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Abstract

The OWL 2 profile OWL 2 QL, based on the DL-Lite fam-
ily of description logics, is emerging as a major language
for developing new ontologies and approximating the exist-
ing ones. Its main application is ontology based data access,
where ontologies are used to provide background knowledge
for answering queries over data. We investigate the corre-
sponding notion of query inseparability (or equivalence) for
OWL 2 QL ontologies and show that deciding query insepa-
rability is PSPACE-hard and in EXPTIME. We give polyno-
mial time (incomplete) algorithms and demonstrate by exper-
iments that they can be used for practical module extraction.

Introduction
In recent years, ontology-based data access (OBDA) has
emerged as one of the most interesting and challenging ap-
plications of description logic (Dolby et al. 2008; Heymans
et al. 2008; Poggi et al. 2008). The key idea is to use ontolo-
gies for enriching data with additional background knowl-
edge, and thereby enable query answering over incomplete
and semistructured data from heterogeneous sources via
a high-level conceptual interface. The W3C recognised
the importance of OBDA by including in the OWL 2 Web
Ontology Language the profile OWL 2 QL, which was de-
signed for OBDA with standard relational database systems.
OWL 2 QL is based on a description logic (DL) that was
originally introduced under the name DL-LiteR (Calvanese
et al. 2006; 2007) and called DL-LiteHcore in the more gen-
eral classification of (Artale et al. 2009). It can be described
as an optimal sub-language of the DL SROIQ, underlying
OWL 2, which includes most of the features of conceptual
models, and for which conjunctive query answering can be
done in AC0 for data complexity.

Thus, DL-LiteHcore is becoming a major language for
developing ontologies, and a target language for transla-
tion and approximation of existing ontologies formulated
in more expressive DLs (Pan and Thomas 2007; Botoeva,
Calvanese, and Rodriguez-Muro 2010). One of the con-
sequences of this development is that DL-LiteHcore ontolo-
gies turn out to be larger and more complex than origi-
nally envisaged. As a result, reasoning support for ontol-
ogy engineering tasks such as composing, re-using, com-
paring, and extracting ontologies—which so far has been
only analysed for expressive DLs (Cuenca Grau et al. 2008;

Stuckenschmidt, Parent, and Spaccapietra 2009), EL (Lutz
and Wolter 2010) and DL-Lite dialects (Kontchakov, Wolter,
and Zakharyaschev 2010) without role inclusions—is be-
coming increasingly important for DL-LiteHcore as well.

In the context of OBDA, the basic notion underlying
many ontology engineering tasks is Σ-query inseparability:
for a signature (a set of concept and role names) Σ, two on-
tologies are deemed to be inseparable if they give the same
answers to any conjunctive query over any data formulated
in Σ. Thus, in applications using Σ-queries and data, one
can safely replace any ontology by a Σ-query inseparable
one. Note that the relativisation to Σ is very important here.
For example, one cannot expect modules of an ontology to
be query inseparable from the whole ontology for arbitrary
queries and data sets, whereas this should be the case if we
restrict the query and data language to the module’s signa-
ture or a specified subset thereof. Similarly, when compar-
ing two versions of one ontology, the subtle and potentially
problematic differences are those that concern queries over
their common symbols, rather than all symbols occurring in
these versions. In applications where ontologies are built
using imported parts, a stronger notion of inseparability is
required: two ontologies are strongly Σ-query inseparable
if they give the same answers to Σ-queries and data when
imported to an arbitrary context ontology formulated in Σ.

The aim of this paper is to (i) investigate the computa-
tional complexity of deciding (strong) Σ-query inseparabil-
ity for DL-LiteHcore ontologies, (ii) develop efficient (though
incomplete) algorithms for practical inseparability checking,
and (iii) analyse the performance of the algorithms for the
challenging task of minimal module extraction.

One of our surprising discoveries is that the analysis of
Σ-query inseparability for (seemingly ‘harmless’ and com-
putationally well-behaved) DL-LiteHcore ontologies requires
drastically different logical tools compared with the pre-
viously considered DLs. It turns out that the new syn-
tactic ingredient—the interaction of role inclusions and in-
verse roles—makes deciding (strong) query inseparability
PSPACE-hard, as opposed to the known CONP and Πp

2-
completeness results for DL-Lite dialects without role in-
clusions (Kontchakov, Wolter, and Zakharyaschev 2010).
On the other hand, the obtained EXPTIME upper bound is
actually the first known decidability result for strong in-
separability, which goes beyond the ‘essentially’ Boolean



logic and might additionally indicate a way of solving the
open problem of strong Σ-query inseparability for EL (Lutz
and Wolter 2010). For DL-LiteHcore ontologies without role
inclusions, strong Σ-query inseparability is shown to be
only NLOGSPACE-complete. We give (incomplete) poly-
nomial time algorithms checking (strong) Σ-inseparability
and demonstrate, by a set of minimal module extraction
experiments, that they are (i) complete for many existing
DL-LiteHcore ontologies and signatures, and (ii) sufficiently
fast to be used in module extraction algorithms that require
thousands of Σ-query inseparability checks. All omitted
proofs can be found in the appendix.

Σ-Query Entailment and Inseparability
We begin by formally defining the description logic
DL-LiteHcore, underlying OWL 2 QL, and the notions of Σ-
query inseparability and Σ-query entailment. The language
of DL-LiteHcore contains countably infinite sets of individual
names ai, concept names Ai, and role names Pi. Roles R
and concepts B of this language are defined by:

R ::= Pi | P−i ,

B ::= ⊥ | > | Ai | ∃R.

A DL-LiteHcore TBox, T , is a finite set of inclusions

B1 v B2, R1 v R2, B1 uB2 v ⊥, R1 uR2 v ⊥,

where B1, B2 are concepts and R1, R2 roles. An ABox, A,
is a finite set of assertions of the form B(ai), R(ai, aj) and
ai 6= aj , where ai and aj are individual names, B a concept
and R a role. Ind(A) will stand for the set of individual
names occurring in A. Taken together, T and A constitute
the DL-LiteHcore knowledge base (KB, for short)K = (T ,A).
The sub-language of DL-LiteHcore without inclusions for roles
is denoted by DL-Litecore (Calvanese et al. 2007).

The semantics of DL-LiteHcore is defined as usual in DL
(Baader et al. 2003). We only note that, in interpretations
I = (∆I , ·I), we do not have to comply with the unique
name assumption, that is, we can have aIi = aIj for i 6= j.
We write I |= α to say that an inclusion or assertion α is true
in I. The interpretation I is a model of a KB K = (T ,A) if
I |= α for all α ∈ T ∪ A. K is consistent if it has a model.
A concept B is said to be T -consistent if (T , {B(a)}) has a
model. K |= α means that I |= α for all models I of K.

A conjunctive query (CQ) q(x1, . . . , xn) is a first-order
formula ∃y1 . . . ∃ym ϕ(x1, . . . , xn, y1, . . . , ym), where ϕ is
constructed, using only ∧, from atoms of the form B(t)
and R(t1, t2), with B being a concept, R a role, and
ti being an individual name or a variable from the list
x1, . . . , xn, y1, . . . , ym. The variables in ~x = x1, . . . , xn
are called answer variables of q. We say that an n-tuple
~a ⊆ Ind(A) is an answer to q in an interpretation I if
I |= q[~a] (here we regard I to be a first-order structure); ~a
is a certain answer to q over a KB K = (T ,A) if I |= q[~a]
for all models I of K; in this case we write K |= q[~a].

