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Abstract

We study the problem of learning description logic (DL) ontologies in Angluin et al.’s
framework of exact learning via queries. We admit membership queries (“is a given
subsumption entailed by the target ontology?”) and equivalence queries (“is a given
ontology equivalent to the target ontology?”). We present three main results: (1) ontologies
formulated in (two relevant versions of) the description logic DL-Lite can be learned
with polynomially many queries of polynomial size; (2) this is not the case for ontologies
formulated in the description logic EL, even when only acyclic ontologies are admitted;
and (3) ontologies formulated in a fragment of EL related to the web ontology language
OWL 2 RL can be learned in polynomial time. We also show that neither membership nor
equivalence queries alone are sufficient in cases (1) and (3).
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1. Introduction

In many subfields of artificial intelligence, ontologies are used to provide a common vocabulary
for the application domain of interest and to give a meaning to the terms in the vocabulary,
and to describe the relations between them. Description logics (DLs) are a prominent family
of ontology languages with a long history that goes back to Brachman’s famous knowledge
representation system KL-ONE in the early 1980s (Brachman and Schmolze, 1985). Today,
there are several widely used families of DLs that differ in expressive power, computational
complexity, and intended application. The most important ones are the ALC family which
aims at high expressive power, the EL family (Baader et al., 2005) which aims to provide
scalable reasoning, and the DL-Lite family (Calvanese et al., 2007; Artale et al., 2009) which
is tailored specifically towards applications in data access. In 2004, the World Wide Web
Committee (W3C) has standardised a DL of the ALC family as an ontology language for the
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web, called OWL. The standard was updated to OWL 2 in 2009, and since then comprises a
family of five languages including the OWL 2 profiles OWL 2 EL, OWL 2 QL, and OWL 2
RL. While OWL 2 EL is based on EL and OWL 2 QL on DL-Lite, OWL 2 RL is closely
related to the fragment of EL that is obtained by allowing only concept names on the
right-hand side of concept inclusions. In this paper we study DLs from the EL and DL-Lite
families. Designing an ontology for an application domain is a subtle, error-prone, and
time consuming task. From its beginnings, DL research was driven by the aim to provide
various forms of support for ontology engineers, assisting them in the design of high-quality
ontologies; examples include the ubiquitous task of ontology classification (Baader et al.,
2017), reasoning support for debugging ontologies (Wang et al., 2005; Schlobach et al.,
2007), support for modular ontology design (Stuckenschmidt et al., 2009), and checking
the completeness of the modelling in a systematic way (Baader et al., 2007). The same
aim is pursued by the field of ontology learning, where the goal is to use machine learning
techniques for various ontology engineering tasks such as to identify the relevant vocabulary
of the application domain (Cimiano et al., 2010; Wong et al., 2012), to learn an initial
version of the ontology that is then refined manually (Borchmann and Distel, 2011; Ma and
Distel, 2013; Jiménez-Ruiz et al., 2015), and to learn concept expressions as building blocks
of an ontology (Lehmann and Hitzler, 2010). For details we refer the reader to a collection
of articles in ontology learning edited by Lehmann and Völker (2014) and Section 7.

In this paper we concentrate on learning the full logical structure of a description logic
ontology. Our starting point is the observation that building a high-quality ontology relies
on the successful communication between an ontology engineer and a domain expert because
the former is typically not sufficiently familiar with the domain and the latter is rarely an
expert in ontology engineering. We study the foundations of this communication process
in terms of a simple communication model and analyse, within this model, the complexity
of constructing a correct and complete domain ontology. Our model rests on the following
assumptions:

1. The domain expert has perfect knowledge of the domain, but is not able to formalise
or communicate the target ontology O to be constructed.

2. The domain expert is able to communicate the vocabulary (predicate symbols, which
in the case of DLs take the form of concept and role names) of O and shares it with
the ontology engineer. The ontology engineer knows nothing else about the domain.

3. The ontology engineer can pose queries to the domain expert which the domain expert
answers truthfully. The main queries posed by the ontology engineer are of the form

“Is the concept inclusion C v D entailed by O?”

4. In addition, the ontology engineer needs a way to find out whether the ontology H
that has been constructed so far, called the hypothesis ontology, is complete. If not,
he requests an example illustrating the incompleteness. The engineer can thus ask:

“Is the ontology H complete? If not, then return a concept inclusion C v D
entailed by O but not by H.”



We are then interested in whether the target ontology O can be constructed with only
polynomially many queries of polynomial size (polynomial query learnability) or, even better,
with overall polynomial time (polynomial time learnability). In both cases, the polynomial
is in the size of the ontology to be constructed plus the size of the counterexamples returned
by the domain expert. Without taking into account the latter, one can never expect to
achieve polynomial time learnability because the domain expert could provide unnecessarily
large counterexamples. Note that polynomial time learnability implies polynomial query
learnability, but that the converse is false because polynomial query learnability allows the
ontology engineer to run computationally costly procedures between posing queries.

The above model is an instance of Angluin et al.’s framework of exact learning via
queries (Angluin, 1987b). In this context, the queries mentioned in Point 3 above are called
membership queries. The queries in Point 4 are a form of equivalence queries. In Angluin’s
framework, however, such queries are slightly more general:

“Is the hypothesis ontology H equivalent to the target ontology O? If not,
then return a concept inclusion C v D entailed by O but not by H (a positive
counterexample) or vice versa (a negative counterexample).”

In our upper bounds (that is, polynomial learnability results), we admit only queries of the
more restricted form in Point 4 above: the learning algorithm is designed in a way so that
the hypothesis ontology H is a consequence of the target ontology O at all times, and thus
the only meaningful equivalence query is a query of the form “Is H already complete?”.
Our lower bounds (results saying that polynomial learnability is impossible), in contrast,
apply to unrestricted equivalence queries, that is, they do not assume that the hypothesis is
implied by the target. In this way, we achieve maximum generality.

Within the setup outlined above, we study the following description logics:

(a) DL-Lite∃R, which is a member of the DL-Lite family that admits role inclusions and
allows nested existential quantification on the right-hand side of concept inclusions;

(b) the extension DL-Lite∃R,horn of DL-Lite∃R with conjunction on the left-hand side of
concept inclusions;

(c) the basic member EL of the EL family;

(d) the fragment ELlhs of EL where only concept names (but no compound concept
expressions) are admitted on the right-hand side of concept inclusions.

We remark that DL-Lite∃R is closely related to OWL 2 QL, which is based on the fragment
of DL-Lite∃R that does not allow nested existential quantification on the right-hand side
of concept inclusions. In this more restricted case, though, polynomial learnability is
uninteresting. In fact, the number of concept inclusions formulated in a fixed finite vocabulary
Σ is bounded polynomially in the size of Σ instead of being infinite as in the description
logics studied in this paper; consequently, TBoxes are trivially learnable in polynomial
time, even when only membership queries (but no equivalence queries) are available or vice
versa. The extension DL-Lite∃R,horn of DL-Lite∃R is not part of the OWL 2 QL standard, but
admitting conjunctions on the left-hand side of concept inclusions is a useful and widely
considered extension of basic DL-Lite dialects (Artale et al., 2009). ELlhs is a significant part
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Figure 1: Summary of main results

of the OWL 2 RL language and can be viewed as a natural fragment of Datalog. An even
better approximation of OWL 2 RL would be the extension of ELlhs with inverse roles, but
polynomial learnability in that language remains an open problem. And finally, unrestricted
EL can be viewed as a logical core of the OWL 2 EL language.

After introducing preliminaries in Section 2, we study exact learning of DL-Lite∃R
ontologies in Section 3, establishing polynomial query learnability. We strengthen this result
to DL-Lite∃R,horn in Section 4, using a significantly more subtle algorithm. It remains open

whether DL-Lite∃R and DL-Lite∃R,horn admit polynomial time learnability. Our algorithms do
not yield such a stronger result since they use subsumption checks to analyse counterexamples
provided by the oracle and to integrate them into the current hypothesis ontology, and
subsumption is NP-complete in these DLs (Kikot et al., 2011). In Section 5, we show that
ELlhs ontologies are learnable in polynomial time, a result that extends the known polynomial
time learnability of propositional Horn formulas (Angluin et al., 1992), which correspond
to EL ontologies without existential restrictions. In fact, our algorithms take inspiration
from learning algorithms for propositional Horn formulas and combine the underlying ideas
with modern concepts from DL such as canonical models, simulations, and products. The
algorithm for ELlhs also uses subsumption checks, which in this case does not get in the way
of polynomial time learnability since subsumption in ELlhs can be decided in polynomial
time.

In Section 6, we then establish that EL ontologies are not polynomial query learnable.
Note that the fragment ELrhs of EL, which is symmetric to ELlhs and only admits concept
names on the left-hand side of concept inclusions is a fragment of DL-Lite∃R. Together,
our upper bounds for DL-Lite∃R and ELlhs thus establish that failure of polynomial query
learnability of EL ontologies is caused by the interaction between existential restrictions
on the left- and right-hand sides of concept inclusions. Interestingly, our result already
applies to acyclic EL TBoxes, which disallow recursive definitions of concepts and are of
a rather restricted syntactic form. However, the result does rely on concept inclusions as
counterexamples that are of a form not allowed in acyclic TBoxes. We also show that
ontologies formulated in DL-Lite∃R,horn and in ELlhs are neither polynomial query learnable
with membership queries alone nor with equivalence queries alone; corresponding results for
propositional Horn formulas are well known (Frazier and Pitt, 1993; Angluin et al., 1992;
Angluin, 1987a; Arias and Balcázar, 2011). Figure 1 summarises the main results obtained
in this paper.

In Section 7 we provide an extensive discussion of related work on the exact learning of
logical formulas and theories, and we close the paper with a discussion of open problems. A
small number of proofs are deferred to an appendix.



2. Preliminaries

We introduce the description logics studied in this paper, then consider a representation of
concept expressions in terms of labelled trees and show how important semantic notions
such as subsumption between concept expressions can be characterised by homomorphisms
between the corresponding trees. This also involves introducing canonical models, which are
an important tool throughout the paper. Finally, we formally introduce the framework of
exact learning.

2.1 Description Logics

Let NC be a countably infinite set of concept names (denoted by upper case letters A, B, etc)
and let NR be a countably infinite set of role names disjoint from NC (denoted by lower case
letters r, s, etc). Concept and role names can be regarded as unary and binary predicates,
respectively. In description logic, constructors are used to define compound concept and
role expressions from concept and role names. In this paper, the only role constructor is the
inverse role constructor: for r ∈ NR, the expression r− is the inverse role of r. Semantically,
r− represents the converse of the binary relation r. A role expression is a role name or an
inverse role. We set r− := s if r = s− for a role name s. For brevity, we will typically speak
of roles rather than of role expressions. The concept constructors used in this paper are >
(everything), u (conjunction), and ∃r.C (qualified existential restriction). Formally, concept
expressions C are defined according to the following syntactic rule:

C,D := > | A | C uD | ∃r.C

where A is a concept name and r is a role. For example, ∃hasChild.>u∃gender.Male denotes
the class of individuals who have a child and whose gender is male.

Terminological knowledge is captured by finite sets of inclusions between concept ex-
pressions or roles. Specifically,

• a concept inclusion (CI) takes the form C v D, where C and D are concept expressions,
and

• a role inclusion (RI) takes the form r v s, where r and s are roles.

An ontology or TBox is a finite set of CIs and RIs.1 We use C ≡ D as an abbreviations
for the two CIs C v D and D v C and likewise for r ≡ s; we speak of concept equivalences
(CEs) and role equivalences (REs), respectively.

1. In the description logic literature, CIs of the form introduced here are often called ELI CIs to distinguish
them from CIs that use concept expressions formulated in other description logics. The TBoxes are called
ELIH TBoxes (TBoxes that consist of ELI CIs and RIs).



Example 1 Consider the following TBox:

Prof v ∃supervisor of.Student u ∃conduct research.> (1)

Graduate ≡ ∃has degree.> (2)

GraduateStudent ≡ Student u Graduate (3)

GraduateStudent v ∃supervisor of−.Prof (4)

supervisor of v advisor of (5)

CS Graduate ≡ ∃has degree.CS Degree (6)

The CI in Line 1 states that every professor supervises students and conducts research. Notice
that we do not specify the specific area of research, hence we use an unqualified existential
restriction of the form ∃r.>. The CE in Line 2 defines a graduate as anyone who has a
degree. The CE in Line 3 defines a graduate student as a student who is a graduate. The CI
in Line 4 states that graduate students are supervised by professors. Notice that we use the
inverse role of supervisor of here. Line 5 shows an RI which states that every supervisor is
an advisor. The CE in the last line defines a computer science graduate as someone with a
degree in computer science.

A signature is a set of concept and role names and we use ΣT to denote the signature of
the TBox T , that is, the set of concept and role names that occur in it. The size |C| of a
concept expression C is the length of the string that represents C, where concept names
and role names are considered to be of length one. The size |T | of a TBox T is defined as∑

CvD∈T |C|+ |D|.

The semantics of concept expressions and TBoxes is defined as follows (Baader et al.,
2017). An interpretation I = (∆I , ·I) is given by a non-empty set ∆I (the domain of I) and
a mapping ·I that maps every concept name A to a subset AI of ∆I and every role name
r to a subset rI of ∆I ×∆I . The interpretation rI of an inverse role r = s− is given by
rI = {(d, d′) | (d′, d) ∈ sI} and the interpretation CI of a concept expression C is defined
inductively by

>I = ∆I

(C1 u C2)I = CI1 ∩ CI2
(∃r.C)I = {d ∈ ∆I | there exists d′ ∈ CI with (d, d′) ∈ rI}.

An interpretation I satisfies a concept expression C if CI is not empty. It satisfies the
CI C v D if CI ⊆ DI , written as I |= C v D. Similarly, I satisfies RI r v s if rI ⊆ sI ,
written as I |= r v s. I is a model of a TBox T if it satisfies all CIs and RIs in T . A TBox
T entails a CI or RI α, in symbols T |= α, if α is satisfied in every model of T . Concept
expressions C and D are equivalent w.r.t. T , written T |= C ≡ D, if T |= C v D and
T |= D v C; equivalence of roles r and s is defined accordingly, written T |= s ≡ r. TBoxes
T and T ′ are logically equivalent, in symbols T ≡ T ′, if T |= α for all α ∈ T ′ and vice versa.
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Figure 2: Illustration to Example 2.

Example 2 Consider the TBox T from Example 1 and the interpretation I that is illustrated
in Figure 2 and defined by setting ∆I = {d0, . . . , d5} and

ProfI = {d2}, conduct researchI = {(d2, d3)}
StudentI = {d4}, supervisor ofI = {(d2, d4)},

Graduate StudentI = {d4}, advisor ofI = {(d2, d4)},
GraduateI = {d4, d0}, has degreeI = {(d4, d5), (d0, d1)},

CS GraduateI = {d0}, CS DegreeI = {d1}.

It is easy to see that I is a model of T . Moreover, I 6|= Graduate v CS Graduate as
GraduateI = {d4, d0} but CS GraduateI = {d0}, thus T 6|= Graduate v CS Graduate. It can
be shown that T |= CS Graduate v Graduate.

It is ExpTime-complete to decide, given a TBox T and a concept inclusion C v D, whether
T |= C v D (Baader et al., 2008); this reasoning problem is known as subsumption. Because
of this high complexity, the profiles of OWL 2 are based on syntactically more restricted
description logics in which subsumption is less complex. We next introduce a few relevant
such logics. A basic concept is a concept name or a concept expression of the form ∃r.>,
where r is a role. For example, ∃hasChild−.> is a basic concept, but ∃hasChild−.Graduate is
not.

DL-Lite∃R. A DL-Lite∃R CI takes the form

B v C

where B is a basic concept and C is a concept expression. A DL-Lite∃R inclusion is a
DL-Lite∃R CI or an RI. A DL-Lite∃R TBox is a finite set of DL-Lite∃R inclusions.

Example 3 Lines (1), (4), and (5) of Example 1 are DL-Lite∃R inclusions and Line (2)
abbreviates the two DL-Lite∃R CIs Graduate v has degree.> and has degree.> v Graduate.
Lines (3) and (6) do not fall within DL-Lite∃R.

DL-Lite∃R,horn. In the extension DL-Lite∃R,horn of DL-Lite∃R, CIs take the form

B1 u · · · uBn v C

where B1, . . . , Bn are basic concepts and C is a concept expression. A DL-Lite∃R,horn TBox

T is a finite set of DL-Lite∃R,horn CIs and RIs. Both DL-Lite∃R and DL-Lite∃R,horn have been
investigated in detail (Artale et al., 2009).



Example 4 As Lines (1), (2), (4) and (5) from Example 1 fall within DL-Lite∃R, they
also fall within DL-Lite∃R,horn. Line (3) falls within DL-Lite∃R,horn. Line (6) is not in

DL-Lite∃R,horn.

EL. An EL concept expression is a concept expression that does not use inverse roles. An
EL concept inclusion is a CI of the form

C v D

where C and D are EL concept expressions. An EL TBox is a finite set of EL CIs. Thus, EL
does neither admit role inclusions nor inverse roles. In contrast to DL-Lite∃R,horn, however, it
allows existential restrictions ∃r.C with C 6= > on the left-hand side of CIs.

Example 5 Inclusions (1), (2), (3) and (6) from Example 1 are EL inclusions. Inclusion
(5) is not an EL inclusion.

Subsumption is NP-complete in DL-Lite∃R and in DL-Lite∃R,horn (Kikot et al., 2011; Calvanese
et al., 2007; Artale et al., 2009). Subsumption in EL is in PTime (Baader et al., 2005) and
this is still true if RIs that do not use inverse roles are admitted in the TBox. Given a TBox
T and an RI r v s, deciding whether T |= r v s is possible in PTime in all description
logics considered in this paper. In fact, T |= r v s if, and only if, there exists a sequence
r0, . . . , rn of roles such that r = r0, s = rn, and for every i < n either ri v ri+1 ∈ T or
r−i v r−i+1 ∈ T . Our learning algorithms will carry out various subsumption checks as a
subprocedure, as detailed later on.

2.2 Tree Representation of Concept Expressions

To achieve an elegant and succinct exposition of our learning algorithms, it will be convenient
to represent concept expressions C as a finite directed tree TC whose nodes are labelled with
sets of concept names and whose edges are labelled with roles, and to describe manipulations
of concept expressions in terms of manipulations of the corresponding tree such as merging
nodes, replacing subgraphs, modifying node and edge labels, etc. We generally use ρC to
denote the root node of the tree TC . In detail, TC is defined as follows. For C = >, the tree
TC has a single node d with label l(d) = ∅; if C = A, where A is a concept name, then TC
has a single node d with l(d) = {A}; if C = ∃r.D, then TC is obtained from TD by adding a
new root d0 and an edge from d0 to the root d of TD with label l(d0, d) = r (we then call d
an r-successor of d0); if C = D1 uD2, then TC is obtained by identifying the roots of TD1

and TD2 .

Example 6 For C = Student u ∃has degree.∃has degree−.Graduate Student, TC has three
nodes, e0, e1, e2, where e0 is the root ρC of TC , e1 is a successor of e0 and e2 is a successor
of e1, the labelling of the nodes is given by l(e0) = {Student}, l(e1) = ∅, and l(e2) =
{Graduate Student}, and the labelling of the edges is given by l(e0, e1) = has degree and
l(e1, e2) = has degree−, see Figure 3 (left).
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Figure 3: Illustration to Examples 6 (left) and 7 (right).

Conversely, every labelled finite directed tree T of the described form gives rise to a concept
expression CT in the following way: if T has a single node d labelled by {A1, . . . , An}, then
CT = A1 u · · · uAn (we treat > as the empty conjunction here, so if l(d) = ∅ then CT = >).
Inductively, let d be the root of T labelled with l(d) = {A1, . . . , An}, let d1, . . . , dm be
the successors of d, and let l(d, d1) = r1, . . . , l(d, dm) = rm. Assume Cd1 , . . . , Cdm are the
concept expressions corresponding to the subtrees of T with roots d1, . . . , dm, respectively.
Then CT = A1 u · · · uAn u ∃r1.Cd1 u · · · u ∃rm.Cdm .

Example 7 Let T be the tree with root e3 labelled by {Prof} and successors e4, e5 labelled by
∅ and {Graduate}, respectively, and with edge labelling given by l(e3, e4) = conduct research
and l(e3, e5) = supervisor of. Then

CT = Prof u ∃conduct research.> u ∃supervisor of.Graduate;

see Figure 3 (right).

In what follows, we will not always distinguish explicitly between C and its tree rep-
resentation TC which allows us to speak, for example, about the nodes and subtrees of a
concept expression.

One important use of the tree representation of concept expressions is that both the
truth relation ‘d ∈ CI ’ and the entailment ‘T |= C v D’ can be characterised in terms of
homomorphisms between labelled trees and interpretations. A mapping h from a tree TC
corresponding to a concept expression C to an interpretation I is a homomorphism if A ∈ l(d)
implies h(d) ∈ AI for every concept name A and r = l(d, d′) implies (h(d), h(d′)) ∈ rI for
all role names r. The following characterisation of the truth relation d ∈ CI by means of
homomorphisms is well-known.

Lemma 8 Let I be an interpretation, d ∈ ∆I , and C a concept expression. Then d ∈ CI
if, and only if, there is a homomorphism from TC to I mapping ρC to d.

The proof is by a straightforward induction on the structure of C (Baader et al., 1999).

