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1 Introduction

Temporal logics are extensions of classical logic, with operators that deal with
time. They have been used in a wide variety of areas within Computer Science
and Artificial Intelligence, for example robotics [27], databases [29], hardware
verification [15] and agent-based systems [24]. In particular, propositional tem-
poral logics have been applied to:

– the specification and verification of reactive (e.g. distributed or concurrent)
systems [22];

– the synthesis of programs from temporal specifications [21, 23];
– the semantics of executable temporal logic [10, 11];
– algorithmic verification via model-checking [4, 14]; and
– knowledge representation and reasoning [1, 8, 30].

In developing these techniques, temporal proof is often required, and we
base our work on practical proof techniques for the clausal resolution method
for propositional linear-time temporal logic PLTL. The method is based on an
intuitive clausal form, called SNF, comprising three main clause types and a
small number of resolution rules [12]. While the approach has been shown to
be competitive [16, 17] using a prototype implementation of the method, we
now aim at an even more efficient implementation. This implementation, called
TRP++, is the focus of this paper.

2 Basics of PLTL

Let P be a set of propositional variables. The set of formulae of propositional
linear time logic PLTL (over P) is inductively defined as follows: (i) ⊤ is a formula
of PLTL, (ii) every propositional variable of P is a formula of PLTL, (iii) if ϕ and
ψ are formulae of PLTL, then ¬ϕ and (ϕ ∨ ψ) are formulae of PLTL, and (iv) if
ϕ and ψ are formulae of PLTL, then #ϕ (in the next moment of time ϕ is true),
3ϕ (sometimes in the future ϕ is true), 2ϕ (always in the future ϕ is true),
(ϕ U ψ) (ϕ is true until ψ is true), and (ϕW ψ) (ϕ is true unless ψ is true) are
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formulae of PLTL. Other Boolean connectives including ⊥, ∧, →, and ↔ are
defined using ⊤, ¬, and ∨.

PLTL-formulae are interpreted over ordered pairs I = 〈S, ι〉 where (i) S is an
infinite sequence of states (si)i∈N and (ii) ι is an interpretation function assigning
to each state a subset of P.

We define a binary relation |= between a PLTL-formula ϕ and a pair consisting
of a PLTL-interpretation I = 〈S, ι〉 and a state si ∈ S as follows.

I, si |= p iff p ∈ ι(si) I, si |= ⊤
I, si |= (ϕ ∨ ψ) iff I, si |= ϕ or I, si |= ψ I, si |= ¬ϕ iff I, si 6|= ϕ
I, si |= #ϕ iff I, si+1 |= ϕ
I, si |= 2ϕ iff for all j ∈ N, j ≥ i implies I, sj |= ϕ
I, si |= 3ϕ iff there exists j ∈ N such that j ≥ i and I, sj |= ϕ
I, si |= (ϕ U ψ) iff there exists j ∈ N such that j ≥ i, I, sj |= ψ, and

for all k ∈ N, j > k ≥ i implies I, sk |= ϕ
I, si |= (ϕW ψ) iff I, si |= ϕ U ψ or I, si |= 2ϕ

If I, si |= ϕ then we say ϕ is true, or holds, at si in I. An interpretation I
satisfies a formula ϕ iff ϕ holds at s0 in I and it satisfies a set N of formulae
iff for every formula ψ ∈ N , I satisfies ψ. In this case, I is a model for ϕ and
N , respectively, and we say ϕ and N are (PLTL-)satisfiable. The satisfiability
problem of PLTL is known to be PSPACE-complete [28].

Arbitrary PLTL-formulae can be transformed into separated normal form

(SNF) in a satisfiability equivalence preserving way using a renaming technique
replacing non-atomic subformulae with new propositions and removing all oc-
currences of the U and W operator [9, 12].

The result is a set of SNF clauses of the following form (which differs slightly
from [9, 12]).