To define the main notions of this paper, consider two KBs
K1 = (T1,A) and K2 = (T2,A). For example, the Ti are
different versions of some ontology, or one of them is a re-
finement of the other by means of new axioms. The question

we are interested in is whether they give the same answers to
queries formulated in a certain signature, say, in the common
vocabulary of the Ti or in a vocabulary relevant to an appli-
cation. To be precise, by a signature, Σ, we understand any
finite set of concept and role names. A concept (inclusion,
TBox, etc.) all concept and role names of which are in Σ is
called a Σ-concept (inclusion, etc.). We say thatK1 Σ-query
entails K2 if, for all Σ-queries q(~x) and all ~a ⊆ Ind(A),
K2 |= q[~a] implies K1 |= q[~a]. In other words: any certain
answer to a Σ-query given by K2 is also given by K1.

As the ABox is typically not fixed or known at the ontol-
ogy design stage, we may have to compare the TBoxes over
arbitrary Σ-ABoxes rather than a fixed one, which gives the
following central definition of this paper.
Definition 1. Let T1 and T2 be TBoxes and Σ a signature.
T1 Σ-query entails T2 if (T1,A) Σ-query entails (T2,A) for
any Σ-ABox A. T1 and T2 are Σ-query inseparable if they
Σ-query entail each other, in which case we write T1 ≡Σ T2.

In many applications, Σ-query inseparability is enough to
ensure that T1 can be safely replaced by T2. However, if they
are developed as part of a larger ontology or are meant to be
imported in other ontologies, a stronger notion is required:
Definition 2. T1 strongly Σ-query entails T2 if T ∪ T1 Σ-
query entails T ∪ T2, for all Σ-TBoxes T . T1 and T2 are
strongly Σ-query inseparable if they strongly Σ-query entail
each other, in which case we write T1 ≡sΣ T2.

The following example illustrates the difference between
Σ-query and strong Σ-query inseparability. For further dis-
cussion and examples, we refer the reader to (Cuenca Grau
et al. 2008; Kontchakov, Wolter, and Zakharyaschev 2010).
Example 3. Let T2 = {> v ∃R,∃R− v B,B u A v ⊥},
T1 = ∅ and Σ = {A}. T1 and T2 are Σ-query inseparable.
However, they are not strongly Σ-query inseparable. Indeed,
for the Σ-TBox T = {> v A}, T1 ∪ T is consistent, while
T2∪T is inconsistent, and so T1∪T does not Σ-query entail
T2 ∪ T , as witnessed by the query q = ⊥.

From now on, we shall focus our attention mainly on the
more basic notion of Σ-query entailment.

Σ-Query Entailment and Σ-Homomorphisms
In this section, we characterise Σ-query entailment between
DL-LiteHcore TBoxes semantically in terms of (partial) Σ-
homomorphisms between certain canonical models. Then,
in the next section, we use this characterisation to investi-
gate the complexity of deciding Σ-query entailment.

The canonical modelMK of a consistent KBK = (T ,A)
gives correct answers to all CQs. In general,MK is infinite;
however, it can be folded up into a small generating model
GK = (IK,;K) consisting of a finite interpretation IK and
a generating relation ;K that defines the unfolding.

Let v∗T be the reflexive and transitive closure of the role
inclusion relation given by T , and let [R] = {S | R ≡∗T S},
whereR ≡∗T S stands for ‘R v∗T S and S v∗T R.’ We write
[R] ≤T [S] if R v∗T S; thus,≤T is a partial order on the set
{[R] | R a role in T }. For each [R], we introduce a witness
w[R] and define a generating relation ;K on the set of these
witnesses together with Ind(A) by taking:



a;K w[R] if a ∈ Ind(A) and [R] is ≤T -minimal such that
K |= ∃R(a) and K 6|= R(a, b) for any b ∈ Ind(A);

w[S] ;K w[R] if [R] is ≤T -minimal with T |= ∃S− v ∃R
and [S−] 6= [R].

A role R is generating in K if there are a ∈ Ind(A) and
R1, . . . , Rn = R such that a;K w[R1] ;K · · ·;K w[Rn].

The interpretation IK is now defined as follows:
∆IK = Ind(A) ∪ {w[R] | R is generating in K},
aIK = a, for all a ∈ Ind(A),

AIK = {a | K |= A(a)} ∪ {w[R] | T |= ∃R− v A},
P IK = {(a, b) | there is R(a, b) ∈ A s.t. R v∗T P} ∪

{(x,w[R]) | x;K w[R] and [R] ≤T [P ]} ∪
{(w[R], x) | x;K w[R] and [R] ≤T [P−]}.

GK can be constructed in polynomial time in |K|, and it is
not hard to see that IK |= K. To construct the canonical
modelMK giving the correct answers to all CQs, we unfold
the generating model GK = (IK,;K) along ;K. A path
in GK is a finite sequence aw[R1] · · ·w[Rn], n ≥ 0, such that
a ∈ Ind(A), a;K w[R1] and w[Ri] ;K w[Ri+1], for i < n.
Denote by path(GK) the set of all paths in GK and by tail(σ)
the last element in σ ∈ path(GK).MK is defined by taking:
∆MK = path(GK),

aMK = a, for all a ∈ Ind(A),

AMK = {σ | tail(σ) ∈ AIK},
PMK = {(a, b) ∈ Ind(A)× Ind(A) | (a, b) ∈ P IK} ∪

{(σ, σ · w[R]) | tail(σ) ;K w[R], [R] ≤T [P ]} ∪
{(σ · w[R], σ) | tail(σ) ;K w[R], [R] ≤T [P−]}.

Example 4. The models GK1
for K1 = (T1, {A(a)}) with

T1 = {A v ∃S,∃S− v ∃T, ∃T− v ∃T, T v R}, and
MK1

look as follows (;K1
in GK1

is depicted as→):

GK1

A

a wS

S

wT

R, T

R, T

MK1

A

a awS

S

awSwT

R, T

awSwTwT

R, T . . .

Our first result states thatMK gives correct answers to all
conjunctive queries:
Theorem 5. For all consistent DL-LiteHcore KBs K, CQs
q(~x) and tuples ~a ⊆ Ind(A), where K = (T ,A), we have
K |= q[~a] iffMK |= q[~a].

Thus, to decide Σ-query entailment between KBs K1 and
K2, it suffices to check whether MK2

|= q[~a] implies
MK1

|= q[~a] for all Σ-queries q(~x) and tuples ~a. This
relationship between MK2

and MK1
can be characterised

semantically in terms of finite Σ-homomorphisms.
For an interpretation I and a signature Σ, the Σ-types

tIΣ(x) and rIΣ(x, y), for x, y ∈ ∆I , are given by:

tIΣ(x) = {Σ-concept B | x ∈ BI},
rIΣ(x, y) = {Σ-role R | (x, y) ∈ RI}.