Example 9 Consider the interpretation I from Example 2 and the tree representations of the
concept expressions given in Figure 3. It can be seen that functions g and h defined as g(e0) =
d4, g(e1) = d5, g(e2) = d4 and h(e3) = d2, h(e4) = d3, h(e5) = d4 are homomorphisms
and so, by Lemma 8, d4 ∈ (Student u ∃has degree.∃has degree−.Graduate Student)I and
d2 ∈ (Prof u ∃conduct research.> u ∃supervisor of.Graduate)I .



It is also standard to characterise the subsumption relation ∅ |= C v D (that is, subsumption
relative to the empty TBox) by means of homomorphisms between the tree representations
TD and TC . A homomorphism h from labelled tree T1 to labelled tree T2 is a mapping from
the nodes of T1 to the nodes of T2 such that A ∈ l(d) implies A ∈ l(h(d)) for every concept
name A and r = l(d, d′) implies r = l(h(d), h(d′)) for every role r.

Lemma 10 Let C and D be concept expressions. Then ∅ |= C v D if, and only if, there is
a homomorphism from TD to TC that maps ρD to ρC .

The ‘if’ direction is essentially a consequence of Lemma 8 and the fact that the composition
of two homomorphisms is again a homomorphism. For the ‘only if’ direction, one can
consider TC as an interpretation I and apply Lemma 8 (Baader et al., 1999).

Next, we characterise subsumption in the presence of TBoxes in terms of homomorphisms.
To achieve this, we make use of the canonical model IC0,T of a concept expression C0 and a
TBox T . If T = ∅, then we want IC0,T to be TC0 viewed as a tree-shaped interpretation
which we denote by IC0 rather than by IC0,T . More precisely, the domain of IC0 is the set
of nodes of TC0 and

d ∈ AIC0 iff A ∈ l(d), for all d ∈ ∆IC0 and concept names A

(d, d′) ∈ rIC0 iff r = l(d, d′), for all d, d′ ∈ ∆IC0 and roles names r

We call the root ρC0 of TC0 the root of IC0 . If T 6= ∅, then IC0,T is obtained by extending
IC0 so that the CIs in T are satisfied. For example, if T = {A v ∃r.B} and C0 = A, then
IC0 is a single node ρC0 with AIC0 = {ρC0} and XIC0 = ∅ for all concept and role names
X distinct from A. To define IC0,T we add a node d to ∆IC0 and set BIC0,T = {d} and
rIC0,T = {(ρC0 , d)}. In general, IC0,T is defined as the limit of a sequence I0, I1, . . . of
interpretations, where I0 = IC0 . For the inductive definition of the sequence, assume that
In has been defined. Then obtain In+1 by applying one of the following rules once:

1. if C v D ∈ T and d ∈ CIn but d 6∈ DIn , then take the interpretation ID and add it
to In by identifying its root ρC with d. In more detail, assume that ∆In ∩∆IC = {d}
and d = ρC and define In+1 by setting, for all concept names A and role names r:

∆In+1 = ∆In ∪∆IC , AIn+1 = AIn ∪AIC , rIn+1 = rIn ∪ rIC ;

2. if r v s ∈ T and (d, d′) ∈ rIn but (d, d′) 6∈ sIn , then define In+1 as In except that
sIn+1 := sIn ∪ {(d, d′)} if s is a role name; otherwise there is a role name s0 with

s = s−0 and we define In+1 as In except that s
In+1

0 = sIn0 ∪ {(d′, d)}.

We assume that rule application is fair, that is, if a rule is applicable in a certain place, then
it will indeed eventually be applied there. If for some n > 0 no rule is applicable then we set
In+1 = In. We obtain IC0,T by setting for all concept names A and role names r:

∆IC0,T =
⋃
n≥0

∆In , AIC0,T =
⋃
n≥0

AIn , rIC0,T =
⋃
n≥0

rIn .
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Figure 4: Canonical model construction for Example 11.

Note that the interpretation IC0,T obtained in the limit is tree-shaped and might be infinite.2

The following example illustrates the definition of IC0,T .

Example 11 Consider the following TBox T :

Prof v ∃supervisor of.Student (7)

Prof v ∃conduct research.> (8)

Graduate v ∃has degree.> (9)

∃has degree.> v Graduate (10)

supervisor of v advisor of (11)

and the concept expression

C0 = Prof u ∃conduct research.> u ∃supervisor of.Graduate.

Figure 4 illustrates the steps of the canonical model construction with I0 being IC0 and I4

being the canonical model IC0,T .

The following lemma provides the announced characterisation of subsumption in the presence
of TBoxes.

Lemma 12 Let T be a TBox and C a concept expression. Then IC,T is a model of T and
the following conditions are equivalent, for every concept expression D:

1. T |= C v D;

2. ρC ∈ DIC,T ;

3. there is a homomorphism from TD to IC,T that maps ρD to ρC .

2. The exact shape of IC0,T depends on the order of rule applications. However, all possible resulting
interpretations IC0,T are homomorphically equivalent and, as a consequence, the order of rule application
is not important for our purposes.



The proof is completely standard, see, for example, the introduction by Krötzsch (2012).
We only give a high-level overview. Using the construction of IC,T , it is not hard to show
that IC,T is a model of T and that ρC ∈ CIC,T . This implies ‘1 ⇒ 2’ and ‘2 ⇒ 3’ follows
from Lemma 8. For ‘3 ⇒ 1’, one can show that for any model I of T and any d ∈ CI ,
there is a homomorphism from IC,T to I that maps ρC to d. In fact, one constructs a
homomorphism to I from each of the interpretations I0, I1, . . . built during the construction
of IC,T , which is not hard by analysing the rules applied during that construction. The
homomorphism built for each In+1 extends that for In and thus we can take the unions of
all those homomorphisms to obtain a homomorphism from IC,T to I. It remains to compose
homomorphisms and apply Lemma 8.

We are only going to use canonical models and Lemma 12 in the context of DL-Lite∃R and
DL-Lite∃R,horn. Next, we identify a more subtle property of canonical models of DL-Lite∃R
and DL-Lite∃R,horn TBoxes that we need later on. Very roughly speaking, it states a form
of locality which is due to the fact that existential restrictions on the left-hand side of CIs
in DL-Lite∃R,horn are unqualified. Assume that d ∈ (∃r.D)IC,T for the canonical model IC,T
of a concept expression C and TBox T . Assume d ∈ ∆IC . We know that there exists a
homomorphism h from T∃r.D to IC,T mapping ρ∃r.D to d. Then either h maps some elements
of TD into ∆IC or it maps the whole tree TD into ∆IC,T \∆IC . We are interested in the latter
case. The following lemma states that if T is a DL-Lite∃R TBox, then there is a basic concept
B with d ∈ BIC such that T |= B v ∃r.D. Thus, the question whether d ∈ (∃r.D)IC,T

only depends on the concept names A with d ∈ AIC and the roles r with d ∈ (∃r.>)IC . If
T is a DL-Lite∃R,horn TBox, it might not be sufficient to take a single basic concept but at

least a set of basic concepts suffices (corresponding to the fact that DL-Lite∃R,horn admits
conjunctions on the left-hand side of CIs). This observation does not hold for EL TBoxes
and is ultimately the reason for the fact that one cannot polynomially learn EL TBoxes.
The following example illustrates this observation.

Example 13 Consider the EL TBox T = {∃r.A v A,A v ∃r.B} and let C = ∃r.∃r.A.
Then ρC ∈ (∃r.B)IC,T since T |= C v ∃r.B. We therefore find a homomorphism h from
T∃r.B to IC,T mapping ρ∃r.B to ρC . This homomorphism maps TB (which has a single
node only) into ∆IC \∆IC,T . The only basic concept B with ρC ∈ BIC is ∃r.> but clearly
T 6|= ∃r.> v ∃r.B and so the observation we sketched above does not hold for EL.

We present this result in a more formal way. Let T1 and T2 be trees with labelling functions l1
and l2, respectively. We call T1 a subtree of T2 if the following conditions hold: T1 ⊆ T2, l1 is
the restriction of l2 to T1, and if d ∈ T1 and d′ is a successor of d in T2, then d′ is a successor
of d in T1 as well. The one-neigbourhood NIC (d) of d ∈ ∆IC is the set of concept names A
with d ∈ AIC and basic concepts ∃r.> such that there exists d′ ∈ ∆IC with (d, d′) ∈ rIC .

Lemma 14 Let T be a DL-Lite∃R,horn TBox, D = ∃r.D′ and assume h : TD → IC,T is

such that h(ρD) = d ∈ ∆IC and the image of the subtree TD′ of TD under h is included in
∆IC,T \∆IC . Then there exists I ⊆ NIC (d) such that T |=

d
E∈I E v D. Moreover, if T is

a DL-Lite∃R TBox, then there exists such a set I ⊆ NIC (d) with a single concept.



Proof (sketch) This property of canonical models for DL-Lite∃R,horn has been proved implicitly
in many papers, for example the work of Artale et al. (2009). We give a sketch. Let N be
the conjunction of all E ∈ NIC (d) and assume T 6|= N v D. Consider the canonical model
IN,T . By definition, the one-neighbourhoods of ρN in IN,T and d in IC,T coincide. Now
observe that the canonical model of any concept expression C0 and TBox T is obtained
from IC0 by hooking tree-shaped interpretations Id with root d to every d in IC0 . As
in DL-Lite∃R,horn the concept expressions on the left-hand side of CIs are basic concepts,
the interpretations Id only depend on the one-neighbourhood NIC0

(d) of d in IC0 . Thus,
the tree-shaped interpretations hooked to ρN in IN,T and to d in IC,T coincide and the
homomorphism h given in Lemma 14 provides a homomorphism h : TD → IN such that
h(ρD) = ρN . By Lemma 12, T |= N v D. We have derived a contradiction. For DL-Lite∃R
one only requires a single member of NIC (d) since the left-hand side of CIs in DL-Lite∃R
consists of a single basic concept only. o

We close the introduction of description logics with some comments about the choice of our
languages. In the DL literature it is not uncommon to consider the weaker variant DL-LiteR
of DL-Lite∃R in which only basic concepts are admitted on the right-hand side of CIs, but
compound concepts are not. This is often without loss of generality since every DL-Lite∃R
TBox can be expressed in DL-LiteR by using additional role names; in this way, standard
DL-Lite∃R reasoning tasks such as subsumption and conjunctive query answering can be
reduced in polynomial time to the corresponding tasks for DL-LiteR. Such a reduction is
not possible in the framework of exact learning that we are concerned with in this paper. In
fact, in contrast to DL-Lite∃R TBoxes, TBoxes in DL-LiteR are trivially polynomial time
learnable using either membership queries only or equivalence queries only as there are only
polynomially many CIs and RIs over a given signature.

2.3 Exact Learning

We introduce the relevant notation for exact learning. A learning framework F is a triple
(X,L, µ), where X is a set of examples (also called domain or instance space), L is a set of
concepts,3 and µ is a mapping from L to 2X . We say that x ∈ X is a positive example for
l ∈ L if x ∈ µ(l) and a negative example for l if x 6∈ µ(l).

We give a formal definition of polynomial query and time learnability within a learning
framework. Let F = (X,L, µ) be a learning framework. We are interested in the exact
identification of a target concept representation l ∈ L by posing queries to oracles. Let
MEMF,l be the oracle that takes as input some x ∈ X and returns ‘yes’ if x ∈ µ(l) and ‘no’
otherwise. A membership query is a call to the oracle MEMF,l. Similarly, for every l ∈ L, we
denote by EQF,l the oracle that takes as input a hypothesis concept representation h ∈ L and
returns ‘yes’ if µ(h) = µ(l) and a counterexample x ∈ µ(h)⊕µ(l) otherwise, where ⊕ denotes
the symmetric set difference. There is no assumption regarding which counterexample in
µ(h)⊕ µ(l) is chosen by the oracle. An equivalence query is a call to the oracle EQF,l.

A learning algorithm for F is a deterministic algorithm that takes no input, is allowed
to make queries to MEMF,l and EQF,l (without knowing what the target l to be learned
is), and that eventually halts and outputs some h ∈ L with µ(h) = µ(l). We say that F is

3. The similarity of this name to ‘concept expression’ is accidental and should not be taken to mean that
these two notions are closely related. Both is standard terminology in the respective area.



exact learnable if there is a learning algorithm for F and that F is polynomial query learnable
if it is exact learnable by an algorithm A such that at every step the sum of the sizes of
the inputs to membership and equivalence queries made by A up to that step is bounded
by a polynomial p(|l|, |x|), where l is the target and x ∈ X is the largest counterexample
seen so far (Arias, 2004). Finally, F is polynomial time learnable if it is exact learnable
by an algorithm A such that at every step (we count each call to an oracle as one step of
computation) of computation the time used by A up to that step is bounded by a polynomial
p(|l|, |x|), where l ∈ L is the target and x ∈ X is the largest counterexample seen so far.
Clearly, a learning framework F that is polynomial time learnable is also polynomial query
learnable.

The aim of this paper is to study learnability of description logic TBoxes. In this context,
each DL L gives rise to a learning framework (X,L, µ), as follows: L is the set of all TBoxes
formulated in L, X is the set of all CIs and RIs formulated in L, and µ(T ) = {α ∈ X | T |= α}
for every T ∈ L. Observe that µ(T ) = µ(T ′) iff T ≡ T ′, for all TBoxes T and T ′. We say
that L TBoxes are polynomial query learnable if the learning framework defined by L is
polynomial query learnable, and likewise for polynomial time learnability. What does not
show up directly in this representation is our assumption that the signature of the target
TBox is known to the learner. Note that this is a standard assumption. For example, when
learning propositional Horn formulas, it is common to assume that the variables in the target
formula are known to the learner.

3. Learning DL-Lite∃R TBoxes

We prove that DL-Lite∃R TBoxes are polynomial query learnable. If inverse roles are
disallowed in CIs and RIs of the target TBox then our algorithm runs in polynomial time and
thus shows that TBoxes in this restricted language are polynomial time learnable. Without
this restriction, polynomial time learnability remains open.

To simplify the presentation, we make two minor assumptions about the target TBox T .
We will show later how these assumptions can be overcomed. First, we assume that T does
not entail non-trivial role equivalences, that is, there do not exist distinct roles r and s such
that T |= r ≡ s. This allows us to avoid dealing with classes of equivalent roles, simplifying
notation. The second requirement is a bit more subtle. A concept inclusion is in reduced
form if it is between basic concepts or its left-hand side is a concept name. A TBox T is
in named form if all CIs in it are in reduced form and it contains a concept name Ar such
that Ar ≡ ∃r.> ∈ T , for each role r. We assume that the target TBox is in named form and
that all CIs considered by the learner are in reduced form. In particular, counterexamples
returned by the oracle are immediately converted into this form.

Example 15 Although the TBox T from Example 11 does not entail role equivalences
and all its CIs are in reduced form, it is not in named form. To fix this, we introduce
concept names Asupervisor of , Aconduct research and Aadvisor of and extend T with the following
equivalences:

Asupervisor of ≡ ∃supervisor of.> (12)

Aconduct research ≡ ∃conduct research.> (13)



Algorithm 1 Näıve learning algorithm for DL-Lite∃R

Input: A DL-Lite∃R TBox T in named form given to the oracle; ΣT given to the learner.

Output: TBox H, computed by the learner, such that T ≡ H.

1: Compute Hbasic = {r v s | T |= r v s} ∪ {B1 v B2 | T |= B1 v B2, B1, B2 basic}
2: Set Hadd = ∅
3: while Hbasic ∪Hadd 6≡ T do

4: Let A v C be the returned positive counterexample for T relative to Hbasic ∪Hadd
5: if there is A v C ′ ∈ Hadd then

6: Replace A v C ′ by A v C u C ′ in Hadd
7: else

8: Add A v C to Hadd
9: end if

10: end while

11: return H = Hbasic ∪Hadd

Aadvisor of ≡ ∃advisor of.>. (14)

Notice that Graduate acts as a name for ∃has degree.> so no new definition is needed for
the role has degree. The TBox T ′ = T ∪ {(12), (13), (14)} is in named form.

To develop the learning algorithm it is instructive to start with a näıve version that
does not always terminate but which can be refined to obtain the desired algorithm. This
version is presented as Algorithm 1. Given the signature ΣT of the target TBox T , the
learner starts with computing the set Hbasic by posing to the oracle the membership query
‘T |= r v s?’ for all r, s ∈ ΣT and ‘T |= B1 v B2?’ for all basic concept B1, B2 over ΣT .
Observe that T |= Hbasic. Then it enters the main while loop. Note that the condition
‘Hbasic ∪Hadd 6≡ T ?’ in Line 3 is implemented using an equivalence query to the oracle, and
that A v C in Line 4 refers to the counterexample returned by the oracle in the case that
equivalence does not hold. The counterexample must be positive since we maintain the
invariant T |= Hbasic ∪Hadd throughout the run of the algorithm. If there is no CI of the
form A v C ′ in Hadd then A v C is added to Hadd, otherwise A v C uC ′ is (Lines 6 and 8).
The algorithm terminates when Hbasic ∪Hadd ≡ T , implying that the target TBox has been
learned.

Example 16 For the TBox T ′ from Example 15, Algorithm 1 first computes Hbasic which
coincides with T ′ except that Prof v ∃supervisor of.Student is not included since the concept
∃supervisor of.Student is not basic. In the main loop the only counterexamples to Hbasic ∪
Hadd ≡ T ′ are (up to logical equivalence modulo Hbasic) the CIs

Prof v ∃supervisor of.Student, Prof v ∃advisor of.Student.

If the oracle returns the first CI in the first iteration, the algorithm terminates immediately
having learned T ′. Otherwise the oracle first returns the second CI and then returns the
first CI in the second iteration. The algorithm terminates with

Hadd = {Prof v ∃supervisor of.Student u ∃advisor of.Student}



which is equivalent to T ′.

We now consider five examples on which this näıve algorithm fails to terminate after
polynomially many steps (or at all), each example motivating a different modification step
that is added to Algorithm 1 after Lines 4 and 5. The final, corrected algorithm is given as
Algorithm 2 below. Each modification step takes as input a counterexample A v C against
the equivalence Hbasic ∪ Hadd ≡ T and modifies it by posing membership queries to the
oracle to obtain a CI A′ v C ′ which is still a counterexample and has additional desired
properties. CIs satisfying all five additional properties will be called T -essential. The five
modification steps are of three different types:

1. two saturations steps: the underlying tree of TC is left unchanged but the labelling is
modified by adding concept names to node labels or replacing roles in edge labels;

2. two merging steps: nodes in the tree TC are merged, resulting in a tree with fewer
nodes;

3. a decomposition step: TC is replaced by a subtree or a subtree is removed from TC ,
and the concept name A on the left-hand side might be replaced.

The saturation and merging steps do not change the left-hand side A of the CI A v C and
result in a logically stronger CI A v C ′ in the sense that ∅ |= C ′ v C. In contrast, the
decomposition step can be regarded as a reset operation in which also the left-hand side
can change and which is logically not related to A v C. We start with an example which
motivates the first saturation step.

Example 17 Let

T = {A v ∃r.A} ∪ Tnf,

where Tnf = {Ar ≡ ∃r.>} ensures that T is in named form. First, Algorithm 1 computes
Hbasic. Afterwards the oracle can provide for the n-th equivalence query in the while
loop the positive counterexample A v ∃rn+1.>, for any n ≥ 1 (here we set inductively
∃rm+1.> = ∃r.∃rm.> and ∃r1.> = ∃r.>). Thus, the algorithm does not terminate.

Informally, the problem for the learner in Example 17 is that the concepts ∃rn.> used in
the counterexamples A v ∃rn.> get larger and larger, but still none of the counterexamples
implies A v ∃r.A. We address this problem by saturating TC with implied concept names.
For the following discussion, recall that we do not distinguish between the concept expression
C and its tree representation TC . For example, if we say that C ′ is obtained from C by
adding a concept name B to the label of node d in C, then this stands for: C ′ is the concept
expression corresponding to the tree obtained from TC by adding B to the label of d in TC .

Definition 18 (Concept saturation for T ) A CI A v C is concept saturated for T if
T |= A v C and T 6|= A v C ′ for any C ′ obtained from C by adding a concept name to the
label of some node of C. A CI A v C ′ is a concept saturation for T of a CI A v C if it is
concept saturated for T and C ′ is obtained from C by adding concept names to the labels of
some nodes in C.



Observe that the learner can compute a concept saturation A v C ′ for T from a counterex-
ample A v C by posing polynomially many membership queries to the oracle: it simply
asks for any node d in TC and concept name E ∈ ΣT whether T |= A v CE,d, where CE,d

is obtained from C by adding E to the label of d. If the answer is positive, it replaces C
by CE,d and proceeds. Note that there can be several concept saturations of a given CI
A v C for a TBox T . Consider, for example, T = {A v ∃r.(B u ∃r.>), A v ∃r.∃r.B} and
the CI A v ∃r.∃r.>. Then both A v A u ∃r.(B u ∃r.>) and A v A u ∃r.∃r.B are concept
saturations of A v ∃r.∃r.> for T since T 6|= A v ∃r.(B u ∃r.B).

Example 19 (Example 17 continued) The CIs A v ∃rn.> are not concept saturated
for T . For example, for n = 2, a concept saturation of A v ∃r.∃r.> for T is given by
A v A u Ar u ∃r.(A u Ar u ∃r.(Ar u A)) (in fact, this is the only concept saturation for
T of A v ∃r.∃r.>). Now observe that if the CI A v C returned by the oracle to the first
equivalence query is transformed by the learner into a concept saturated CI (after Line 4),
then the TBox T = {A v ∃r.A}∪Tnf is learned in one step: the only possible counterexamples
returned by the oracle to the equivalence query Hbasic ≡ T are of the form A v C1u∃r.C2 for
some concepts C1 and C2. Concept saturation results in a concept of the form C ′1u∃r.(AuC ′2)
and {A v C ′1 u ∃r.(A u C ′2)} |= A v ∃r.A.

