly input constraints as we
have done here it may be possible to encode some types of constraints using the input language of
the model. For example, in NuSMV enumerated types are allowed which correspond with exactly
one of these propositions holding at any moment. For example the constraint

Mi
=1 = { playingi , restingi , injuredi }=1

in Section 3.1 could be defined as an enumerated type, mode, for each player

mode: {play, rest, injured};

Other constraints may be encoded using the INVAR (invariant) command. Formula in the scope
of the INVAR command must not contain any temporal operators so this could be achieved using
the pos(C, k) and neg(C, k) formulae defined in Section 2.4 for constraints of the form C∝k. Note
that Model Checking and deduction (for example tableau and resolution calculi) aim to solve
different problems. Deductive methods require a formula or set of formulae as input which are
shown to be satisfiable or unsatisfiable. Model Checking requires a model and formula as input
and show whether the model satisfies the formula.

Propositional satisfiability (SAT) [15] is the problem of deciding whether it is possible to
assign true or false to the propositions in a formula of propositional logic that makes the formula
evaluate to true. The Davis-Putnam-Logemann-Loveland (DPLL) procedure [14] mentioned in
Section 5 has been used to implement SAT solvers but other methods have also been applied.
SAT has been successfully applied to a number of areas and efficient implementations that can
deal with thousands of variables have been developed. In this paper we use the DPLL algorithm
when generating nodes in the behaviour graph that satisfy the sets of constraints and the right
hand sides of a set of step clauses. We have implemented our own version of DPLL here as
we want to return all the satisfying assignments rather than just returning just one of these.
Another alternative would be to call a SAT solver which allows this. Efficient representation
of cardinality constraints as a Boolean satisfiability problem has been extensively studied in the
literature [2, 5, 52]. A relevant problem is the weighted satisfiability problem, where one checks if
a Boolean circuit C produces 1 as output on some input values in which exactly k values are 1 and
the others are 0, where k is a fixed parameter [29].

Cardinality type constraints also appear in Constraint Satisfaction Problems(CSP), see for
example [49]. The paper [55] considers encodings of propositional logic into CSP. The additional
constraints on propositions we use in this paper could be encoded similarly. To generate nodes in
the behaviour graph an alternative approach would be to encode this as a CSP problem and call
a CSP solver.

Mutually exclusive conditions (stemming e.g. from automata representations) and numbers
from a fixed range can often be handled through efficient translation — consider, for example,
logarithmic encoding or property-driven partitioning used in model checking [51] and SAT [6].

24



6.2. Future Work

Efficient Implementation. The BeTL implementation is a prototype. It was not intended to
compete with other temporal provers but was developed as a first implementation against which
to measure refined versions. For this reason we have not extended our experiments further to
compare BeTL to one pass tableau systems such as [50] or resolution based systems such as
TPR++ [38]. We are currently working on such improved versions of the basic tableau approach
and expect these to be orders of magnitude faster than BeTL.

As our experimental results seem to show that using input constraints is beneficial, we are also
developing a more standard tableau algorithm, similar to those described in [57, 50], but allowing
both a temporal formula and constraints as input. Input formulae would not have to be transformed
into a specific normal form and the usual tableau rules would be applied to the temporal formulae.
In addition new tableau rules would be provided to deal with inferences between the propositional
part at each moment in time and the tableau constraints. The advantages of this are not having
to first translate any temporal formula into normal form; that it does not explicitly require us
to construct sets of propositions that satisfy the constraints; and it gives us the opportunity
to develop depth-first type algorithms (i.e. exploring one tableau branch at a time). See, for
example [50].

Resolution for “Exactly One”. One interesting variation on our work here involves restricting the
logic to allow only “exactly one” sets (and as usual some unconstrained propositions), i.e. all the
constraints are of the form C=1

i . As a further restriction we can insist that the sets of propositions
in each Ci are disjoint. We term the new logic TLX where TLX(C1, . . . , Cn) = TLC(C=1

1 , . . . , C=1
n )

with the additional restriction of disjointness.
In [20] we devised a temporal resolution calculus for TLX, and established its completeness

and complexity. Specifically, if a set of TLX clauses is unsatisfiable, then a contradiction will be
deduced within time polynomial in N1 × N2 × · · · × Nn × 2A where N1 is the size of C1, N2 is
the size of C2, etc, while A is the number of unconstrained propositions. TLX has a number of
potential applications, and its relatively low complexity makes fast analysis feasible. Thus, part
of our future work is to implement and evaluate such resolution calculi.

The application to other logics. We have studied constraints applied to a combination of temporal
and epistemic logics in [21]. We could use similar techniques as developed here to apply to other
temporal logics such as CTL [10].
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