A Σ-homomorphism from an interpretation I to I ′ is a func-
tion h : ∆I → ∆I

′
such that h(aI) = aI

′
, for all indi-

vidual names a interpreted in I, tIΣ(x) ⊆ tI
′

Σ (h(x)) and
rIΣ(x, y) ⊆ rI

′

Σ (h(x), h(y)), for all x, y ∈ ∆I .
It is well-known that answers to Σ-CQs are pre-

served under Σ-homomorphisms. Thus, if there is a Σ-
homomorphism from MK2 to MK1 , then K1 Σ-query en-
tails K2. However, the converse does not hold in general.
Example 6. Take T1 from Example 4, and let T2 be the
result of replacing R in T1 with R−. Let Σ = {A,R} and
Ki = (Ti, {A(a)}). Then the Σ-reduct of MK1 does not
contain a Σ-homomorphic image of the Σ-reduct ofMK2 ,
depicted below. On the other hand, it is easily seen that

MK2

A
a

R− R− . . .

T1 and T2 are Σ-query inseparable. Note that the Σ-reduct
of MK2

contains points that are not reachable from the
ABox by Σ-roles. In fact, using König’s Lemma, one can
show that if every point inMK2

is reachable from the ABox
by a path of Σ-roles, then K1 Σ-query entails K2 iff there
exists a Σ-homomorphism fromMK2

toMK1
.

Because of this, we say that I is finitely Σ-homo-
morphically embeddable into I ′ if, for every finite sub-
interpretation I1 of I, there exists a Σ-homomorphism from
I1 to I ′. Now one can show:
Theorem 7. Let K1 and K2 be consistent DL-LiteHcore KBs.
Then K1 Σ-query entails K2 iffMK2

is finitely Σ-homomo-
rphically embeddable intoMK1

.
Theorem 7 does not yet give a satisfactory semantic char-

acterisation of Σ-query entailment between TBoxes, as one
still has to consider infinitely many Σ-ABoxes. However,
using the fact that inclusions in DL-LiteHcore, different from
disjointness axioms, involve only one concept or role in the
left-hand side and making sure that the TBoxes entail the
same Σ-inclusions, one can show that it is enough to con-
sider singleton Σ-ABoxes of the form {B(a)}. Denote the
models G(T ,{B(a)}) and M(T ,{B(a)}) by GBT and MB

T , re-
spectively. We thus obtain the following characterisation of
Σ-entailment between DL-LiteHcore TBoxes T1, T2:
Theorem 8. T1 Σ-query entails T2 iff
(p) T2 |= α implies T1 |= α, for all Σ-inclusions α;
(h) MB

T2
is finitely Σ-homomorphically embeddable into

MB
T1

, for all T1-consistent Σ-concepts B.
By applying condition (p) to B v ⊥, we obtain that every
T1-consistent Σ-concept B is also T2-consistent.

Complexity of Σ-Query Entailment
We use Theorem 8 to show that deciding Σ-query entailment
for DL-LiteHcore TBoxes is PSPACE-hard and in EXPTIME.

Recall that subsumption in DL-LiteHcore is NLOGSPACE-
complete (Calvanese et al. 2007; Artale et al. 2009); so con-
dition (p) of Theorem 8 can be checked in polynomial time.
And, since there are at most 2 · |Σ| singleton Σ-ABoxes,
we can concentrate on the complexity of checking finite Σ-
homomorphic embeddability of canonical models for single-
ton ABoxes.



We begin by considering DL-Litecore, which does not con-
tain role inclusions. In this case, the existence of Σ-homo-
morphisms between canonical models can be expressed
solely in terms of the types of the points in these models;
cf. (Kontchakov, Wolter, and Zakharyaschev 2010). Let T1

and T2 be DL-Litecore TBoxes and Σ a signature.

Theorem 9. T1 Σ-query entails T2 iff (p) holds and, for
every T1-consistent Σ-concept B and every x ∈ ∆I

B
T2 , there

is x′ ∈ ∆I
B
T1 with t

IBT2
Σ (x) ⊆ t

IBT1
Σ (x′).

The criterion of Theorem 9 can be checked in polynomial
time, in NLOGSPACE, to be more precise. Thus:

Theorem 10. Checking Σ-query entailment for TBoxes in
DL-Litecore is NLOGSPACE-complete.

However, if role inclusions become available, the picture
changes dramatically: not only do we have to compare
the Σ-types of points in the canonical models, but also
the Σ-paths to these points. To illustrate, consider the
generating models G1, G2 below, where the arrows represent
the generating relations, and the concept names A, Xi, Xi

and the role names R and Tj are all symbols in Σ. The
model G2 contains 4 R-paths from a to w, which are further

G1

A
a

X1

R,T
−
j

X1

R,T −
j

X2R,T−j

R,
T
−
j

X2

R,T −
j

R,T−j

X3R,T−j

R,
T
−
j

X3

R,T −
j

R,T−j

X4R,T−j

R,
T
−
j

X4

R,T −
j

R,T−j

T1
T1

T1

T2

T2

G2

A
a

A

X1

R

X1

R

R

R

X3

R

X3

R

w
R

R

T1

T1

T2

T2

extended by the infinite Tj-paths. The paths π from a to w
can be homomorphically mapped to distinct R-paths h(π)
in G1 starting from a. But the extension of such a π with the
infinite Tj-chain can only be mapped first to a suffix of h(π)
(backward, along T−j )—because we have to map paths in
the unfolding M2 of G2 to paths in M1—and then to a
Tj-loop in G1. But to check whether this can be done, we
may have to ‘remember’ the whole path π.

To see that G1 and G2 can be given by DL-LiteHcore TBoxes,
fix a quantified Boolean formula Q1X1 . . .QnXn

∧m
j=1 Cj ,

where Qi ∈ {∀,∃} and the Cj are clauses over the variables
Xi. Let Σ = {A,Xi, Xi, R, Tj | i ≤ n, j ≤ m} and let T1

contain the inclusions

A v ∃S−0 , ∃S
−
i−1 v ∃Q

k
i ,

∃(Qki )− v Xk
i , Qki v Si, Si v R,

Xk
i v ∃Rj if k = 0,¬Xi ∈ Cj or k = 1, Xi ∈ Cj ,

∃R−j v ∃Rj , Rj v Tj , Si v T−j ,

and T2 the inclusions

A v ∃S−0 , ∃S−i−1 v
{
∃Qki , if Qi = ∀,
∃Si, if Qi = ∃,

∃(Qki )− v Xk
i , Qki v Si, Si v R,

∃S−n v ∃Pj , ∃P−j v ∃Pj , Pj v Tj ,

for all i ≤ n, j ≤ m and k = 1, 2. The generating models
GAT1

and GAT2
, restricted to Σ, look like G1 and G2 in the pic-

ture above, respectively. Moreover, one can show thatMA
T2

is (finitely) Σ-homomorphically embeddable into MA
T1

iff
the QBF above is satisfiable. As satisfiability of QBFs is
known to be PSPACE-complete, we obtain:

Theorem 11. Σ-query entailment for DL-LiteHcore TBoxes is
PSPACE-hard.

On the other hand, the problem whetherMK2
is finitely

Σ-homomorphically embeddable intoMK1
can be reduced

to the emptiness problem for alternating two-way automata,
which belongs to EXPTIME (Vardi 1998). In a way similar
to (Vardi 1998; Grädel and Walukiewicz 1999), where these
automata were employed to prove EXPTIME-decidability of
the modal µ-calculus with converse and the guarded fixed
point logic of finite width, one can use their ability to
‘remember’ paths (in the sense illustrated in the example
above) to obtain the EXPTIME upper bound:

Theorem 12. Checking Σ-query entailment for DL-LiteHcore
TBoxes is in EXPTIME.