The following example motivates the second saturation step. Here and in the subsequent
examples we do not transform the TBoxes into named form as this does not effect the
argument and simplifies presentation.

Example 20 Consider for n ≥ 1 the TBoxes

Tn = {A v ∃e1.∃e2. . . .∃en.>} ∪ {ei v ri, ei v si | 1 ≤ i ≤ n}.

For M ⊆ {1, . . . , n}, set CM = ∃t1.∃t2. . . .∃tn.>, where ti = ri if i ∈ M and ti = si if
i /∈M . Then for the first 2n equivalence queries in the while loop the oracle can provide a
positive counterexample A v CM by always choosing a fresh set M ⊆ {1, . . . , n}.

Intuitively, the problem for the learner in Example 20 is that there are exponentially many
logically incomparable CIs that are entailed by Tn but do not entail A v ∃e1.∃e2. . . .∃en.>.
A step towards resolving this problem is to replace the roles ri and si by the roles ei in the
counterexamples A v CM .

Definition 21 (Role saturation for T ) A CI A v C is role saturated for T if T |= A v
C and T 6|= A v C ′ for any C ′ obtained from C by replacing in some edge label a role r by
a role s 6= r with T |= s v r. A CI A v C ′ is a role saturation for T of a CI A v C if it is
role saturated for T and C ′ is obtained from C by replacing in some edge labels a role r by a
role s with T |= s v r.

Similarly to concept saturation, the learner can compute a role saturated A v C ′ from a
counterexample A v C by posing polynomially many membership queries. Again, there can
be several role saturations of a given A v C for a TBox T . For example, if

T = {s1 v r, s2 v r,A v ∃s1.B,A v ∃s2.B},
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Figure 5: Tree representation of C{1,3} and homomorphism to ∃r.> u ∃s.> u ∃e.B.

then A v ∃s1.B and A v ∃s2.B are role saturations of A v ∃r.B for T . Observe that in
Example 20 the single role saturation of any A v CM is A v ∃e1.∃e2. . . .∃en.>. Thus, if the
counterexample A v CM returned by the first equivalence query is transformed into a role
saturated CI, then the algorithm terminates after one step. We now introduce and motivate
our two merging rules.

Example 22 Consider the TBox

T = {A v ∃r.> u ∃s.> u ∃e.B}.

and fix an n ≥ 1. For M ⊆ {1, . . . , n}, set CM = ∃t1.∃t−1 .∃t2.∃t
−
2 . . . .∃tn.∃t−n .∃e.>, where

ti = r if i ∈M and ti = s if i /∈M . Figure 5 (left) illustrates the concept expression C{1,3},
assuming n = 3. By Lemma 10, T |= A v CM since there is a homomorphism h from TCM
to the labelled tree that corresponds to ∃r.>u∃s.>u∃e.B, as shown in Figure 5. Thus, the
oracle can provide for the first 2n equivalence queries a positive counterexample A v CM by
always choosing a fresh set M ⊆ {1, . . . , n}.

The problem for the learner in Example 22 is similar to that in Example 20: there are
exponentially many logically incomparable CIs that are entailed by T but do not entail
A v ∃r.> u ∃s.> u ∃e.B. A step towards solving this problem is to merge the predecessor
and successor nodes of a node if the edge labels are inverse to each other and the resulting
CI is still implied by the TBox.

Definition 23 (Parent/Child Merging for T ) A concept C ′ is obtained from a concept
C by parent/child merging if C ′ is obtained from C by choosing nodes d, d′, d′′ such that d
is an r-successor of d′, and d′′ is an r−-successor of d, for some role r, and then removing
d′′, setting l(d′) = l(d′) ∪ l(d′′), and making every s-successor e of d′′ in C an s-successor of
d′, for any role s.

Let A v C be a CI with T |= A v C. A CI A v C ′ is obtained from A v C by
parent/child merging if T |= A v C ′ and C ′ is obtained from C by parent/child merging.
We say that A v C is parent/child merged for T if there is no A v C ′ with C 6= C ′ that can
be obtained from A v C by parent/child merging.
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Note that when C ′ is obtained from C by parent/child merging with d′ and d′′ as in
Definition 23, then ∅ |= C ′ v C. To show this, one can use Lemma 10 and the natural
homomorphism h from TC to TC′ , that is, the identity except that h(d′′) = d′.

Similarly to the saturation operations, the learner can compute a parent/child merged
A v C ′ by posing polynomially many membership queries. In Example 22 the parent/child
merging of any A v CM with ∅ 6= M 6= {1, . . . , n} is A v ∃r.> u ∃s.> u ∃e.>, as illustrated
in Figure 6: in the first step the nodes d0 and d2 are merged, two additional merging steps
give ∃r.> u ∃s.> u ∃e.>. The following example motivates the second merging operation.

Example 24 Define concept expressions Ci by induction as follows:

C1 = ∃r.> u ∃s.>, Ci+1 = C1 u ∃e.Ci

and let

Tn = {A v ∃e.Cn}.

For M ⊆ {1, . . . , n}, set CM1 = ∃r.> if 1 ∈ M and CM1 = ∃s.> if 1 /∈ M . Also, let
CMi+1 = ∃r.> u ∃e.CMi if i + 1 ∈ M and CMi+1 = ∃s.> u ∃e.CMi if i + 1 /∈ M , 1 ≤ i < n.
Figure 7 illustrates concept expressions of the form Cn and CMn .

As an answer to the first 2n equivalence queries the oracle can compute a positive
counterexample A v ∃e.CMn by always choosing a fresh set M ⊆ {1, . . . , n}.

To deal with this example we introduce a modification step that identifies siblings in C
rather than a parent and a child.
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Definition 25 (Sibling Merging for T ) A concept C ′ is obtained from a concept C by
sibling merging if C ′ is obtained from C by choosing nodes d, d′, d′′ such that d′ and d′′ are
r-successors of d, for some role r, and then removing d′′, setting l(d′) = l(d′) ∪ l(d′′), and
making every s-successor e of d′′ in TC an s-successor of d′, for any role s.

Let A v C be a CI with T |= A v C. A CI A v C ′ is obtained from A v C by sibling
merging if T |= A v C ′ and C ′ is obtained from C by sibling merging. We say that A v C
is sibling merged for T if there is no A v C ′ with C 6= C ′ that can be obtained from A v C
by sibling merging.

It can be verified that when C ′ is obtained from C by sibling merging, then ∅ |= C ′ v C.
In Example 24 the counterexamples A v CMn are actually sibling merged for Tn. Thus,

producing a sibling merged A v C ′ directly from the counterexamples returned by the oracle
does not overcome the problem illustrated by the example. Instead, we apply sibling merging
after Line 5 of the algorithm: instead of adding A v C uC ′ to Hadd, the learner computes a
sibling merged A v D from this CI and adds it to Hadd. For Example 24, this is illustrated
in Figure 8. Clearly, after at most n+ 1 counterexamples, the learner has added A v ∃e.Cn,
as required.

Finally, we need a decomposition rule. The following variant of Example 17 illustrates
that the four modification steps introduced so far do not yet lead to a polynomial learning
algorithm even if they are applied both after Line 4 and after Line 5 in Algorithm 1.

Example 26 Let
T = {A v B,B v ∃r.B}.

The oracle can provide for the n-th equivalence query the positive counterexample A v CB,n,
where CB,n = A u DB,n and, inductively, DB,0 = B and DB,n+1 = B u ∃r.DB,n, for any
n ≥ 0. The algorithm does not terminate even with the four modification steps introduced
above applied after Lines 4 and 5: the CIs A v CB,n are concept and role saturated and they
are parent/child and sibling merged.

The problem illustrated in Example 26 is that so far the learning algorithm attempts to
learn T without ever considering to add to Hadd a CI whose left-hand side is B (rather than
A). To deal with this problem we introduce a ‘reset step’ that, in contrast to the previous
modification steps, can lead to a different left-hand side and also to a CI that does not imply
the original CI given T , as in all previous modification steps.

Definition 27 (Decomposed CI for T ) Let A v C be a CI with T |= A v C. We say
that A v C is decomposed for T if for every non-root node d in C, every concept name
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Figure 9: Illustration of decomposition of CIs. Here C|−d′↓ = A uB u ∃r.B and C ′ = B.

A′ ∈ l(d), and every r-successor d′ of d in C, we have T 6|= A′ v ∃r.C ′ where C ′ corresponds
to the subtree of C rooted at d′.

In contrast to the previous four modification steps, the membership queries used by the
learner to obtain a decomposed CI do not only depend on T but also on the hypothesis
Hadd ∪ Hbasic computed up to that point: starting from CI A v C, the learner takes a
non-root node d in C, a concept name A′ ∈ l(d), and an r-successor d′ of d in C, and then
checks using a membership query whether T |= A′ v ∃r.C ′, where C ′ is the subtree rooted
at d′ in C. If the check succeeds, A v C is replaced by

(a) A′ v ∃r.C ′ if Hbasic ∪Hadd 6|= A′ v ∃r.C ′; and otherwise by

(b) A v C|−d′↓, where C|−d′↓ is obtained from C by removing the subtree rooted in d′ from C.

Note that {A v C|−d′↓, A
′ v ∃r.C ′} |= A v C. Thus, one of the CIs A v C|−d′↓ and A′ v ∃r.C ′

is not entailed by Hbasic ∪Hadd, and this is the CI that replaces the original CI.
In Example 26, assume that the oracle returns A v C with C = A uB u ∃r.(B u ∃r.B)

as the first counterexample. The tree TC corresponding to C is shown on the left-hand side
of Figure 9. This CI is not decomposed for T : the label of node d contains B, the concept
C ′ rooted in d′ in C is B and T |= B v ∃r.B. Since H∪Hadd 6|= B v ∃r.B, Case (a) applies
and A v B is replaced by B v ∃r.B.

This finishes the description of the modification steps. It turns out that they cure all
problems with the initial version of the algorithm and enable polynomial query learnability.

Definition 28 A DL-Lite∃R CI is T -essential if it is concept saturated, role saturated,
parent/child merged, sibling merged, and decomposed for T .

After Lines 4 and 5 of Algorithm 1, we need to make the CI currently considered T -essential,
by exhaustively applying the modification steps described above in all possible orders. The
resulting refined version of the learning algorithm is shown as Algorithm 2. We next analyse
the properties of this algorithm.

Polynomial Query Bound on the Algorithm

If Algorithm 2 terminates, then it obviously has found a TBox Hbasic ∪Hadd that is logically
equivalent to T . It thus remains to show that the algorithm terminates after polynomially
many polynomial size queries. Observe that Hadd contains at most one CI A v C for each
concept name A. At each step in the while loop, either some A′ v C ′ is added to Hadd such



Algorithm 2 The learning algorithm for DL-Lite∃R

Input: A DL-Lite∃R TBox T in named form given to the oracle; ΣT given to the learner.
Output: TBox H, computed by the learner, such that T ≡ H.

1: Compute Hbasic = {r v s | T |= r v s} ∪ {B1 v B2 | T |= B1 v B2, B1, B2 basic}
2: Set Hadd = ∅
3: while Hbasic ∪Hadd 6≡ T do
4: Let A v C be the returned positive counterexample for T relative to Hbasic ∪Hadd
5: Find a T -essential CI A′ v C ′ such that Hbasic ∪Hadd 6|= A′ v C ′
6: if there is A′ v C ′′ ∈ Hadd then
7: Find T -essential CI A′ v C∗ such that ∅ |= C∗ v C ′′ u C ′
8: Replace A′ v C ′′ by A′ v C∗ in Hadd
9: else

10: Add A′ v C ′ to Hadd
11: end if
12: end while
13: return H = Hbasic ∪Hadd

that no CI with A′ on the left-hand side existed in Hadd before (Line 10) or an existing CI
A′ v C ′′ in Hadd is replaced by a fresh CI A′ v C∗ with ∅ |= C∗ v C ′′.

We start with showing that Lines 5 and 7 can be implemented with polynomially many
membership queries. The next lemma addresses Line 5.

Lemma 29 Given a positive counterexample A v C for T relative to Hbasic∪Hadd, one can
construct a T -essential counterexample A′ v C ′ using only polynomially many polynomial
size membership queries in |C|+ |T |.

Proof Let A v C be a positive counterexample for T relative to Hbasic ∪Hadd and assume
the five modification steps introduced above are applied exhaustively by posing membership
queries to the oracle. Observe that the number of applications of modifications steps is
bounded polynomially in |C| × |T |. To show this, let nC be the number of nodes in TC .
Then nC′′ = nC′ if A′′ v C ′′ is obtained from A′ v C ′ by a concept or role saturation step
and nC′′ < nC′ if A′′ v C ′′ is obtained from A′ v C ′ by a merging or decomposition step.
Thus, the number of applications of merging and decomposition steps is bounded by nC and
the number of applications of concept and role saturated steps is bounded by |ΣT | × nC
and |ΣT | × n2

C , respectively. Thus, after at most nC + |ΣT | × nC + |ΣT | × n2
C steps no

modification step is applicable and the final CI is T -essential. We verify that it is also a
positive counterexample for T relative to Hbasic ∪ Hadd. It suffices to show that the CI
resulting from each single modification step is entailed by T , but not by Hbasic ∪Hadd. The
former has been shown when we introduced the modification steps. Regarding the latter, in
the first four modification steps we have Hbasic |= C ′ v C if A v C is replaced by A v C ′.
Hence Hbasic ∪Hadd 6|= A v C ′. For the decomposition step, we have already argued, after
Definition 27, that the added CI is not entailed by Hbasic ∪Hadd. o

The following lemma addresses Line 7.
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Lemma 30 Assume that A v C1 and A v C2 are T -essential. Then one can construct a
T -essential A v C such that ∅ |= C v C1 u C2 using polynomially many polynomial size
membership queries in |C1|+ |C2|.

Proof We start with A v C1 uC2. Using the fact that C1 and C2 are both T -essential, one
can show that this CI is (i) concept saturated for T , (ii) role saturated for T , (iii) parent/child
merged for T , and (iv) decomposed for T . Assume, for example, that A v C1 u C2 is not
concept saturated. Then one can add a new concept name A′ to the label l(d) for some node
d in TC1uC2 and T |= A v C ′ for the resulting concept C ′. Clearly d is a node in TC1 or in
TC2 . Assume without loss of generality that d is in TC1 and let C ′1 be the concept obtained
from C1 by adding A′ to l(d). Then T |= A v C ′1 since T |= A v C ′ which contradicts the
assumption that A v C1 is concept saturated. The remaining three modification steps are
considered similarly. We now exhaustively apply the modification step ‘Sibling merging for
T ’ and use the resulting CI as the desired A v C. Similarly to the argument above one
can show that a CI with properties (i)–(iv) still has those properties after applying sibling
merging. Thus, A v C is T -essential. We have argued in the proof of Lemma 29 already
that the number of applications of a sibling merging step to a CI of the form A v D is
bounded by the number of nodes in TD. Thus, the number of modification steps is bounded
polynomially in |C1|+ |C2|. o

To analyse the algorithm further we first prove a polynomial upper bound on the size
of T -essential CIs. To this end, we require the notion of an isomorphic embedding and
an auxiliary lemma. A homomorphism h : TC → I is an isomorphic embedding for T if
it is injective, A ∈ l(d) if h(d) ∈ AI for all concept names A, and for r = l(d, d′) it holds
that T |= r v s for all (h(d), h(d′)) ∈ sI . The following lemma shows that for T -essential
CIs A v C and any D that interpolates between A and C (meaning that T |= A v D
and T |= D v C) the homomorphism h from TC to ID,T that witnesses ρD ∈ CID,T (see
Lemma 12) is an isomorphic embedding.

Lemma 31 Assume the A v C is T -essential, T |= A v D and T |= D v C. Then any
homomorphism h : TC → ID,T that maps ρC to ρD is an isomorphic embedding.

Proof Assume first that h is not injective. Then there is a parent/child or sibling merging C ′

of C and a homomorphism f : TC′ → ID,T such that h = f ◦g for the natural homomorphism
g : TC → TC′ (Figure 10). By Lemma 12, T |= D v C ′. Thus, T |= A v C ′ and we have
derived a contradiction to the assumption that C is parent/child and sibling merged.



Now let T ′ be the following labelled tree: the nodes in T ′ are the same as in T , A ∈ l′(d)
iff h(d) ∈ AID,T , and for any two nodes d, d′ with d′ a successor of d: l′(d, d′) = r for the
unique role r with T |= r v s for all s with (d, d′) ∈ sID,T . Let C ′ be the concept expression
that corresponds to T ′. Then ρD ∈ C ′ID,T and so, by Lemma 12, T |= D v C ′. Thus
T |= A v C ′. But then A v C ′ can be obtained from A v C by concept and role saturation
steps. As A v C is concept and role saturated already, C = C ′ and so h is an isomorphic
embedding. o

We are now able to prove that T -essential CIs are of polynomial size in T . For a concept C,
let nC denote the number of nodes in the tree representation TC of C and let

AT = {A} ∪ {B | A v B ∈ Hbasic} ∪ {D | T |= A v B,B v D ∈ T }.

Lemma 32 If A v C is T -essential, then nC ≤
∑
D∈AT

nD.

Proof Assume A v C is T -essential. Let D0 :=
d
D∈AT D and ID0,T be the canonical

model of D0 and T . By Lemma 12, there is a homomorphism h : TC → ID0,T mapping ρC
to ρD0 . By Lemma 31, h is an isomorphic embedding. Using that A v C is decomposed
for T , we now show that h maps TC into the restriction of ID0,T to ∆ID0 from which the
lemma follows since h is injective.

For a proof by contradiction, assume that there exists d′ in TC with h(d′) 6∈ ∆ID0 . As
h(ρC) ∈ ∆ID0 , we may assume that all d′ on the path from ρC to d′ are mapped to ∆ID0

(if this is not the case, we can replace d′ by the first element on the path from ρC to d′

not mapped into ∆ID0 ). In particular, the parent d of d′ in TC is mapped into ∆ID0 . Let
l(d, d′) = r. Observe that the whole subtree rooted in d′ must be mapped into ∆ID0,T \∆ID0

since otherwise h would not be injective.

Let C ′ = ∃r.C ′′, where C ′′ corresponds to the subtree rooted in d′ in C. By Lemma 14,
there exists a basic concept B such that h(d) ∈ BID0,T and T |= B v C ′. As T is in
named form there exists a concept name E with T |= E ≡ B. Thus, h(d) ∈ EID0,T and
T |= E v C ′. As h is an isomorphic embedding, E ∈ l(d). We make a case distinction:

• h(d) 6= ρD0 . Then A v C is not decomposed for T since C contains an edge (d, d′)
such that E is in the node label of d, l(d, d′) = r, and T |= E v ∃r.C ′′. We have
derived a contradiction.

• h(d) = ρD0 . As h(d′) ∈ ∆ID0,T \∆ID0 , by construction of ID0,T , there exists a CI

B0 v D ∈ T with B0 a basic concept such that ρD0 ∈ B
ID0,T
0 and h(d′) is in the copy

of the tree-shaped interpretation ID which was attached to ρD0 in the construction of
ID0,T . But since T |= A v B0 we have D ∈ AT and so ρD0 ∈ DID0 . But then, by the
construction of ID0,T , no fresh ID was attached to ρD0 because D is already satisfied
in ID0 and we have derived a contradiction.

o



We are now in the position to prove that the learning algorithm terminates after posing a
polynomial number of queries.

Lemma 33 For every concept name A, the number of replacements of a CI A v C in Hadd
by a CI of the form A v C ′ is bounded polynomially in |T |.

Proof We aim to show that when A v C is replaced with A v C ′, then the number of
nodes in the tree representation of C ′ is strictly larger than the number of nodes in the
tree representation of C. Since any CI A v C ever added to Hadd is T -essential, Lemma 32
then yields that the number of replacements is bounded by

∑
D∈AT nD, which is polynomial

in |T |.
A straightforward analysis of Algorithm 2 reveals that when A v C is replaced with

A v C ′, then ∅ |= C ′ v C and ∅ 6|= C v C ′ (otherwise the positive counterexample returned
by the oracle would be a consequence of Hbasic ∪Hadd). Moreover, both A v C and A v C ′
are consequences of T . It thus suffices to establish the following.

Claim. If A v C is T -essential, T |= A v C ′, ∅ |= C ′ v C, and ∅ 6|= C v C ′, then TC is
obtained from TC′ by removing at least one subtree.

We prove the claim. Since ∅ |= C ′ v C, by Lemma 12 there is a homomorphism h from
TC to the canonical model IC′ that maps ρC to ρC′ . Then h is also a homomorphism into
the canonical model IC′,T . Since A v C is T -essential, T |= A v C ′, and ∅ |= C ′ v C,
Lemma 31 yields that h is an isomorphic embedding into IC′,T . Then, trivially, h is also
an isomorphic embedding into IC′ which means that TC is obtained from TC′ by removing
subtrees. Since ∅ 6|= C v C ′, at least one subtree must in fact have been removed. o

We have obtained the following main result of this section.

Theorem 34 DL-Lite∃R TBoxes are polynomial query learnable using membership and
equivalence queries. Moreover, DL-Lite∃R TBoxes without inverse roles can be learned in
polynomial time using membership and equivalence queries.

