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Abstract

First-order temporal logic is a concise and powerful notation, with
many potential applications in both Computer Science and Artifi-
cial Intelligence. While the full logic is highly complex, recent
work on monodic first-order temporal logics has identified impor-
tant enumerable and even decidable fragments. In this paper, we
develop a clausal resolution method for the monodic fragment of
first-order temporal logic over expanding domains. We first define
a normal form for monodic formulae and then introduce novel res-
olution calculi that can be applied to formulae in this normal form.
We state correctness and completeness results for the method. We
illustrate the method on a comprehensive example. The method
is based on classical first-order resolution and can, thus, be effi-
ciently implemented.

1. Introduction

In its propositional form, linear, discretetemporal logic
has been widely used in the formal specification and veri-
fication of reactive systems [18, 15, 12]. Although recog-
nised a powerful formalism,first-order temporal logic has
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generally been avoided due to complexity problems (e.g.
there is no finite axiom system for general first-order tem-
poral logic). However, recent work by Hodkinsonet al.[11]
has showed that a particular fragment of first-order tem-
poral logic, termed themonodicfragment, has complete-
ness (sometimes even decidability) properties. This break-
through has led to considerable research activity examining
the monodic fragment, in terms of decidable classes, exten-
sions, applications and mechanisation, etc.

Concerning the mechanisation of monodic temporal log-
ics, general tableau and resolution calculi have already been
defined, in [13] and [5, 3], respectively. However, neither of
these is particularly practical: the tableau method requires
representation ofall possible first-order models, while the
resolution method requires the maximal combination ofall
temporal clauses. In this paper, we focus on an important
subclass of temporal models, having a wide range of ap-
plications, for example in spatio-temporal logics [21, 10]
and temporal description logics [1], namely those models
that haveexpanding domains. In such models, the domains
over which first-order terms range can increase at each tem-
poral step. The focus on this class of models allows us to
produce a simplified clausal resolution calculus, termed a
fine-grainedcalculus, which is more amenable to efficient
implementation.



Thus, we will define the expanding domain monodic
fragment, a fine-grained resolution calculus, and provide
completeness results for the fine-grained calculus relative
to the completeness of the general resolution calculus [6].
A number of examples will be given, showing how the fine-
grained calculus works in practice and, finally, conclusions
and future work will be provided.

2. First-Order Temporal Logic

First-Order (discrete linear time) Temporal Logic,
FOTL, is an extension of classical first-order logic with op-
erators that deal with a linear and discrete model of time
(isomorphic toN, and the most commonly used model of
time). The first-order temporal language is constructed in
a standard way [9, 11] from:predicate symbols P0,P1, . . .

each of which is of some fixed arity (null-ary predicate sym-
bols are calledpropositions); individual variables x0,x1, . . .;
individual constants c0,c1, . . .; Boolean operators∧, ¬, ∨,
⇒, ≡, true (‘true’), false (‘false’); quantifiers∀ and∃; to-
gether withtemporal operators (‘always in the future’),
♦ (‘sometime in the future’), ❣(‘at the next moment’),U
(until), and W (weak until). There are no function sym-
bols or equality in thisFOTL language, but it does contain
constants. For a given formula,φ, const(φ) denotes the set
of constants occurring inφ. We writeφ(x) to indicate that
φ(x) has at most one free variable x(if not explicitly stated
otherwise).

Formulae inFOTL are interpreted infirst-order temporal
structuresof the formM = 〈Dn, In〉, n ∈ N, where every
Dn is a non-empty set such that whenevern< m, Dn ⊆ Dm,
andIn is an interpretation of predicate and constant symbols
overDn. We require that the interpretation of constants is
rigid. Thus, for every constantc and all moments of time
i, j ≥ 0, we haveIi(c) = I j(c).

A (variable) assignmenta is a function from the set of in-
dividual variables to∪n∈NDn. (This definition implies that
variable assignments are rigid as well.) We denote the set
of all assignments byV.

For every moment of timen, there is a corresponding
first-order structure,Mn = 〈Dn, In〉; the corresponding set
of variable assignmentsVn is a subset of the set of all as-
signments,Vn = {a ∈ V | a(x) ∈ Dn for every variablex};
clearly,Vn ⊆Vm if n< m. Intuitively, FOTL formulae are
interpreted in sequences ofworlds, M0,M1, . . . with truth
values in different worlds being connected via temporal op-
erators.

The truth relationMn |=a φ in a structureM, only for
those assignmentsa that satisfy the conditiona ∈ Vn, is
defined inductively in the usual way under the following

understanding of temporal operators:

Mn |=
a ❣φ iff Mn+1 |=

a φ;
Mn |=

a ♦φ iff there existsm≥ n such that
Mm |=a φ;

Mn |=
a φ iff for all m≥ n, Mm |=a φ;

Mn |=
a (φUψ) iff there existsm≥ n, such that

Mm |=a ψ, and for alli ∈N,

n≤ i < m impliesMi |=
a φ;

Mn |=
a (φWψ) iff Mn |=

a (φUψ) orMn |=
a φ.

M is a modelfor a formulaφ (or φ is true in M) if there
exists an assignmenta in D0 such thatM0 |=

a φ. A formula
is satisfiableif it has a model. A formula isvalid if it is true
in any temporal structureM under any assignmenta in D0.

The models introduced above are known asmodels with
expanding domains. Another important class of models
consists ofmodels with constant domainsin which the class
of first-order temporal structures, where FOTL formulae are
interpreted, is restricted to structuresM = 〈Dn, In〉, n∈N,
such thatDi = D j for all i, j ∈N. The notions of truth and
validity are defined similarly to the expanding domain case.
It is known [19] that satisfiability over expanding domains
can be reduced to satisfiability over constant domains.

