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Abstract

First-order temporal logic is a concise and powerful notetj with
many potential applications in both Computer Science artdiAr
cial Intelligence. While the full logic is highly complexecent
work on monodic first-order temporal logics has identifiegpan
tant enumerable and even decidable fragments. In this pager
develop a clausal resolution method for the monodic fragrén
first-order temporal logic over expanding domains. We fieftrie
a normal form for monodic formulae and then introduce noestr
olution calculi that can be applied to formulae in this norrf@m.
We state correctness and completeness results for the chetfo
illustrate the method on a comprehensive example. The hetho
is based on classical first-order resolution and can, thuesgeffi-
ciently implemented.

1. Introduction

In its propositional form, linear, discretemporal logic
has been widely used in the formal specification and veri-
fication of reactive systems [18, 15, 12]. Although recog-
nised a powerful formalisnfjrst-order temporal logic has
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generally been avoided due to complexity problems (e.g.
there is no finite axiom system for general first-order tem-
poral logic). However, recent work by Hodkinsetal.[11]

has showed that a particular fragment of first-order tem-
poral logic, termed thenonodicfragment, has complete-
ness (sometimes even decidability) properties. This break
through has led to considerable research activity examinin
the monodic fragment, in terms of decidable classes, exten-
sions, applications and mechanisation, etc.

Concerning the mechanisation of monodic temporal log-
ics, general tableau and resolution calculi have already be
defined, in [13] and [5, 3], respectively. However, neithier o
these is particularly practical: the tableau method repuir
representation odll possible first-order models, while the
resolution method requires the maximal combinatioalbf
temporal clauses. In this paper, we focus on an important
subclass of temporal models, having a wide range of ap-
plications, for example in spatio-temporal logics [21, 10]
and temporal description logics [1], namely those models
that haveexpanding domaindn such models, the domains
over which first-order terms range can increase at each tem-
poral step. The focus on this class of models allows us to
produce a simplified clausal resolution calculus, termed a
fine-grainedcalculus, which is more amenable to efficient
implementation.



Thus, we will define the expanding domain monodic
fragment, a fine-grained resolution calculus, and provide
completeness results for the fine-grained calculus relativ
to the completeness of the general resolution calculus [6].
A number of examples will be given, showing how the fine-
grained calculus works in practice and, finally, conclusion
and future work will be provided.

2. First-Order Temporal Logic

First-Order (discrete linear time) Temporal Logic,
FOTL, is an extension of classical first-order logic with op-
erators that deal with a linear and discrete model of time
(isomorphic toN, and the most commonly used model of
time). The first-order temporal language is constructed in
a standard way [9, 11] frompredicate symbolsgPPy, ...
each of which is of some fixed arity (null-ary predicate sym-
bols are callegiropositions; individual variables ¥, xy, . . .;
individual constantscy, . ..; Boolean operators\, —, V,
=, =, true (‘true’), false (‘false’); quantifiersv and3; to-
gether withtemporal operatorg ] (‘always in the future’),
¢ (‘sometime in the future’)O (‘at the next moment’)U
(until), and W (weak until). There are no function sym-
bols or equality in thisOTL language, but it does contain
constants. For a given formul@, cons{¢) denotes the set
of constants occurring ip. We write ¢(x) to indicate that
@(x) has at most one free variable(ik not explicitly stated
otherwise).

Formulae inFOTL are interpreted ifirst-order temporal
structuresof the form9t = (Dp,In), N € N, where every
Dy, is a non-empty set such that whenemer m, D, C Dy,
andl, is an interpretation of predicate and constant symbols
overDp. We require that the interpretation of constants is
rigid. Thus, for every constartand all moments of time
i,j >0, we havdi(c) =I(c).

A (variable) assignmerntis a function from the set of in-
dividual variables taJnenDn. (This definition implies that
variable assignments are rigid as well.) We denote the se
of all assignments b¥.

For every moment of time, there is a corresponding
first-order structure M, = (Dp, In); the corresponding set
of variable assignmen®s,, is a subset of the set of all as-
signments¥, = {a € U | a(x) € Dy, for every variable};
clearly, U, C U, if n < m. Intuitively, FOTL formulae are
interpreted in sequences wbrlds Mg, M1, .. with truth
values in different worlds being connected via temporal op-
erators.

The truth relation M, =* @ in a structured?, only for
those assignments that satisfy the condition € Uy, is
defined inductively in the usual way under the following

understanding of temporal operators:

My = O iff - Mnes =2 @

My =2 0 iff there existan> nsuch that
M =* ¢,

My = Lo iff forall m>n, My =* @

M = (pUY) iff there existsm> n, such that
Mm = Y, and foralli € N,
n<i< mimpliesO; =% @;

Mn =2 (QW Q) iff 9y =7 (@U ) or My =* Le.