Proof Recall that our algorithm requires the target TBox to be in named form. We
first show Theorem 34 under that assumption and then argue that the assumption can be
dropped.

In each iteration of Algorithm 2, either a CI is added to Hadd or a CI is replaced in
Hadd. Since the number of times the former happens is bounded by |ΣT | and (by Lemma 33)
the number of times the latter happens is polynomial in |T |, the number of iterations of
Algorithm 2 is polynomial in |T |. For polynomial query learnability of DL-Lite∃R TBoxes,
it remains to show that in each iteration Algorithm 2 makes only polynomially many
polynomial size queries in |T | and the size of the largest counterexample seen so far. We
start with equivalence queries, made only in Line 3. We have already argued that the number
of iterations is polynomial in |T | and thus so is the number of equivalence queries made.
Regarding their size, we observe that there are at most |ΣT |2 CIs in Hbasic and at most |ΣT |
CIs in Hadd, that the size of CIs in Hbasic is constant and by Lemma 32 the size of CIs in
Hadd is polynomial in |T |. Membership queries are made only in Lines 5 and 7 for which it
suffices to invoke Lemmas 29 and 30.



Now for the “moreover” part of Theorem 34. Observe that since each (membership or
equivalence) query counts as one step of computation, the only potentially costly step of
Algorithm 2 is the implementation of the decomposition step in Line 5, which relies on making
subsumption checks of the form Hbasic ∪Hadd |= A v C. As discussed in Section 2, deciding
subsumption in DL-Lite∃R is NP-complete while in EL with role inclusions subsumption is
in PTime. As DL-Lite∃R without inverse roles is a fragment of EL with role inclusions, we
obtain polynomial time learnability for TBoxes in this case.

To drop the requirement that the target TBox is in named form, we show that any
polynomial (query or time) learning algorithm for TBoxes in named form can be transformed
into the same kind of algorithm for unrestricted target TBoxes. In fact, the learner can
use at most O(|ΣT |2) membership queries “Does T entail r v s?” to compute for every
role r the class [r]T of roles s with T |= s ≡ r and choose a representative rT for this
class. Then whenever some s ∈ [r]T is used in any counterexample returned by the oracle,
it gets replaced with rT . Likewise, whenever T does not have a name for some ∃r.>, the
algorithm still uses the concept name Ar in its internal representations (although they are
no longer included in the signature ΣT of the target TBox) and replaces ∃r.> with Ar in the
counterexamples returned by the oracle. It also replaces each Ar with ∃r.> in membership
queries to the oracle and in the hypothesis used for posing equivalence queries. o

4. Learning DL-Lite∃R,horn TBoxes

We study exact learnability of TBoxes in DL-Lite∃R,horn, the extension of DL-Lite∃R that
admits conjunctions of basic concepts on the left-hand side of CIs. This language is a
generalisation of both DL-Lite∃R and propositional Horn logic. In fact, the algorithm we
present combines the classical algorithms for propositional Horn logic (Angluin et al., 1992;
Frazier and Pitt, 1993) with the algorithm for DL-Lite∃R presented in Section 3. The resulting
algorithm is quite subtle and indeed this is the reason why we treated the DL-Lite∃R case
separately in Section 3.

To simplify the presentation, we make the same assumptions as in Section 3 about
the target TBox T with signature ΣT . In particular, we assume that T is in named form,
suitably generalised to DL-Lite∃R,horn: there are no distinct roles r and s such that T |= r ≡ s,
for each role r the TBox T contains an equivalence Ar ≡ ∃r.> and all CIs of T are either CIs
between basic concepts or contain no concept expressions of the form ∃r.> on the left-hand
side, for any role r. Denote by lhs(α) the set of concept names that occur as conjuncts
on the left-hand side of a CI α and denote by rhs(α) the set of concept expressions that
occur as top-level conjuncts on the right-hand side of α (that is, they are not nested inside
restrictions). We often do not distinguish between the set lhs(α) and the conjunction over
all its concept expressions, and similarly for rhs(α). For example, if α1 = C1 v D1 and
α2 = C2 v D2 then lhs(α1) v rhs(α2) stands for C1 v D2. Also, if lhs(α1) = {A1, A2, A3}
and lhs(α2) = {A2, A3, A4} then lhs(α1) ∩ lhs(α2) v D stands for A2 uA3 v D.

The algorithm for learning DL-Lite∃R,horn TBoxes is shown as Algorithm 3. Like Algo-
rithm 2, Algorithm 3 first determines the set Hbasic that contains all CIs B1 v B2 with
B1, B2 basic concepts such that T |= B1 v B2 and all RIs r v s such that T |= r v s. The
hypothesis H is the union of Hbasic and Hadd. In contrast to Algorithm 2, Hadd is an ordered
list of CIs rather than a set. We write αi to denote the CI α at position i in the list Hadd. In



Algorithm 3 The learning algorithm for DL-Lite∃R,horn TBoxes

Input: A DL-Lite∃R,horn TBox T in named form given to the oracle; ΣT given to the learner.
Output: TBox H, computed by the learner, such that T ≡ H.

1: Compute Hbasic = {r v s | T |= r v s} ∪ {B1 v B2 | T |= B1 v B2, B1, B2 basic}
2: Set Hadd to be the empty list and H = Hbasic ∪Hadd
3: while H 6≡ T do
4: Let γ be the returned positive counterexample for T and H
5: Find a T -essential γ′ with H 6|= γ′ and |{∃r.F | ∃r.F ∈ rhs(γ′)}| ≤ 1
6: Left saturate γ′ for H
7: if there is A ∈ NC such that T |= lhs(γ′) v A and H 6|= lhs(γ′) v A then
8: H :=CN-Refine(H, lhs(γ′) v A)
9: else

10: H :=∃-Refine(H, γ′)
11: end if
12: Set H = Hbasic ∪Hadd
13: end while
14: return H

the learning algorithm, working with an ordered list of CIs allows the learner to pick the first
αi in Hadd with a certain property and merge it with a new CI, a technique we adopt from
the work of Angluin et al. (1992) and Frazier and Pitt (1993). As in Algorithm 2, T |= H is
a loop invariant, thus, γ is necessarily positive. The algorithm terminates when H ≡ T .

Algorithm 4 Function CN-Refine(H, γ)

1: if there is A ∈ NC and αi ∈ Hadd such that T |= lhs(αi) ∩ lhs(γ) v A,
2: and H 6|= lhs(αi) ∩ lhs(γ) v A then
3: Concept saturate γ′ = lhs(αi) ∩ lhs(γ) v A for T
4: Replace the first such αi in Hadd by γ′

5: else
6: Concept saturate γ for T
7: Append γ to the list Hadd
8: end if
9: return H

Algorithm 3 uses membership queries to compute a T -essential counterexample γ such
that rhs(γ) contains at most one concept expression of the form ∃r.F (Line 5) and which
is ‘Left saturated for H’ (Line 6); here, a CI is left saturated for H if its left-hand side
contains all subsuming concept names w.r.t. H (Definition 35 below) and T -essential if it
satisfies the conditions for T -essential CIs from Section 3, appropriately modified for CIs
with conjunctions of concept names on the left-hand side (Definition 37 below). Then, the
algorithm checks whether there is a concept name A such that lhs(γ) v A is a positive
counterexample. If so, then it calls Function CN-Refine (Algorithm 4) and updates the
hypothesis either by refining some αi in Hadd or by appending a new CI to Hadd. The



Algorithm 5 Function ∃-Refine(H, γ)

1: if there is C ∈ rhs(γ) of the form ∃r.D and αi ∈ Hadd such that T |= lhs(αi)∩ lhs(γ) v C
2: and H 6|= lhs(αi) ∩ lhs(γ) v C then
3: if T |= lhs(αi) ∩ lhs(γ) v C u rhs(αi) then
4: Find a T -essential lhs(αi) ∩ lhs(γ) v D∗ with ∅ |= D∗ v C u rhs(αi)
5: Replace the first such αi in Hadd by lhs(αi) ∩ lhs(γ) v D∗
6: else
7: Concept saturate γ′ = lhs(αi) ∩ lhs(γ) v C for T
8: Replace the first such αi in Hadd by γ′

9: end if
10: else
11: Append γ to the list Hadd
12: end if
13: return H

number of replacements of any given αi in Hadd in CN-Refine is bounded by |ΣT | since
whenever αi is replaced in CN-Refine(H, γ), then lhs(αi) ∩ lhs(γ) ( lhs(αi).

4

If there is no concept name A such that lhs(γ) v A is a positive counterexample then
Algorithm 3 calls Function ∃-Refine (Algorithm 5). In this case one considers the existential
restrictions that occur on top-level on the right-hand side of γ. Note that ∃-Refine can be
viewed as a variation of the body of the while loop in Algorithm 2 in which one considers
sets of concept names on the left-hand side of CIs rather than a single concept name. Recall
that in Algorithm 2, the new CI γ and a CI α in Hadd are merged if they have the same
concept name on the left-hand side. In contrast, now they are merged if the intersection of
their left-sides is still subsumed by some existential restriction C from rhs(γ) (Lines 1 and 2).
There are two cases: if the intersection is also subsumed by rhs(α) (checked in Line 3), then
in the next line a T -essential counterexample is computed and the first such αi is replaced
by the new CI. Otherwise it follows that lhs(αi) ∩ lhs(γ) ( lhs(αi) and the first such αi is
replaced by the CI computed in Line 7. Note that the latter can happen at most |ΣT | times
for each CI in Hadd (and the former can happen at most |T | times for each CI in Hadd, see
Lemma 43 below). If no CI can be refined with γ then ∃-Refine appends γ to Hadd.

We now define the step ‘left-saturate γ for H’ used in Line 6 of Algorithm 3. Observe
that this step is meaningless for DL-Lite∃R.

Definition 35 (Left saturation for H) A CI γ′ is obtained from a CI γ by left saturation
for H if rhs(γ′) = rhs(γ) and lhs(γ′) = {A ∈ ΣT | H |= lhs(γ) v A}. A CI γ is left saturated
for H if it coincides with its left saturation for H.

One can clearly left saturate any CI γ for H by checking whether H |= lhs(γ) |= A for
every A ∈ ΣT . The following example shows that Line 6 is necessary for Algorithm 3
to be polynomial. A similar step is also necessary in Frazier et al.’s algorithm learning
propositional Horn logic from entailments (Frazier and Pitt, 1993).

4. This is a consequence of the fact that Hadd only contains concept saturated CIs (defined essentially as in
the previous section, see Definition 37 below): lhs(αi) ∩ lhs(γ) = lhs(αi) and T |= lhs(αi) ∩ lhs(γ) v A
implies A ∈ rhs(αi) by concept saturatedness, thus contradicting H 6|= lhs(αi) ∩ lhs(γ) v A.



Example 36 Assume Line 6 of Algorithm 3 is omitted. Let for n ≥ 2,

Tn = {E1 u · · · u En v A} ∪ {Ai v Ei, Bi v Ei | 1 ≤ i ≤ n}.

For M ⊆ {1, . . . , n}, set CM =
d
i≤nCi, where Ci = Ai if i ∈M and Ci = Bi if i /∈M . Then

the oracle can provide for the first 2n equivalence queries in the while loop of Algorithm 3 a
positive counterexample CM v A by always choosing a fresh set M ⊆ {1, . . . , n}.

For the refinements on the right-hand side, we extend to DL-Lite∃R,horn the notion of T -
essential CIs introduced in the previous section:

1. (Concept saturation for T ) A CI γ is concept saturated for T if T |= γ and T 6|= γ′

for any γ′ with lhs(γ) = lhs(γ′) such that rhs(γ′) is obtained from rhs(γ) by adding a
concept name to the label of some node of rhs(γ). A CI γ′ is a concept saturation for
T of a CI γ if it is concept saturated for T , lhs(γ) = lhs(γ′), and rhs(γ′) is obtained
from rhs(γ) by adding concept names to the labels of some nodes of rhs(γ).

2. (Role saturation for T ) A CI γ is role saturated for T if T |= γ and T 6|= γ′ for any
γ′ with lhs(γ) = lhs(γ′) such that rhs(γ′) is obtained from rhs(γ) by replacing in some
edge label a role r by a role s 6= r with T |= s v r. A CI γ′ is a role saturation for
T of a CI γ if it is role saturated for T , lhs(γ) = lhs(γ′), and rhs(γ′) is obtained from
rhs(γ) by replacing in some edge labels a role r by a role s 6= r with T |= s v r.

3. (Parent/child merged for T ) A CI γ′ is obtained from a CI γ by parent/child merging
for T if lhs(γ) = lhs(γ′), rhs(γ′) is obtained from rhs(γ′) by parent/child merging (as
in Definition 23), and T |= γ′. A CI γ is parent/child merged for T if T |= γ and there
is no γ′ with γ 6= γ′ that can be obtained from γ by parent/child merging for T .

4. (Sibling merged for T ) A CI γ′ is obtained from a CI γ by sibling merging for T if
lhs(γ) = lhs(γ′), rhs(γ′) is obtained from rhs(γ′) by sibling merging (as in Definition 25),
and T |= γ′. A CI γ is sibling merged for T if T |= γ and there is no γ′ with γ 6= γ′

that can be obtained from γ by sibling merging for T .

5. (Decomposed CI for T ) A CI γ is decomposed for T if T |= γ and for every non-
root node d in rhs(γ), every role r, and every r-successor d′ of d in rhs(γ) we have
T 6|= l(d) v ∃r.C ′, where C ′ corresponds to the subtree of rhs(γ) rooted at d′.

Definition 37 A DL-Lite∃R,horn CI is T -essential if it is concept saturated, role saturated,
parent/child merged, sibling merged, and decomposed for T .

The saturation, merging and decomposition steps defined above are straightforward gener-
alisations of Definitions 18 to 27 to CIs with conjunctions on the left-hand side. One can
easily generalise the arguments from DL-Lite∃R to show that for any CI γ with H 6|= γ one
can compute a T -essential γ′ with H 6|= γ′ using polynomially many membership queries
and entailment checks relative to H. For the analysis of the learning algorithm it is crucial
that all CIs in the ordered list Hadd are T -essential at all times, which we prove next.

Lemma 38 At any point in the execution of Algorithm 3, all CIs in Hadd are T -essential.



Proof If a CI γ is of the form A1u· · ·uAn v A with A a concept name, then the set rhs(γ′)
of the concept saturation γ′ of γ for T contains concept names only. Thus, γ′ is T -essential.
It follows that the CIs added to Hadd in Lines 4 and 7 of CN-Refine are T -essential. Also, it is
easy to see that if γ is T -essential and C ∈ rhs(γ) then the concept saturation of lhs(γ) v C
for T is T -essential as well. Thus, the CI γ′ in Line 8 of ∃-Refine is T -essential. o

Polynomial Query Bound on the Algorithm

As in the previous section it is immediate that upon termination the algorithm has found a
TBox H = Hbasic ∪Hadd that is logically equivalent to the target TBox T . It thus remains
to show that it issues only polynomially many queries of polynomial size. We first discuss
how Lines 5 and 6 of Algorithm 3 and Line 4 of ∃-Refine can be implemented. The next
lemma addresses Lines 5 and 6 of Algorithm 3.

Lemma 39 Given a positive counterexample γ for T relative to H, one can construct with
polynomially many polynomial size membership queries in |γ| and |T |, a counterexample γ′

that is left saturated for H, T -essential and such that |{∃r.F | ∃r.F ∈ rhs(γ′)}| ≤ 1.

The proof of Lemma 39 is a straightforward extension of the proof of Lemma 29 and
uses the observation that a left-saturated γ′ for H can be computed from γ by adding all
concept names A ∈ ΣT with H |= lhs(γ) v A to lhs(γ). This lemma also requires that
|{∃r.F | ∃r.F ∈ rhs(γ′)}| ≤ 1. If there is A ∈ rhs(γ′) such that H 6|= lhs(γ′) v A then we
can simply drop all conjuncts of the form ∃r.F from rhs(γ′). Otherwise, we can satisfy the
condition by simply choosing a conjunct ∃r.F ∈ rhs(γ′) such that H 6|= lhs(γ′) v ∃r.F and
then apply ‘Concept saturation for T ’ to lhs(γ′) v ∃r.F . The resulting γ′ is left saturated
for H, T -essential and has at most one conjunct of the form ∃r.F in rhs(γ′).

The following lemma addresses Line 4 of ∃-Refine.

Lemma 40 Assume that α and γ are T -essential and there is C ∈ rhs(γ) such that T |=
lhs(α) ∩ lhs(γ) v rhs(α) u C. Then one can construct, with polynomially many polynomial
size membership queries in |rhs(α)| and |C|, a T -essential lhs(α) ∩ lhs(γ) v D∗ such that
∅ |= D∗ v rhs(α) u C.

Proof Assume T |= lhs(α) ∩ lhs(γ) v rhs(α) u C. Then, similar to Lemma 30, one can
show that the only property of T -essential CIs that can fail is being sibling merged for T
and that after applying the step ‘Sibling merging for T ’ to lhs(α) ∩ lhs(γ) v rhs(α) u C the
resulting CI is T -essential, as required. o

We also have to show that the number of CIs in Hadd is bounded polynomially in |T |
and for each position of Hadd the number of replacements is bounded polynomially in |T |.
These properties follow from the following lemma.

Lemma 41 Let Hadd be a ordered list of CIs computed at some point of an execution of
Algorithm 3. Then

(i) the length of Hadd is bounded by the number of CIs in T and



(ii) The number of replacements of an existing CI α ∈ Hadd is bounded polynomially in
|T |.

The rest of the section is devoted to proving Lemma 41. We first show Point (ii) of Lemma 41
and start by generalising Lemma 32 on the size of T -essentials CIs. For any conjunction C
of concept names we set

CT = {D | T |= C v A1 u · · · uAk and A1 u · · · uAk v D ∈ T } ∪
{B | T |= C v B,B basic concept over ΣT }

Recall that for any concept expression C we denote by nC the number of nodes in the tree
TC corresponding to C.

Lemma 42 If α is T -essential, then nrhs(α) ≤
∑

D∈lhs(α)T nD.

Proof The proof is almost the same as the proof of Lemma 32. Assume α is T -essential.
Let D0 :=

d
D∈lhs(α)T D and let ID0,T be the canonical model of D0 and T . Now one can

prove in almost the same way as in the proof of Lemma 32 that the homomorphism h from
Trhs(α) into ID0,T mapping ρrhs(α) to ρD0,T is an injective mapping into ID0 (using Lemma 14

for DL-Lite∃R,horn instead of DL-Lite∃R). o

We are now in the position to prove Point (ii) of Lemma 41.

Lemma 43 The number of replacements of an existing CI α ∈ Hadd is bounded polynomially
in |T |.

Proof A CI α ∈ Hadd can be replaced in Line 4 of CN-Refine or in Lines 5 or 8 of ∃-Refine.
If α is replaced by α′ in Line 4 of CN-Refine or in Line 8 of ∃-Refine then lhs(α′) ( lhs(α), so
the number of replacements is bounded by |ΣT |. If α is replaced by α′ in Line 5 of ∃-Refine,
then either lhs(α′) ( lhs(α) or lhs(α′) = lhs(α). For the latter case one can show as in the
proof of Lemma 33 for DL-Lite∃R, the following

Claim. If A1 u · · · uAn v C and A1 u · · · uAn v C ′ are T -essential, and ∅ |= C ′ v C, then
TC is obtained from TC′ by removing subtrees.

Thus, each time α ∈ Hadd is replaced in Line 5 of ∃-Refine without decreasing the number
of concept names in lhs(α), the number nrhs(α) of nodes in the tree representation of rhs(α)
strictly increases. By Lemma 42, nrhs(α) is bounded polynomially in |T | and the lemma
follows. o

We now come to the proof of Point (i) of Lemma 41. To formulate an upper bound on the
length of Hadd in terms of T it is convenient to assume that the right-hand side of every CI
in T is primitive, that is, either a concept name or a concept expression of the form ∃r.D.
This assumption is w.l.o.g. since one can equivalently transform every CI C v D1 uD2 into
two CIs C v D1 and C v D2. We call such a TBox rhs-primitive. Note that CIs in H may
still have multiple concepts on the right-hand side.

A concept C is called concept saturated for T if T |= C v C ′ whenever C ′ results from
C by adding a new concept name A′ to the label of some node in TC . Denote by Csat the
(unique) concept obtained from C by adding concept names to the node labels of TC until it
is concept saturated for T . The following definition enables us to link the CIs in Hadd to
the CIs in T .



Definition 44 Let T be rhs-primitive. We say that a CI α has target β ∈ T if

1. lhs(β) ⊆ lhs(α) and

2. there exists D ∈ rhs(α) \ lhs(α) such that ∅ |= rhs(β)sat v D.

We aim to show that Algorithm 3 maintains the invariant that

(iii) every α ∈ Hadd has some target β ∈ T and

(iv) every β ∈ T is the target of at most one α ∈ Hadd.

Then Point (i) of Lemma 41 clearly follows.