Example 1 The formula ∀xP(x) ∧ (∀xP(x) ⇒
❣∀xQ(x)) ∧ ♦¬Q(c) is unsatisfiable over both

expanding and constant domains; the formula
∀xP(x) ∧ (∀x(P(x) ⇒ ❣Q(x))) ∧ ♦¬Q(c) is unsat-
isfiable over constant domains but has a model with an
expanding domain.

This logic is complex. It is known that even “small”
fragments ofFOTL, such as thetwo-variable monadicfrag-
ment (all predicates are unary), are not recursively enumer-
able [16, 11]. However, the set of validmonodicformulae
(see Definition 1 below) is known to be finitely axiomatis-
able [20].

Definition 1 An FOTL-formulaφ is calledmonodicif any
subformulae of the formT ψ, whereT is one of ❣, , ♦
(or ψ1T ψ2, whereT is one ofU , W ), contains at most one
free variable.

3. Divided Separated Normal Form (DSNF)

Definition 2 A temporal step clauseis a formula either of
the formp⇒ ❣l , wherep is a proposition andl is a propo-
sitional literal, or(P(x)⇒ ❣M(x)), whereP(x) is a unary
predicate andM(x) is a unary literal. We call a clause of
the the first type an (original)groundstep clause, and of the
second type an (original)non-groundstep clause.



Definition 3 A monodic temporal problem in Divided Sep-
arated Normal Form (DSNF)is a quadruple〈U,I ,S ,E〉,
where

1. the universal part,U, is given by a set of arbitrary
closed first-order formulae;

2. the initial part,I , is, again, given by a set of arbitrary
closed first-order formulae;

3. the step part,S , is given by a set of original (ground
and non-ground) temporal step clauses; and

4. the eventuality part,E , is given by a set of eventuality
clauses of the form♦L(x) (a non-groundeventuality
clause) and♦l (aground eventualityclause), wherel is
a propositional literal andL(x) is a unary non-ground
literal.

The setsU, I , S , andS are finite.

Note that, in a monodic temporal problem, we do not allow
two different temporal step clauses with the same left-hand
sides. A problem with the same left-hand sides can be easily
transformed by renaming into one without.

In what follows, we will not distinguish between a fi-
nite set of formulaeX and the conjunction

∧
X of formulae

within the set. With each monodic temporal problem, we
associate the formula

I ∧ U ∧ ∀xS ∧ ∀xE .

Now, when we talk about particular properties of a temporal
problem (e.g., satisfiability, validity, logical consequences
etc) we mean properties of the associated formula.

Arbitrary monodicFOTL-formulae can be transformed
into DSNF in a satisfiability equivalence preserving way
using a renaming technique replacing non-atomic subfor-
mulae with new propositions and removing all occurrences
of theU andW operators [9, 5].

4. Completeness Calculus

A resolution-like procedure for the monodic fragment
over constant domains has been introduced in [5]. Although
satisfiability over expanding domains can be reduced to sat-
isfiability over constant domains [19], it has been proved
in [6] that a simple modification of the procedure can be di-
rectly applied to the expanding domain case. We sketch the
monodic temporal resolution system here to make the pa-
per self-contained. We use this ‘completeness calculus’ to
show relative completeness of the calculus presented in the
next section. More details on the completeness calculus, as
well as proofs of the properties stated below, can be found
in [5] and [6] for the constant and expanding domain cases,
respectively.

Let P be a monodic temporal problem, and let

Pi1(x)⇒
❣Mi1(x), . . . ,Pik(x)⇒

❣Mik(x) (1)

be a subset of the set of its original non-ground step clauses.
Then formulae of the form

Pi j (c) ⇒ ❣Mi j (c), (2)

∃x
k∧

j=1

Pi j (x) ⇒ ❣∃x
k∧

j=1

Mi j (x), (3)

∀x
k∨

j=1

Pi j (x) ⇒ ❣∀x
k∨

j=1

Mi j (x) (4)

are calledderived step clauses, wherec ∈ const(P) and
j = 1. . .k. Formulae of the form(2) and(3) are callede-
derivedstep clauses. Note that formulae of the form(2) and
(3) are logical consequences of(1) in theexpanding domain
case; while formulae of the form(2), (3), and(4) are log-
ical consequences of(1) in the constant domaincase. As
Example 1 shows,(4) is not a logical consequence of(1) in
the expanding domain case.

Let {Φ1 ⇒ ❣Ψ1, . . . ,Φn ⇒ ❣Ψn} be a set of derived
(e-derived) step clauses or originalground step clauses.
Then

n∧

i=1

Φi ⇒ ❣
n∧

i=1

Ψi

is called amerged derived step clause(and merged e-
derived step clause, resp.).

Let A ⇒ ❣B be a merged derived (e-derived) step
clause, letP1(x) ⇒ ❣M1(x), . . . ,Pk(x) ⇒ ❣Mk(x) be a
subset of the original step clauses, and letA(x) ⇌ A ∧
k∧

i=1
Pi(x), B(x)⇌ B ∧

k∧
i=1

Mi(x). Then

∀x(A(x)⇒ ❣B(x))

is called afull merged step clause(full e-merged step clause,
resp.).

Let P be a monodic temporal problem,

Pc = P∪{♦L(c) | ♦L(x) ∈ E ,c∈ const(P)}

is theconstant flooded formof P. Evidently,Pc is satisfia-
bility equivalent toP.

We present now two calculi,Ic andIe, aimed at the con-
stant and expanding domain cases, respectively. The infer-
ence rules of these calculi coincide; the only difference is
in the merging operation. The calculusIc utilises merged
derived and full merged step clauses; whereasIe utilises
merged e-derived and full e-merged step clauses.