M is amodelfor a formulag (or @ is true in ON) if there

exists an assignmentn Do such thab)ly = @. A formula

is satisfiablef it has a model. A formulaisalid if it is true

in any temporal structur®t under any assignmentin Do.
The models introduced above are knowmazdels with

expanding domains Another important class of models

consists ofmodels with constant domaiiswhich the class

of first-order temporal structures, where FOTL formulae are

interpreted, is restricted to structuf®s= (Dp,In), N € N,

such thaD; = Dj for all i, j € N. The notions of truth and

validity are defined similarly to the expanding domain case.

It is known [19] that satisfiability over expanding domains

can be reduced to satisfiability over constant domains.

Example 1 The formula VxP(x) A [I(¥XP(x) =
OWxQ(x)) A 0—Q(c) is unsatisfiable over both
expanding and constant domains; the formula

YxP(x) A LJ(WX(P(x) = OQ(x))) A 0—Q(c) is unsat-
isfiable over constant domains but has a model with an
expanding domain.

This logic is complex. It is known that even “small”
fragments oFOTL, such as théwo-variable monadifrag-
ment (all predicates are unary), are not recursively enumer
able [16, 11]. However, the set of validonodicformulae
(see Definition 1 below) is known to be finitely axiomatis-
able [20].

lDefinition 1 An FOTL-formula@is calledmonodicif any

subformulae of the formr'y, where7 is one of O, [], ¢
(or 17y, whereT is one ofU, W), contains at most one
free variable.

3. Divided Separated Normal Form (DSNF)

Definition 2 A temporal step clausis a formula either of
the formp=- OI, wherep s a proposition antlis a propo-
sitional literal, or(P(x) = OM(x)), whereP(x) is a unary
predicate andV(x) is a unary literal. We call a clause of
the the first type an (originafroundstep clause, and of the
second type an (originafon-groundstep clause.



Definition 3 A monodic temporal problem in Divided Sep- Let P be a monodic temporal problem, and let
arated Normal Form (DSNFjs a quadrupld U, I,S,E),

where R, (X) = OM;,(%),...,R (X) = OM; (x) (1)
1. the universal partll, is given by a set of arbitrary
closed first-order formulae: be a subset of the set of its original non-ground step clauses

_ . L . Then formulae of the form
2. the initial part,I, is, again, given by a set of arbitrary

closed first-order formulae; P, © = OMij ©) @)

3. the step part$, is given by a set of original (ground K K
and non-ground) temporal step clauses; and Ix /\ R,(x) = O3 /\ Mi; (), (3)
4. the eventuality partg, is given by a set of eventuality =1 =1
clauses of the fornL(x) (a non-groundeventuality
clause) and)l (aground eventualitglause), wheréis W\ R (x) = Ovx\/ M) 4)
a propositional literal antl(x) is a unary non-ground =1 =1

literal. )
are calledderived step clauses, where € cons{P) and

The setstl, I, S, ands are finite. j =1...k. Formulae of the forn{2) and(3) are callede-
derivedstep clauses. Note that formulae of the fd2hand
Note that, in a monodic temporal problem, we do not allow (3) are logical consequences(dj in theexpanding domain
two different temporal step clauses with the same left-handcase; while formulae of the forif2), (3), and (4) are log-
sides. A problem with the same left-hand sides can be easilyical consequences @fl) in the constant domaircase. As

transformed by renaming into one without. Example 1 showg4) is not a logical consequence df) in
In what follows, we will not distinguish between a fi- the expanding domain case.
nite set of formula& and the conjunctiop X of formulae Let {®1 = OWy,...,Py = OW,} be a set of derived
within the set. With each monodic temporal problem, we (e-derived) step clauses or origingiound step clauses.
associate the formula Then
n n
1A DU OVxS A CIVXE. A®=O AW

Now, when we talk about particular properties of a temporal
problem (e.g., satisfiability, validity, logical conseques derived step clauseesp.)

etci\v:)gt mean pro%gr:;gs_r?_f;he aslsomatedbfo;mule;. q Let 4 = OB be a merged derived (e-derived) step
rbitrary monodic -formulae can be transformed . oo letPr(x) = OM4(X),...,R(X) = OMk(x) be a

into DSNF in a satlsf|apll|ty equwa!ence PTESEIVINg Way subset of the original step clauses, and fEk) = 4 A
using a renaming technique replacing non-atomic subfor- K
mulae with new propositions and removing all occurrences /\ R(X), B(X) = BA A\ Mi(x). Then
of the U andW operators [9, 5]. =1

is called amerged derived step claugand merged e-

YX(A(x) = OB(X))
4. Completeness Calculus
is called &ull merged step claudéull e-merged step clause

A resolution-like procedure for the monodic fragment resp.).
over constant domains has been introduced in [5]. Although Let P be a monodic temporal problem,
satisfiability over expanding domains can be reduced to sat-
isfiability over constant domains [19], it has been proved P*=PU{0L(c) | OL(X) € E,c € cons(P)}
in [6] that a simple modification of the procedure can be di-
rectly applied to the expanding domain case. We sketch theis theconstant flooded forrof P. Evidently,P® is satisfia-
monodic temporal resolution system here to make the pa-bility equivalent toP.
per self-contained. We use this ‘completeness calculus’ to  We present now two calculiic andJe, aimed at the con-
show relative completeness of the calculus presented in thestant and expanding domain cases, respectively. The infer-
next section. More details on the completeness calculus, agnce rules of these calculi coincide; the only difference is
well as proofs of the properties stated below, can be foundin the merging operation. The calculfig utilises merged
in [5] and [6] for the constant and expanding domain cases,derived and full merged step clauses; whergasitilises
respectively. merged e-derived and full e-merged step clauses.