Example 45 To illustrate Definition 44, suppose that

T = {A1 uA4 v A2, A2 v ∃r.A3, A3 v A4, Ar ≡ ∃r.>}

is the target TBox. T is rhs-primitive. To simplify notation, we use βi to denote the i-th CI
occurring in T above. AssumeHbasic = {β3, β4} andHadd = ∅. Let α1 = A1uA3 v A2. Then
there is no βi ∈ T such that α1 has target βi. However, by applying left saturation forH to α1

we obtain α′1 = A1uA3uA4 v A2 and since lhs(β1) ⊆ lhs(α′1) and A2 6∈ lhs(α′1), α′1 has target
β1. For α2 = A1uA4 v ∃r.A3, there is no βi ∈ T such that α2 has target βi. But α2 is not T -
essential and making it T -essential results in α′2 = A1uA4 v AruA1uA2uA4u∃r.(A3uA4)
which again has target β1. Finally, let α3 = A2 v ∃r.A4. As lhs(β2) ⊆ lhs(α3) and
∅ |= Ar u ∃r.(A3 uA4) v ∃r.A4, α3 has target β2. Note that α3 is not T -essential, but the
result of making it T -essential also has target β2.

Point (iii) is a consequence of the following lemma.

Lemma 46 Let T be rhs-primitive and let γ be a T -essential CI such that ∅ 6|= γ. Then γ
has some target β ∈ T .

Proof Assume γ is T -essential and ∅ 6|= γ. Assume for a proof by contradiction that γ has
no target in T . We first show the following

Claim 1. If γ has no target in T and T |= lhs(γ) v A then A ∈ lhs(γ), for all A ∈ NC.

For the proof of Claim 1, consider the canonical model Ilhs(γ),T of lhs(γ) and T . Recall that

ρlhs(γ),T denotes the root of Ilhs(γ),T . By Lemma 12, ρlhs(γ),T ∈ DIlhs(γ),T iff T |= lhs(γ) v D,

for any concept D. Thus, it suffices to prove that ρlhs(γ),T ∈ AIlhs(γ),T implies A ∈ lhs(γ), for
all concept names A. The proof is by induction over the sequence I0, . . . used to construct
Ilhs(γ),T , where I0 = Ilhs(γ). For Ilhs(γ) this is the case by definition. Now suppose the claim

holds for In and ρlhs(γ),T ∈ AIn+1 \AIn . Then there either exist concept names A1, . . . , Ak
with A1 u · · · u Ak v A ∈ T and ρlhs(γ),T ∈ (A1 u · · · u Ak)In or there exists ∃r.> with

∃r.> v A ∈ T and ρlhs(γ),T ∈ (∃r.>)In . In the first case, we have {A1, . . . , Ak} ⊆ lhs(γ)
by induction hypothesis and so A ∈ lhs(γ) because otherwise A1 u · · · u Ak v A would be
a target of γ. In the second case there must be an Im with m < n such that there are
E1 u · · · uEk v ∃s.D ∈ T and s v r ∈ T with ρlhs(γ),T ∈ (E1 u · · · uEk)Im (the case s = r is
similar and omitted). It follows that A ∈ lhs(γ) because otherwise E1u· · ·uEk v ∃s.D would



be a target of γ since, by induction hypothesis, {E1, . . . , Ek} ⊆ lhs(γ) and A ∈ (∃s.D)sat.
This finishes the proof of Claim 1.

By Claim 1, as ∅ 6|= γ, there is a conjunct of the form ∃r.F in rhs(γ). Let (lhs(α))T be
as above and ID0,T be the canonical model of D0 =

d
D∈(lhs(α))T D and T . As ∃r.F ∈ rhs(γ)

and γ is T -essential one can show in the same way as in the proof of Lemma 32 that
there is an injective homomorphism from the labelled tree T∃r.F corresponding to ∃r.F
into the restriction of ID0,T to ∆ID0 mapping the root of T∃r.F to the root ρD0,T of ID0,T .
Thus, by definition of (lhs(α))T , there is β ∈ T such that T |= lhs(α) v lhs(β) and
∅ |= rhs(β)sat v ∃r.F . By Lemma 12, ρlhs(γ),T ∈ AIlhs(γ),T , for all A ∈ lhs(β). Hence, by
Claim 1 and again Lemma 12, lhs(β) ⊆ lhs(γ). We have shown that γ has target β and so
derived a contradiction. o

Point (iii) is a direct consequence of Lemma 46 and the fact that all CIs in Hadd are
T -essential (Lemma 38). To prove Point (iv), we first establish the following intermediate
Lemmas 47 and 48.

Lemma 47 Let T be rhs-primitive and let H, γ be inputs to CN-Refine. Let αi ∈ Hadd,
β ∈ T , and concept name A 6∈ lhs(γ) satisfy the following conditions: (a) lhs(β) ⊆ lhs(γ);
(b) T |= lhs(β) v A; (c) lhs(β) ⊆ lhs(αi). Then there is some j ≤ i such that αj is replaced
in Line 4 of CN-Refine.

Proof Assume H, γ, αi, β, and A satisfy the conditions of the lemma. If CN-Refine replaces
some αj with j < i then we are done. Suppose this does not happen. Then we need to
show that αi is replaced. By Conditions (a), (b), and (c), T |= lhs(γ) ∩ lhs(αi) v A. As γ is
left saturated for H, A 6∈ lhs(γ) implies that H 6|= lhs(γ) v A. So H 6|= lhs(γ) ∩ lhs(αi) v A.
Then, the condition in Lines 1 and 2 of CN-Refine is satisfied and αi is replaced. o

Lemma 48 Let T be rhs-primitive and let H, γ be inputs to ∃-Refine. If γ has target β ∈ T
and αi ∈ Hadd satisfies lhs(β) ⊆ lhs(αi), then there is some j ≤ i such that αj is replaced in
Line 5 or 8 of ∃-Refine.

Proof Let H, γ, β, and αi satisfy the conditions of the lemma. If ∃-Refine replaces some
αj with j < i then we are done. Suppose this does not happen. We need to show that αi
is replaced. We first show that there is a concept C of the form ∃r.F in rhs(γ) such that
lhs(γ) v C has target β. Note that if Algorithm 3 calls ∃-Refine then there is no concept
name A such that T |= lhs(γ) v A and H 6|= lhs(γ) v A (Line 10). As γ is left saturated
for H and T -essential, this implies NC ∩ rhs(γ) ⊆ lhs(γ). But then any C ∈ rhs(γ) \ lhs(γ)
with ∅ |= rhs(β)sat v C is compound. As γ has target β it follows that lhs(γ) v C has
target β for some C of the form ∃r.F in rhs(γ). By Line 5 of Algorithm 3, there is only
one such conjunct C in rhs(γ). From ∅ |= rhs(β)sat v C we obtain T |= lhs(β) v C.
Since lhs(β) ⊆ lhs(γ) ∩ lhs(αi), we have that T |= lhs(γ) ∩ lhs(αi) v C. As γ is a positive
counterexample, H 6|= γ. From NC ∩ rhs(γ) ⊆ lhs(γ) we thus obtain H 6|= lhs(γ) v C, and so,
H 6|= lhs(αi) ∩ lhs(γ) v C. Hence, the condition in Lines 1 and 2 of ∃-Refine is satisfied and
αi is replaced (in Line 5 or 8). o



Point (iv) above is now a direct consequence of the following lemma.

Lemma 49 At any point in the execution of Algorithm 3, if αj ∈ Hadd has target β ∈ T
then lhs(β) 6⊆ lhs(αi), for all i < j.

Proof The proof is by induction on the number k of iterations. For k = 1 the lemma is
vacuously true. Assume it holds for k = n, n ≥ 1. Now the algorithm modifies Hadd in
response to receiving a positive counterexample in iteration k = n + 1. We make a case
distinction:

Case 1. Algorithm 3 calls CN-Refine: Let H, γ be the inputs to CN-Refine. Assume first that
the condition in Lines 1 and 2 is not satisfied. Then CN-Refine appends the result of concept
saturating γ for T to Hadd. Call this CI γ′. Suppose that the lemma fails to hold. This
can only happen if γ′ has a target β ∈ T and there is αi ∈ Hadd such that lhs(β) ⊆ lhs(αi).
Then, since lhs(γ′) = lhs(γ), we have that lhs(β) ⊆ lhs(γ) and, since rhs(γ′) ⊆ NC, there is a
concept name A 6∈ lhs(γ) such that ∅ |= rhs(β)sat v A. So T |= lhs(β) v A. Then Lemma 47
applies to H, γ, αi, β and A which contradicts the assumption that CN-Refine did not
replace any αj ∈ Hadd, j ≤ i.

Now assume that the condition in Lines 1 and 2 is satisfied. Suppose that the lemma
fails to hold. This can only happen if there are αi, αj ∈ Hadd with i < j such that either
(a) αi is replaced by α′i, lhs(β) ⊆ lhs(α′i) and αj has target β; or (b) αj is replaced by α′j ,
α′j has target β and lhs(β) ⊆ lhs(αi). In case (a), from lhs(γ) ∩ lhs(αi) = lhs(α′i), we obtain
lhs(β) ⊆ lhs(γ) ∩ lhs(αi). Thus, lhs(β) ⊆ lhs(αi). This contradicts the induction hypothesis.
Now assume case (b). Since α′j has target β, we obtain:

1. lhs(β) ⊆ lhs(α′j); and

2. as rhs(α′j) ⊆ NC, there is A ∈ NC with A ∈ rhs(α′j) \ lhs(α′j) and ∅ |= rhs(β)sat v A.

Since lhs(γ) ∩ lhs(αj) = lhs(α′j), it follows from Point 1 that lhs(β) ⊆ lhs(αj) and lhs(β) ⊆
lhs(γ). From ∅ |= rhs(β)sat v A we obtain T |= lhs(β) v A. If A ∈ rhs(α′j) \ lhs(α′j) then
either A ∈ rhs(αj) \ lhs(αj) or A 6∈ lhs(γ). So either αj has target β or A 6∈ lhs(γ). αj does
not have target β as this would contradict the induction hypothesis. Thus, A 6∈ lhs(γ) and
the conditions of Lemma 47 are satisfied by H, γ, αi, β, and A. Thus, some αi′ with i′ ≤ i
is replaced which contradicts the assumption that αj is replaced.

Case 2. Algorithm 3 calls ∃-Refine: Let H, γ be the inputs to ∃-Refine. Assume first that
the condition in Lines 1 and 2 is not satisfied. Then ∃-Refine appends γ to Hadd. Suppose
the lemma fails to hold. This can only happen if γ has a target β ∈ T and there is αi ∈ Hadd
such that lhs(β) ⊆ lhs(αi). By Lemma 48, this contradicts the assumption that ∃-Refine did
not replace any αj ∈ Hadd, j ≤ i.

Assume now that the condition in Lines 1 and 2 is satisfied. Suppose that the lemma
fails to hold. This can only happen if there are αi, αj ∈ Hadd with i < j such that either (a)
αi is replaced by α′i, lhs(β) ⊆ lhs(α′i) and αj has target β; or (b) αj is replaced by α′j , α

′
j has

target β and lhs(β) ⊆ lhs(αi). For case (a) we argue as above: from lhs(γ)∩ lhs(αi) = lhs(α′i),
we obtain lhs(β) ⊆ lhs(γ) ∩ lhs(αi). Thus, lhs(β) ⊆ lhs(αi), which contradicts the induction
hypothesis. Now assume case (b). As α′j has target β, we obtain the following:



1. lhs(β) ⊆ lhs(α′j); and

2. there is D ∈ rhs(α′j) \ lhs(α′j) and ∅ |= rhs(β)sat v D.

Since lhs(γ) ∩ lhs(αj) = lhs(α′j), it follows from Point 1 that lhs(β) ⊆ lhs(αj) and lhs(β) ⊆
lhs(γ). Recall that if Algorithm 3 calls ∃-Refine then there is no A ∈ NC such that
T |= lhs(γ) v A and H 6|= lhs(γ) v A. So NC ∩ rhs(γ) ⊆ lhs(γ) (by left saturation of γ for
H). Assume D ∈ NC. Since D ∈ rhs(α′j) \ lhs(α′j) (Point 2), it follows that D 6∈ lhs(αj). As
lhs(α′j) ⊆ lhs(αj), we have that D ∈ rhs(αj). So D ∈ rhs(αj) \ lhs(αj). This means that
αj has target β, which contradicts the induction hypothesis. Otherwise, D is of the form
∃r.F . Then, either D ∈ rhs(γ) or there is D′ ∈ rhs(αj) such that ∅ |= D v D′. In the latter
case, D′ ∈ rhs(αj) \ lhs(αj) and ∅ |= rhs(β)sat v D′, so αj has target β, which contradicts
the induction hypothesis. In the former case, γ has target β. Then H, γ, and αi satisfy
the conditions of Lemma 48. Thus, some αi′ with i′ ≤ i is replaced which contradicts the
assumption that αj is replaced. o

We have proved the main result of this section.

Theorem 50 DL-Lite∃R,horn TBoxes are polynomial query learnable using membership and

equivalence queries. Moreover, DL-Lite∃R,horn TBoxes without inverse roles can be learned in
polynomial time using membership and equivalence queries.

Proof Polynomial query learnability of DL-Lite∃R,horn TBoxes follows from Lemma 41 and
the analysis of the number of membership queries in Lemmas 39 and 40, see the proof of
Theorem 34. For the second part observe that the only potentially costly steps are entailment
checks of the form H |= α, where H is a DL-Lite∃R,horn TBox and α a DL-Lite∃R,horn CI,
both without inverse roles. Then both H and α are in EL with role inclusions for which
entailment is known to be in PTime (Baader et al., 2005). o

5. Learning ELlhs TBoxes

We study polynomial learnability of TBoxes in the restriction ELlhs of EL in which only
concept names are allowed on the right-hand side of CIs. We assume that CIs used in
membership queries and in equivalence queries and those returned as counterexamples are
also of this restricted form and show that under this assumption ELlhs TBoxes can be learned
in polynomial time. As in the previous section, our learning algorithm is an extension of the
polynomial time algorithm for learning propositional Horn theories presented by Angluin
et al. (1992) and Arias and Balcázar (2011).

There is a certain similarity between the learning algorithm of this section and the
DL-Lite∃R,horn learning algorithm introduced in Section 4. In both cases the left-hand side
of inclusions can contain complex concept expressions, which, unless addressed, might lead
to several counterexamples with unnecessarily strong left-hand sides targeting the same
inclusion in the target TBox. In Algorithm 3 storing multiple such counterexamples in Hadd
is prevented by taking the intersection of the set of conjuncts of the left-hand sides. To deal
with the more complex left-hand sides of inclusions in ELlhs, a more sophisticated way of
‘taking the intersection’ of concept expressions is required. To define it, we identify concept
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Figure 11: Illustration to Example 52.

expressions with tree-shaped interpretations and then take their product. Products have
also been employed in the construction of least common subsumers (Baader et al., 1999).

In detail, we say that an interpretation I is a ditree interpretation if the directed graph
(∆I , E) with E =

⋃
r∈NR

rI is a directed tree and rI ∩ sI = ∅ for all distinct r, s ∈ NR. We
denote the root of a ditree interpretation I with ρI . The interpretation IC corresponding
to an EL concept expression C is a ditree interpretation with root ρC . Conversely, every
ditree interpretation I can be viewed as an EL concept expression CI in the same way as
any labelled tree T with edge labels that are role names (rather than arbitrary roles) can be
seen as an EL concept expression.

An interpretation I is a T -countermodel for a given ELlhs TBox T if I 6|= T . Notice
that for any ELlhs inclusion C v A with T |= C v A and ∅ 6|= C v A the interpretation IC
is a T -countermodel. Indeed, by construction of IC , we have ρC ∈ CIC and, as ∅ 6|= C v A,
we have ρC /∈ AIC . So IC 6|= C v A and, as T |= C v A, we have IC 6|= T . Conversely,
given a T -countermodel I, a learning algorithm can construct in polynomial time in |ΣT |
all inclusions of the form CI v A, where A is a concept name, such that T |= CI v A by
posing membership queries to the oracle. Thus a learning algorithm can use inclusions and
T -countermodels interchangeably. We prefer working with interpretations as we can then
use the notion of products to define the ‘intersection of concept expressions’ and the results
of Section 2 linking homomorphisms with entailment in a direct way.

The product of two interpretations I and J is the interpretation I × J with

∆I×J = ∆I ×∆J

AI×J = {(d, e) | d ∈ AI , e ∈ AJ }
rI×J = {((d, e), (d′, e′)) | (d, d′) ∈ rI , (e, e′) ∈ rJ }

Products preserve the membership in EL concept expressions (Lutz et al., 2011):

Lemma 51 For all interpretations I and J , all d ∈ ∆I and e ∈ ∆J , and for all EL concept
expressions C the following holds: d ∈ CI and e ∈ CJ if, and only if, (d, e) ∈ CI×J .

One can easily show that the product of ditree interpretations is a disjoint union of ditree
interpretations. If I and J are ditree interpretations, we denote by I ×ρ J the maximal
ditree interpretation that is a subinterpretation of I × J and contains (ρI , ρJ ).

Example 52 Figure 11 depicts the product of the ditree interpretations I with root d0 and
J with root e0. The ditree interpretation I ×ρ J has root (d0, e0) and does not contain the
nodes (d2, e0), (d1, e0) and (d0, e1) from I × J .



Observe that the product IC×ID of concept expressions C = A1u· · ·uAn and D = B1u· · ·u
Bm, where A1, . . . , An and B1, . . . , Bm are concept names, coincides with the interpretation
IE , where E is the conjunction of all concept names in {A1, . . . , An} ∩ {B1, . . . , Bm}. Thus,
products can be seen as a generalisation of taking the intersection of the concept names
from the left-hand side of DL-Lite∃R,horn concept inclusions used in Section 4.

We will now describe a class of T -countermodels that are in a sense minimal and central
to our learning algorithm. Let T be the ELlhs TBox to be learned, and assume that its
signature ΣT is known to the learner. For a ditree interpretation I, we use I|−ρ to denote

the interpretation obtained from I by removing the root ρI of I. For any d ∈ ∆I \ {ρI}, we
use I|−d↓ to denote I with the subtree rooted at d removed. A T -countermodel is essential if
the following conditions are satisfied:

1. I|−ρ |= T ;

2. I|−d↓ |= T for all d ∈ ∆I \ {ρI}.

Intuitively, Condition 1 states that I contradicts T only at the root, that is, the only reason
for why I does not satisfy T is that for at least one CI C v A ∈ T , we have that ρI ∈ CI and
ρI /∈ AI . Condition 2 is a minimality condition which states that for any such C v A ∈ T ,
ρI is no longer in CI if we remove any node from I. Example 61 at the end of this section
shows that working with essential T -countermodels is needed for our learning algorithm to
be in polynomial time.

The algorithm for learning ELlhs TBoxes is given as Algorithm 6. It maintains an ordered
list I of ditree interpretations that intuitively represents the TBox H constructed in Line 13.
In Line 6 we write I →ρ J if there is a homomorphism from a ditree interpretation I to a
ditree interpretation J mapping ρI to ρJ . I 6→ρ J denotes that no such homomorphism
exists. By Lemma 10, I →ρ J iff ∅ |= CJ v CI which can be checked in polynomial time in
the size of I and J . In Line 8, we write J ′ ⊆ I ×ρ J as shorthand for the condition that J ′
is a subinterpretation of I ×ρ J that is obtained from I ×ρ J by removing subtrees. Note
that the assumption in Line 4 that a positive counterexample is returned is justified by the
construction of H in Lines 2 and 13, which ensures that, at all times, T |= H.

We now provide additional details on how to realise lines 5, 8 and 13. Line 13 is the
easiest: we simply use membership queries ‘T |= CI v A?’ with I ∈ I and A ∈ ΣT to
find all CIs CI v A entailed by T . We will later show that the length of I is bounded
polynomially in |T | and that each interpretation in I is replaced only polynomially many
times, therefore polynomially many membership queries suffice. Lines 5 and 8 are addressed
by Lemmas 53 and 54 below.

Lemma 53 Given a positive counterexample C v A for T relative to H, one can construct
an essential T -countermodel I with I |= H using only polynomially many membership queries
in |T |+ |C|.

Proof Let C v A be a positive counterexample for T relative to H. Let IC be the ditree
interpretation of C. First observe that IC 6|= T : since H 6|= C v A, we know that A does
not occur as a top-level conjunct in C. Consequently, ρC ∈ CIC \AIC and thus IC 6|= T .

We construct an essential T -countermodel I with I |= H by applying the following rules
to I := IC .



Algorithm 6 The learning algorithm for ELlhs TBoxes

Input: ELlhs TBox T given to the oracle; ΣT given to the learner.

Output: TBox H, computed by the learner, such that T ≡ H.

1: Set I to the empty list (of ditree interpretations)

2: Set H = ∅
3: while H 6≡ T do

4: Let C v A be the returned positive counterexample for T relative to H
5: Find an essential T -countermodel I with I |= H
6: if there is a J ∈ I such that J 6→ρ (I ×ρ J ) and I ×ρ J 6|= T then

7: Let J be the first such element of I

8: Find an essential T -countermodel J ′ ⊆ I ×ρ J
9: Replace J in I with J ′

10: else

11: Append I to I

12: end if

13: Construct H = {CI v A | I ∈ I, A a concept name in ΣT , T |= CI v A}
14: end while

15: return H

1. Saturate I by exhaustively applying the CIs from H as rules: if D v B ∈ H and
d ∈ DI , then add d to BI .

2. Replace I by a minimal subtree of I refuting T to address Condition 1 of essential
T -countermodels. To describe how this can be achieved using membership queries
denote for d ∈ ∆I by I|d the ditree interpretation obtained from I by taking the
subtree of I rooted in d. Now check using membership queries for any d ∈ ∆I \ {ρI}
and concept name B whether T |= CI|d v B. Then replace I by any I|d such that

there exists a B with T |= CI|d v B and d 6∈ BI|d but there does not exist a d′ in

∆I|d and a B′ with T |= CI|d′ v B
′ and d′ 6∈ BI|d′ . If no such d and B exist, then I is

not replaced.