∨n

i=1
Li (initial clause)

2(
∨m

j=1
Kj ∨

∨n

i=1
#Li) (global clause)

2(
∨m

j=1
Kj ∨ 3L) (eventuality clause)

Here, Kj , Li, and L (with 1 ≤ j ≤ m, 0 ≤ m, and 1 ≤ i ≤ n, 0 ≤ n) denote
propositional literals.

In the following, we assume that SNF clauses are sets of (temporal) literals.
Furthermore, if C = L1 ∨ . . . ∨ Ln we use #C to denote #L1 ∨ . . . ∨ #Ln.

3 Clausal temporal resolution

TRP++ is based on the resolution method for PLTL proposed by Fisher [9]
(see also [6, 7, 12]) which involves the translation of PLTL-formulae to separated
normal form, classical resolution within states (known as initial and step resolu-
tion) and temporal resolution over states between eventuality clauses containing
a literal like 3¬p and global clauses that together imply 2 p (known as eventu-
ality resolution). Figure 1 contains a list of all the inference rules. To simplify
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the presentation, we have represented the conclusion of the eventuality resolu-
tion rule as a PLTL-formula (which would have to be transformed into a set
of SNF clauses). In our implementation, we directly produce the corresponding
SNF clauses without reverting to the transformation procedure. It should be
obvious that finding a set of SNF clauses which satisfies the side conditions of
the eventuality resolution rule is a non-trivial problem.

These inference rules provide a sound and complete calculus for deciding
the satisfiability of a set N of SNF clauses. Furthermore, under the assumption
that an inference step is performed only once for the same set of premises (or
that we stop as soon as no new SNF clauses can be derived), any derivation
from a set N of SNF clauses will always terminate. Since any PLTL-formula can
be transformed into a satisfiability equivalent set of SNF clauses, this means
that the combination of this transformation process and the temporal resolution
calculus provides a decision procedure for PLTL.

Initial resolution rules:

C1 ∨ L ¬L ∨ C2

C1 ∨ C2

C1 ∨ L 2(¬L ∨D2)

C1 ∨D2

where C1∨L and ¬L∨C2 are initial clauses, 2(¬L∨C2) is a global clause and ¬L∨D2

is a propositional clause.

Step resolution rules:

2(C1 ∨ L) 2(¬L ∨ C2)

2(C1 ∨ C2)

2(C1 ∨ L) 2(#¬L ∨D2)

2(#C1 ∨D2)

2(D1 ∨ #L) 2(#¬L ∨D2)

2(D1 ∨D2)

where 2(C1 ∨ L) and 2(¬L ∨ C2) are global clauses and C1 ∨ L and ¬L ∨ C2 are
propositional clauses, and 2(#¬L∨D2) and 2(D1∨#L) are global clauses. (The side
conditions ensure that no clauses with nested occurrences of the #-operator can be
derived.)

Eventuality resolution rule:

2(C1

1 ∨
∨k1

1
l=1

#D1

1,l)
...

2(C1

m1
∨
∨k1

m1

l=1
#D1

m1 ,l
) · · ·

2(Cn
1 ∨

∨kn
1

l=1
#Dn

1,l)...

2(Cn
mn

∨
∨kn

mn

l=1
#Dn

mn,l) 2(C ∨ 3L)

2(C ∨ (¬(
∨n

i=1

∧mi

j=1
Ci

j) W L))

where for all i, 1 ≤ i ≤ n, (
∧mi

j=1

∨ki
j

l=1
Di

j,l) → ¬L and (
∧mi

j=1

∨ki
j

l=1
Di

j,l) →

(
∨n

i=1

∧mi

j=1
Ci

j) are provable.