Inference Rules. In what follows, 4 = O3B and 4 = temporal problen® is unsatisfiable over constant domains,
OB denote merged derived (e-derived) step clauses,then there exists a successfully terminating derivatidiin
Vx(A4(x) = O(B(x))) andvx(4i(x) = O(Bi(x))) denote  from P°.

full merged (full e-merged) step clauses, atidlenotes the

(current) universal part of the problem. Theorem 2 (see [6], theorems 2 and 3Yhe rules of Je
4= OB preserve satisfiability over expanding domains. If a
7 (O, monodic temporal problemR is unsatisfiable over expand-
ing domains, then there exists a successfully terminating
derivation inJe from P®.

e Step resolution rule w.r.t.u:

whereU U {B} L.

e Initial termination rule w.r.t. ¢¥: The contradiction
L is derived and the derivation is (successfully) termi- Example 2 The need for constant flooding can be demon-

nated if 74U T +L. strated by the following example. None of the rules of tem-
e Eventuality resolution rule w.r.tz: poral resolution can be applied directly to the (unsatiséab
temporal problem given by
X(A1(x) = O(B1(x)))
: OL(x) 1=A{P(c)}, S={a= Og},
' U={q=P(c)}, E={0-P(x)}.
X(An(X) = O(Bn(%)) u
n (Ores) » If, however, we add to the problem an eventuality clause
iné\lw% (X) Ol and a universal claude=- —P(c), the step clausg =

Oqwill be aloop inQl, and the eventuality resolution rule
whereVx(4i(x) = OBi(x)) are full merged (full e-  would derive-true?.
merged) step clauses such that foriadl {1,...,n},
the loop side conditions/x(U A B;(x) = —L(x)) and

WX(TUAB(X) = \’} (4(x))) are both valid, 5. Fine-Grained Resolution for the Expanding
j=1

Domain Case

The set of full merged (full e-merged) step clauses,

satisfying the loop side conditions, is calledoap in The main drawback of the calculi introduced in the previ-
ous section is that the notion of a merged step clause is quite

n
OL(x) and the formula\/ 4;(x) is called aloop for- ) i . .
j=1 involved and the search for appropriate merging of simpler

mula clauses is computationally hard. Findiegtsof such full
e Ground eventuality resolution rule w.rz: merged step clauses needed for the temporal resolution rule
is even more difficult.
=08 ... =08 I (0l From now on we focus on the expanding domain case.
/”\ 4 resr This is simpler firstly because merged e-derived step ctause
i=1 are simpler (formulae of the forrif4) do not contribute to

them) and, secondly, because conclusions of all inference
rules ofJe are first-order clauses.
n We now introduce a calculus where the inference rules of
-l and UABFV 45 forall i€{l,...,n}are Je are refined into smaller steps, more suitable for effective
=1 implementation. First, we concentrate on the implemen-
tation of the step resolution inference rule; then we show
how to effectively find premises for the eventuality resolu-
A derivationis a sequence of universal pard,= Uy C tion rule by means of step resolution.
U, C Up C ..., extended little by little by the conclusions The calculus is inspired by the following consideration:
of the inference rules. Successful termination means thatSuppose thale applies the step resolution rule to a merged
the given problem is unsatisfiable. Thes andE parts of ~ e-derived step clausd = OB. The rule can be applied
the temporal problem are not changed in a derivation. if BU UL and this fact can be established by a first-
order resolution procedure (that would skolemise the uni-
Theorem 1 (see [5], theorems 2 and 3The rules of J¢ versal part). Then the conclusion of the ruteq, is added
preserve satisfiability over constant domains. If a monodic to U resulting in a new universal pat{’. Suppose that the

where g, = OB are merged derived (e-derived) step
clauses such that theop side conditionst A B; -

J_
both valid. Ground loopandground loop formulaare
defined similarly to the case above.

n the casetl - Vx-L(x), thedegenerate claus¢rue = Otrue, can °Note that the non-ground eventuality-P(x) is not used. It was
be considered as a premise of this rule; the conclusion ofuleeis then shown in [4] that if all step clauses are ground, for constimaded prob-
—true and the derivation successfully terminates. lems we can neglect non-ground eventualities.



step resolution rule is applied to another merged e-derivedDeduction rules

step claused’ = OB'. The side condition3’ U U’ 1,
again can be checked by a first-order resolution procedure.
Since we never add new existential formuldd, can be
skolemised in exactly the same way @s Therefore, we
can actually keefi! in clausal form.