3. Exhaustively remove subtrees from I until Condition 2 of essential T -countermodels
is also satisfied: if I|−d↓ 6|= T , then replace I by I|−d↓. This can again be achieved using
the membership queries T |= CI|−d↓

v B for B a concept name.

Now we show that the interpretation J constructed above has the required properties. First
observe that J |= H: clearly, the interpretation I constructed in Step 1 is a model of H. As
taking subtrees and removing subtrees from I preserves being a model of H, we conclude
that J |= H. Next we show that J 6|= T : the interpretation I constructed in Step 1 is not a
model of T . In fact, we can use CI v A as a positive counterexample for T relative to H
instead of C v A. Observe that ∅ |= CI v C, and thus T |= C v A implies T |= CI v A.
On the other hand, ρI ∈ BI implies H |= C v B for all concept names B. Consequently
and since H 6|= C v A, we have ρI /∈ AI . Thus I 6|= T . By construction, Steps 2 and 3
preserve the condition that I is not a model of T and so J 6|= T . It remains to argue that J



satisfies Conditions 1 and 2 for essential T -countermodels for H. But Condition 1 is ensured
by Step 2 and Condition 2 is ensured by Step 3, respectively. o

Lemma 54 Given essential T -countermodels I and J with I ×ρ J 6|= T , one can construct
an essential T -countermodel J ′ ⊆ I ×ρ J using only polynomially many membership queries
in |T |+ |I|+ |J |.

Proof Let I and J be essential T -countermodels with I ×ρ J 6|= T . Obtain the inter-
pretation J ′ from I ×ρ J by exhaustively applying Rule 3 from the proof of Lemma 53.
As argued above, applying Rule 3 can be implemented using membership queries and J ′
is a T -countermodel. Thus, it remains to argue that it satisfies Conditions 1 and 2 for
T -essential countermodels. For Condition 1, we have to show that J ′|−ρ |= T . We know
that I|−ρ |= T and J |−ρ |= T . Thus, by Lemma 51, I|−ρ × J |−ρ |= T . Now J ′|−ρ is obtained
from I|−ρ × J |−ρ by removing subtrees and removing subtrees preserves being a model of

an ELlhs TBox. Thus, J ′|−ρ |= T . For Condition 2, we have to show that J ′|−d↓ |= T for all

d ∈ ∆J
′ \ {ρJ ′}. But if this is not the case, then the subtree rooted at d would have been

removed during the construction of J ′ from I ×ρ J using Rule 3. o

If Algorithm 6 terminates, then it obviously returns a TBox H that is equivalent to the
target TBox T . It thus remains to prove that the algorithm terminates after polynomially
many steps, which is a consequence of the following lemma.

Lemma 55 Let I be a list computed at some point of an execution of Algorithm 6. Then
(i) the length of I is bounded by the number of CIs in T and (ii) each interpretation in each
position of I is replaced only |T |+ |T |2 often with a new interpretation.

The rest of this section is devoted to proving Lemma 55. For easy reference, assume that
at each point of the execution of the algorithm, I has the form I0, . . . , Ik for some k ≥ 0.
To establish Point (i) of Lemma 55, we closely follow the argument given by Angluin et al.
(1992) and show that

(iii) for every Ii, there is a Di v Ai ∈ T with Ii 6|= Di v Ai and

(iv) if i 6= j, then Di v Ai and Dj v Aj are not identical.

In fact, Point (iii) is immediate since whenever a new Ii is added to I in the algorithm, then
Ii is a T -countermodel. To prove Point (iv), we first establish the intermediate Lemma 56
below. For a ditree interpretation I and a CI C v A, we write I |=ρ C v A if ρI /∈ CI or
ρI ∈ AI ; that is, the CI C v A is satisfied at the root of I, but not necessarily at other
points in I. It is easy to see that if some interpretation I is a T -countermodel, then there is
C v A ∈ T such that I 6|=ρ C v A.

The following lemma shows under which conditions Algorithm 6 replaces an interpretation
in the list I.

Lemma 56 If the interpretation I constructed in Line 5 of Algorithm 6 satisfies I 6|=ρ C v
A ∈ T and ρIj ∈ CIj for some j, then J = Ii is replaced with J ′ in Line 9 for some i ≤ j.



Proof Assume that the interpretation I constructed in Line 5 of Algorithm 6 satisfies
I 6|=ρ C v A ∈ T and that there is some j with ρIj ∈ CIj . If there is some i < j such that
Ii 6→ρ (I ×ρ Ii) and I ×ρ Ii 6|= T , then J = Ii′ will be replaced with J ′ in Line 9 for some
i′ ≤ i and we are done. Thus assume that there is no such i. We aim to show that J = Ij
is replaced with J ′ in Line 9. To this end, it suffices to prove that Ij 6→ρ (I ×ρ Ij) and
I ×ρ Ij 6|= T . The latter is a consequence of I 6|=ρ C v A and ρIj ∈ CIj .

Assume to the contrary of what we have to show that Ij →ρ (I ×ρ Ij). We establish a
contradiction against I |= H (which holds by construction of I in the algorithm) by showing
that

1. I 6|=ρ CIj v A and

2. CIj v A ∈ H.

For Point 1, Ij →ρ (I ×ρ Ij) and ρIj ∈ (CIj )
Ij imply ρI×ρIj ∈ (CIj )

I×ρIj , which gives
ρI ∈ (CIj )

I , by Lemma 51. It remains to observe that I 6|=ρ C v A implies ρI /∈ AI .
In view of the construction of H in the algorithm, Point 2 can be established by showing

that T |= CIj v A. Since C v A ∈ T , it suffices to prove that ∅ |= CIj v C. This, however,
is an immediate consequence of the fact that ρIj ∈ CIj and the definition of CIj . o

Now, Point (iv) above is a consequence of the following.

Lemma 57 At any time of the algorithm execution, the following condition holds: if
Ii 6|=ρ C v A ∈ T and j < i, then ρIj /∈ CIj .

Proof We prove the invariant formulated in Lemma 57 by induction on the number of
iterations of the while loop. Clearly, the invariant is satisfied before the loop is entered. We
now consider the two places where I is modified, that is, Line 9 and Line 11, starting with
the latter.

In Line 11, I is appended to I. Assume that I 6|=ρ C v A ∈ T . We have to show that,
before I was added to I, there was no Ii ∈ I with ρIi ∈ CIi . This, however, is immediate
by Lemma 56.

Now assume that J was replaced in Line 9 with J ′. We have to show two properties:

1. If J ′ = Ii 6|=ρ C v A ∈ T and j < i, then ρIj /∈ CIj .
Assume to the contrary that ρIj ∈ CIj . Since J ′ is obtained from I × J by removing
subtrees (see Lemma 54), J ′ 6|=ρ C v A implies I × J 6|=ρ C v A. Consequently,
I 6|=ρ C v A or J 6|=ρ C v A. The former and ρIj ∈ CIj yields i ≤ j by Lemma 56,
in contradiction to j < i. In the latter case, since Ii = J before the replacement of J
with J ′, we have a contradiction against the induction hypothesis.

2. If J ′ = Ij and Ii 6|=ρ C v A ∈ T with i > j, then ρIj /∈ CIj .
Assume to the contrary that ρIj ∈ CIj . Since J ′ is obtained from I ×ρ J by removing
subtrees, we then have ρI×ρJ ∈ CI×ρJ , thus ρJ ∈ CJ . Since Ij = J before the
replacement of J with J ′, we have a contradiction against the induction hypothesis.

o



We now turn towards proving Point (ii) of Lemma 55. It is a consequence of Lemma 59
below.

Lemma 58 If I is an essential T -countermodel, then |∆I | ≤ |T |.

Proof Let I be an essential T -countermodel. Then I 6|= T , but I|−ρ |= T . It follows that

there is a C v A ∈ T such that ρI ∈ CI \ AI . By Lemma 8, there is a homomorphism h
from IC to I mapping ρIC to ρI . We show that |∆I | ≤ |C|, from which |∆I | ≤ |T | follows.
It suffices to show that h is surjective. Assume that this is not the case and let d ∈ ∆I

be outside the range of h. Then h is a homomorphism from IC to J := I|−d↓. Therefore,

ρJ ∈ CJ by Lemma 8, which implies J 6|= C v A. But J 6|= C v A contradicts the
assumption that I is an essential T -countermodel as it violates Condition 2 of being an
essential T -countermodel. o

Lemma 59 Let I0, . . . , In be a list of interpretations such that Ii+1 replaces Ii in Line 9
for all i < n. Then n ≤ |T |+ |T |2.

Proof Let I and J be ditree interpretations. We set I ≤ρ J if ρI ∈ AI implies ρJ ∈ AJ
for all concept names A. We first show that for every i < n either

(a) Ii 6≤ρ Ii+1 or

(b) Ii+1 →ρ Ii via a surjective homomorphism.

For a proof by contradiction assume that there is i < n such that neither (a) nor (b) holds.
Since Ii+1 is obtained from some I ×ρ Ii by removing subtrees and (I ×ρ Ii) →ρ Ii we
obtain that Ii+1 →ρ Ii. Since Ii+1 is an essential T -countermodel, there is a C v A ∈ T
such that Ii+1 6|=ρ C v A. Let J be the subinterpretation of Ii determined by the range of
the homomorphism h from Ii+1 to Ii mapping ρIi+1 to ρIi . By Lemma 8, ρJ ∈ CJ and so,
since ρJ 6∈ AJ because (a) does not hold, J 6|=ρ C v A. Ii is an essential T -countermodel
and so J = I. But then h is surjective and we have derived a contradiction.

In addition to the property stated above, we also have for all i < n:

(c) Ii+1 ≤ρ Ii and

(d) Ii 6→ρ Ii+1.

It follows that for any i < n with Ii ≤ρ Ii+1 either |∆Ii | < |∆Ii+1 | or |AIi | < |AIi+1 | for
some concept name A. By Lemma 58 we have |∆Ii | ≤ |T | for all i ≤ n. Hence k − j ≤ |T |2
for any subsequence Ij . . . , Ik of I0, . . . , In with Ii ≤ρ Ii+1 for all j ≤ i < k. It follows that
n ≤ |T |+ |T |2. o

We have thus established the main result of this section. Note that we obtain a polynomial
time learning algorithm since checking T |= α is in polynomial times for EL TBoxes T and
EL CIs α (as discussed in Section 2).

Theorem 60 ELlhs TBoxes are polynomial time learnable using membership and equivalence
queries.



The following example shows that Algorithm 6 does not terminate in polynomial time if in
Line 5 it does not transform the given counterexample into an essential T -countermodel.

Example 61 Assume that Line 5 of Algorithm 6 does not modify the counterexample
C v A given in Line 4 if the second condition for essential T -countermodels (IC |−d↓ |= T for

all d ∈ ∆IC \ {ρIC}) is satisfied but the first condition (IC |−ρ |= T ) does not hold. Then
for the target TBox T = {∃r.A v A} the oracle can return the infinite sequence of positive
counterexamples ∃rn.A v A, with n a prime number. In fact, Algorithm 6 would simply
construct the list I of interpretations I∃rn.A, n a prime number, and would not terminate.
To show this observe that Algorithm 6 would never replace a CI in the list I by another CI
since I∃rn.A ×ρ I∃rn+m.A = I∃rn.> and I∃rn.> |= T .

Now assume that Line 5 of Algorithm 6 does not modify the counterexample C v A
given in Line 4 if the first condition for essential T -countermodels is satisfied but the second
condition does not hold. Let T be a TBox containing ∃r.A v A and some CIs containing the
concept names B1 and B2, say, for simplicity, B1 v B1 and B2 v B2. Let ϕ1 = ∃r.(B1 uB2)
and ϕn+1 = ∃r.(ϕn u B1 u B2). Then the oracle can return n positive counterexamples
∃r.A u Ci v A, where the tree TCi corresponding to Ci is the result of identifying the
i-th node of the tree Tϕi corresponding to ϕi with the root of the tree corresponding to
∃r.(B1 uϕn)u∃r.(B2 uϕn). Note that the product of IC1 , . . . , ICn is an interpretation with
O(2n) elements. Then, at the n-th iteration, Algorithm 6 computes an interpretation of
exponential size in n.

6. Limits of Polynomial Learnability

The main result of this section is that EL TBoxes are not polynomial query learnable
using membership and equivalence queries. We also show that DL-Lite∃R TBoxes are not
polynomial query learnable using membership or equivalence queries alone. The latter
result also holds for ELlhs TBoxes. In this case, however, it follows already from the fact
that propositional Horn logic is not polynomial query learnable from entailments using
membership or equivalence queries alone (Frazier and Pitt, 1993; Angluin et al., 1992;
Angluin, 1987a).

We start by proving the non-polynomial query learnability result for EL TBoxes. On our
way, we also prove non-polynomial query learnability of DL-Lite∃R TBoxes using membership
queries only. Our proof shows that even acyclic EL TBoxes are not polynomial query
learnable and, in fact, heavily relies on the additional properties of acyclic TBoxes. Recall
that an EL TBox is called acyclic if it satisfies the following conditions (Baader et al., 2017;
Konev et al., 2012):

• all CIs and CEs are of the form A v C or A ≡ C, where A is a concept name;

• no concept name occurs more than once on the left-hand side of a CI;

• there are no cyclic definitions: there is no sequence α0, . . . , αn of CIs such that the
concept name on the left-hand side of α0 occurs in αn and the concept name on the
left-hand side of αi+1 occurs in the right-hand side of αi for all i < n.



Our non-polynomial query learnability proof is inspired by Angluin’s lower bound for
the following abstract learning problem (Angluin, 1987b): a learner aims to identify one
of N distinct sets L1, . . . , LN which have the property that there exists a set L∩ for which
Li ∩Lj = L∩, for any i 6= j. It is assumed that L∩ is not a valid argument to an equivalence
query. The learner can pose membership queries “x ∈ L?” and equivalence queries “H = L?”.
Then in the worst case it takes at least N − 1 membership and equivalence queries to exactly
identify a hypothesis Li from L1, . . . , LN . The proof proceeds as follows. At every stage of
computation, the oracle (which here should be viewed as an adversary) maintains a set of
hypotheses S, which the learner is not able to distinguish based on the answers given so far.
Initially, S = {L1, . . . , LN}. When the learner asks a membership query x, the oracle returns
’Yes’ if x ∈ L∩ and ’No’ otherwise. In the latter case, the (unique) Li such that x ∈ Li is
removed from S. When the learner asks an equivalence query H, the oracle returns ‘No’ and
a counterexample x ∈ L∩ ⊕H (the symmetric difference of L∩ and H). This always exists
as L∩ is not a valid query. If the counterexample x is not a member of L∩, (at most one)
Li ∈ S such that x ∈ Li is eliminated from S. In the worst case, the learner has to reduce
the cardinality of S to one to exactly identify a hypothesis, which takes N − 1 queries.

Similarly to the method outlined above, in our proof we maintain a set of acyclic EL
TBoxes whose members the learning algorithm is not able to distinguish based on the
answers obtained so far. For didactic purposes, we first present a set of acyclic TBoxes
SN = {T1, . . . , TN}, where N is superpolynomial in the size of every TBox Ti, for which
the oracle can respond to membership queries in the way described above but which is
polynomial time learnable when equivalence queries are also allowed. We then show how the
TBoxes can be modified to obtain a family of acyclic TBoxes that is not polynomial query
learnable using membership and equivalence queries.

To present the TBoxes in SN , fix two role names r and s. We use the following
abbreviation. For any sequence σ = σ1σ2 . . . σn ∈ {r, s}n, the expression ∃σ.C stands
for ∃σ1.∃σ2 . . . ∃σn.C. Then for every such sequence σ, of which there are N = 2n many,
consider the acyclic EL TBox Tσ defined as

Tσ = {A v ∃σ.M uX0} ∪ T0 with

T0 = {Xi v ∃r.Xi+1 u ∃s.Xi+1 | 0 ≤ i < n} .

Observe that the canonical model IX0,T0 of X0 and T0 consists of a full binary tree whose
edges are labelled with the role names r and s and with X0 at the root ρX0 , X1 at level 1,
and so on. In the canonical model IA,Tσ of A and Tσ, the root is labelled by A and X0 and,
in addition to the binary tree, there is a path given by the sequence σ whose endpoint is
marked by the concept name M .

One can use Angluin’s strategy to show that TBoxes from the set SN of all such TBoxes
Tσ cannot be learned using polynomially many polynomial size membership queries only:
notice that for no sequence σ′ 6= σ of length n, we have Tσ |= A v ∃σ′.M . Thus a
membership query of the form A v ∃σ.M eliminates at most one TBox from the set of
TBoxes that the learner cannot distinguish. This observation can be generalised to arbitrary
membership queries C v D in EL; however, we instead observe that the TBoxes Tσ are
formulated in DL-Lite∃R and prove a stronger result. The proof, given in the appendix, uses
the canonical model construction introduced in Section 2.



Lemma 62 For every DL-Lite∃R CI B v D over the signature of Tσ,

• either Tσ |= B v D for every Tσ ∈ SN

• or there is at most one Tσ ∈ SN such that Tσ |= B v D.

The argument outlined above immediately gives us the following side result.

Theorem 63 DL-Lite∃R TBoxes (even without inverse roles) are not polynomial query
learnable using only membership queries.

We return now to our proof that EL TBoxes are not polynomial query learnable using
both membership and equivalence queries. Notice that the set of TBoxes SN is not suitable
as a single equivalence query is sufficient to learn any TBox from SN in two steps: given the
equivalence query {A v X0} ∪ T0, the oracle has no other option but to reveal the target
TBox Tσ as A v ∃σ.M can be found ‘inside’ every counterexample.

Our strategy to rule out equivalence queries with the ‘intersection TBox’ is to modify
T1, . . . , TN in such a way that although a TBox T∩ axiomatising the intersection over the
set of consequences of each Ti, i ≤ N , exists, its size is superpolynomial and so it cannot be
used as an equivalence query by a polynomial query learning algorithm.

For every n > 0 and every n-tuple L = (σ1, . . . ,σn), where every σi is a role sequence
of length n as above, we define an acyclic EL TBox TL as the union of T0 and the following
CIs and CEs:5

A1 v ∃σ1.M uX0

B1 v ∃σ1.M uX0
. . .

An v ∃σn.M uX0

Bn v ∃σn.M uX0

A ≡ X0 u ∃σ1.M u · · · u ∃σn.M.

Observe that every TL contains the TBoxes Tσi , 1 ≤ i ≤ n, discussed above with A replaced
by any of the three concept names A,Ai, Bi. In addition, every TL entails, among other
CIs,

dn
i=1Ci v A, where every Ci is either Ai or Bi. There are 2n different such CIs, which

indicates that every representation of the ‘intersection TBox’ requires superpolynomially
many axioms. It follows from Lemma 67 below that this is indeed the case.

Let Ln be a set of n-tuples such that for 1 ≤ i ≤ n and every L,L′ ∈ Ln with
L = (σ1, . . . ,σn), L′ = (σ′1, . . . ,σ

′
n), if σi = σ′j then L = L′ and i = j. Then for any

sequence σ of length n there exists at most one L ∈ Ln and at most one i ≤ n such that
TL |= Ai v ∃σ.M and TL |= Bi v ∃σ.M . We can choose Ln such that there are N = b2n/nc
different tuples in Ln. Notice that the size of each TL with L ∈ Ln is polynomial in n and
so N is superpolynomial in the size of each TL with L ∈ Ln. Let the set of TBoxes that
the learner cannot distinguish initially be SL = {TL | L ∈ Ln}. We use Σn to denote the
signature of TL.

For the proof of non-polynomial query learnability, we show that the oracle has a strategy
to answer both membership and equivalence queries without eliminating too many TBoxes
from SL. We start with the former.

5. In fact, to prove non-polynomial query learnability, it suffices to consider ∃σ1.M u · · · u ∃σn.M v A in
place of the concept equivalence; however, CIs of this form are not allowed in acyclic TBoxes. CIs with a
complex left-hand side or concept equivalences are essential for non-polynomial query learnability as any
acyclic TBox containing expressions of the form A v C only is a DL-Lite∃R TBox and thus polynomially
learnable with membership and equivalence queries (Section 3).



Unlike the DL-Lite∃R case presented above, membership query can eliminate more than
one TBox from SL. Consider, for example, two TBoxes TL and TL′ , where {L,L′} ⊆ Ln
with L = (σ1, . . . ,σn) and L′ = (σ′1, . . . ,σ

′
n). Then the CI

X0 u ∃σ1.M u ∃σ′1.M uA2 u · · · uAn v A

is entailed by both TL and TL′ but not by any other TL′′ with L′′ ∈ Ln. We prove, however,
that the number of TBoxes eliminated from SL by a single membership query can be linearly
bounded by the size of the query.

Lemma 64 For all EL CIs C v D over Σn:

• either TL |= C v D for every L ∈ Ln

• or the number of L ∈ Ln such that TL |= C v D does not exceed |C|.

The proof of Lemma 64 is technical and is deferred to the appendix. To illustrate our proof
method here we consider a particular case that deals with membership queries of the form
C v ∃σ.M and is used in the proof of the general case. Both proofs rely on the following
lemma from the study of the logical difference between ontologies (Konev et al., 2012). It
characterises CIs entailed by acyclic EL TBoxes.