Fig. 1. The temporal resolution calculus
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4 Implementation details

Figure 2 shows the main procedure of our implementation of the temporal res-
olution calculus of Section 3 which consists of a loop where at each iteration
(i) the set of SNF clauses is saturated under application of the initial and step
resolution rules using function Saturate shown in Figure 3, and (ii) then for ev-
ery eventuality clause in the SNF clause set, an attempt is made to find a set
of premises for an application of the eventuality resolution rule using function
BFS shown in Figure 4 which implements Dixon’s search algorithm [7]. If we
find such a set, the set of SNF clauses representing the conclusion of the applica-
tion is added to the current set of SNF clauses. The main loop terminates if the
empty clause is derived, indicating that the initial set of SNF clauses and the
PLTL-formula it is stemming from are unsatisfiable, or if no new clauses have
been derived during the last iteration of the main loop, which in the absence
of the empty clause indicates that the initial set of SNF clauses and the PLTL-
formula it is stemming from are satisfiable. Since the number of SNF clauses
which can be formed over the finite set of propositional variables contained in
the initial set of SNF clauses is itself finite, we can guarantee termination of the
main procedure.

It is easy to check that under the natural arithmetic translation of initial and
global clauses into first-order logic (an initial clause (¬)q1 ∨ . . .∨ (¬)qn is repre-
sented by the first-order clause (¬)q1(0) ∨ . . . ∨ (¬)qn(0) where 0 is a constant
representing the natural number 0; a global clause (¬)p1∨ . . .∨(¬)pm∨#(¬)q1∨
. . .∨#(¬)qn as ∀x ((¬)p1(x) ∨ . . . ∨ (¬)pm(x) ∨ (¬)q1(s(x)) ∨ . . . ∨ (¬)qn(s(x)))
where s is representing the successor function on the natural numbers), initial
and step resolution exactly correspond to usual first-order ordered resolution
with respect to an atom ordering ≺ where p(x) ≺ q(s(x)) ≺ r(s(s(x))) for ar-
bitrary predicate symbols p, q, and r. Search for premises for the eventuality
resolution rule (the computationally most costly part of the method), as imple-
mented in BFS , is again based on step resolution. Hence, performance of the
step resolution inference engine is critical for the system. Using the arithmetic
translation, any state-of-the-art first-order resolution system could perform step
resolution (and initial resolution). However, our formulae have a very restrictive
nature, and TRP++ uses its own “near propositional” approach to deal with
them.

Data representation. We represent SNF clauses as propositional clauses and
supply each literal with an “attribute”—one of initial, global now, and global next

with obvious meaning (eventuality clauses are kept and processed separately).
In addition, we define a total ordering < on attributed literals which satisfies
the constraint that for every initial literal K, global now literal L, and global next

literal M we have K < L < N .

The ordering is then used to restrict resolution inference steps to the maximal
literals in a clause. This ensures, for example, that in a clause C ∨ L where L
is a global now literal but C contains some global next literals, a resolution step
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procedure main(N)

begin

New := N;

while (⊥ 6∈ N and New 6= ∅) do

N := Saturate(N);

if (⊥ 6∈ N) then

New := ∅;
N0 := select global (N);
foreach 2(

∨m

j=1
Kj ∨ 3L) ∈ N do

G := BFS (N0, 0, true, L)
if (G 6= ∅) then

New := New ∪ e-res (2(
∨m

j=1
Kj ∨ 3L), G);

endif

end

New := simp(New,N);
N := N ∪New;

endif

end

end

where select global(N) is the set of all global clauses selected from N ,
e-res (2(

∨m

j=1
Kj ∨ 3L), G) is the set of conclusions of the eventuality resolution rule

applied to the eventuality clause 2(
∨m

j=1
Kj ∨ 3L) and the global clauses in G, and

simp(New , N) is the result of simplification (e.g. by subsumption) of clauses from New

by clauses from N .

Fig. 2. Main procedure of TRP++

on L is impossible. (Note that this behaviour is in accordance with the inference
rules of the temporal resolution calculus.)