Note further that we are not only going to check side
conditions for the rules of th, by means of first-order
resolution but als@earch for clauses to merge the same
time.

Fine-grained resolution might generate additional step
clauses of the form
C= OD. )

Here,C is a conjunctionof propositions, unary predicates
of the formP(x), and ground formulae of the form(c),
whereP is a unary predicate symbol amdis a constant
occurring in theoriginally given problemD is adisjunction
of arbitrary literals.

Definition 4 LetP be a constant flooded temporal problem;
the set of clauseS(P), calledthe result of preprocessing
consists of step clauses frdenand
1. For every original non-ground step clause
P(x) = OM(x)
and every constamte cons{P), the clause
P(c) = OM(c) (6)
isinS(P).
2. Clauses obtained by clausification of the universal and
initial parts, as if there is no connection with tempo-

ral logic at all, are inS(P). The resulting clauses are
calleduniversal clauseandinitial clausesresp. Origi-

1. Arbitrary (first-order) resolution between universal

clausesThe result is a universal clause.

2. Arbitrary (first-order) resolution between initial and

universal clauses (or just between initial clausel)e
result is an initial clause.

3. Fine-grained (restricted) step resolution

Ci=> O(Dl\/L) C= O(Dz\/—\M)
(CiAnCp)o= O(D1VvDy)o

)

whereC; = O(D1 VL) andCy = O(D2Vv —M) are
step clauses and is an mgu of the literalé andM
such thato does not map variables from ©r C; into
a constant or a functional terr.

Ci= O(DP1VvL) D2v-N
Cio=> O(Dl\/Dz)O'

whereC; = O(D1 VL) is an step claus®, Vv -Nis a
universal clause, andl is an mgu of the literals and
N such thato does not map variables fronyGnto a
constant or a functional term.

4. Right factor

C= O(DVLVM)
Co= O(DVL)o

whereo is an mgu of the literald andM such that
o does not map variables from C into a constant or a
functional term.

5. Left factor

(CALAM)= OD
(CAL)o = ODo
whereo is an mgu of the literald andM such that

o does not map variables from C into a constant or a
functional term.

nally, universal and initial clauses do nothave common g cjause conversion

Skolem constants and functions. Initial and universal
clauses are kept separately.

a step clause of the for@ = Ofalseis rewritten into
theuniversal clause-C.

In sections 5.1 and 5.2, we assume that a given problem isDeletion rules

preprocessed.
5.1. Fine-grained step resolution

Fine-grained step resolution consists of a setl@duc-

1. First-order deletion: (first-order) subsumption and

tautology deletion in universal clauses; subsumption
and tautology deletion in initial clauses; subsumption
of initial clauses by universal clauses (but not vice
versa).

tion anddeletionrules. We implicitly assume that differ-

SThis restriction justifies skolemisation: Skolem constamnd func-

ent-preml-ses and ConC|US_|On of the deductloq rules have NQjons do not ‘sneak’ in the left-hand side of step clauses, drence,
variables in common; variables are renamed if necessary. Skolem constants from different moments of time do not mix.



2. Temporal deletion:
A universal claus®; subsumes step claus€; =
ODy if D, subsume®; or D, subsumes—C;.
A step clauseC; = OD; subsumes step clause
C, = ODgs, if there exists a substitutioa such that
D10 C Dy, and—C;0 C —Cos.
A step claus€ = OD is atautologyif D is a tautol-
ogy. (Note that, since we do not have negative occur-
rences to the left-hand side of step claus2gsannot
be false). Tautologies are deleted.

We adopt the terminology from [2]. A (lineaproof by
fine-grained resolution of a clau§efrom a set of clauses
Sis a sequence of claus€s, ... ,Cy such thaC = Cy, and
each claus&; is either an element of or else the con-
clusion by a deduction rule frof@,,...,Ci_1. A proof of
falseis called arefutation A (theorem provingjlerivation

by fine-grained resolution is a sequence of sets of clause
So> Sy 1> ... such that eversi . differs fromS by either
adding the conclusion of a deduction rule or else deleting a
clause by a deletion rule. We say that a cla@iss derived

by fine-grained resolution froig, if C € S for somei.

Note 1 Fine-grained step resolution without the restriction
on substitutions would, certainly, lead to unsoundness: Th
monodic problem given by

U = {ul : Ix-Q(x),u2 : VX(P(X) V Q(X))},
S={sl:P(x) = OQ(X)},

which is satisfiable, would wrongly be declared unsatis-
fiable without this restriction (After skolemisatior/ =
{usl : =Q(c), u2 : P(x) V Q(x)}, then unrestricted resolu-
tion would deriveus3 : =P(c) from usl andsl, and then the
contradiction fronusl, u2, andus3.)