Inference Rules. In what follows,A ⇒ ❣B andAi ⇒
❣Bi denote merged derived (e-derived) step clauses,

∀x(A(x) ⇒ ❣(B(x))) and∀x(Ai(x) ⇒ ❣(Bi(x))) denote
full merged (full e-merged) step clauses, andU denotes the
(current) universal part of the problem.

• Step resolution rule w.r.t.U:
A ⇒ ❣B

¬A
( ❣U

res) ,

whereU ∪{B} ⊢⊥.

• Initial termination rule w.r.t. U: The contradiction
⊥ is derived and the derivation is (successfully) termi-
nated if U ∪ I ⊢⊥.

• Eventuality resolution rule w.r.t.U:

∀x(A1(x)⇒ ❣(B1(x)))
...

∀x(An(x)⇒ ❣(Bn(x)))

♦L(x)

∀x
n∧

i=1
¬Ai(x)

(♦U
res) ,

where∀x(Ai(x) ⇒ ❣Bi(x)) are full merged (full e-
merged) step clauses such that for alli ∈ {1, . . . ,n},
the loop side conditions∀x(U ∧Bi(x) ⇒ ¬L(x)) and

∀x(U∧Bi(x)⇒
n∨

j=1
(A j(x))) are both valid1.

The set of full merged (full e-merged) step clauses,
satisfying the loop side conditions, is called aloop in

♦L(x) and the formula
n∨

j=1
A j(x) is called aloop for-

mula.

• Ground eventuality resolution rule w.r.t.U:

A1 ⇒ ❣B1 . . . An ⇒ ❣Bn ♦l
n∧

i=1
¬Ai

(♦U
res) ,

whereAi ⇒ ❣Bi are merged derived (e-derived) step
clauses such that theloop side conditionsU ∧ Bi ⊢

¬l and U∧Bi ⊢
n∨

j=1
A j for all i ∈ {1, . . . ,n} are

both valid. Ground loopandground loop formulaare
defined similarly to the case above.

A derivation is a sequence of universal parts,U = U0 ⊆
U1 ⊆ U2 ⊆ . . ., extended little by little by the conclusions
of the inference rules. Successful termination means that
the given problem is unsatisfiable. TheI , S andE parts of
the temporal problem are not changed in a derivation.

Theorem 1 (see [5], theorems 2 and 3)The rules of Ic

preserve satisfiability over constant domains. If a monodic

1In the caseU ⊢ ∀x¬L(x), thedegenerate clause, true ⇒ ❡true, can
be considered as a premise of this rule; the conclusion of therule is then
¬true and the derivation successfully terminates.

temporal problemP is unsatisfiable over constant domains,
then there exists a successfully terminating derivation inIc

from Pc.

Theorem 2 (see [6], theorems 2 and 3)The rules of Ie

preserve satisfiability over expanding domains. If a
monodic temporal problemP is unsatisfiable over expand-
ing domains, then there exists a successfully terminating
derivation inIe from Pc.

Example 2 The need for constant flooding can be demon-
strated by the following example. None of the rules of tem-
poral resolution can be applied directly to the (unsatisfiable)
temporal problem given by

I = {P(c)}, S = {q⇒ ❣q},
U = {q≡ P(c)}, E = {♦¬P(x)}.

If, however, we add to the problem an eventuality clause
♦l and a universal clausel ⇒ ¬P(c), the step clauseq ⇒
❣q will be a loop in♦l , and the eventuality resolution rule

would derive¬true2.

5. Fine-Grained Resolution for the Expanding
Domain Case

The main drawback of the calculi introduced in the previ-
ous section is that the notion of a merged step clause is quite
involved and the search for appropriate merging of simpler
clauses is computationally hard. Findingsetsof such full
merged step clauses needed for the temporal resolution rule
is even more difficult.

From now on we focus on the expanding domain case.
This is simpler firstly because merged e-derived step clauses
are simpler (formulae of the form(4) do not contribute to
them) and, secondly, because conclusions of all inference
rules ofIe are first-order clauses.

We now introduce a calculus where the inference rules of
Ie are refined into smaller steps, more suitable for effective
implementation. First, we concentrate on the implemen-
tation of the step resolution inference rule; then we show
how to effectively find premises for the eventuality resolu-
tion rule by means of step resolution.

The calculus is inspired by the following consideration:
Suppose thatIe applies the step resolution rule to a merged
e-derived step clauseA ⇒ ❣B . The rule can be applied
if B ∪ U ⊢⊥ and this fact can be established by a first-
order resolution procedure (that would skolemise the uni-
versal part). Then the conclusion of the rule,¬A , is added
to U resulting in a new universal partU′. Suppose that the

2Note that the non-ground eventuality♦¬P(x) is not used. It was
shown in [4] that if all step clauses are ground, for constantflooded prob-
lems we can neglect non-ground eventualities.



step resolution rule is applied to another merged e-derived
step clause,A ′ ⇒ ❣B ′. The side condition,B ′ ∪U′ ⊢⊥,
again can be checked by a first-order resolution procedure.
Since we never add new existential formulae,U′ can be
skolemised in exactly the same way asU. Therefore, we
can actually keepU in clausal form.

Note further that we are not only going to check side
conditions for the rules of theIe by means of first-order
resolution but alsosearch for clauses to mergeat the same
time.

Fine-grained resolution might generate additional step
clauses of the form

C⇒ ❣D. (5)

Here,C is a conjunctionof propositions, unary predicates
of the formP(x), and ground formulae of the formP(c),
whereP is a unary predicate symbol andc is a constant
occurring in theoriginally given problem; D is adisjunction
of arbitrary literals.