To simulate the effect of first-order unification on the arithmetical translation
of SNF clauses, unification of literals in our “near propositional” representation
has to take their attributes into account. For example, it is impossible to unify
an initial literal with a global next literal (since it is impossible to unify a literal
(¬)p(0) with (¬)p(s(x)).) However, it is possible to unify a global now literal
with a global next literal and the unifying substitution will turn the global now

literal into a global next literal (since it is possible to unify a literal (¬)p(y) with
(¬)p(s(x))).) In this case we will also have to turn all other global now literals
in the clause in which the global now literal occurs into global next literals.

This is implemented by means of attribute transformers—objects that can
change the attribute of a literal. Given a pair of complementary literals, we first
check if these literals are “compatible” (i.e. unifiable in terms of first-order logic)
and, if this is the case, a pair of attribute transformers is constructed. When the
resolvent is generated, we apply the corresponding attribute transformer to every
literal of the premises.
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Saturation by step resolution. We implement an OTTER-like saturation method
where the set of all clauses is split into an active and a passive clause set, and
all inferences are performed between a clause, selected from the passive clause
set, and the active clause set (for a detailed description see e.g. [25]). Generated
clauses are simplified by subsumption and forward subsumption resolution. As
on a typical run of the saturation method, the given set of clauses is satisfiable
(since the set of clauses are originating from the search algorithm needed for the
eventuality resolution rule), we do not employ any special clause selection and
clause preference technique. Instead, passive clauses are grouped according to
their maximal literal.

Indexing. In order to speed-up resolution, we group active clauses according
to their maximal literal. For (multi-literal) subsumption, we employ a trie-like
data structure of the same kind that is used for string matching with wild-card
characters [3]. For the current implementation, the subsumption algorithm does
not distinguish literals with different attributes, thus providing us only with an
imperfect filter whose result is re-checked afterward. Global clauses are split into
the now and next parts that are inserted into the index separately.

We give some more detaile on the subsumption indexing. Every propositional
clause is represented as an ordered string of literals; no literal occurs more than
once into the string. A set of strings (clauses) is kept in a digital search trie [20].
This representation has the advantage that every path in the trie is ordered and
labels of outgoing edges of every node are ordered as well. A trie representation
of the following set of clauses

1. (a ∨ c) 2. (a ∨ b ∨ c) 3. (a ∨ c ∨ d) 4. (b ∨ d),

where a > b > c > d, is given in Fig. 5. We use this data structure for both
forward and backward subsumption (to test if a given query clause is subsumed
by an indexed clause and to find all indexed clauses subsumed by a given query
clause, respectively). In a subsumption test, a query string is read from left

function Saturate(N)

begin

repeat

New := res(N);

New := simp(New,N);

N := N ∪New;

until (New = ∅ or ⊥ ∈ N);

return N;

end

where res(N) is the set of conclusions of inference steps by the initial and step resolution
rules using the clauses in N as premises.

Fig. 3. A simple saturation procedure
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function BFS(N0,i,Gi,L)
begin

N1 := Saturate(N0 ∪ {#L ∨
∨n

j=1
#Lj |

∨n

j=1
Lj ∈ Gi});

if (⊥ ∈ N1) then

return {∅}
else

Gi+1 := {
∨m

i=1
Ki | 2(

∨m

i=1
Ki) ∈ (N1 \N0)}

if (Gi+1 = ∅) then

return ∅
elsif (Gi+1 ≡ Gi) then

return Gi+1

else

return BFS(N0,i+ 1,Gi+1,L)
endif

endif

end

where the return value ∅ indicates that no set of global clauses has been found such
that eventuality resolution can be applied with literal L, and return value {∅} indicates
that eventuality resolution can be applied to the empty set of global clauses for literal
L.

Fig. 4. A breadth-first search algorithm for the eventuality resolution rule

to right and the index trie is traversed. The difference between forward and
backward subsumptions is in how we traverse the trie.