The precise complexity of Σ-query entailment for
DL-LiteHcore TBoxes is still unknown. To put the obtained
results into perspective, let us recall that deciding Σ-query
entailment for ontologies in the DL DL-LiteNhorn is CONP-
complete (Kontchakov, Wolter, and Zakharyaschev 2010).
Compared to DL-LiteHcore, DL-LiteNhorn allows (unqualified)
number restrictions and conjunctions in the left-hand side of
concept inclusions, but does not have role inclusions, that
is: DL-LiteNhorn ∩ DL-LiteHcore = DL-Litecore. The data com-
plexity of answering CQs is the same for all three languages
under the UNA: AC0. However, the computational proper-
ties of these logics become different as far as Σ-query entail-
ment is concerned: NLOGSPACE-complete for DL-Litecore,
CONP-complete for DL-LiteNhorn, and between PSPACE and
EXPTIME for DL-LiteHcore. It may be of interest to note that
Σ-query entailment for DL-LiteNbool, allowing full Booleans
as concept constructs, is Πp

2-complete.

Strong Σ-Query Entailment
It is pretty straightforward to construct an exponential
time algorithm checking strong Σ-query entailment between
DL-LiteHcore TBoxes T1 and T2: enumerate all Σ-TBoxes T
and check whether T1 ∪ T Σ-query entails T2 ∪ T . As there
are quadratically many Σ-inclusions, this algorithm calls the
Σ-query entailment checker 2|Σ|

2

times, in the worst case.
We now show that one can do much better than that.

First, it turns out that instead of expensive Σ-query entail-
ment checks for the TBoxes Ti ∪ T , it is enough to check
consistency (in polynomial time). More precisely, suppose



T1 Σ-query entails T2. One can show then that T1 does not
strongly Σ-query entail T2 iff there exist a Σ-TBox T and
a Σ-concept B such that (T1 ∪ T , {B(a)}) is consistent but
(T2 ∪ T , {B(a)}) is not (see Example 3 above).

Moreover, checking consistency for all Σ-TBoxes T can
further be reduced—using the primitive form of DL-LiteHcore
axioms—to checking consistency for all singleton Σ-
TBoxes T . Thus, we obtain the following:
Theorem 13. Suppose that T1 Σ-query entails T2. Then
T1 does not strongly Σ-query entail T2 iff there is a Σ-con-
cept B and a Σ-TBox T with a single inclusion of the form
B1 v B2 or R1 v R2 such that (T1∪T , {B(a)}) is consis-
tent but (T2 ∪ T , {B(a)}) is inconsistent.

So, if we already know that T1 Σ-query entails T2, then
checking whether this entailment is actually strong can be
done in polynomial time (and NLOGSPACE). The proof,
based on both semantical and proof-theoretic constructions,
is given in the full version of the paper.

Theorem 13 is crucial for the implementation of an effi-
cient strong Σ-query entailment checker, as discussed in the
section on our experiments below.

Incomplete algorithm for Σ-query entailment
The complex interplay between role inclusions and inverse
roles, required in the proof of PSPACE-hardness, appears to
be too artificial compared to how roles are used in ‘real-
world’ ontologies. For example, in conceptual modelling,
the number of roles is comparable with the number of con-
cepts, but the number of role inclusions is normally very
small (see the table in the next section). For this reason,
instead of a complete exponential time Σ-query entailment
checker, we have implemented a polynomial time correct but
incomplete algorithm, which is based on testing simulations
between transition systems.

Let T1 and T2 be DL-LiteHcore TBoxes, Σ a signature, B
a Σ-concept. Denote Ki = (Ti, {B(a)}) and Ii = IKi

,
i = 1, 2. A relation ρ ⊆ ∆I2 ×∆I1 is called a Σ-simulation
of GK2

in GK1
if the following conditions hold:

(s1) the domain of ρ is ∆I2 and (aI2 , aI1) ∈ ρ;
(s2) tI2

Σ (x) ⊆ tI1

Σ (x′), for all (x, x′) ∈ ρ;
(s3) if x ;K2

w[R] and (x, x′) ∈ ρ, then there is y′ ∈ ∆I1

such that (w[R], y
′) ∈ ρ and S ∈ rI1

Σ (x′, y′) for every
Σ-role S with [R] ≤T2 [S].

We call ρ a forward Σ-simulation if it satisfies (s1), (s2) and
the condition (s3′), which strengthens (s3) with the extra re-
quirement: y′ = w[T ], for some role T , with x′ ;K1w[T ]

and [T ] ≤T1
[S] for every Σ-role S with [R] ≤T2

[S].
Example 14. In Example 6, there is a Σ-simulation of GK2

in GK1
, but no forward Σ-simulation exists. The same ap-

plies to G2 and G1 in the proof of the PSPACE lower bound.
In contrast to finite Σ-homomorphic embeddability of

MK2
in MK1

, the problem of checking the existence of
(forward) Σ-simulations of GK2

in GK1
is tractable and

well understood from the literature on program verifica-
tion (Baier and Katoen 2007). Consider now the following
conditions, which can be checked in polynomial time:

(y) condition (p) holds and there is a forward Σ-simulation
of GBT2

in GBT1
, for every T1-consistent Σ-concept B;

(n) condition (p) does not hold or there is no Σ-simulation
of GBT2

in GBT1
, for any T1-consistent Σ-concept B.

Theorem 15. Let T1, T2 be DL-LiteHcore TBoxes and Σ a sig-
nature. If (y) holds, then T1 Σ-query entails T2. If (n) holds,
then T1 does not Σ-query entail T2.

Thus, an algorithm checking conditions (y) and (n) can
be used as a correct but incomplete Σ-query entailment
checker. It cannot be complete since neither (y) nor (n) holds
in Example 14. On the other hand, condition (n) proves to
be a criterion of Σ-query entailment in two important cases:

Theorem 16. Suppose that (a) T1 and T2 are DL-Litecore
TBoxes, or (b) T1 = ∅ and T2 is a DL-LiteHcore TBox. Then
condition (n) holds iff T1 does not Σ-query entail T2.

The case T1 = ∅ is of interest for module extraction and safe
module import, which will be discussed in the next section.

Experiments
Checking (strong) Σ-query entailment has multiple applica-
tions in ontology versioning, re-use, and extraction. We have
used the algorithms, suggested by Theorems 15 and 13, for
minimal module extraction to see how efficient they are in
practice and whether the incompleteness of the (y)–(n) con-
ditions is problematic. Extracting minimal modules from
medium-sized real-world ontologies requires thousands of
calls of the (strong) Σ-query entailment checker, and thus
provides a tough test for our approach.

For a TBox T and a signature Σ, a subsetM⊆ T is

– a Σ-query module of T ifM≡Σ T ;
– a strong Σ-query module of T ifM≡sΣ T ;
– a depleting Σ-query module of T if ∅ ≡sΣ∪sig(M) T \M,

where sig(M) is the signature ofM.

We are concerned with computing a minimal (w.r.t. ⊆) Σ-
query (MQM), a minimal strong Σ-query (MSQM), and the
(uniquely determined) minimal depleting Σ-query (MDQM)
module of T . The general extraction algorithms, which call
Σ-query entailment checkers, are taken from (Kontchakov,
Wolter, and Zakharyaschev 2010). For MQMs and MSQMs,
the number of calls to the checker coincides with num-
ber of inclusions in T . For MDQMs (where one of the
TBoxes given to the checker is empty, and so the checker
is complete, by Theorem 16), the number of checker calls is
quadratic in the number of inclusions in T .

