TRP++ 2.0: A temporal resolution prover*

Ullrich Hustadt and Boris Konev**

Department of Computer Science, University of Liverpool, UK
{U.Hustadt, B.Konev}@csc.liv.ac.uk

1 Introduction

Temporal logics are extensions of classical logic with operators that deal with
time. They have been used in a wide variety of areas within Computer Science
and Artificial Intelligence, for example robotics [14], databases [15], hardware
verification [8] and agent-based systems [12].

In this paper we present TRP++ Version 2.0', a theorem prover for proposi-
tional linear time logic PLTL [4]. TRP++ is based on the resolution method for
PLTL developed by Fisher [5] (see also [2,3,6]) which involves the translation
of PLTL-formulae to separated normal form and the application of the inference
rules of the temporal resolution calculus.

Arbitrary PLTL-formulae can be transformed into separated normal form
(SNF) in a satisfiability equivalence preserving way using a renaming technique
replacing non-atomic subformulae with new propositions and removing all oc-
currences of the U (‘until’) and W (‘unless’) operator [5,6]. The result is a set of
SNF clauses of the following form (where O, O, and < denote ‘next’, ‘always’,
and ‘eventually’, respectively).

Vi, Li (initial clause)
O(Vii1 K vV Viey OLi) (global clause)
o(Vj, K; vV OL) (eventuality clause)

Here, Kj, L;, and L (with 1 < j <m, 0 <m, and 1 <14 < n, 0 < n) denote
propositional literals. If C = Ly V...V L,, we use OC to denote OL1V...VOL,.

Figure 1 shows all the inference rules of the temporal resolution calculus. To
simplify the presentation, we have represented the conclusion of the eventuality
resolution rule as a PLTL-formula (which would have to be transformed into a
set of SNF clauses). In our implementation, we directly produce the correspond-
ing SNF clauses without reverting to the transformation procedure. Note that
finding a set of SNF clauses which satisfies the side conditions of the eventuality
resolution rule is a non-trivial problem [2].

These inference rules provide a sound and complete calculus for deciding the
satisfiability of a set of SNF clauses. Furthermore, under the assumption that

* Work supported by EPSRC grant GR/L87491.
** On leave from Steklov Institute of Mathematics at St.Petersburg
L TRP++ can be downloaded from http://www.csc.1liv.ac.uk/ konev/trp++/.

an inference step is performed only once for the same set of premises (or that
we stop as soon as no new SNF clauses can be derived), any derivation from a
set of SNF clauses will always terminate. The combination of the transformation
procedure and the temporal resolution calculus is a EXPTIME decision proce-
dure for PLTL (while the satisfiability problem of PLTL is PSPACE-complete).
To our knowledge, there is no implementation of a complexity-optimal decision
procedure for PLTL.

2 Details of implementation

TRP++ takes as input a set N of SNF clauses and tries to refute N using the
temporal resolution calculus. The main procedure of our implementation of this
calculus consists of a loop where at each iteration (i) the set of SNF clauses is
saturated under application of the initial and step resolution rules, and (ii) then
for every eventuality clause in the SNF clause set, an attempt is made to find
a set of premises for an application of the eventuality resolution rule. If we find
such a set, the set of SNF clauses representing the conclusion of the application is

Initial resolution rules:
Ci VL =LV Cy Ci1V L D(—\L\/Dz)
Cy Vv Cy C1V Do

where C1 V L and —L V C2 are initial clauses, O(—L V C2) is a global clause and
—L V Dj is a propositional clause.

Step resolution rules:

o(Cy vV L) O(=L Vv Cs) o(Cy1V L) O(O-L V D»)
D(C1 \/Cz) D(OC1 \/DQ)
D(Dl Vv OL) \:\(OﬂL Vv Dg)
D(Dl V DQ)

where O(Cy V L) and O(—L V C3) are global clauses and C1 V L and =LV C2 are
propositional clauses, and O(O—L V D2) and O(D; V OL) are global clauses. (The
side conditions ensure that no clauses with nested occurrences of the O-operator
can be derived.)

Eventuality resolution rule:
kL n
0(Ci v V,2,0D1)) o(Cy v VL, ODY))
' Kl ’ n
O(Chy V V3 ODpy) -+ O(Cim, V VY ODy, 1) DOV OL)
O(C Vv (Vi Aj2 C5) W L))

k3

where for all i, 1 < i < n, (/\;721 \/;Zl ;l) — =L and (/\;":Z1 \/;Z1 ;l) —

i1 \j2, Cj) are provable.