In forward subsumption, for every outgoing branch of the current node, if
the label of the branch coincides with the current character of a query string,
the branch is recursively visited; alternatively we move to the next character of
the query string (this is slightly improved by use of ordering which is omitted
here for simplicity). If the test enters a node labeled with an indexed clause, this
indexed clause subsumes the query clause. For example, a forward subsumption
test for the clause (a ∨ b ∨ d) would start at the state (1, “abd”) (by a state we
mean a pair of a node and a string) then visit the states (2, “bd”), (4, “d”), then
backtrack to (1, “abd”), go to (3, “d”), and, finally, to (6, “”). Node 6 is labeled
with (b ∨ d) which subsumes the query clause.

In backward subsumption, we have to visit all branches whose labels are
greater than or equal to the current character of a query string; however, we only
move to the next character of the query string if the label of a branch coincides
with the current character. If the query string has been read to the end, all
clauses kept below the current node are subsumed. For example, a backward
subsumption test for the clause (a ∨ c) would start at the state (1, “ac”) move
to (2, “c”), then to (4, “c”) and (7, “”); the clause (a ∨ b ∨ c) is subsumed. After
that, the test backtracks to (2, “c”) and moves to (5, “”); clauses (a ∨ c) and
(a ∨ c ∨ d) are also subsumed.
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1

2

a

4

b

7 {2}

c

5 {1}

c

8 {3}

d

3

b

6 {4}

d

Fig. 5. Trie-based subsumption index for the clauses 1. (a∨ c), 2. (a∨ b∨ c), 3. (a∨ c∨
d), 4. (b ∨ d) with the atom ordering a > b > c > d.

TRP++ SPASS 2.0 Vampire 2.0 Vampire 5.0

median total median total median total median total

uf20-91 0.02 2.14 0.02 1.90 0.04 3.95 0.01 1.42

flat30-60 11.55 2605.34 1848.95 – 10.73 – 1.80 360.90

uf50-218 197.01 27909.14 17.84 40214.27 22.68 – 1.65 211.70

uuf50-218 109.11 19153.86 49.86 12695.15 3.54 671.09 1.30 143.70

hole6 0.14 627.48 7.83 9.26

hole7 1.07 – 1216.25 1592.32

hole8 7.11 – – –

hole9 40.57 – – –

hole10 224.91 – – –

Fig. 6. Comparison on SAT instances

Resolution engine performance. To evaluate the performance of the step reso-
lution inference engine of TRP++, we compare TRP++ with theorem provers
based on first-order resolution, SPASS 2.01 and two versions of Vampire2, namely
Vampire 2.0-CASC (Vampire 2.0 for short) and Vampire 5.0. Vampire 5.0 has
been the winner of CASC-18 in the MIX and FOF divisions.

For the first comparison, we have taken from the SATLIB benchmark problem
library3 sets of both satisfiable (uf20-91, uf50-218, and flat30-60, each consist-
ing of 100 problems) and unsatisfiable (uuf50-218, consisting of 100 problems)
randomly generated propositional formulae in CNF form and five instances of
the Pigeon-Hole principle, hole6–hole10. The tests have been performed on a
PC with a 1.3GHz AMD Athlon processor, 512MB main memory, and 1GB vir-
tual memory running RedHat Linux 7.1. For each individual satisfiability test
a time-limit of 10000 CPU seconds was used. All theorem provers were used in
‘auto mode’, except for SPASS 2.0 where we have disabled splitting. Otherwise,
SPASS 2.0 behaves like a DPPL-based SAT-solver and outperforms all other
systems easily.