We extracted modules from OWL 2 QL approximations
of 3 commercial software applications called Core, Um-
brella and Mimosa (the original ontologies use a few axioms
that are not expressible OWL 2 QL ). Mimosa is a specialisa-
tion of the MIMOSA OSA-EAI specification1 for container
shipping. Core is based on a supply-chain management sys-
tem used by the bookstore chain Ottakar’s (now merged with
Waterstone’s), and Umbrella on a research data validation
and processing system used by the Intensive Care National

1htpp://www.mimosa.org/?q=resources/specs/osa-eai-v321



Audit and Research Centre2. The original Core and Umbrella
were used for the experiments in (Kontchakov, Wolter, and
Zakharyaschev 2010). For comparison, we extracted mod-
ules from OWL 2 QL approximations of the well-known
IMDB and LUBM ontologies. For each of these ontologies,

ontology Mimosa Core Umbrella IMDB LUBM
concept incl. 710 1214 1506 45 136
role incl. 53 19 13 21 9
concept nm. 106 82 79 14 43
role names 145 76 64 30 31

we randomly generated 20 signatures Σ of 5 concept and
5 roles names. We extracted Σ-MQMs, MSQMs, MDQMs
as well as the >⊥-module (Cuenca Grau et al. 2008) from
the whole Mimosa, IMBD and LUBM ontologies. For
the larger Umbrella and Core ontologies, we first com-
puted the >⊥-modules, and then employed them to fur-
ther extract MQMs, MSQMs, MDQMs, which are all con-
tained in the >⊥-modules. The average size of the result-
ing modules and its standard deviation is shown below:

LUBM (145)

31

M
Q

M

32

M
SQ

M

34

M
D

Q
M

34
>⊥

M
IMDB (66)

20
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Q

M
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M
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M

25

M
D

Q
M
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M

Umbrella (1519)
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M
Q

M
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M
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M
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M
D

Q
M
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M

Mimosa (763)

47

M
Q

M
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M
SQ

M

101

M
D

Q
M
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>⊥
M

Core (1233)

83

M
Q

M
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M
SQ

M

375

M
D

Q
M

375

>⊥
M

Details of the experiments and ontologies are available at
http://aaai-11.tripod.com/. Here we briefly com-
ment on efficiency and incompleteness. Checking Σ-query
inseparability turned out to be very fast: a single call of the
checker never took more than 1s for our ontologies. For
strong Σ-query inseparability, the maximal time was less
than 1 min. For comparisons with the empty TBox, the
maximal time for strong Σ-query inseparability tests was
less than 10s. For the hardest case, Mimosa, the average
total extraction times were 2.5mins for MQMs, 140mins for
MSQMs, and 317mins for MDQMs. Finally, only in 9 out of
about 75,000 calls, the Σ-query entailment checker was not
able to give a certain answer due to the incompleteness of
the (y)–(n) condition, in which case the inclusions in ques-
tion were added to the module.

Outlook
We have demonstrated that, despite its PSPACE-hardness,
(strong) Σ-query inseparability can be decided efficiently
for real-world OWL 2 QL ontologies. It would be of in-
terest to explore (i) whether (some of) our techniques can
be extended to more expressive DLs such as DL-LiteNhorn or
even ELI, and (ii) how the algorithms deciding inseparabil-
ity can be utilised for analysing and visualising the differ-
ence between ontology versions if two ontologies are not Σ-
query inseparable, as required by ontology versioning sys-
tems (Noy and Musen 2002).

2http://www.icnarc.org
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Proof of Theorem 5
We first prove that IK |= K andMK |= K. We also show a
lemma that we will reuse in the following sections.
Proposition 17. For all consistent DL-LiteHcore KBs K,
IK |= K andMK |= K.

Proof. Let K = (T ,A). We show IK |= K. MK |= K
can be shown similarly and is left to the reader. The part
IK |= A is obvious from the construction of IK . For IK |=
T , we take α ∈ T and proceed by case distinction over the
possible shapes of α. We can treat> and⊥ the same way as
concept names because the equation

AIK = {a | K |= A(a)} ∪ {w[R] | T |= ∃R− v A},

which is part of the definition of IK , holds for > and ⊥
as well—for > trivially, and for ⊥ using the fact that R is
generating for all w[R] ∈ ∆IK .

α = A1 v A2. Let x ∈ A
IK
1 . If x = a ∈ Ind(A), then

K |= A1(a) by construction of AIK1 . Since α ∈ T , we
have K |= A2(a) and, by construction of AIK2 , a ∈ AIK2 .
For x = w[R] we can argue analogously.

α = A v ∃R. Let x ∈ AIK . If x = a ∈ Ind(A), then
K |= A(a) and, since α ∈ T , we have K |= ∃R(a). Take
some ≤T -minimal [S] with [S] ≤T [R] and K |= ∃S(a).
Then it holds that x ;K w[S]. From the construction of
RIK , we can derive (x,w[S]) ∈ RIK , hence x ∈ (∃R)IK .
If x = w[S] for some S, then T |= ∃S− v A. Since
α ∈ T , we have T |= ∃S− v ∃R and therefore w[S] ;K
w[T ] for some≤T -minimal [T ] with [T ] ≤T [R] and T |=
∃T− v ∃R. The rest of the argument is the same.

α = ∃R v A. Let x ∈ (∃R)IK . If x = a ∈ Ind(A), then
the construction of RIK implies that either (i) there is
some b ∈ Ind(A) with S(a, b) ∈ A for S v∗T R, or
(ii) a ;K w[S] for some [S] with [S] ≤T [R]. In case
(i), since α ∈ T , we obtain K |= A(a) and therefore
a ∈ AIK . In case (ii), we conclude that K |= ∃R(a) and,
since α ∈ T , K |= A(a). The rest is by construction of
AIK . For x = w[S] we can argue analogously.

α = ∃R v ∃S. The argument is a combination of those in
the previous two cases.

α = A1 uA2 v ⊥. Let x ∈ A
IK
1 ∪ AIK2 . If x = a ∈

Ind(A), then K |= Ai(a) and, since α ∈ T , we have
a contradiction to K being consistent. If x = w[R] for
some R, then T |= ∃R− v Ai. Since α ∈ T , we obtain
T |= ∃R− v ⊥, a contradiction to R being generating.

α = A u ∃R v ⊥. We derive a contradiction analogously
to the previous case.

α = ∃R u ∃S v ⊥. Analogous.

α = R1 v R2. Let (x, y) ∈ RIK1 . By construction of RIK1 ,
we have that y = w[S] for some [S] with [S] ≤T [R1].
Since α ∈ T , we have [S] ≤T [R2] and, therefore,
(x, y) ∈ RIK2 .

α = R1 uR2 v ⊥. We proceed as in the previous case un-
til we obtain a contradiction to S being generating.

For the following lemma, we say that a homomorphism
from an interpretation I to I ′ is a ΣI-homomorphism from
I to I ′, where ΣI is the signature of I. Analogously, tI(·)
and rI(·, ·) denote tIΣI (·) and rIΣI (·, ·).

Lemma 18. For every consistent DL-LiteHcore KB K and ev-
ery model I |= K, there exists a homomorphism fromMK
to I.