Definition 4 LetP be a constant flooded temporal problem;
the set of clausesS(P), calledthe result of preprocessing,
consists of step clauses fromP and

1. For every original non-ground step clause

P(x)⇒ ❣M(x)

and every constantc∈ const(P), the clause

P(c)⇒ ❣M(c) (6)

is in S(P).

2. Clauses obtained by clausification of the universal and
initial parts, as if there is no connection with tempo-
ral logic at all, are inS(P). The resulting clauses are
calleduniversal clausesandinitial clausesresp. Origi-
nally, universal and initial clauses do not have common
Skolem constants and functions. Initial and universal
clauses are kept separately.

In sections 5.1 and 5.2, we assume that a given problem is
preprocessed.

5.1. Fine-grained step resolution

Fine-grained step resolution consists of a set ofdeduc-
tion anddeletionrules. We implicitly assume that differ-
ent premises and conclusion of the deduction rules have no
variables in common; variables are renamed if necessary.

Deduction rules

1. Arbitrary (first-order) resolution between universal
clauses.The result is a universal clause.

2. Arbitrary (first-order) resolution between initial and
universal clauses (or just between initial clauses). The
result is an initial clause.

3. Fine-grained (restricted) step resolution

C1 ⇒ ❣(D1∨L) C2 ⇒ ❣(D2∨¬M)

(C1∧C2)σ ⇒ ❣(D1∨D2)σ
,

whereC1 ⇒ ❣(D1 ∨ L) andC2 ⇒ ❣(D2 ∨¬M) are
step clauses andσ is an mgu of the literalsL andM
such thatσ does not map variables from C1 or C2 into
a constant or a functional term.3

C1 ⇒ ❣(D1∨L) D2∨¬N

C1σ ⇒ ❣(D1∨D2)σ
,

whereC1 ⇒ ❣(D1∨L) is an step clause,D2∨¬N is a
universal clause, andσ is an mgu of the literalsL and
N such thatσ does not map variables from C1 into a
constant or a functional term.

4. Right factor

C⇒ ❣(D∨L∨M)

Cσ ⇒ ❣(D∨L)σ
,

whereσ is an mgu of the literalsL andM such that
σ does not map variables from C into a constant or a
functional term.

5. Left factor
(C∧L∧M)⇒ ❣D

(C∧L)σ ⇒ ❣Dσ
,

whereσ is an mgu of the literalsL andM such that
σ does not map variables from C into a constant or a
functional term.

6. Clause conversion
a step clause of the formC⇒ ❣false is rewritten into
theuniversal clause¬C.

Deletion rules

1. First-order deletion: (first-order) subsumption and
tautology deletion in universal clauses; subsumption
and tautology deletion in initial clauses; subsumption
of initial clauses by universal clauses (but not vice
versa).

3This restriction justifies skolemisation: Skolem constants and func-
tions do not ‘sneak’ in the left-hand side of step clauses, and, hence,
Skolem constants from different moments of time do not mix.



2. Temporal deletion:
A universal clauseD2 subsumesa step clauseC1 ⇒
❣D1 if D2 subsumesD1 or D2 subsumes4 ¬C1.

A step clauseC1 ⇒ ❣D1 subsumesa step clause
C2 ⇒ ❣D2 if there exists a substitutionσ such that
D1σ ⊆ D2 and¬C1σ ⊆ ¬C2.
A step clauseC ⇒ ❣D is a tautologyif D is a tautol-
ogy. (Note that, since we do not have negative occur-
rences to the left-hand side of step clauses,C cannot
be false). Tautologies are deleted.

We adopt the terminology from [2]. A (linear)proof by
fine-grained resolution of a clauseC from a set of clauses
S is a sequence of clausesC1, . . . ,Cm such thatC =Cm and
each clauseCi is either an element ofS or else the con-
clusion by a deduction rule fromC1, . . . ,Ci−1. A proof of
false is called arefutation. A (theorem proving)derivation
by fine-grained resolution is a sequence of sets of clauses
S0✄S1✄ . . . such that everySi+1 differs fromSi by either
adding the conclusion of a deduction rule or else deleting a
clause by a deletion rule. We say that a clauseC is derived
by fine-grained resolution fromS0 if C∈ Si for somei.

Note 1 Fine-grained step resolution without the restriction
on substitutions would, certainly, lead to unsoundness: The
monodic problem given by

U = {u1 : ∃x¬Q(x),u2 : ∀x(P(x)∨Q(x))}, I = /0,
S = {s1 : P(x)⇒ ❣Q(x)}, E = /0,

which is satisfiable, would wrongly be declared unsatis-
fiable without this restriction (After skolemisation,Us =
{us1 : ¬Q(c), us2 : P(x)∨Q(x)}, then unrestricted resolu-
tion would deriveus3 :¬P(c) from us1 ands1, and then the
contradiction fromus1, us2, andus3.)

Example 3 It might seem that the restriction on mgus is
too strong and destroys completeness of the calculus. For
example, at first glance it may appear that under this restric-
tion it is not possible to deduce a contradiction from the
following (unsatisfiable) temporal problemP given by

I = {∀xP(x)}, U = {¬Q(c)},
S = {P(x)⇒ ❣Q(x)}, E = /0.

However wecan derive a contradiction because we ap-
ply our calculus toS(P) which contains an additional step
clause

P(c)⇒ ❣Q(c).

A formal statement of completeness follows.

4Here, and further,¬(L1(x)∧ . . .∧ Lk(x)) abbreviates(¬L1(x)∨ . . .∨
¬Lk(x)).