Definition 5 A clause of the forn€C = Ofalse whereC is
of the same form as in (5), is calledfinal clause

Lemma3 Let P = (U, I,$,E) be a monodic temporal
problem andS = S(P) be the result of preprocessing. Let
C = (Ofalse be an arbitrary final clause derived by fine-
grained step resolution fro® Then there exists a deriva-
tion U = Uy C Uy C ... by the step resolution rule af,
and a merged e-derived step clauge=- OB such that
BU U FL, for somei > 0, andA4 = 3C, where3 means
existential quantification over all free variables.

Proof (Sketch). Sinc€ = Ofalseis derivable, there ex-

ists its proofl” by fine-grained resolution. We prove the
lemma by induction on the number of applications of the
clause conversion rule in. Suppose we proved the lemma

or proofs containing less thamapplications of the clause

conversion rule, and lef containsn such applications.
Then every conclusion of the clause conversionrule is also a
conclusion by the step resolution rulef It can be shown
that both the induction basis and induction step follow from
the following claim.

Claim. Let A be a proof ofc = Ofalseby the rules of fine-
grained resolutionexcept the clause conversion rufegm
a set of step clausesand a set of universal clausés Then
there exists a merged e-derived step cla#ise O3B such
thatBU U1 and4 = 3C.

Let
{R (%)
{pi

be the set of all step clauses frasninvolved in A where
pi = Ol; denotes either a ground step clause, or an e-
derived step-clause of the form (6) added by preprocess-
ing (w.l.o.g., we assumed that all the varialigs., xc are

= OM(X)|i=1...K}
= Ol]i=1...L}

Example 3 It might seem that the restriction on mgus is pairwise distinct). We assume thiis tree-likg that is, no

too strong and destroys completeness of the calculus. Foklause imA is used more than once as an assumption for an

example, at first glance it may appear that under this restric inference rule; we may make copies of the clauses in

tion it is not possible to deduce a contradiction from the order to make it tree-like.

following (unsatisfiable) temporal problefhgiven by Note that (by accumulating the mgus used in the proof)
it is possible to construct a finite set of instances of these

U={-Q(c)}, clauses (and universal clauses) such that there exists-a tre

£=0. like proof of C = Ofalsefrom this new set of clauses and

all mgus used in the proof are emptyThat is, there exist

1= {¥xP(x)},
5 ={P(x) = OQX)},

However wecan derive a contradiction because we ap-

ply our calculus tdS(P) which contains an additional step substitutiong ai,j |1 =1...K,j =1...s} such that
clause , .
{R(x)oij = OMix)o;li=1...K,j=1...s5}
P(c) = OQ(c). {p = Olii=1...L}

(7)

5The condition that premises of the non-ground binary regmiuule
should be variable disjoint may be violated here; note, vewehat this
condition is needed fatompletenesshot correctness

A formal statement of completeness follows.

“Here, and further;7(L1(X) A ... A Lg(x)) abbreviateg—L(x) V...V

—Lk(x)).



(together with some instances of universal clauses) con-form (2) are inS ought to preprocessing. Let for every de-

tribute to the proof ofC = Ofalse where all mgus used
in the proof are empty, and, furthermore,

K s L
c=A APRX)aoijA A pi
i=1j=1 i=1

Note further (induction) that due to our restriction on the
step resolution rule, for ariyj, the substitutiom; ; mapsx;
into a free variable.

rived rule of the form(3),

S S
X A\ R; (%) = O3x A Mi; (),
j=1 j=1

consider a set of instances of non-ground step clauses from
S,

{Hj(c) = Mij (C) | J = 1---5}7
wherec is a new constant.

SinceBU Un FL, there exists a set of instances of step

Let us group the instances of the step clauses ac-clauses (we simplify indexing for the sake of presentation)

cording to the value of the substitutions. We in-
troduce an equivalence relatior on the clauses
from (7) as follows: For everyi,j,i’,j’ we have

(P| (Xi)OLj = OMi(Xi)O—i,j, H’(Xi/)ci’,j/ = OMi/(Xi/)Oi/7j’) €
z iff x0ij = X0y j (it can be easily checked thatis
indeed an equivalence relation). Ldtbe the number of
equivalence classes ¢f) by Z; let Ik be the set of indexes
of thek-th equivalence class (we refer to clauses frat
by indexes of the corresponding substitutions).

Let Cc = Ai,jjes P(X)0i j, for everyk, 1 <k <N; let
Co= A-;pi. Note thatC = AR_;Cx A Co and this par-
tition of C is disjoint. LetDk = A j)e; Mi(X)0ij, let
Do = Ak, li, letD = AN, Dk A Do. Note thatyD A U+ L.
Note further that if we replace the free variablelf with
a fresh constantgy, there still exists a refutation from
AR_; D(ck) A Do and universal clauses (with mgus applied
to universal and intermediate clauses only). It followd tha
AR IXDy(X) ADo A U L.