Proof. We define a function h : ∆MK → ∆I that guar-
antees h(σ · w[R]) ∈ (∃R−)I for all paths σ and roles
R. We simultaneously define h(σ) and prove the guaran-
tee by induction on |σ|. For σ = a, we set h(a) = aI .
For longer paths, we set h(σ · w[R]) to some z ∈ ∆I

with (h(σ), z) ∈ RI . Such a z exists: the construction
of MK requires that tail(σ) ;K w[S] for some [S] with
[S] ≤T [R], and the definition of ;K now admits two
cases. If tail(σ) = a ∈ Ind(A), then K |= ∃S(a), i.e.,
K |= ∃R(a). If tail(σ) = w[T ], then T |= ∃T− v ∃S,
i.e., T |= ∃T− v ∃R. Due to the induction hypothesis for
the above guarantee, we obtain that z with (h(σ), z) ∈ RI
exists and that h(σ ·w[R]) = z satisfies the guarantee again.

It remains to show that h is a homomorphism, i.e.,

1. h(aMK ) = aI for all a ∈ Ind(A),

2. For all paths σ ∈ ∆MK : tMK (σ) ⊆ tI(h(σ)).
3. For all paths σ1, σ2 ∈ ∆MK : rMK (σ1, σ2) ⊆

tI(h(σ1), h(σ2)).

(1) is ensured by aMK = a and h(a) = aI . For (2), we
proceed by induction on |σ|.

σ = a. Let B ∈ tMK (a), i.e., a ∈ BMK . If B = A,
then the construction of MK implies that K |= A(a),
hence a ∈ AI , i.e., B ∈ tI(a). If B = ∃R, then the
construction ofMK implies that (a, x) ∈ RIK for some
x. Either x = b ∈ Ind(A)—in which case S(a, b) ∈ A
for some S v∗ R, and hence a ∈ (∃R)I—or x = w[S]

for some [S] with a ;K w[S] and [S] ≤T [R]. In the
latter case, we obtain K |= ∃S(a), i.e., K |= ∃R(a) and
a ∈ (∃R)I , i.e., B ∈ tI(a).

σ = σ′ · w[R]. Let B ∈ tMK (σ), i.e., σ ∈ BMK . If
B = A, then the constructions of MK and IK imply
that w[R] ∈ AIK and T |= ∃R− v A. With the
guarantee h(σ) ∈ (∃R−)I , we obtain h(σ) ∈ AI , i.e.,
B ∈ tI(h(σ)). If B = ∃S, then the construction ofMK
implies that w[R] ;K w[T ] for some [T ] with [T ] ≤T [S].
Hence, T |= ∃R− v ∃T , i.e., T |= ∃R− v ∃S. With the
guarantee h(σ) ∈ (∃R−)I , we obtain h(σ) ∈ (∃S)I , i.e.,
B ∈ tI(h(σ)).

For (3), let R ∈ rMK (σ1, σ2), i.e., (σ1, σ2) ∈ RMK . As-
sume w.l.o.g. that R = P is a role name. From the con-
struction ofMK , we conclude that one of the following two
cases occurs.



σ2 = σ1 · w[S] for some [S] with tail(σ1) ;K w[S] and
[S] ≤T [P ]. From the construction of h, we obtain
(h(σ1), h(σ2)) ∈ SI , hence (h(σ1), h(σ2)) ∈ P I , i.e.
R = P ∈ rI(h(σ1), h(σ2)).

σ1 = σ2 · w[S] for some [S] with tail(σ2) ;K w[S] and
[S] ≤T [P−]. From the construction of h, we obtain
(h(σ2), h(σ1)) ∈ SI , hence (h(σ1), h(σ2)) ∈ P I , i.e.
R = P ∈ rI(h(σ1), h(σ2)).

We are now ready to prove Theorem 5 which we formu-
late again.

Theorem 5. For all consistent DL-LiteHcore KBsK, CQs q(~x)
and tuples ~a ⊆ Ind(A), where K = (T ,A), we have K |=
q[~a] iffMK |= q[~a].

Proof. By Proposition 17,MK |= K. This implies direction
“⇒”.

For the “⇐” direction, let MK |= q[~a] with
~a = a1, . . . , an ⊆ Ind(A), and let q(~x) =
∃y1 . . . ∃ym.ϕ(x1, . . . , xn, y1, . . . , ym). It is sufficient to
show that I |= q[~a] for every model I of K. There are
σ1, . . . , σm ∈ ∆MK such that MK |= ϕ[~a, σ1, . . . , σm].
Now let I |= K. Take a homomorphism h from MK to
I, which exists due to Lemma 18. The following two prop-
erties are immediate consequences of h being a homomor-
phism, and they imply that I |= q[~a, h(σ1), . . . , h(σm)].

1. For all concepts B and paths σ ∈ ∆MK : if σ ∈ BMK ,
then h(σ) ∈ BI .

2. For all roles R and paths σ1, σ2 ∈ ∆MK : if (σ1, σ2) ∈
RMK , then (h(σ1), h(σ2)) ∈ RI .

Proof of Theorem 7
Proof. Using Theorem 5, it suffices to show that the follow-
ing two conditions are equivalent.

1. For all Σ-queries q and ~a ⊆ Ind(A), if MK2
|= q[~a],

thenMK1
|= q[~a].

2. MK2
is finitely Σ-homomorphically embeddable into

MK1
.

For “(1) ⇒ (2)”, assume (1). Take ∆′ ⊆ ∆MK2 and
let ∆′ = {a1, . . . , ak, σ1, . . . , σ`}, where ai ∈ Ind(A) and
the σj are GK2 -paths. For ease of notation, we abbreviate
t
MK2

Σ (·) and r
MK2

Σ (·, ·) by t2
Σ(·) and r2

Σ(·, ·). Take vari-
ables x1, . . . , xk, y1, . . . , y` and let q = ∃y1 . . . ∃y`ϕ, where

ϕ =
∧

i=1,...,k
B∈t2

Σ(ai)

B(xi) ∧
∧

i,j=1,...,k
B∈r2

Σ(ai,aj)

R(xi, xj) ∧
∧

i=1,...,k
j=1,...,`

B∈r2
Σ(ai,σj)

R(xi, yj)

∧
∧

i=1,...,`
B∈t2

Σ(σi)

B(yi) ∧
∧

i,j=1,...,`
B∈r2

Σ(σi,σj)

R(yi, yj).

Since the Σ-concepts B in the definition of q include >,
the query q uses all variables xi and yj . Clearly, MK2 |=
q[a1, . . . , ak, σ1, . . . , σ`]. Due to (1), we have MK1 |=
q[a1, . . . , ak, σ

′
1, . . . , σ

′
`] for some σ′1, . . . , σ

′
` in ∆MK1 . We

define a function h : ∆′ → ∆MK1 via h(ai) = ai and
h(σi) = σ′i. This function is a Σ-homomorphism because it
maps every ai to ai and the conjuncts in q explicitly require
that all Σ-(role-)types are preserved.

For “(2) ⇒ (1)”, assume that MK2
is finitely Σ-

homomorphically embeddable into MK1
. Let q be a Σ-

query with MK2
|= q[a1, . . . , ak, σ1, . . . , σ`] for some

σ1, . . . , σ` in ∆MK2 . Let ∆′ = {a1, . . . , ak, σ1, . . . , σ`}.
Take a Σ-homomorphism h : ∆′ → ∆MK1 with h(ai) = ai
for all i. The homomorphism laws imply

• For all Σ-concepts B and σi ∈ ∆′: if σi ∈ BMK2 , then
h(σi) ∈ BMK1 .