Fig. 1. The temporal resolution calculus

added to the current set of SNF clauses. The main loop terminates if the empty
clause is derived, indicating that the initial set N of SNF clauses is unsatisfiable,
or if no new clauses have been derived during the last iteration of the main loop,
which in the absence of the empty clause indicates that the initial set N of SNF
clauses is satisfiable. Since the number of SNF clauses which can be formed over
the finite set of propositional variables contained in the initial set of SNF clauses
is itself finite, we can guarantee termination of the main procedure.

Inference rules. It is easy to check that under the natural arithmetic translation
of initial and global clauses into first-order logic (an initial clause ()¢ V...V
(—)qn is represented by the first-order clause (—)q1(0) V ...V (—)¢,(0) where 0
represents the natural number 0; a global clause (=)p1 V...V (7)pm V O(—)q1 V
LV O()gn a8 Ve ()p1(@) V-V ()P (@) V (s () V- .V (<)an(s(2)))
where s represents the successor function on the natural numbers), initial and
step resolution exactly correspond to standard first-order ordered resolution with
respect to an atom ordering < where p(x) < q(s(z)) < r(s(s(z))) for arbitrary
predicate symbols p, ¢, and r. The eventuality resolution rule (whose application
is the computationally most costly part of the method) can be implemented by a
search algorithm which is again based on step resolution [3]. Hence, performance
of the step resolution inference engine is critical for the system.

Using the arithmetic translation, any state-of-the-art first-order resolution
system could perform step resolution and initial resolution. However, our formu-
lae have a very restrictive nature, and TRP++ uses its own “near propositional”
approach to deal with them.

Data representation. We represent SNF' clauses as propositional clauses and sup-
ply each literal with an “attribute”—one of initial, global_now, and global_next
with obvious meaning (eventuality clauses are kept and processed separately).
In addition, we define a total ordering < on attributed literals which satisfies
the constraint that for every initial literal K, global_now literal L, and global_next
literal M we have K < L < M.

The ordering is then used to restrict resolution inference steps to the maximal
literals in a clause. This ensures, for example, that in a clause C'V L where L
is a global_now literal but C contains some global_next literals, a resolution step
on L is impossible. (Note that this behaviour is in accordance with the inference
rules of the temporal resolution calculus.)

To simulate the effect of first-order unification on the arithmetical transla-
tion of SNF clauses, unification of literals in our “near propositional” represen-
tation has to take their attributes into account. This is implemented by means
of attribute transformers—objects that can change the attribute of a literal. For
further details see [9].

Saturation by step resolution. We implement an OTTER-like saturation method
where the set of all SNF clauses is split into an active and a passive clause set, and
all inferences are performed between an SNF clause, selected from the passive
clause set, and the active clause set (for a detailed description see e.g. [13]).
Generated SNF clauses are simplified by subsumption and forward subsumption
resolution.

Indexing. In order to speed-up resolution, we group active clauses according
to their maximal literal. For the current implementation, the (multi-literal)
subsumption indexing algorithm does not distinguish literals with different at-
tributes, thus providing us only with an imperfect filter whose result is re-checked
afterwards. Global clauses are split into the now and next parts that are inserted
into the index separately. Every propositional clause is represented as an ordered
string of literals; no literal occurs more than once into the string. A set of strings
(clauses) is kept in a digital search trie [11]. We formulate then both forward sub-
sumption (to test if a given query clause is subsumed by an indexed clause) and
backward subsumption (to find all indexed clauses subsumed by a given query
clause) as string matching with wild-card characters similar to [1].

3 Current advances

TRP++ 1.0 was already presented in [9] where we demonstrated that the sys-
tem is competitive to other known provers for PLTL. Also, it was noticed that
the overall behaviour of the system relies on its ability to perform the step res-
olution inferences efficiently and we compared our step resolution engine with
state of the art first-order resolution provers SPASS 2.02 and Vampire?. TRP++
was slower than these provers on the ‘easier’ problems (indicated by the median
CPU time used), but competed quite well with Vampire 2.0 and SPASS 2.0
on the whole (indicated by the total CPU time used). One of the reasons of
TRP++’s failure was the lack of a sophisticated clause choice function. As on a
typical run of saturation by step resolution, the given set of clauses is satisfiable
(since the set of clauses is originating from the search algorithm needed for the
eventuality resolution rule), we believed that special clause selection and clause
preference techniques would not influence the system performance. However, it
turned out that a good clause choice function may help to establish satisfia-
bility of a set of clauses faster. Apart from code improvements, TRP++ 2.0
differs from TRP++ 1.0 by a new clause choice function based on the length
of clauses. Shorter clauses are selected first; clauses with the same length are
sorted according to the maximal literal.