Lemma 65 (Konev et al. (2012)) Let T be an acyclic EL TBox, r a role name and D
an EL concept expression. Suppose that T |=

d
1≤i≤nAi u

d
1≤j≤m ∃rj .Cj v D, where Ai are

concept names for 1 ≤ i ≤ n, Cj are EL concept expressions for 1 ≤ j ≤ m, and m,n ≥ 0.
Then the following holds:

• if D is a concept name such that T does not contain any CE D ≡ C for any concept
expression C, then there exists Ai, 1 ≤ i ≤ n, such that T |= Ai v D;

• if D is of the form ∃r.D′ then either (i) there exists Ai, 1 ≤ i ≤ n, such that
T |= Ai v ∃r.D′ or (ii) there exists rj, 1 ≤ j ≤ m, such that rj = r and T |= Cj v D′.

The following lemma considers membership queries of the form C v ∃σ.M .

Lemma 66 For any 0 ≤ m ≤ n, any sequence of role names σ = σ1 . . . σm ∈ {r, s}m, and
any EL concept expression C over Σn:

• either TL |= C v ∃σ.M for every TL with L ∈ Ln;

• or there is at most one TL such that TL |= C v ∃σ.M .



Proof The lemma follows from the following claim.

Claim. Let L = (σ1, . . . ,σn) ∈ Ln be such that TL |= C v ∃σ.M . Then either (1) there
exists i ≤ n such that σ = σi and C is of the form A u C ′, Ai u C ′ or Bi u C ′, for some EL
concept expression C ′; or (2) we have ∅ |= C v ∃σ.M .

Proof of Claim. We prove the claim by induction on m. If m = 0, by Lemma 65, the concept
expression C is of the form Z u C ′, for some concept name Z and concept expression C ′

such that TL |= Z v M . As TL |= Z v M does not hold for any concept name Z distinct
from M , we obtain Z = M . Thus, ∅ |= C vM and Point (2) follows.

Let m > 0. By Lemma 65 we have one of the following two cases:

• C is of the form X uC ′, for some concept name X and concept expression C ′ such that
TL |= X v ∃σ.M . But then there exists i ≤ n such that σ = σi and X ∈ {A,Ai, Bi}
and Point (1) follows.

• C is of the form ∃σ1.C ′ uC ′′, for some concept expressions C ′ and C ′′, and TL |= C ′ v
∃σ2. · · · ∃σm.M . Notice that the length of the sequence σ2 . . . σn is strictly less than n.
Thus, by induction hypothesis, ∅ |= C ′ v ∃σ2. · · · ∃σm.M . But then ∅ |= C v ∃σ.M
and Point (2) follows.

This finishes the proof of the claim. To see that the claim entails the lemma observe that at
most one L ∈ Ln can satisfy Point (1). Point (2) entails that TL |= C v ∃σ.M for every TL
with L ∈ Ln. o

We now show how the oracle can answer equivalence queries, aiming to show that for any
polynomial size equivalence query H, the oracle can return a counterexample C v D such
that either (i) H |= C v D and TL |= C v D for at most one L ∈ Ln or (ii) H 6|= C v D
and TL |= C v D for every L ∈ Ln. Thus, such a counterexample eliminates at most one TL
from the set SL of TBoxes that the learner cannot distinguish. In addition, however, we
have to take extra care of the size of counterexamples as the learning algorithm is allowed
to formulate queries polynomial not only in the size of the target TBox but also in the size
of the counterexamples returned by the oracle. For instance, if the hypothesis TBox H
contains a CI C v D which is not entailed by any TL, one cannot simply return C v D as a
counterexample since the learner will be able to ‘pump up’ its capacity by asking a sequence
of equivalence queries Hi = {Ci v Di} such that the size of Ci+1 v Di+1 is twice the size
of Ci v Di. Then at every stage in a run of the learning algorithm, the query size will be
polynomial in the size of the input and the size of the largest counterexample received so
far, but exponential size queries will become available to the learner. The following lemma
addresses this issue.

Lemma 67 For any n > 1 and any EL TBox H in Σn with |H| < 2n, there exists an EL
CI C v D over Σn such that the size of C v D does not exceed 6n and

• if H |= C v D, then TL |= C v D for at most one L ∈ Ln;

• if H 6|= C v D, then TL |= C v D for every L ∈ Ln.



Proof We define an exponentially large TBox T∩ and use it to prove that one can select
the required EL CI C v D in such a way that either H |= C v D and T∩ 6|= C v D, or vice
versa.

To define T∩, denote for any sequence b = b1 . . . bn ∈ {0, 1}n by Cb the conjunctiond
i≤nCi, where Ci = Ai if bi = 1 and Ci = Bi if bi = 0. Then we define

T∩ = T0 ∪ {Cb v A uX0 | b ∈ {0, 1}n}.

Consider the following cases for H and T∩.

1. Suppose H 6|= T∩. Then there exists a CI C v D ∈ T∩ such that H 6|= C v D. Clearly,
C v D is entailed by every TL, for L ∈ Ln, and the size of C v D does not exceed 6n.
Thus C v D is as required.

2. Suppose there exist b ∈ {0, 1}n and a concept expression of the form ∃t.D′ such that
H |= Cb v ∃t.D′ and T0 6|= Cb v ∃t.D′. It can be seen (Lemma 73 in the appendix),
that there exists a sequence of role names t1, . . . , tl ∈ {r, s}l with 0 ≤ l ≤ n+ 1 and
Y ∈ {>}∪NC such that ∅ |= ∃t.D′ v ∃t1. · · · ∃tl.Y . Thus, H |= Cb v ∃t1. · · · ∃tl.Y and
T0 6|= X0 v ∃t1. · · · ∃tl.Y . We show that the inclusion Cb v ∃t1. · · · ∃tl.Y is as required.
Clearly, the size of Cb v ∃t1. · · · ∃tl.Y does not exceed 6n. It remains to prove that
TL |= Cb v ∃t1 · · · ∃tl.Y for at most one L ∈ Ln.

Suppose there exists L ∈ Ln such that TL |= Cb v ∃t1. · · · ∃tl.Y . By Lemma 65,
there exists Aj or Bj such that TL |= Aj v ∃t1. · · · ∃tl.Y or TL |= Bj v ∃t1. · · · ∃tl.Y ,
respectively. As T0 6|= X0 v ∃t1. · · · ∃tl.Y it is easy to see that l = n, t1t2 . . . tn = σj ,
and Y = M follow. As TL′ 6|= Cb v ∃σj .M for any L′ ∈ Ln such that L′ 6= L, it follows
that TL |= Cb v ∃t1 · · · ∃tl.Y for at most one L ∈ Ln

3. Finally, suppose that neither Case 1 nor 2 above apply. Then H |= T∩ and for
every b ∈ {0, 1}n and every EL concept expression over Σn of the form ∃t.D′: if
H |= Cb v ∃t.D′ then T0 |= X0 v ∃t.D′. We show that unless there exists a CI C v D
satisfying the conditions of the lemma, H contains at least 2n different CIs (and thus
derive a contradiction).

Fix some b = b1 . . . bn ∈ {0, 1}n. From H |= T∩ we obtain H |= Cb v A. Then there
must exist at least one CI C v A uD ∈ H such that H |= Cb v C and ∅ 6|= C v A.
Let C = Z1 u · · · u Zm u ∃t1.C ′1 u · · · u ∃tl.C ′l , where Z1,. . . , Zm are different concept
names. As H |= Cb v ∃tj .C ′j we have T0 |= X0 v ∃tj .C ′j , for j = 1, . . . l. As H |= T∩
we have H |= X0 v ∃tj .C ′j , for j = 1, . . . l. So H |= Z1 u · · · u Zm uX0 v A.

• Suppose there exists i such that there is no Zj ∈ {Ai, Bi}. Then we have
TL 6|= Z1 u · · · u Zm u X0 v A, for any L ∈ Ln. Notice that Z1 u · · · u Zm
contains at most all concepts names in Σn, except Ai, Bi. Thus, the size of
Z1 u · · · u Zm uX0 v A does not exceed 6n, and Z1 u · · · u Zm uX0 v A is as
required.

• Assume that Z0 u · · · u Zm uX0 contains a conjunct Bi such that bi 6= 0. Then
H |= Cb v Bi and there is no L ∈ Ln such that TL |= Cb v Bi. The size of
Cb v Bi does not exceed 6n, so Cb v Bi is as required.



• Assume that Z0 u · · · u Zm uX0 contains a conjunct Ai such that bi 6= 1. Then
H |= Cb v Ai and there is no L ∈ Ln such that TL |= Cb v Ai. The size of
Cb v Ai does not exceed 6n, so Cb v Ai is as required.

• If none of the above applies, then Z1 u · · · uZm uX0 contains exactly the Ai with
bi = 1 and exactly the Bi with bi = 0.

This argument applies to arbitrary b ∈ {0, 1}n. Thus, if there exists no CI C v D
satisfying the conditions of the lemma then, by the final case, H contains at least 2n

CIs.
o

Now we have all the ingredients to prove that EL TBoxes are not polynomial query learnable
using membership and equivalence queries.

Theorem 68 EL TBoxes are not polynomial query learnable using membership and equiva-
lence queries.

Proof Assume that TBoxes are polynomial query learnable. Then there exists a learning
algorithm whose query complexity (the sum of the sizes of the inputs to membership
and equivalence queries made by the algorithm up to a computation step) is bounded
at any stage by a polynomial p(n,m). Choose n such that b2n/nc > (p(n, 6n))2 and let
SL = {TL | L ∈ Ln}. We follow Angluin’s strategy of letting the oracle remove TBoxes from
SL in such a way that the learner cannot distinguish between any of the remaining TBoxes.
Given a membership query C v D, if TL |= C v D for every L ∈ Ln, then the answer is
‘yes’; otherwise the answer is ‘no’ and all TL with TL |= C v D are removed from SL (by
Lemma 64, there are at most |C| such TBoxes). Given an equivalence query H, the answer
is ‘no’, a counterexample C v D guaranteed by Lemma 67 is produced, and (at most one)
TL such that TL |= C v D is removed from SL.

As all counterexamples produced are smaller than 6n, the overall query complexity
of the algorithm is bounded by p(n, 6n). Hence, the learner asks no more than p(n, 6n)
queries and the size of every query does not exceed p(n, 6n). By Lemmas 64 and 67, at
most (p(n, 6n))2 TBoxes are removed from SL during the run of the algorithm. But then,
the algorithm cannot distinguish between any remaining TBoxes and we have derived a
contradiction. o

We conclude this section by showing that DL-Lite∃R TBoxes cannot be learned using
polynomially many polynomial size equivalence queries only. We use the following result on
non-polynomial query learnability of monotone DNF formulas, that is, DNF formulas that do
not use negation, using equivalence queries due to Angluin (1990). Here, equivalence queries
take a hypothesis ψ in the form of a monotone DNF formula and return as a counterexample
either a truth assignment that satisfies ψ but not the target formula φ or vice versa. Let
M(n, t, s) denote the set of all monotone DNF formulas whose variables are x1, . . . , xn, that
have exactly t conjunctions, and where each conjunction contains exactly s variables.

Theorem 69 (Angluin (1990)) For any polynomial q(·) there exist constants t0 and
s0 and a strategy 6 for the oracle O to answer equivalence queries posed by a learning

6. The existence of this strategy is a direct consequence of Theorem 8 by Angluin (1990), which states
that the class of DNF formulae has the approximate fingerprint property, and the proof of Theorem 1



algorithm in such a way that for sufficiently large n any learning algorithm that asks at most
q(n) equivalence queries, each bounded in size by q(n), cannot exactly identify elements of
M(n, t0, s0).

To employ Theorem 69, we associate with every monotone DNF formula

φ =

t∨
i=1

(xi1 ∧ · · · ∧ xisi),

where {xi1, . . . , xisi} ⊆ {x1, . . . , xn}, a DL-Lite∃R TBox Tφ as follows. With each conjunct
xi1 ∧ · · · ∧ xisi we associate a concept expression

Ci := ∃ρi1.∃ρi2. . . .∃ρin.>,

where ρij = r if xj occurs in xi1 ∧ · · · ∧ xisi and ρij = r̄ otherwise (r and r̄ are role names).
Let A be a concept name and set

Tφ = {A v
dt
i=1Ci, r̄ v r}.

For example, for n = 4 and φ = (x1 ∧ x4) ∨ x2 we have

Tφ = {A v ∃r.∃r̄.∃r̄.∃r.>, A v ∃r̄.∃r.∃r̄.∃r̄.>, r̄ v r}.

We say that a TBox T has a DNF-representation for n if it is obtained by the translation of
a monotone DNF-formula with n variables; that is, if T is of the following form, for some
Γ ⊆ {r, r̄}n:

{A v
l

ρ1···ρn∈Γ

∃ρ1.∃ρ2. . . .∃ρn.>, r̄ v r}.

A truth assignment I (for the variables x1 . . . , xn) also corresponds to a concept expression

CI := ∃ρi1.∃ρi2. . . .∃ρin.>,

where ρij = r if I makes xj true and ρij = r̄ otherwise. Then

I |= φ if, and only if, Tφ |= A v CI

holds for all truth assignments I.

Note that r̄ represents that a variable is false and r that a variable is true. Thus, the RI
r̄ v r captures the monotonicity of the DNF formulas considered. For any fixed values n, s
and t, we set

T (n, t, s) = {Tφ | φ ∈M(n, t, s)}.

Note that the TBoxes in T (n, t, s) are exactly those TBoxes that have a DNF-representation
for n and satisfy additionally the conditions that the DNF represented by Tφ has exactly t
conjunctions each conjunction of which has exactly s variables.

by Angluin (1990), where such a strategy is explicitly constructed for any class having approximate
fingerprints.



We describe now the strategy for the oracle O′ to answer equivalence queries so that no
learning algorithm is able to exactly identify members of T (n, t, s) based on the answers to
polynomially many equivalence queries of polynomial size. If the TBox in the equivalence
query is ‘obviously’ not within the class T (n, t, s), then we will explicitly produce a counterex-
ample that the oracle can return. If, on the other hand, the TBox H from the equivalence
query is ‘similar’ to TBoxes that have a DNF-representation for n, then we approximate H
by a TBox H′ that has a DNF-representation for n and return the counterexample A v CI
corresponding to the truth assignment I that the oracle O from Theorem 69 would return
when given ψ.

In detail the strategy is as follows. Assume q is the given polynomial in Theorem 69
and that t0, s0 and the strategy of the oracle O are chosen so that for sufficiently large n
no learning algorithm for DNF formulas that asks at most q(n) equivalence queries, each
bounded in size by q(n), can distinguish all members of M(n, t0, s0). Choose a sufficiently
large n. Let H be an equivalence TBox query issued by a learning algorithm. Then O′ does
the following:

1. If H entails some A v ∃ρ1.∃ρ2. . . .∃ρn+1.> with ρi ∈ {r, r̄} for 1 ≤ i ≤ n + 1, then
return this CI as a negative counterexample;

2. If H entails some ∃ρ1.> v ∃ρ2.> such that {ρ1, ρ2} ⊆ {r, r̄, r−, r̄−} and {r̄ v r} 6|=
∃ρ1.> v ∃ρ2.>, then return this CI as a negative counterexample;

3. If H |= ∃ρ1.> v ∃ρ2.∃ρ3.> such that {ρ1, ρ2, ρ3} ⊆ {r, r̄}, then return this CI as a
negative counterexample;

4. If there exists no ρ1, . . . , ρn ∈ {r, r̄}n such that H |= A v ∃ρ1. · · · ∃ρn.> then return
A v ∃r · · · ∃r︸ ︷︷ ︸

n

.> as a positive counterexample.

5. Suppose now that none of the above applies. We say that a sequence ρ1, . . . , ρn ∈ {r, r̄}n
is r-minimal for H if H |= A v ∃ρ1. · · · ∃ρn.> and whenever ρi = r, for 1 ≤ i ≤ n,
we have H 6|= ∃ρ1. · · · ∃ρi−1.∃r̄.∃ρi+1. · · · ∃ρn.>. We obtain a TBox H′ with a DNF
representation by setting

H′ = {A v
l

ρ1,...,ρn is
r-minimal for H

∃ρ1. · · · ∃ρn.>, r̄ v r}.

Observe that for any sequence ρ1, . . . , ρn ∈ {r, r̄}n we have H |= A v ∃ρ1. · · · ∃ρn.> if,
and only if, H′ |= A v ∃ρ1. · · · ∃ρn.>. We convert H′ into its corresponding monotone
DNF formula φH′ by reversing the translation from monotone DNF formulas into
DL-Lite∃R TBoxes of the above form in the obvious way. Note that the size of φH′

is linear in the size of H′. Given φH′ the oracle O returns a (positive or negative)
counterexample (a truth assignment) I. Then return the counterexample in the form
of the CI A v CI .

Observe that the answers given in Points 1 to 3 are correct in the sense that if an inclusion
α is returned as a negative example then T 6|= α for any T ∈ T (n, t, s). Point 4 is trivially
correct, since any monotone DNF is satisfied by the truth assignment that makes every
variable true. We analyse the size of the TBox H′ computed in Point 5.



Lemma 70 Assume that Points 1 to 4 do not apply to H. Then the number of sequences
ρ1, . . . , ρn ∈ {r, r̄}n which are r-minimal for H is bounded by |H|.

Proof We first show that if ρ1, . . . , ρn ∈ {r, r̄}n is r-minimal for H, then there exists a CI
A v C ∈ H such that

(∗) there are concept expressions C0, . . . , Cn with C0 = C and ∃ρi+1.Ci+1 a top-level
conjunct of Ci, for all i < n.

For the proof we require the canonical model IA,H of A and H (Lemma 12). Denote
the root of IA,H by ρA. Let ρ1, . . . , ρn ∈ {r, r̄}n be r-minimal for H. Then there are

d0, . . . , dn ∈ ∆IA,H with d0 = ρA such that (di, di+1) ∈ ρIA,Hi for all i < n. By the canonical
model construction and the assumption that Points 2 and 3 do not hold, there either exists
di ∈ AIA,H or there is a CI A v C ∈ H such that (∗) holds. We show that the first condition
does not hold. Assume for a prove by contradiction that di ∈ AIA,H . By Lemma 12,
H |= A v ∃ρ1 · · · ∃ρi.A. But then H |= A v ∃(ρ1 · · · ρi)n.> for all n > 0 which contradicts
the assumption that Point 1 does not apply to H.

It follows that the number of distinct r-minimal sequences is bounded by the number of
distinct sequences C0, . . . , Cn with A v C0 ∈ H and ∃ρi+1.Ci+1 a top-level conjunct of Ci
for all i < n. Thus, the number of distinct r-minimal sequences is bounded by |H|. o

It follows from Lemma 70 that the size of the TBox H′ computed in Point 5 is bounded by
4n|H|+ 2.

Theorem 71 DL-Lite∃R TBoxes (even without inverse roles) are not polynomial query
learnable using only equivalence queries.

Proof Suppose that the query complexity of a learning algorithm A for DL-Lite∃R TBoxes
in Σ = {A, r, r̄} is bounded at every stage of computation by a polynomial p(x, y), where
x is the size of the target TBox, and y is the maximal size of a counterexample returned
by the oracle up to the current stage of computation. Let q(n) = (p(n2, 4n+ 6))2, and let
constants t0 and s0 be as guaranteed by Lemma 69. We claim that, for sufficiently large n,
A cannot distinguish some Tφ and Tψ for φ, ψ ∈M(n, t0, s0).

Assuming that n > 11 (the maximal size of counterexamples given under Point 2 and
3), the largest counterexample returned by our strategy described above is of the form
A v ∃ρ1. · · · ∃ρn+1.>, so for sufficiently large n the maximal size of any counterexample in
any run of A is bounded by 4n+ 6 = 4(n+ 1) + 2. Similarly, the size of every potential target
TBox Tφ ∈ T (n, t0, s0) does not exceed t0 · (4n+ 2) and, as t0 is a constant, for sufficiently
large n it is bounded by n2. Thus, for sufficiently large n the total query complexity of
A on any input from T (n, t0, s0) is bounded by p(n2, 4n + 6). Obviously, the size of each
query is bounded by the query complexity of the learning algorithm. So, the size of a DNF
equivalence query forwarded to the strategy O guaranteed by Lemma 69 is bounded by
4n× p(n2, 4n+ 6) + 2 ≤ q(n), and there will be at most q(n) queries forwarded. But then O
can return answers such that some φ and ψ from M(n, t0, s0) cannot be distinguished. It
remains to observe that A cannot distinguish Tφ and Tψ. o



7. Related Work

Some related work has already been discussed in the introduction to this paper. Here we
discuss in more detail related work from ontology learning in general and exact learning of
ontologies in particular. We start with the former.

Ontology Learning. Research in ontology learning has a rich history that we cannot
discuss here in full detail. The collection edited by Lehmann and Völker (2014) and surveys
authored by Cimiano et al. (2010) and Wong et al. (2012) provide an excellent introduction
to the state of the art in this field. The techniques applied in ontology learning range
from information extraction and text mining to interactive learning and inductive logic
programming (ILP). Of particular relevance for this paper are the approaches to learning
logical expressions (rather than subsumption hierarchies between concept names). For
example, the work of Lehmann and Haase (2009), Lehmann and Hitzler (2010), and Bühmann
et al. (2014) applies techniques from ILP to learn description logic concept expressions.
ILP is applied as well by Lisi (2011) for learning logical rules for ontologies. The learning
of fuzzy DLs has been considered by Lisi and Straccia (2015). Other machine learning
methods which have been applied to learn ontology axioms include Association Rule Mining
(ARM) (Völker and Niepert, 2011; Fleischhacker et al., 2012; Völker et al., 2015) and Formal
Concept Analysis (FCA) (Rudolph, 2004; Baader et al., 2007; Distel, 2011; Borchmann,
2014; Ganter et al., 2016). Recently, learnability of lightweight DL TBoxes from finite sets
of interpretations has been investigated (Klarman and Britz, 2015).