• For all Σ-roles R and σi, σj ∈ ∆′: if (σi, σj) ∈ RMK2 ,
then (h(σi), h(σj)) ∈ RMK1 .

Therefore,MK1 |= q[a1, . . . , ak, h(σ1), . . . , h(σ`)].

Proof of Theorem 8
We divide the proof into two parts. An ABox A is
called a single individuum ABox if A is of the form
{B1(a), . . . , Bn(a)}, where a is an individual name and
B1, . . . , Bn are concepts.

Lemma 19. T1 Σ-query entails T2 if

(p) T2 |= α implies T1 |= α, for all Σ-inclusions α;
(i) M(T2,A) is finitely Σ-homomorphically embeddable into
M(T1,A), for all consistent (Ti,A), i = 1, 2, such that A
is a single individuum Σ-ABox.

Proof. Assume that (p) and (i) hold. To prove that T1 Σ-
query entails T2 let A be a Σ-ABox. Assume first (T2,A)
is inconsistent. We have to show that (T1,A) is inconsis-
tent. We may assume that ∃R(a) ∈ A whenever there exists
b with R(a, b) ∈ A. Similarly, we assume R(a, b) ∈ A iff
R−(b, a) ∈ A. Then one can readily show that from (T2,A)
inconsistent it follows that at least one of the following ap-
plies:

• there exist a ∈ Ind(A) and B1(a), B2(a) ∈ A such that
T2 |= B1uB2 v ⊥. But then, by (p), T1 |= B1uB2 v ⊥
and so (T1,A) is inconsistent.

• there exist a, b ∈ Ind(A) and R(a, b), S(a, b) ∈ A such
that T2 |= RuS v ⊥. But then, by (p), T1 |= SuR v ⊥
and so (T1,A) is inconsistent.

Assume now that (Ti,A), i = 1, 2, are consistent. We
show that M(T2,A) is finitely Σ-homomorphically embed-
dable into M(T1,A). First observe that we can relax the
condition defining a ;K w[R] to requiring a ∈ Ind(A)
and [R] being ≤T -minimal such that K |= ∃R.(a) (but
not necessarily K 6|= R(a, b) for any b ∈ Ind(A)). De-
note the modified canonical model byM′K. Then there ex-
ists a Σ-homomorphism from M′K to MK and vice versa.



Thus, it is sufficient to show that M′(T2,A) is finitely Σ-
homomorphically embeddable intoM′(T1,A). Let D be a fi-

nite subset of ∆M
′
(T2,A) . We may assume that Ind(A) ⊆ D.

By (i), for a ∈ Ind(A), there are Σ-homomorphisms ha
from the interpretations induced by D ∩ ∆M(T2,Γ(a))} in
M(T2,Γ(a)) toM(T1,Γ(a)), where Γ(a) = {B(a) | B(a) ∈
A}. It remains to show that h =

⋃
a∈Ind(A) ha is a par-

tial Σ homomorphism with domain D from M′(T2,A) into
M′(T1,A). But this follows immediately if

• a ∈ BM
′
(T2,A) implies a ∈ BM

′
(T1,A) for all Σ-concepts

B and a ∈ Ind(A);

• (a, b) ∈ RM
′
(T2,A) implies (a, b) ∈ RM

′
(T1,A) for all Σ-

roles B and a, b ∈ Ind(A).

The first condition follows from: T2 |= B1 v B2 implies
T1 |= B1 v B2, for all Σ-inclusions B1 v B2, by (p).
The second condition follows from: T2 |= R1 v R2 implies
T1 |= R1 v R2, for all Σ-inclusions R1 v R2, by (p).

We are now ready to prove Theorem 8 which we formu-
late again.

Theorem 8 T1 Σ-query entails T2 iff
(p) T2 |= α implies T1 |= α, for all Σ-inclusions α;
(h) MB

T2
is finitely Σ-homomorphically embeddable into

MB
T1

, for all T1-consistent Σ-concepts B.

Proof. The proof that (p) and (h) follow if T1 Σ-query en-
tails T2 is straightforward and omitted. Conversely, as-
sume that (p) and (h) hold. It is sufficient to prove
that (i) from Lemma 19 holds. So, assume that A =
{B1(a), . . . , Bn(a)} is a single individuum Σ-ABoxes such
that (Ti,A), i = 1, 2, are consistent. We have to show that
M(T2,A) is finitely Σ-homomorphically embeddable into
M(T1,A). But this follows directly from the fact that every
M(T2,{Bi(a)}) is finitely Σ-homomorphically embeddable
intoM(T1,{Bi(a)}), for 1 ≤ i ≤ n.

Proof of Theorem 9
Theorem 9 T1 Σ-query entails T2 iff (p) holds and, for every
T1-consistent Σ-concept B and every x ∈ ∆I

B
T2 , there is

x′ ∈ ∆I
B
T1 with t

IBT2
Σ (x) ⊆ t

IBT1
Σ (x′).

Proof. The implication (⇒) follows immediately from The-
orem 8 and the definition of Σ-homomorphism.

To prove the converse, we show that, for every T1-
consistent Σ-concept B, there exists a Σ-homomorphism

h from MB
T2

to MB
T1

. First, we observe that t
MB
T2

Σ (a) ⊆

t
MB
T1

Σ (a). Indeed, otherwise we would have a Σ-concept C
such that T2 |= B v C but T1 6|= B v C, contrary to
condition (p). Thus, we can set h(aM

B
T2 ) = aM

B
T1 .

Suppose now that we already have h(x) = x′ and

r
MB
T2

Σ (x, y) = {R} (remember, we are dealing with the lan-
guage DL-Litecore which does not contain role inclusions).

Then ∃R ∈ t
MB
T2

Σ (x), whence ∃R ∈ t
MB
T1

Σ (x′), and so there

is y′ such that r
MB
T1

Σ (x′, y′) = {R}. Set h(y) = y′. By the

observation above, we then have t
MB
T2

Σ (y) ⊆ t
MB
T1

Σ (y′) (it
suffices to consider the case B = ∃R−).

Finally, if a point x is not reachable from the root ofMB
T2

by a Σ-path. In this case, we take any x′ in MB
T2

with

t
MB
T2

Σ (x) ⊆ t
MB
T1

Σ (x′) and set h(x) = x′.
The resulting map h is clearly a Σ-homomorphism h from

MB
T2

toMB
T1

.

Proof of Theorem 11
In this section, we show that Σ-query entailment for
DL-LiteHcore TBoxes is PSPACE-hard.