Definition 5 A clause of the formC⇒ ❣false, whereC is
of the same form as in (5), is calleda final clause.

Lemma 3 Let P = 〈U,I ,S ,E〉 be a monodic temporal
problem andS= S(P) be the result of preprocessing. Let
C ⇒ ❣false be an arbitrary final clause derived by fine-
grained step resolution fromS. Then there exists a deriva-
tion U = U0 ⊆ U1 ⊆ . . . by the step resolution rule ofIe

and a merged e-derived step clauseA ⇒ ❣B such that
B ∪Ui ⊢⊥, for somei ≥ 0, andA = ∃̃C, where∃̃ means
existential quantification over all free variables.

Proof (Sketch). SinceC ⇒ ❣false is derivable, there ex-
ists its proofΓ by fine-grained resolution. We prove the
lemma by induction on the number of applications of the
clause conversion rule inΓ. Suppose we proved the lemma
for proofs containing less thann applications of the clause
conversion rule, and letΓ containsn such applications.
Then every conclusion of the clause conversion rule is also a
conclusion by the step resolution rule ofIe. It can be shown
that both the induction basis and induction step follow from
the following claim.

Claim. Let ∆ be a proof ofC⇒ ❣falseby the rules of fine-
grained resolution,except the clause conversion rule,from
a set of step clausesS and a set of universal clausesU. Then
there exists a merged e-derived step clauseA ⇒ ❣B such
thatB ∪U ⊢⊥ andA = ∃̃C.

Let
{Pi(xi) ⇒ ❣Mi(xi) | i = 1. . .K}

{pi ⇒ ❣l i | i = 1. . .L}

be the set of all step clauses fromS involved in ∆ where
pi ⇒ ❣l i denotes either a ground step clause, or an e-
derived step-clause of the form (6) added by preprocess-
ing (w.l.o.g., we assumed that all the variablesx1,.., xK are
pairwise distinct). We assume that∆ is tree-like, that is, no
clause in∆ is used more than once as an assumption for an
inference rule; we may make copies of the clauses in∆ in
order to make it tree-like.

Note that (by accumulating the mgus used in the proof)
it is possible to construct a finite set of instances of these
clauses (and universal clauses) such that there exists a tree-
like proof ofC ⇒ ❣false from this new set of clauses and
all mgus used in the proof are empty5. That is, there exist
substitutions{σi, j | i = 1. . .K, j = 1. . .si} such that

{Pi(xi)σi, j ⇒ ❣Mi(xi)σi, j | i = 1. . .K, j = 1. . .si}
{pi ⇒ ❣l i | i = 1. . .L}

(7)

5The condition that premises of the non-ground binary resolution rule
should be variable disjoint may be violated here; note, however, that this
condition is needed forcompleteness, notcorrectness.



(together with some instances of universal clauses) con-
tribute to the proof ofC ⇒ ❣false where all mgus used
in the proof are empty, and, furthermore,

C=
K∧

i=1

si∧

j=1

Pi(xi)σi, j ∧
L∧

i=1

pi .

Note further (induction) that due to our restriction on the
step resolution rule, for anyi, j, the substitutionσi, j mapsxi

into a free variable.
Let us group the instances of the step clauses ac-

cording to the value of the substitutions. We in-
troduce an equivalence relationΣ on the clauses
from (7) as follows: For everyi, j, i′, j ′ we have(
Pi(xi)σi, j ⇒ ❣Mi(xi)σi, j , Pi′(xi′)σi′, j ′ ⇒

❣Mi′(xi′)σi′, j ′
)
∈

Σ iff xiσi, j = xi′σi′, j ′ (it can be easily checked thatΣ is
indeed an equivalence relation). LetN be the number of
equivalence classes of(7) by Σ; let Ik be the set of indexes
of thek-th equivalence class (we refer to clauses from(7)
by indexes of the corresponding substitutions).

Let Ck =
∧

(i, j)∈Ik
Pi(xi)σi, j , for everyk, 1≤ k ≤ N; let

C0 =
∧L

i=1 pi . Note thatC =
∧N

k=1Ck ∧C0 and this par-
tition of C is disjoint. Let Dk =

∧
(i, j)∈Ik

Mi(xi)σi, j , let

D0 =
∧L

i=1 l i , let D =
∧N

k=1 Dk∧D0. Note that̃∀D∧U ⊢⊥.
Note further that if we replace the free variable ofDk with
a fresh constant,ck, there still exists a refutation from∧N

k=1D(ck)∧D0 and universal clauses (with mgus applied
to universal and intermediate clauses only). It follows that∧N

k=1∃xDk(x)∧D0∧U ⊢⊥.
It suffices to note that (

∧N
k=1∃xCk(x) ∧ C0) ⇒

❣(
∧N

k=1∃xDk(x) ∧ D0) is a merged e-derived step
clause. ✷

Lemma 4 Let P = 〈U,I ,S ,E〉 be a monodic temporal
problem andS= S(P) be the result of preprocessing. Let
U = U0 ⊆ U1 ⊆ . . . be a derivation by the step resolution
rule ofIe. Let A ⇒ ❣B be a merged e-derived step clause
such thatB ∪Ui ⊢⊥, for somei ≥ 0. Then there exists a
final clauseC⇒ ❣false, derived by fine-grained resolution
from S, such thatA ⇒ ∃̃C.

Proof (Sketch). As in the proof of the previous lemma, it
suffices to prove that under conditions of the lemma there
exists a proof of a final clauseC ⇒ ❣false from the set of
step clauses fromS and the (current) universal part,Un, by
the rules of fine-grained resolution,except the clause con-
version rule,such thatA ⇒ ∃̃C.