Exact Learning of Description Logic Concept Expressions. Rather than aiming
to learn a TBox here one is interested in learning a target concept expression C∗. This
was first studied by Cohen and Hirsh (1994a,b) and Frazier and Pitt (1996). The standard
learning protocol is as follows:

• a membership query asks whether a concept expression C is subsumed by the target
concept expression C∗ (in symbols, ∅ |= C v C∗?);

• an equivalence query asks whether a concept expression C is equivalent to the target
concept expression C∗ (in symbols, ∅ |= C ≡ C∗?). If C and C∗ are not equivalent
then the oracle gives a counterexample, that is, a concept expression C ′ such that
either ∅ |= C ′ v C∗ and ∅ 6|= C ′ v C or ∅ 6|= C ′ v C∗ and ∅ |= C ′ v C.

Cohen and Hirsh (1994a,b) and Frazier and Pitt (1996) consider concept expressions in
(variations of) the now largely historic description logic Classic (Borgida et al., 1989;
Patel-Schneider et al., 1991; Borgida and Patel-Schneider, 1994). The expressive power of
Classic and its variants is incomparable to the expressive power of modern lightweight
description logics. Classic only shares conjunction and unqualified existential restrictions of
the form ∃r.> with the DLs considered in this paper. It additionally admits value restrictions
∀r.C whose interpretation is given as

(∀r.C)I = {d ∈ ∆I |d′ ∈ CI for all d′ with (d, d′) ∈ rI}

and unqualified number restrictions (≤ n r) and (≥ n r) interpreted as

(≤ nr)I = {d ∈ ∆I | |{d′ | (d, d′) ∈ rI}| ≤ n}
(≥ nr)I = {d ∈ ∆I | |{d′ | (d, d′) ∈ rI}| ≥ n}



as well as various constructors using individual names. For example, if a1, . . . , an are names
for individual objects, then ONE-OF(a1, . . . , an) is a Classic concept denoting the set
{aI1 , . . . , aIn}, where aIi denotes the individual with name ai in interpretation I. It is proved
by Cohen and Hirsh (1994a,b) and Frazier and Pitt (1996) that in many fragments of
Classic concept expressions cannot be learned polynomially using only membership or
equivalence queries but that they can be learned in polynomial time using both. Exact
learning of concept expressions in modern lightweight description logics has not yet been
investigated.

Exact Learning of TBoxes using Concept Inclusions as Queries. First results on
exact learning of description logic TBoxes using concept inclusions as queries were presented
by Konev et al. (2013, 2014). This paper is an extension. In contrast to the work of Konev
et al. (2013, 2014), we make the distinction between polynomial time and polynomial
query learnability which enables us to formulate and prove results on a more fine grained
level. TBoxes in DL-Lite∃R,horn, for which we prove polynomial query learnability, were not
considered by Konev et al. (2013, 2014). The current paper is also closely related to the
PhD thesis of the third author (Ozaki, 2016). In addition to the results presented here, it is
shown there that even in the extension of ELlhs with role inclusions, TBoxes can be learned
in polynomial time. The learning algorithm is a non-trivial extension of the algorithm
presented here for ELlhs TBoxes.

Exact Learning of TBoxes using Certain Answers. In recent years, data access
mediated by ontologies has become one of the most important applications of DLs (Poggi
et al., 2008; Bienvenu et al., 2014; Kontchakov and Zakharyaschev, 2014; Bienvenu and
Ortiz, 2015) and references therein. The idea is to use a TBox to specify semantics and
background knowledge for the data and use it for deriving more complete answers to queries
over the data. In this context, the data is stored in an ABox consisting of a finite set of
assertions of the form A(a) or r(a, b), where A is a concept names, r a role name, and a, b
are individual names. Given a query q(~x) (typically a conjunctive query), a TBox T , and
an ABox A, a tuple of individual names ~a from A and of the same length as ~x is called
a certain answer to q(~x) over A w.r.t. T , in symbols T ,A |= q(~a), if every model I of T
and A satisfies q(~a). Motivated by this setup, Konev et al. (2016) and Ozaki (2016) study
polynomial learnability of TBoxes using membership queries that ask whether a tuple of
individuals names is a certain answer to a query over an ABox w.r.t. the target TBox. This
is a natural alternative to learning using concept inclusions since domain experts are often
more familiar with querying data in a particular domain than with the logical notion of
subsumption between concept expressions. In detail, the learning protocol is as follows:

• a membership query takes the form (A, q(~a)) and asks whether the tuple ~a of individual
names is a certain answer to the query q(~x) over the ABox A w.r.t. the target TBox T ;

• an equivalence query asks whether a TBox H is equivalent to the target TBox T . If T
and H are not equivalent then a counterexample of the form (A, q(~a)) is given such
that T ,A |= q(~a) and H,A 6|= q(~a) (a positive counterexample) or T ,A 6|= q(~a) and
H,A |= q(~a) (a negative counterexample).



In the learning protocol above we have not yet specified the class of queries from which the
q(~x) are drawn and which strongly influences the classes of TBoxes that can be learned. In
the context of data access using TBoxes the two most popular classes of queries are:

• conjunctive queries (CQs), that is, existentially quantified conjunctions of atoms; and

• instance queries (IQs), which take the form C(x) or r(x, y) with C a concept expression
from the DL under consideration and r a role name.

Konev et al. (2016) and Ozaki (2016) study exact learning of TBoxes in the languages EL,
ELlhs and DL-Lite∃R for both IQs and CQs in queries. The positive learnability results are
proved by polynomial reductions to the learnability results presented in this paper and also
by Ozaki (2016). The basic link between learning using concept inclusions as queries and
learning by certain answers is as follows: if T is a TBox and C,D are concept expressions in
any of the DLs discussed above then one can regard the labelled tree TC corresponding to C
as an ABox AC with root ρC and it holds that T |= C v D if, and only if, T ,AC |= D(ρC).
The converse direction (obtaining a concept expression from an ABox) is more involved
since ABoxes are not tree-shaped and an additional unfolding step is needed to compute
a corresponding concept expression. Using this link it is proved by Konev et al. (2016)
and Ozaki (2016) that DL-Lite∃R and ELlhs TBoxes with role inclusions can be learned with
polynomially many queries using certain answers to IQs. It is also proved that EL is still
not learnable with polynomially many queries using certain answers with neither IQs nor
CQs as the query language and that DL-Lite∃R TBoxes cannot be learned with polynomially
many queries using certain answers with CQs as the query language.

Exact Learning in (other) Fragments of FO Horn. We discuss results on exact
learning of finite sets of FO Horn clauses or fragments of this logic, where a FO Horn clause
is a universally quantified clause with at most one positive literal (Page Jr, 1993; Arimura,
1997; Reddy and Tadepalli, 1998; Arias and Khardon, 2002; Arias et al., 2007; Selman and
Fern, 2011). Depending on what is used as membership queries and as counterexamples
to equivalence queries, one can distinguish between exact learning FO Horn clauses using
interpretations and using entailments. As learning using entailments is closer to our approach
we focus on that setting. The exact learning protocol is then as follows:

• a membership query asks whether an FO Horn clause is entailed by the target set T
of FO Horn clauses;

• an equivalence query asks whether a set H of FO Horn clauses is equivalent to the
target set T . If H and T are not equivalent then a counterexample is given, that is, an
FO Horn clause entailed by T but not by H (a positive counterexample) or vice versa.

Considering how terms (with function symbols allowed) can appear in an FO Horn clause,
two main restrictions have been studied in the literature:

1. Range restricted clauses: when the set of terms in the positive literal (if existent) is a
subset of the terms in the negative literals and their subterms; and

2. Constrained clauses: when the set of terms and subterms in the positive literal (if
existent) is a superset of the terms in the negative literals.



For example, the FO Horn clause ∀x(¬P (f(x))∨P (x)) is range restricted but not constrained
and the FO Horn clause ∀x(¬P (x)∨P (f(x))) is constrained but not range restricted, where
P is a predicate symbol and f a function symbol. Reddy and Tadepalli (1998) and Arimura
(1997), it is shown that under certain acyclicity conditions FO Horn with range restricted
clauses and, respectively, constrained clauses are polynomial time learnable from entailments
if the arity of predicates is bounded by a constant. A learning algorithm for a fragment
of FO Horn (called closed FO Horn) that subsumes the two languages defined above is
presented by Arias and Khardon (2002). The algorithm is polynomial in the number of
clauses, terms and predicates and the size of the counterexamples, but exponential not only
in the arity of predicates but also in the number of variables per clause. In fact, it is an open
question whether there exists a learning algorithm for closed FO Horn that is polynomial in
the number of variables per clause.

We relate the learnability results for FO Horn to the learnability results for lightweight
description logics presented in this paper. Observe that most DLs (and in particular all DLs
investigated in this paper) can be translated into FO (Baader et al., 2003). For example, a
translation of the ELlhs CI ∃r.A v B is ∀x∀y(¬r(x, y) ∨ ¬A(y) ∨B(x)) and a translation of
the DL-Lite∃R CI A v ∃r.A is ∀x(A(x)→ ∃y.(r(x, y) ∧A(y))). Under this translation, every
ELlhs TBox can be regarded as a set of range restricted FO Horn clauses, where the arity
of predicates is bounded by 2. In contrast, since in DL-Lite∃R existential quantifiers can be
nested in the right side of CIs, DL-Lite∃R CIs cannot be translated into FO Horn clauses.
We can now summarise the relationship between our learnability results for ELlhs, DL-Lite∃R
and DL-Lite∃R,horn and the results on exact learnability of FO Horn from entailments as
follows: since the arity of DL predicates is at most 2 and since no function symbols are
admitted in DLs, none of the DLs considered in this paper can express the fragments of FO
Horn discussed above. On the other hand, we do not impose an acyclicity condition on the
TBoxes (in contrast to the work by Reddy and Tadepalli (1998); Arimura (1997)) and our
algorithms are polynomial in the number of variables permitted in any clause (in contrast to
the work by Arias and Khardon (2002)). Thus, the results discussed above for FO Horn
do not translate into polynomial learning algorithms for ELlhs and are not applicable to
DL-Lite∃R nor DL-Lite∃R,horn. Our results thus cover new fragments of FO that have not yet
been considered for exact learning. This is not surprising, given the fact that the fragments
of FO considered previously were not motivated by applications in ontology learning.

Also related to exact learning of Horn FO is recent work on exact learning of schema
mappings in data exchange (ten Cate et al., 2012). Schema mappings are tuples (S, T,M)
where S is a source schema (a finite set of predicates), T is a target schema (a finite set
of predicates), and M is a finite set of sentences of the form ∀~x(ϕ(~x)→ ∃~yψ(~x, ~y)) where
ϕ(~x) and ψ(~x, ~y) are conjunctions of atoms over S and T , respectively (Fagin et al., 2005).
(S, T,M) is a GAV schema mapping if ~y is empty and ψ(~x, ~y) is an atom. The authors
study exact learnability of GAV schema mappings from data examples (I, J) consisting of a
database I over the source schema S and a database J over the target schema T . Such a data
example satisfies M if I ∪ J |= M . The authors present both polynomial query learnability
results for protocols using membership and equivalence queries and non-polynomial query
learnability results if either only membership or only equivalence queries are allowed. These
results are not applicable to the setting considered in this paper since the learning protocol
uses data examples instead of entailments.



8. Conclusion

We have presented the first study of learnability of DL ontologies in Angluin et al’s framework
of exact learning, obtaining both positive and negative results. Several research questions
remain to be explored. One immediate question is whether acyclic EL TBoxes can be learned
in polynomial time using queries and counterexamples of the form A ≡ C and A v C only.
Note that our non-polynomial query learnability result for acyclic EL TBoxes relies heavily
on counterexamples that are not of this form. Another immediate question is whether the
extension of ELlhs with inverse roles (which is a better approximation of OWL2 RL than
ELlhs itself) can still be learned in polynomial time, or at least with polynomially many
queries of polynomial size. Other interesting research directions are non-polynomial time
learning algorithms for EL TBoxes and the admission of different types of membership
queries and counterexamples in the learning protocol. For example, one could replace CIs as
counterexamples with interpretations.
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Appendix A. Proofs for Section 6

We supply proofs for Lemma 62 and Lemma 64. In addition, we prove a claim used in the
proof of Lemma 67. We start by giving the proof of Lemma 62.

Lemma 62 For every DL-Lite∃R CI B v D over the signature of Tσ,

• either Tσ |= B v D for every Tσ ∈ SN

• or there is at most one Tσ ∈ SN such that Tσ |= B v D.

Proof Assume the CI B v D is given. If B 6= A or M does not occur in D, then the claim
can be readily checked. Thus, we assume that B = A and M occurs in D. Assume there
exists σ0 such that Tσ0 |= A v D (if no such σ0 exists, we are done). For any σ, let IA,Tσ
be the canonical model of A and Tσ (Lemma 12). Apply the following restricted form of
parent/child merging exhaustively to the concept expression D:

• if there are nodes d, d1, d2 ∈ TD with l(d1, d) = σ and l(d, d2) = σ− for some σ ∈ {r, s},
then replace D by the resulting concept expression after d1 and d2 are merged in D.

Let D′ be the resulting concept expression. Recall from Lemma 12 that Tσ |= A v D iff
there is a homomorphism from TD to IA,Tσ mapping ρD to ρA. Using the fact that IA,Tσ is
a ditree interpretation, one can readily check that any homomorphism h from TD to IA,Tσ
mapping ρD to ρA factors through TD′ and that D′ is an EL concept expression. Thus, if
there is an additional σ′ 6= σ0 such that Tσ′ |= A v D, then there are two homomorphisms



hσ0 and hσ′ with the same domain TD′ into IA,Tσ0
and IA,Tσ′ and mapping the root of TD′

to the roots of IA,Tσ0
and IA,Tσ′ , respectively. Since M occurs in D′ and D′ is an EL concept

expression we find a sequence D0, . . . , Dm with D0 = D′ and Dm = M such that ∃si+1.Di+1

is a top-level conjunct of Di for si ∈ {r, s} and all i < m. But then s1 · · · sm = σ0 and
s1 · · · sm = σ′ and we have derived a contradiction to the assumption that σ0 and σ′ are
distinct. o

To prove Lemma 64 we require the following observation.

Lemma 72 For any acyclic EL TBox T , any CI A v C ∈ T and any concept expression
of the form ∃t.D we have T |= A v ∃t.D if, and only if, T |= C v ∃t.D.

We are now ready to prove Lemma 64.

Lemma 64 For every EL CI C v D over Σn:

• either TL |= C v D for every L ∈ Ln

• or the number of L ∈ Ln such that TL |= C v D does not exceed |C|.

Proof We prove the lemma by induction on the structure of D. We assume throughout
the proof that there exists some L0 ∈ Ln such that TL0 |= C v D.

Base case: D is a concept name. We make the following case distinction.

• D ∈ {Xi, Ai, Bi | 1 ≤ i ≤ n} or D = M . By Lemma 65, C is of the form Z u C ′,
for some concept name Z, and TL0 |= Z v D. But then Z = D and it follows that
TL |= C v D for every L ∈ Ln.

• D = X0. By Lemma 65, C is of the form Z u C ′, for some concept name Z, and
TL0 |= Z v X0. This is the case if either Z = X0, or Z ∈ {A,A1, B1, . . . , An, Bn}. In
either case, TL |= C v X0 for every L ∈ Ln.

• D = A. If C is of the form A u C ′ or for all i such that 1 ≤ i ≤ n, Ai or Bi is a
conjunct of C, then TL |= C v A for every L ∈ Ln. Assume now that C is not of this
form. Then for some j such that 1 ≤ j ≤ n, C is neither of the form A u C ′ nor of
the form Aj u C ′ nor of the form Bj u C ′. Let L = (σ1, . . . ,σn) ∈ Ln be such that
TL |= C v A. Notice that TL |= C v A, for L = (σ1, . . . ,σn) ∈ Ln, if, and only if,
TL |= C v X0u∃σ1.M u· · ·u∃σn.M . By the claim in the proof of Lemma 66, for such
a TL we must have ∅ |= C v ∃σj .M . Clearly, the number of L = (σ1, . . . ,σn) ∈ Ln
with ∅ |= C v ∃σj .M does not exceed |C|.
Thus, either TL |= C v A for every L ∈ Ln or the number of L ∈ Ln such that
TL |= C v A does not exceed |C|.

Induction step. If D = D1 uD2, then TL |= C v D if, and only if, T |= C v Di, i = 1, 2.
By induction hypothesis, for i = 1, 2 either TL |= C v Di for every L ∈ Ln or there exist
at most |C| different L ∈ Ln such that TL |= C v Di. Thus either TL |= C v D for every
L ∈ Ln or the number of L ∈ Ln such that TL |= C v D also does not exceed |C|.

Now assume that D = ∃t.D′. Suppose that TL |= C v D for some L ∈ Ln. Then, by
Lemma 65, either there exists a conjunct Z of C, Z a concept name, such that TL |= Z v ∃t.D′



or there exists a conjunct ∃t.C ′ of C with TL |= C ′ v D′. We analyse for every conjunct of C of
the form Z or ∃t.C ′ the number of L ∈ Ln such that TL |= Z v ∃t.D′ or TL |= ∃t.C ′ v ∃t.D′,
respectively.

(i) Let Z be a conjunct of C such that Z is a concept name and TL |= Z v ∃t.D′. Notice
that Z 6= M as there is no L ∈ Ln such that TL |= M v ∃t.D′. We consider the
remaining cases.

– Z = Xi, for some i ≥ 0. It is easy to see that for L,L′ ∈ Ln we have TL |= Xi v
∃t.D′ if, and only if TL′ |= Xi v ∃t.D′. Thus, TL |= Z v ∃t.D′ for every L ∈ Ln.

– Z ∈ {Ai, Bi | 1 ≤ i ≤ n}. By Lemma 72, TL |= Z v ∃t.D′ if, and only
if, TL |= X0 u ∃σi.M v ∃t.D′. By Lemma 65, either TL |= X0 v ∃t.D′ or
TL |= ∃σi.M v ∃t.D′. If TL |= X0 v ∃t.D′ then, as above, for TL |= C v ∃t.D′
every L ∈ Ln. Suppose that ∃t.D′ is such that TL 6|= X0 v ∃t.D′ and TL |=
∃σi.M v ∃t.D′. By inductive applications of Lemma 65, this is only possible if
∃t.D′ = ∃σi.M . Thus, there is exactly one L ∈ Ln (namely, L = L0) such that
TL |= Z v ∃σi.M .

– Z = A. Suppose that for some L = (σ1, . . . ,σn) ∈ Ln we have TL |= A v ∃t.D′.
Equivalently, TL |= X0 u ∃σ1.M u . . .σn.M v ∃t.D′. By Lemma 65, either
TL |= X0 v ∃t.D′ or TL |= ∃σi.M v ∃t.D′ for some i with 1 ≤ i ≤ n. Thus, as
above, unless TL |= X0 v ∃t.D′ we have ∃t.D′ is ∃σi.M . But then L = L0.

(ii) Let ∃t.C ′ be a conjunct of C with TL |= C ′ v D′. The induction hypothesis implies
that the number of L ∈ Ln such that TL |= C ′ v D′ does not exceed |C ′|.

To summarise, either TL |= C v ∃t.D′ for every L ∈ Ln or for every conjunct C0 of C of the
form Z or ∃t.C ′, the number of L ∈ Ln such that TL |= C0 v ∃t.D′ does not exceed |C0|.
Hence the number of L ∈ Ln such that TL |= C v ∃t.D′ does not exceed |C|. o

The next result is used in the proof of Lemma 67.

Lemma 73 For any 0 ≤ i ≤ n and concept expression D over Σn, if T0 6|= Xi v D then
there exists a sequence of role names t1, . . . tl ∈ {r, s}l such that ∅ |= D v ∃t1. · · · ∃tl.Y and
T0 6|= Xi v ∃t1. · · · ∃tl.Y , where Y is either > or a concept name and 0 ≤ l ≤ n− i+ 1.

Proof We prove the lemma by induction on i from i = n to i = 0. If i = n, then
T0 6|= Xi v D if either ∅ |= D v ∃t.>, for some role name t, or ∅ |= D v Y , for some concept
name Y 6= Xi.

Suppose that the lemma is proved for 0 < j ≤ n and let i = j−1. We proceed by induction
on the structure of D. If D is a concept name, we are done as T0 |= Xi v Z does not hold for
any concept name Z 6= Xi. If D is of the form ∃t.D′, where t ∈ {r, s}, then T0 6|= Xi+1 v D′,
and so, by induction hypothesis, there exists a sequence of role names t1, . . . , tl, with l ≤ n−i,
such that T0 6|= Xi+1 v ∃t1. · · · ∃tl.Y and ∅ |= D′ v ∃t1. · · · ∃tl.Y . But then, by Lemma 72
and Lemma 65, T0 6|= Xi v ∃t.∃t1. · · · ∃tl.Y and ∅ |= ∃t.D′ v ∃t.∃t1. · · · ∃tl.Y . If D is of the
form D = D1 uD2, there there exists Di, i = 1, 2, such that T0 6|= Xi v Di and the lemma
holds by induction hypothesis. o
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