Figure 2 depicts the comparison of TRP++ 2.0 with TRP++ 1.0 and Vam-
pire 5.0 (the winner of CASC-18 in the MIX and FOF divisions). Vampire 2.0
and SPASS cannot compete with TRP++ 2.0 and are omitted from Figure 2. For
the system comparison we have selected series of randomly generated proposi-
tional formulae from the SATLIB benchmark problem library* (satisfiable uf20-
91, uf50-218, and flat30-60; and unsatisfiable uuf50-218, each consisting of 100
problems) and two first-order problems, ring3 and ring5, the arithmetic trans-
lation of two problems describing the behaviour of an algorithm [7] that orients
rings with 3 and 5 nodes, respectively. The tests have been performed on a PC

2 http://spass.mpi-sb.mpg.de/
3 http://www.math.miami.edu/~tptp/CASC/
4 http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/benchm.html

TRP++ 1.0 Vampire 5.0 TRP++ 2.0

median | total median | total median | total
uf20-91 0.02 2.14 0.01 1.42 0.01 1.46
flat30-60 11.55 2605.34 1.80 360.90 5.38 1129.35
uf50-218 197.01 | 27909.14 1.65 211.70 4.15 556.69
uuf50-218 109.11 | 19153.86 1.30 143.70 1.46 199.77
ring3 0.93 4.89 0.78
ring5 7191.63 5631.53 324.23

Fig. 2. TRP++ 2.0 performance

with a 1.3GHz AMD Athlon processor, 512MB main memory running RedHat
Linux 7.1.

As the data shows, TRP++ 2.0 possesses a fast step resolution engine, and
the use of a new choice function provides a significant speed-up compared to
TRP++ 1.0. One can expect that the use of more sophisticated atom orderings
and literal selection functions will further reduce the number of inference steps
that need to be performed, and may in some cases even eliminate a fundamental
problem that PLTL decision procedures based on temporal resolution have [10].

We thank the anonymous referees for their helpful comments and suggestions.

References

1. J. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings. In
SODA: ACM-SIAM Symposium on Discrete Algorithms, 1997.

2. C. Dixon. Search strategies for resolution in temporal logics. In Proc. CADE-13,
volume 1104 of LNAI, pages 673-687. Springer, 1996.

3. C. Dixon. Using Otter for temporal resolution. In Advances in Temporal Logic,
pages 149-166. Kluwer, 2000.

4. E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, chapter 16, pages 997-1072. Elsevier, 1990.

5. M. Fisher. A resolution method for temporal logic. In Proc. IJCAI’91, pages
99-104. Morgan Kaufman, 1991.

6. M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions
on Computational Logic, 2(1):12-56, 2001.

7. J.-H. Hoepman. Uniform deterministic self-stabilizing ring-orientation on odd-
length rings. In WDAG ’94, volume 857 of LNCS, pages 265—279. Springer, 1994.

8. G. J. Holzmann. The model checker Spin. IEEE Trans. on Software Engineering,
23(5):279-295, 1997.

9. U. Hustadt and B. Konev. TRP++: A temporal resolution prover. In Proc.
WIL’02. Available as http://wuw.1lsi.upc.es/~roberto/wilproceedings.html.

10. U. Hustadt and R. A. Schmidt. Scientific benchmarking with temporal logic deci-
sion procedures. In Proc. KR2002, pages 533-544. Morgan Kaufmann, 2002.

11. D. E. Knuth. The Art of Computer Programming. Volume III: Sorting and Search-
ing. Addison-Wesley, 1973.

12. A. S. Rao and M. P. Georgeff. Decision procedures for BDI logics. Journal of Logic
and Computation, 8(3):293-343, June 1998.

13. A. Riazanov and A. Voronkov. Limited resource strategy in resolution theorem
proving. Journal of Symbolic Computation, to appear.

14. M. P. Shanahan. Solving the Frame Problem. MIT Press, 1997.

15. A. Tansel, editor. Temporal Databases: theory, design, and implementation. Ben-
jamin/Cummings, 1993.