1 http://spass.mpi-sb.mpg.de/
2 http://www.math.miami.edu/∼tptp/CASC/
3 http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/benchm.html
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TRP++ SPASS 2.0 Vampire 2.0 Vampire 5.0

median total median total median total median total

uf20-91g 0.02 2.04 0.04 4.45 0.05 4.49 0.02 2.09

flat30-60g 11.49 2618.82 2289.01 – 17.75 – 2.95 597.10

uf50-218g 196.76 27867.16 244.86 – 34.34 – 2.30 300.60

uuf50-218g 108.57 19060.00 52.26 13552.70 5.25 936.53 1.80 202.20

ring3 0.93 – – 4.89

ring5 7191.63 – – 5631.53

Fig. 7. Comparison on FO instances

Figure 6 summarises the results of this first comparison. For uf20-91, flat30-
60, uf50-218, uuf50-218 we give the median and total CPU time required for
a problem class (‘–’ indicates that not all problems could be solved). Vampire
5.0 shows the overall best performance of the systems. TRP++ is slower than
the other provers on the ‘easier’ problems (as indicated by the median CPU
time), but competes quite well with Vampire 2.0 and SPASS 2.0 on the whole
(as indicated by the total CPU time). One of the reasons why the other provers
beat TRP++ on uuf50-218 is because of their clause selection and preference
techniques that speed up proof search. However, it is surprising that TRP++

performs much better than the other provers on hole8–hole10.
For the second comparison, we again used the problems in uf20-91, flat30-

60, uf50-218, and uuf50-218, but this time considering the clauses as global
clauses. To be able to use the first-order theorem provers on these problems,
we apply the arithmetic translation to them. These test should provide some
indication whether the particular data representation we have used for SNF
clauses has an advantage over a ‘first-order’ representation. Two additional tests
were conducted on the arithmetic translation of two problems, ring3 and ring5,
describing the behaviour of an algorithm [13] that orients rings with 3 and 5
nodes, respectively. In order to describe the non-deterministic behaviour of the
original algorithm in PLTL, eventuality clauses would be needed to which the
arithmetic translation described above cannot be applied. Therefore, we used a
reformulation of the two problems which avoids these clauses. Both problems
are quite large (ring3 contains 24 variables and 268 clauses, ring5 contains 40
variables and 449 clauses) and unsatisfiable. Figure 7 summarises the results
of this second comparison. As we can see, the performance of TRP++ is not
affected by the change from propositional to global clauses while for all other
theorem provers we see a negative impact. On ring3 and ring5, TRP++ can
compete with Vampire 5.0 while the other provers fail.

Overall the results of these experiments indicate that there is still room for
improvements of our implementation.

5 Comparison with other temporal provers

For comparison with other PLTL decision procedures, we selected the following
systems: TRP++, a tableau-based procedure developed by McGuire et al. [19]
which is incorporated in STeP, two tableau-based procedures included in the
Logic Workbench 1.1, one developed by Janssen [18], the other by Schwendi-
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mann [26], and TRP 1.0, our previous prototype implementation of temporal
resolution in SICStus Prolog 3.9.1.

We have compared the systems on two classes of randomly generated PLTL-
formulae introduced in [17]. These classes, called C1

ran
and C2

ran
, are intended

to show the relative strength and weaknesses of tableau-based and resolution-
based decision procedures for PLTL. In general, formulae in these classes are
conjunctions of SNF clauses which are characterised by four parameters, n, k, p,
and l where n determines the number of propositional variables in the random
part of a formula, k the number of disjuncts in a random SNF clause, p the
probability with which an atom occurs positively in a random SNF clause, and
l the number of conjuncts in the random part of a formula.

The first class, C1
ran

, is intended to show that decision procedures based on
temporal resolution can show a better performance than those based on tableau
calculi. To this end we use formulae with a large number of global clauses, each
containing k disjuncts, and a chain of eventuality clauses such that ignoring the
eventuality clauses a large number of models exists, but eventuality checks will
fail in a high percentage of them. More precisely, formulae in C1

ran
have the form

2(#L1
1 ∨ . . . ∨ #L1

k) ∧ . . . ∧ 2(#Ll
1 ∨ . . . ∨ #Ll

k)
∧ 2(¬p1 ∨ 3 p2)
∧ 2(¬p2 ∨ 3 p3)
...
∧ 2(¬pn ∨ 3 p1),

where for each global clause, the literals Li
1, . . . , L

i
k are generated by choosing k

distinct variables randomly from the set {p1, . . . , pn} of n propositional variables
and by determining the polarity of each literal with probability p. The eventuality
clauses included in ϕ only depend on the parameter n.