It suffices to note that(AR;3xGi(x) A Co) =
O(AR.;3xDk(x) A Do) is a merged e-derived step
clause. O

Lemma4 Let P = (U, 1,5,E) be a monodic temporal
problem andS = S(P) be the result of preprocessing. Let
U= Uy C U C ... be aderivation by the step resolution
rule of Je. Let 4 = (OB be a merged e-derived step clause
such thatBU U; -1, for somei > 0. Then there exists a
final clauseC = Ofalsg derived by fine-grained resolution
from S, such thatq = 3C.

Proof (Sketch). As in the proof of the previous lemma, it

{Pi(c) = OMj(c)}|i=1...K,j=1...5}
{p = Ol]i=1...L},

wherecy,...,ck are new (Skolem) constants, such that
AL AT M;(G) A Afgli A Un L (again, as in the proof

of Lemma 3,p; = Ol; denotes either an original ground
step clause or a clause of the form (6) added by preprocess-
ing).

Let A be a (first-order) resolution proof of from U,
and the following set of clause@M;(c) |i=1...K,j =
1...stu{liji=1...L}. Let{M;(c) | (i,]) eI} U{li|i e
J}, for some sets of indexésndJ, be its subset containing
all clauses involved if\ (and only the clauses involved in
A). Then there exists a probfby fine-grained step resolu-
tion from

{Pi(a) = OMj(e)|(i.i)el}
{p = Ollied}

(and universal clauses) of a final clate> Ofalse where
C=A,je Pi(G) A Ajes bi-

We assume, for simplicity of the proof, that the lifting
theorem (cf. e.g. [14]) holds fah, that is, there exists a
non-ground (first-order) refutatiaki from {M;(x;) | (i, j) €
[}U{li | i € 3}, such thath <sA’in the terminology of [14]:
Every clauseC] of A’ is a generalisation of the correspond-
ing clauseC; of A.

It can be seen that the lifting theorem can be transfered
to fine-grained inferences, and there exists a prodfom
the set of original step clauses

{Pi(x)) = OM;j(x)[(i,j) €1}
{pi = Ollied}
(and universal clauses) of a final cla@e= Ofalsesuch

thatl" >sT, that is, every intermediate clau€g= OD]
from " is a generalisation of a corresponding clause from

suffices to prove that under conditions of the lemma therer. (The only difficulty is to ensure the requirement on mgus

exists a proof of a final clause = Ofalsefrom the set of
step clauses fror8 and the (current) universal pafti,, by
the rules of fine-grained resolutioexcept the clause con-
version rule such thatq = 3C.

The clauseq = OB is merged from derived clauses of
the form (2) and (3). Note that all derived clauses of the

imposed by our inference system. Note that none of the
(Skolem) constantsy, ..., ck occurs inl. If, in the proof

', a constant or a functional term was substituted into a
variable occurring in the left-hand side of a clause, this
clause would not be a generalisation of any clause frgm
This implies the conclusion of the lemma. a



Lemma 3 ensures soundness of fine-grained step resolutiorb.2. Loop search

Lemma 4 says that the conclusion of an application of the

clause conversion rule;C, subsumes the conclusion of an Next we use fine-grained step resolution to find the ap-

application of the step resolution rule ®f, —4. propriate set of full e-merged clauses to apply the (ground o
non-ground) eventuality resolution rule. It has been matic

Theorem 5 The calculus consisting of the rules of fine- in [5] that in order to effectively find a loop iBL(X) € ,

grained step resolutio.n, togethgr with thg (both ground andgiven a formula with one free variabie(x) we have to be
non-ground) eventuality resolution rule, is sound and Com- g1 1 find the set of all full e-merged clauses of the form
plete for the monodic fragment over expanding domains. VX(4(x) = OB(x)) such that the formula

Note 2 The proof of completeness given above might be YX(B(X) A U= D(X))

hard to fulfil in the presence of variousfinementsf reso-

lution and/oredundancy deletiamAs a remedy, we suggest is valid (where®(x) = H(x) A -L(x) and H(x) is a dis-

consideringconstrained calculilike e.g. resolution over junction of the left-hand sides of some full e-merged step

constrained clauses with constraint inheritance. It iskmo ~ clauses).

that such inference systems are complete and moreover LetVx(A(x) = OB(x)) be a full e-merged step clause

compatible with redundancy elimination rules and many such that’x(B(x) A U = ®(x)). Note thatyx(B(x) A U =

(liftable) refinements (see e.g. [17], theorems 5.11 an@,5.1 P(x)) is valid iff 3X(B(x) A UA =P(x)) is unsatisfiable.

subsections 5.4 and 5.5, resp.). Here we take into account

that there are no clauses with equality, and therefore sl se Definition 6 Letc' be a distinguished constant to be used in

arewell-constrainedn the terminology of [17]. loop search that we call tHeop constantWe assume that
Then instead of ground clauses of the form the loop constant does not occur in a given problem and is

Pi(c) = OM;(c) not used for skolemisation.