The clauseA ⇒ ❣B is merged from derived clauses of
the form(2) and(3). Note that all derived clauses of the

form (2) are inS ought to preprocessing. Let for every de-
rived rule of the form(3),

∃x
s∧

j=1

Pi j (x)⇒
❣∃x

s∧

j=1

Mi j (x),

consider a set of instances of non-ground step clauses from
S,

{Pi j (c)⇒ Mi j (c) | j = 1. . .s},

wherec is a new constant.
SinceB ∪Un ⊢⊥, there exists a set of instances of step

clauses (we simplify indexing for the sake of presentation)

{Pj(ci) ⇒ ❣M j(ci)} | i = 1. . .K, j = 1. . .si}
{pi ⇒ ❣l i | i = 1. . .L},

where c1, . . . ,cK are new (Skolem) constants, such that∧K
i=1

∧si
j=1M j(ci)∧

∧L
i=1 l i ∧Un ⊢⊥ (again, as in the proof

of Lemma 3,pi ⇒ ❣l i denotes either an original ground
step clause or a clause of the form (6) added by preprocess-
ing).

Let ∆ be a (first-order) resolution proof of⊥ from Un

and the following set of clauses{M j(ci) | i = 1. . .K, j =
1. . .si}∪{l i | i = 1. . .L}. Let {M j(ci) | (i, j) ∈ I}∪{l i | i ∈
J}, for some sets of indexesI andJ, be its subset containing
all clauses involved in∆ (and only the clauses involved in
∆). Then there exists a proofΓ by fine-grained step resolu-
tion from

{Pj(ci) ⇒ ❣M j(ci) | (i, j) ∈ I}
{pi ⇒ ❣l i | i ∈ J}

(and universal clauses) of a final clauseC⇒ ❣false, where
C=

∧
(i, j)∈I Pj(ci)∧

∧
j∈J pi .

We assume, for simplicity of the proof, that the lifting
theorem (cf. e.g. [14]) holds for∆, that is, there exists a
non-ground (first-order) refutation∆′ from{M j(x j) | (i, j)∈
I}∪{l i | i ∈ J}, such that∆ ≤s ∆′ in the terminology of [14]:
Every clauseC′

i of ∆′ is a generalisation of the correspond-
ing clauseCi of ∆.

It can be seen that the lifting theorem can be transfered
to fine-grained inferences, and there exists a proofΓ′ from
the set of original step clauses

{Pj(x j) ⇒ ❣M j(x j) | (i, j) ∈ I}
{pi ⇒ ❣l i | i ∈ J}

(and universal clauses) of a final clauseC′ ⇒ ❣falsesuch
that Γ′ ≥s Γ, that is, every intermediate clauseC′

i ⇒
❣D′

i
from Γ′ is a generalisation of a corresponding clause from
Γ. (The only difficulty is to ensure the requirement on mgus
imposed by our inference system. Note that none of the
(Skolem) constantsc1, . . . ,cK occurs inΓ′. If, in the proof
Γ′, a constant or a functional term was substituted into a
variable occurring in the left-hand side of a clause, this
clause would not be a generalisation of any clause fromΓ.)
This implies the conclusion of the lemma. ✷



Lemma 3 ensures soundness of fine-grained step resolution.
Lemma 4 says that the conclusion of an application of the
clause conversion rule,¬C, subsumes the conclusion of an
application of the step resolution rule ofIe, ¬A .

Theorem 5 The calculus consisting of the rules of fine-
grained step resolution, together with the (both ground and
non-ground) eventuality resolution rule, is sound and com-
plete for the monodic fragment over expanding domains.

Note 2 The proof of completeness given above might be
hard to fulfil in the presence of variousrefinementsof reso-
lution and/orredundancy deletion. As a remedy, we suggest
consideringconstrained calculi, like e.g. resolution over
constrained clauses with constraint inheritance. It is known
that such inference systems are complete and moreover
compatible with redundancy elimination rules and many
(liftable) refinements (see e.g. [17], theorems 5.11 and 5.12,
subsections 5.4 and 5.5, resp.). Here we take into account
that there are no clauses with equality, and therefore all sets
arewell-constrainedin the terminology of [17].

Then instead of ground clauses of the form

Pj(ci) ⇒ ❣M j(ci)

we consider theirconstrainedrepresentations

Pj(xi) ⇒ ❣M j (xi) · {xi = ci}.

Recall that in accordance with the semantics of constrained
clauses, a clauseC ·T represents the set of all ground in-
stancesCσ whereσ is a solution ofT. In our case, there
is exactly one solution ofxi = ci given by the substitution
{xi 7→ ci}. So, the semantics of

Pj(xi) ⇒ ❣M j(xi) · {xi = ci}

is just
Pj(ci) ⇒ ❣M j(ci).

So, all clauses originating from the universal part have
empty constraints and all temporal clauses have constraints
defined above, and there exists a non-ground proof of a con-
strained final clause with constraint inheritance. Note that
the (Skolem) constantsc1, . . . ,ck may only occur in con-
straints but not in clauses themselves. It suffices to note
that in this case inferences with constraint inheritance ad-
mit only two kinds of substitutions intoxi : either{xi 7→ ci}
(however it is impossible becauseci occurs only in con-
straints), or{xi 7→ xi′} wherexi′ is bound by the same con-
straint{xi′ = ci}. The case of matchingxi andy wherey
originates from the universal part is solved by the substi-
tution {y 7→ xi}. A non-ground inference of a final clause,
satisfying the conditions on substitutions in the fine-grained
resolution rules, can be extracted from this constrained
proof implying, thus, the conclusion of Lemma 4.