The second class, C2
ran

, is intended to show that there are also classes of for-
mulae where tableaux-based decision procedures can perform better than those
based on temporal resolution. To this end, we construct the formulae in C2

ran
in

such a way that decision procedures based on the temporal resolution calculus
have to make heavy use of the temporal resolution inference rule. This means
we again need a set of eventuality clauses which we choose in such that way that
under certain circumstances, tableaux-based decision procedures do not need to
perform an eventuality check at all. More precisely, formulae in C2

ran
have the
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Fig. 8. Percentage of satisfiable formulae in C1

ran
and C2

ran

form

(r1 ∨ L1
1 ∨ . . . ∨ L

1
k) ∧ . . . ∧ (r1 ∨ Ll

1 ∨ . . . ∨ L
l
k)

∧ 2(¬rn ∨ # r1)
∧ 2(¬rn−1 ∨ # rn)
...
∧ 2(¬r1 ∨ # r2)
∧ 2(¬rn ∨ #¬qn) ∧ . . . ∧ 2(¬r1 ∨ #¬qn)
∧ (¬r1 ∨ q1) ∧ (¬r1 ∨ ¬qn)
∧ 2(¬q1 ∨ 3 s2) ∧ 2(¬s2 ∨ q2 ∨ # qn ∨ . . . ∨ # q3)
...
∧ 2(¬qn−1 ∨ 3 sn) ∧ 2(¬sn ∨ qn)

where for each of the first l initial clauses, the literals Li
1, . . . , L

i
k are generated

by choosing k distinct variables randomly from the set {p1, . . . , pn} of n proposi-
tional variables and by determining the polarity of each literal with probability
p. The global and sometime clauses included in ϕ only depend on the parameter
n. Since formulae in both C1

ran
and C2

ran
are in conjunctive normal form and each

conjunct is a SNF clause, we can consider a formulae in either class as a set of
SNF clauses.

Here we will focus on just one choice of the parameters n, k, and p, namely
n = 12, k = 3, and p = 0.5. Furthermore, we only consider formulae of C1

ran

and C2
ran

where the ratio l/n ranges from 0 to 8. For each ratio l/n that we
have considered, 100 sets of SNF clauses have been generated and tested. The
two graphs in Figure 8 show the percentages of satisfiable formulae in C1

ran
and

C2
ran

for ratios l/n in the range from 0 to 8. We see that for a ratio l/n = 0
all formulae in both classes are satisfiable, the percentage of satisfiable formulae
sinks monotonically with increasing ratio, and for a ratio equal to l/n = 8 all
formulae in both classes are unsatisfiable. This last observation is the motivation
for restricting ourselves to ratios l/n ≤ 8. In the case of C1

ran
, for a ratio l/n = 3.2

exactly half the formulae are satisfiable, while the same is true for C2
ran

for a ratio
l/n = 4.875.
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Fig. 9. Performance of the systems on C1

ran
and C2

ran

Based on the considerations in [17] we expect that resolution-based decision
procedures like TRP and TRP++ outperform tableau-based procedures on
C1
ran

for ratios l/n between 3.2 and 5, while for C2
ran

we expect that TRP and
TRP++ are outperformed for ratios l/n between 0 and 4.875.