we consider theiconstrainedepresentations Definition 7 Let us define aransformation for loop search
Pi(x) = OM;(x)-{% =ci}. ona s'e'g of universal and step cla.usw follows. LT(S) is
the minimal set of clauses containiSguch that for every
Recall that in accordance with the semantics of constrainedoriginal non-ground step claug®(x) = OM(x)) € S, the
clauses, a clausé- T represents the set of all ground in- get LT(S) contains the clause
stance<Co whereao is a solution ofT. In our case, there
is exactly one solution of; = ¢; given by the substitution P(c) = OM(d). (8)

{X — ¢i}. So, the semantics of
We add the clau$erue = O-®(c') to LT(S) and apply

Pi(x) = OM;(x)-{x =ci} the rules of fine-grained step re(sczlutienc(ep)t the clause

is just conversion ruldo it.
Pi(c) = OMj(ac).

So, all clauses originating from the universal part have Lemma 6 Let Sbe a set of universal and step clauses, and
empty constraints and all temporal clauses have congraintlet C = Ofalse be a final clause derived by the rules of
defined above, and there exists a non-ground proof of a confine-grained step resolutioexcept the clause conversion
strained final clause with constraint inheritance. Note tha rule from LT(S) U {true = O-®(c')} such that at least
the (Skolem) constants,, ..., cx may only occur in con-  one of the clauses originating frotue = O—®(c') is in-
straints but not in clauses themselves. It suffices to notevolved in the derivation. Then there exists a full e-merged
that in this case inferences with constraint inheritance ad (from S) clausevx(A(x) = OB(x)) such that the formula
mit only two kinds of substitutions ints: either{x — ¢;} YX(B(X) A U = ®(x)) is valid and4(x) = (3C){c' — x}.
(however it is impossible because occurs only in con-
straints), of{x — X} wherex; is bound by the same con- Proof (Sketch). By Lemma 3, there exists a merged (from
straint{x; = ¢i}. The case of matching andy wherey LT(9)) e-derived clause? = OB such that{-®(c')} U
originates from the universal part is solved by the substi- 8 ¢7+1 and2 = 3C. It suffices to notice thatx((4 =
tution {y — x }. A non-ground inference of a final clause, Oﬂ){c' — x}) is a full merged (fronS) step clause and

satisfying the conditions on substitutionsin the fine-geai 35 (x) A B{c' — x} A U) is unsatisfiable. O
resolution rules, can be extracted from this constrained

proof implying, thus, the conclusion of Lemma 4. 8In fact, a set of clauses sinedH (x), and—~®(x), is a set of first-order
clauses.




Function BFS
Input: A setSof universal and step clauses, saturated by fine-grainetLt&s) and an eventuality claugg (x) € £.
Output: A formulaH (x) with at most one free variable.

Method: 1. LetHp(x) =true; No =0;i =0.

2. LetS 1 = LT(S)U{true = O(—Hi(c') vL(c'))}. Apply the rules of fine-grained step resolutiercept the clause
conversion rulego S, 1. If we obtain a contradiction, then return the lowpe (in this casevx—L(x) is implied by the
universal part). Otherwise I&¢ 1 = {Cj = Ofalse}']-‘:1 be the set of alhewfinal clauses frong; , ;.

3. If Ni11 =0, returnfalse else letH;  1(x) = \/']f:lcj {c = x}.

4. If Yx(H;(X) = Hi+1(x)) returnH;;1(x).

5. i=i+1, goto 2.

Figure 1. Breadth-first search using fine-grained step resol ution.

Lemma 7 Let Sbe a set of universal and step clauses, and § = {sl1 : A(x) = OB(X)}, € = {el: OL(x), e2:0l}. We

let ¥x(A4(x) = OB(x)) be a full e-merged (fron®) step especially chose such a trivial example to be able to demon-
clause such thatx(B(x) A U = ®(x)). Then there existsa  strate thoroughly the steps of our proof search algorithm.
derivation by the rules of fine-grained step resolutanept ~ We clausify resulting in?® = {ul : (=B(x) V A(X)), u2:

the clause conversion rufeom LT(S) of a final claus€ = (-B(x) v -L(x)), u3: -l VA(c)}.

Ofalsesuch that/x(4(x) = (3C{c' — x})). e Step resolution

We can deduce the following clauses by fine-grained

Proof (Sketch). The proof is analogous to the proof of step resolution:

Lemma 4. As we already noticedx(B(x) A U A ~D(x))

is unsatisfiable, and this can be checked by a first-order res- 2:AX) = OA(X)  (sl,ul)
olution procedure. Since does not occur in the problem, s3:AX) = O-L(x) (sl,u2)
we can skolemise this existential quantifier with We lift The set of clauses is saturated. Now we try finding a
now all Skolem constants bat. Q loop in OL(X). ' y
. e Loop search
Then the loop search algorithm from [5] can be reformu- The selS= {ul,u2, 3, sl,2,s3}; Ho(x) = true; No =

lated as shown in Fig. 1. (This algorithm is essentially 0;i=0.LT(S) = {It1:A(d) = OB(d)}.
basgd on the BFS algorithm for propositional temporal res- We deduce the following clauses by fine-grained step
olution [7].) resolution (except the clause conversion rule) from