5.2. Loop search

Next we use fine-grained step resolution to find the ap-
propriate set of full e-merged clauses to apply the (ground or
non-ground) eventuality resolution rule. It has been noticed
in [5] that in order to effectively find a loop in♦L(x) ∈ E ,
given a formula with one free variableΦ(x) we have to be
able to find the set of all full e-merged clauses of the form
∀x(A(x)⇒ ❣B(x)) such that the formula

∀x(B(x)∧U ⇒ Φ(x))

is valid (whereΦ(x) = H(x) ∧ ¬L(x) and H(x) is a dis-
junction of the left-hand sides of some full e-merged step
clauses).

Let ∀x(A(x) ⇒ ❣B(x)) be a full e-merged step clause
such that∀x(B(x)∧U ⇒ Φ(x)). Note that∀x(B(x)∧U ⇒
Φ(x)) is valid iff ∃x(B(x)∧U ∧¬Φ(x)) is unsatisfiable.

Definition 6 Letcl be a distinguished constant to be used in
loop search that we call theloop constant. We assume that
the loop constant does not occur in a given problem and is
not used for skolemisation.

Definition 7 Let us define atransformation for loop search
on a set of universal and step clausesSas follows. LT(S) is
the minimal set of clauses containingS such that for every
original non-ground step clause(P(x)⇒ ❣M(x)) ∈ S, the
set LT(S) contains the clause

P(cl )⇒ ❣M(cl ). (8)

We add the clause6 true ⇒ ❣¬Φ(cl ) to LT(S) and apply
the rules of fine-grained step resolutionexcept the clause
conversion ruleto it.

Lemma 6 Let S be a set of universal and step clauses, and
let C ⇒ ❣false be a final clause derived by the rules of
fine-grained step resolutionexcept the clause conversion
rule from LT(S) ∪ {true ⇒ ❣¬Φ(cl )} such that at least
one of the clauses originating fromtrue ⇒ ❣¬Φ(cl ) is in-
volved in the derivation. Then there exists a full e-merged
(from S) clause∀x(A(x)⇒ ❣B(x)) such that the formula
∀x(B(x)∧U ⇒ Φ(x)) is valid andA(x) = (∃̃C){cl → x}.

Proof (Sketch). By Lemma 3, there exists a merged (from
LT(S)) e-derived clauseA ⇒ ❣B such that{¬Φ(cl )} ∪

B ∪U ⊢⊥ andA = ∃̃C. It suffices to notice that∀x((A ⇒
❣B){cl → x}) is a full merged (fromS) step clause and

∃x(Φ(x)∧B{cl → x}∧U) is unsatisfiable. ✷

6In fact, a set of clauses since¬H(x), and¬Φ(x), is a set of first-order
clauses.



Function BFS

Input: A setSof universal and step clauses, saturated by fine-grained resolution and an eventuality clause♦L(x) ∈ E .

Output: A formulaH(x) with at most one free variable.

Method: 1. LetH0(x) = true; N0 = /0; i = 0.
2. Let Si+1 = LT(S)∪ {true ⇒ ❢(¬Hi(cl )∨ L(cl ))}. Apply the rules of fine-grained step resolutionexcept the clause

conversion ruleto Si+1. If we obtain a contradiction, then return the looptrue (in this case∀x¬L(x) is implied by the
universal part). Otherwise letNi+1 = {Cj ⇒ ❢false}k

j=1 be the set of allnewfinal clauses fromSi+1.

3. If Ni+1 = /0, returnfalse; else letHi+1(x) =
∨k

j=1Cj{cl → x}.
4. If ∀x(Hi(x)⇒ Hi+1(x)) returnHi+1(x).
5. i = i+1; goto 2.

Figure 1. Breadth-first search using fine-grained step resol ution.

Lemma 7 Let S be a set of universal and step clauses, and
let ∀x(A(x) ⇒ ❣B(x)) be a full e-merged (fromS) step
clause such that∀x(B(x)∧U ⇒ Φ(x)). Then there exists a
derivation by the rules of fine-grained step resolutionexcept
the clause conversion rulefrom LT(S) of a final clauseC⇒
❣falsesuch that∀x(A(x)⇒ (∃̃C{cl → x})).

Proof (Sketch). The proof is analogous to the proof of
Lemma 4. As we already noticed,∃x(B(x)∧U ∧¬Φ(x))
is unsatisfiable, and this can be checked by a first-order res-
olution procedure. Sincecl does not occur in the problem,
we can skolemise this existential quantifier withcl . We lift
now all Skolem constants butcl . ✷

Then the loop search algorithm from [5] can be reformu-
lated as shown in Fig. 1. (This algorithm is essentially
based on the BFS algorithm for propositional temporal res-
olution [7].)

Lemma 8 The BFS algorithm terminates provided that all
calls of saturation by step resolution terminate. If BFS re-
turns non-false value, its output is a loop formula inL(x).

Note 3 Termination of calls by step resolution can be
achieved for the cases when there exists a (first-order) res-
olution decision procedure [8] for formulae in the universal
part, see also [4].

Theorem 9 The calculus consisting of the rules of fine-
grained step resolution, together with the (both ground and
non-ground) eventuality resolution rule, is complete for the
monodic fragment over expanding domains even if we re-
strict ourselves to loops found by the BFS algorithm.

5.3. Example

Let us consider a monodic temporal problemP given
by I = /0, U = {∀x(B(x) ⇒ A(x)∧¬L(x)), l ⇒ ∃xA(x)},

S = {s1 : A(x)⇒ ❣B(x)}, E = {e1 :♦L(x), e2 :♦l}. We
especially chose such a trivial example to be able to demon-
strate thoroughly the steps of our proof search algorithm.
We clausifyU resulting inUs = {u1 : (¬B(x)∨A(x)), u2 :
(¬B(x)∨¬L(x)), u3 :¬l ∨A(c)}.