Again, the tests have been performed on a PC with a 1.3GHz AMD Athlon
processor, 512MB main memory, and 1GB virtual memory running RedHat
Linux 7.1. For each individual satisfiability test of a set of SNF clauses a time-
limit of 1000 CPU seconds was used. The left-hand side of Figure 9 depicts
the behaviour of the systems on C1

ran
. A vertical line divides the graphs at the

point where the number of satisfiable sets of SNF clauses equals the number of
unsatisfiable ones. The right-hand side of the figure gives the same information
for C2

ran
. For each ratio l/n we have measured the CPU time each system has

required to solve each of the 100 SNF clause sets for that ratio and computed
the median. The upper part of the figure shows the resulting graphs for the me-
dian CPU time consumption of each of the systems, while the lower part of the
figure shows the graphs for the maximal CPU time consumption. Note that in
all performance graphs, a point for a system above the 1000 CPU second mark
indicates that the median or maximal CPU time required by the system has
exceeded our time-limit.

Important points to note are that TRP and TRP++ perform as expected
compared to the other systems and that TRP++ performs considerably better
than TRP on both classes indicating that the improved data representation and
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Fig. 10. Number of derived clauses for TRP and TRP++ on C1

ran
and C2

ran

indexing techniques used in TRP++ compared to TRP have paid off. An in-
teresting observation is that on C2

ran
the behaviour of TRP and TRP++ differs

in a way that is not easily explained by these improvements alone. While the
median CPU time consumption of TRP on C2

ran
grows steadily as the number

of clauses in the clause sets under consideration increases, the median CPU time
consumption of TRP++ remains constant and shows even a significant drop at
the point where the majority of clauses turns unsatisfiable. Figure 10 depicts
graphs showing the median number of clauses derived by TRP and TRP++ on
C1
ran

(left-hand side) and C2
ran

(right-hand side). We see a good correlation to the
median CPU time consumption of the two systems. We can also see that on C1

ran

both system derive roughly the same number of clauses. Thus, the difference
in performance of both systems on C1

ran
is mainly due to the implementational

improvements discussed before. However, on C2
ran

we see that the differing be-
haviour of TRP versus TRP++ is reflected in differing numbers of derived
clauses. It turns out that this is due to different orderings used by two systems.
TRP uses an ordering based on the lexicographical ordering on the names of
propositional variables while TRP++, by default, uses an ordering based on the
order in which the propositional variables occur in the clause set. On unsatis-
fiable formulae in C2

ran
, which dominate the behaviour for ratios greater than

4.875, a smaller number of applications of the eventuality rule occurs than on
satisfiable formulae. Applications of this rule again lead to step resolution in-
ferences, the number of which will depend on the ordering used. For TRP++,
this reduction in the number of applications of the eventuality rule leads to an
observable reduction in the number of derived clauses, while for TRP the effect
is not sufficiently significant.

6 Conclusion and future work

As is evident from the empirical data presented in Sections 4 and 5, the perfor-
mance of TRP++ is considerably better than that of our prototypical system
TRP in all our experiments. This is mainly due to the choice of programming
language and data structures, in particular, the “near propositional” represen-
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tation of clauses and the trie-like data structure for storing clause sets together
with the algorithms for forward and backward subsumption which are based on
these data structures.

While these improvements lead to a better runtime performance they do
not necessarily influence the more abstract performance measure given by the
number of derived clauses. However, as is evident from the graph in Figure 10
comparing the number of derived clauses for TRP++ and TRP on C2

ran
, also

on this measure TRP++ can outperform TRP. While this example shows that,
as for first-order logic, orderings play an important role in improving the perfor-
mance of a theorem prover, at the moment we have no heuristics which could
help us to choose the most appropriate ordering for a problem.

Moreover, it can also be expected that the use of a selection function [2]
can further reduce the number of derived clauses and may in some cases even
eliminate the fundamental disadvantage that PLTL decision procedures based
on temporal resolution have over tablaux-based decision procedures on classes
of PLTL formulae like C2

ran
.

Finally, we are currently working on extending the calculus presented in
Section 3 as well as its implementation from propositional linear-time temporal
logic to decidable fragments of first-order linear-time temporal logic. A first step
in this direction has been described in [5].
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