, _ , S1=LT(S)u{l1l:true = OL(c)}:
Lemma 8 The BFS algorithm terminates provided that all
calls of saturation by step resolution terminate. If BFS re- 12:A(c) = OA(d) (lt1,ul)
turns non-false value, its output is a loop formuld.ifx). 13:A(c) = O-L(d") (lt1,u2)
14 :true = O-B(c') (u2,11)

o , I5:A(c') = Ofalse  (13,11)
Note 3 Termination of calls by step resolution can be

achieved for the cases when there exists a (first-order) res- ~ The set of clauses is saturated. Thén= {A(c') =
olution decision procedure [8] for formulae in the univérsa Ofalse}, Hi(x) = A(x). Obviously, Vx(Ho(x) =
part, see also [4]. H1(x)) is not true.

Now the setS, = LT(S) U {16 : true = O(-A(c') v

| ; o
Theorem 9 The calculus consisting of the rules of fine- L(c"))} and we deduce from it the following:

grained step resolution, together with the (both ground and 17 :A(c") = OA(d) (1t1,ud)
non-ground) eventuality resolution rule, is complete foa t 18:A(c') = O-L(c") (1t1,u2)
monodic fragment over expanding domains even if we re- 19 :true = O(-B(c') vL(c)) (ul,le)
strict ourselves to loops found by the BFS algorithm. 110 :true = Q(ﬁB(CI)\/ﬁA(Cl)) (u2,16)
111:A(c') = OL(c") (17,16)

5.3. Example 112 :A(c') = O-A(d) (18,16)
113 :true = O-B(c') (u2,19)

Let us consider a monodic temporal probl&hgiven 114 :A(c) = O-B(c) (18,19)

by I =0, U= {Vx(B(X) = A(X) A —=L(X)), | = IxAX)}, 115 :A(c') = Ofalse (18,111



The set of clauses is saturatedN; = {A(c') =
Ofalse}, Ha(x) = A(X).

As Vx(H1(X) = Hz(x)), the loop iSA(X).

Eventuality resolution

We can apply now the eventuality resolution rule
whose conclusion is

ud : ~A(X).

Step resolution

us:-l (u3,ud)

Loop search

S={ul,u2,u3,u4,u5,s1,s2,s3}; Ho(X) = true; Np =
0; i =0; LT(S) = {It1 : A(c') = OB(d)}; S =
LT(S)U {116 :true = OIl}; and we can deduce:

[17 :true = Ofalse (116,u5)

that is, a contradiction. The loopftiie.
Eventuality resolution

We can apply now the eventuality resolution rule
whose conclusion isitrue. The problem is unsatis-
fiable.

Note 4 As the example shows, the presence of clauses of

the form (6), introduced by preprocessing, and (8), intro-
duced by the transformation for loop search, might lead
to repeated derivations (with free variables and with con-
stants). This can be avoided, however, if instead of generat
ing these clauses, we relax the conditions on substitutions
the definition of rules of fine-grained resolution by allogin
original constants and the loop constant to be substitated t
variables occurring in the left-hand side of a step clause. |

can be seen that the set of derived final clauses would be the

same.

Taking into consideration this note, we do not use the re-
duction for loop search, and claud@sl 3,17, 18 would not

be derived. Instead, at the first iteration of BFS ldx),

we would deduce the following clauses fré&n= SuU{I1:

true = OL(c')}:

14 true = O-B(c') (u2,11)
I5': A(c') = Ofalse  (s3,11);

and at the second iteration fro® = LT (S) U {l6 : true =
O(=A(c) VL(c))}:

19 : true = O(-B(c') VL(c")) (ul,l6)
110 : true = O(-B(c') V-A(d')) (u2,16)
117 : A(c') = OL(c) (s2,16)
112 :A(d) = O-A(d) (s3,16)
113 : true = O-B(c') (u2,19)
114 : A(c') = O-B(c") (s3,19)
115 : A(c') = Ofalse (s3,117).

6. Conclusion

We have described a fine-grained resolution calculus for
monodic first order temporal logics over expanding do-
mains. Soundness of the fine-grained inference steps is easy
to prove and completeness is shown relative to the com-
pleteness proof for the expanding domain for the non-fine
grained version [6]. While the implementation based on the
general calculus would involve generating all subsets®f th
step clauses with which to apply the step and eventuality
resolution rules, the fine-grained resolution inferendesu
can be implemented directly using any appropriate first-
order theorem prover for classical logics. This makes the
new calculus presented here particularly amenable to effi-
cient implementation.

As part of our future work, we will examine the exten-
sion of this approach to the case of temporal models with
constant domains. We also aim to implement and test the
calculus defined here.

Finally, we wish to acknowledge support for this work
from EPSRC via research grant GR/R45376/01.
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