• Step resolution
We can deduce the following clauses by fine-grained
step resolution:

s2 : A(x)⇒ ❣A(x) ( s1, u1)
s3 : A(x)⇒ ❣¬L(x) ( s1, u2)

The set of clauses is saturated. Now we try finding a
loop in♦L(x).

• Loop search
The setS= {u1,u2,u3,s1,s2,s3}; H0(x) = true; N0 =
/0; i = 0. LT(S) = {lt1 : A(cl )⇒ ❣B(cl )}.
We deduce the following clauses by fine-grained step
resolution (except the clause conversion rule) from
S1 = LT(S)∪{l1 : true ⇒ ❣L(cl )}:

l2 : A(cl )⇒ ❣A(cl ) ( lt1, u1)
l3 : A(cl )⇒ ❣¬L(cl ) ( lt1, u2)
l4 : true ⇒ ❣¬B(cl ) ( u2, l1)
l5 : A(cl )⇒ ❣false ( l3, l1)

The set of clauses is saturated. ThenN1 = {A(cl) ⇒
❣false}, H1(x) = A(x). Obviously, ∀x(H0(x) ⇒

H1(x)) is not true.

Now the setS2 = LT(S)∪ {l6 : true ⇒ ❣(¬A(cl )∨
L(cl ))} and we deduce from it the following:

l7 : A(cl )⇒ ❣A(cl ) ( lt1, u1)
l8 : A(cl )⇒ ❣¬L(cl ) ( lt1, u2)
l9 : true ⇒ ❣(¬B(cl )∨L(cl )) ( u1, l6)
l10 : true ⇒ ❣(¬B(cl )∨¬A(cl )) ( u2, l6)
l11 :A(cl )⇒ ❣L(cl ) ( l7, l6)
l12 :A(cl )⇒ ❣¬A(cl ) ( l8, l6)
l13 : true ⇒ ❣¬B(cl ) ( u2, l9)
l14 :A(cl )⇒ ❣¬B(cl ) ( l8, l9)
l15 :A(cl )⇒ ❣false ( l8, l11)



The set of clauses is saturated.N2 = {A(cl ) ⇒
❣false}, H2(x) = A(x).

As ∀x(H1(x)⇒ H2(x)), the loop isA(x).
• Eventuality resolution

We can apply now the eventuality resolution rule
whose conclusion is

u4 :¬A(x).

• Step resolution

u5 :¬l ( u3, u4)

• Loop search
S= {u1,u2,u3,u4,u5,s1,s2,s3}; H0(x) = true; N0 =
/0; i = 0; LT(S) = {lt1 : A(cl ) ⇒ ❣B(cl )}; S1 =
LT(S)∪{l16 : true ⇒ ❣l}; and we can deduce:

l17 : true ⇒ ❣false ( l16,u5)

that is, a contradiction. The loop istrue.
• Eventuality resolution

We can apply now the eventuality resolution rule
whose conclusion is¬true. The problem is unsatis-
fiable.

Note 4 As the example shows, the presence of clauses of
the form (6), introduced by preprocessing, and (8), intro-
duced by the transformation for loop search, might lead
to repeated derivations (with free variables and with con-
stants). This can be avoided, however, if instead of generat-
ing these clauses, we relax the conditions on substitutionsin
the definition of rules of fine-grained resolution by allowing
original constants and the loop constant to be substituted to
variables occurring in the left-hand side of a step clause. It
can be seen that the set of derived final clauses would be the
same.

Taking into consideration this note, we do not use the re-
duction for loop search, and clausesl2, l3, l7, l8 would not
be derived. Instead, at the first iteration of BFS onL(x),
we would deduce the following clauses fromS1 = S∪{l1 :
true ⇒ ❣L(cl )}:

l4′ : true ⇒ ❣¬B(cl ) ( u2, l1)
l5′ : A(cl )⇒ ❣false ( s3, l1);

and at the second iteration fromS2 = LT(S)∪{l6 : true ⇒
❣(¬A(cl )∨L(cl ))}:

l9′ : true ⇒ ❣(¬B(cl )∨L(cl )) ( u1, l6)
l10′ : true ⇒ ❣(¬B(cl )∨¬A(cl )) ( u2, l6)
l11′ : A(cl )⇒ ❣L(cl ) ( s2, l6)
l12′ : A(cl )⇒ ❣¬A(cl ) ( s3, l6)
l13′ : true ⇒ ❣¬B(cl ) ( u2, l9′)
l14′ : A(cl )⇒ ❣¬B(cl ) ( s3, l9′)
l15′ : A(cl )⇒ ❣false ( s3, l11′).

6. Conclusion

We have described a fine-grained resolution calculus for
monodic first order temporal logics over expanding do-
mains. Soundness of the fine-grained inference steps is easy
to prove and completeness is shown relative to the com-
pleteness proof for the expanding domain for the non-fine
grained version [6]. While the implementation based on the
general calculus would involve generating all subsets of the
step clauses with which to apply the step and eventuality
resolution rules, the fine-grained resolution inference rules
can be implemented directly using any appropriate first-
order theorem prover for classical logics. This makes the
new calculus presented here particularly amenable to effi-
cient implementation.

As part of our future work, we will examine the exten-
sion of this approach to the case of temporal models with
constant domains. We also aim to implement and test the
calculus defined here.

Finally, we wish to acknowledge support for this work
from EPSRC via research grant GR/R45376/01.
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