Proof. The proof is by reduction of the satisfiability problem
for quantified Boolean formulas (QBFs), which is known to
be PSPACE-complete. Suppose we are given a QBF

ϕ = Q1X1 . . .QnXn

m∧
j=1

Cj

where Qi ∈ {∀,∃} and the Cj , 1 ≤ j ≤ m, are clauses over
the variables Xi, 1 ≤ i ≤ n. Let

Σ = {A,X0
i , X

1
i , R, Tj | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

where the Xi, Xi and A are concept names and the Tj and
R are role names. Let T1 contain the following axioms, for
all 1 ≤ i ≤ n, 1 ≤ j ≤ m and k = 0, 1:

A v ∃S−0 , ∃S
−
i−1 v ∃Q

k
i ,

∃(Qki )− v Xk
i , Qki v Si, Si v R,

Xk
i v ∃Rj if k = 0,¬Xi ∈ Cj or k = 1, Xi ∈ Cj ,

∃R−j v ∃Rj , Rj v Tj , Si v T−j ,

Consider the TBox T2 with the following axioms, for all 1 ≤
i ≤ n, 1 ≤ j ≤ m and k = 0, 1:

A v ∃S−0 , ∃S−i−1 v
{
∃Qki , if Qi = ∀,
∃Si, if Qi = ∃,

∃(Qki )− v Xk
i , Qki v Si, Si v R,

∃S−n v ∃Pj , ∃P−j v ∃Pj , Pj v Tj ,

We show that |= ϕ if, and only if, T1 Σ-query entails T2.
(⇒) Suppose |= ϕ. Observe first that the canonical model

of (T2, {B(a)}), where B is one of X0
i , X1

i , ∃R, ∃R−,
∃Tj , ∃T−j (1 ≤ i ≤ n, 1 ≤ j ≤ m), coincides with
the canonical model of (∅, {B(a)}). Therefore, it is triv-
ially finite Σ-homomorphically embeddable in the canon-
ical model of (T1, {B(a)}), which is consistent as there
are no occurrences of ⊥ in T1. Thus, it remains to show
that the canonical model M2 of K2 = (T2, {A(a)}) can
be finitely Σ-homomorphically embedded in the canonical
model M1 of K1 = (T1, {A(a)}). (The corresponding
Σ-reducts of the generating models G2 = (I2,;2) and
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Figure 1: Σ-reducts of generating models G2 and G1.

G1 = (I1,;1) are shown in Fig. 1 for n = 4 and m = 2
with ϕ = ∀X1∃X2∀X3∃X4((¬X1 ∨ X2) ∧ X3).) In fact,
we construct a Σ-homomorphism h : ∆M2 → ∆M1 . We
denote by wi[R] the R-witness in the generating model Gi,
for i = 1, 2.

We begin by setting

h(aI2) = aI1 and h(aI2w2
[S−0 ]

) = aI1 · w1
[S−0 ]

.

In what follows we exclude the path aI2w2
[S−0 ]

from our con-
siderations. We define h in such a way that, for each path π
in G2 of length i + 1 ≤ n, h(π) is a path aI1w1 . . . wi of
length i + 1 in G1 and it defines an assignment ah(π) to the
variables X1, . . . , Xi by taking, for all 1 ≤ i′ ≤ i,

ah(π)(Xi′) = > ⇔ wi′ ∈ (X1
i′)
I1 ,

ah(π)(Xi′) = ⊥ ⇔ wi′ ∈ (X0
i′)
I1 .

Such assignments ah(π) will satisfy the following:

(a) the QBF obtained from ϕ by removing Q1X1 . . .QiXi

from its prefix is true under ah(π).

For the paths of length 0 the Σ-homomorphism h has been
defined and (a) trivially holds. Suppose that we have defined
h for all paths in G2 of length i + 1 ≤ n . We extend h to
all paths of length i+ 2 in G2 such that (a) holds. Let π be a
path of length i+ 1. In G1 we have

tail(h(π)) ;1 w
1
[Qk

i ] ∈ (Xk
i )I1 , for k = 0, 1.

If Qi = ∀ then in G2 we have

tail(π) ;2 w
2
[Qk

i ] ∈ (Xk
i )I2 , for k = 0, 1.

So, we set h(π · w2
[Qk

i ]
) = h(π) · w1

[Qk
i ]

, for both k = 0, 1.
Clearly, (a) holds. Otherwise, Qi = ∃ and in G2 we have

tail(π) ;2 w
2
[Si]

.

We know that |= ϕ and so, by, (a), the QBF obtained from
ϕ by removing Q1X1 . . .QiXi is true under either ah(π) ∪

{Xi = >} or ah(π) ∪ {Xi = ⊥}. We set h(π · w2
[Si]

) =

h(π) · w1
[Qk

i ]
with k = 1 in the former case and k = 0 in the

latter case. Either way, (a) holds.
Consider now a path π from aI2 to w2

n in G2. By con-
struction, we have

h(π) = aI1w1

[Q
k1
1 ]
. . . w1

[Qkn
n ]
.

On the one hand, the path π in G2 has m infinite extensions
of the form πw2

[Pj ]w
2
[Pj ] . . . , for 1 ≤ j ≤ m. On the other

hand, as |= ϕ, by (a), for each clause Cj , there is some 1 ≤
ij ≤ n such that h(π) contains either w1

[Q1
ij

]
with Xij ∈ Cj

or w1
[Q0

ij
]

with ¬Xij ∈ Cj . We set, for each 1 ≤ k ≤ n− ij ,

h(π w2
[Pj ] · · ·w

2
[Pj ]︸ ︷︷ ︸

k times

) = aI1w1 . . . wn−k,

and, for each k > n− ij ,

h(π w2
[Pj ] · · ·w

2
[Pj ]︸ ︷︷ ︸

k times

) = aI1w1 . . . wij w
1
[Rj ] . . . w

1
[Rj ]︸ ︷︷ ︸

k−(n−ij) times

,

where wi = w1

[Q
ki
i ]

, i.e., the (i + 1) element of h(π). It is

straightforward to check that h is a Σ-homomorphism from
M2 toM1.

(⇒) Suppose now that h is a Σ-homomorphism from a
part ofM2 that contains all points of distance≤ 2n+1 from
the root aI2 to M1, where as before Mi is the canonical
model and Gi is the generating model of (Ti, {A(a)}), i =
1, 2. We have to show that |= ϕ.

Let π be an R-path of length n + 1 from aI2 in G2 (i.e.,
a path from aI2 to w) and let Xk1

1 , Xk2
2 , . . . , Xkn

n be the
concepts containing some nodes on h(π). We show that, for
every 1 ≤ j ≤ m, the clause Cj contains at least one of the
literals

{Xi | ki = 1, 1 ≤ i ≤ n} ∪ {¬Xi | ki = 0, 1 ≤ i ≤ n}.

The path π ends in w. So, for each 1 ≤ j ≤ m, consider
now the path

π w2
[Pj ]w

2
[Pj ]︸ ︷︷ ︸

n+1 times

in G2. It should be clear that its h-image inM1 can only be
of the form σw1

[Qk
i ]
w1

[Rj ]w
1
[Rj ] . . . w

1
[Rj ], for k = 0 or k = 1.

If k = 0 then Cj must contain ¬Xi, otherwise Xi.

Proof of Theorem 12
In this section, we show that deciding Σ-query-entailment
between DL-LiteHcore TBoxes is in ExpTime. Fix Σ and
Ki = (Ti, {B(a)}), i = 1, 2, where B is a Σ-concept.
It is sufficient to show that it is decidable in exponential
time whether MK2

is finitely Σ-homomorphically embed-
dable into MK1

. This can be proved by a reduction to the
emptiness problem for alternating two-way automata, which
is in ExpTime (Vardi 1998). The simplest way of sketch-
ing the proof is indirect, via a reduction to the validity of



guarded fixpoint logic of finite width which has been shown
to be decidable is ExpTime using alternating two-way au-
tomata in (Grädel and Walukiewicz 1999). In our encoding
in the guarded fixpoint logic of finite width, we do not use
first-order syntax but the syntax of the extension ALCI∩ν
of DL-LiteHcore, i.e., the standard description logic ALC ex-
tended with inverse roles, role inclusions, intersections of
roles, and greatest simultaneous fixpoints. ALCI∩ν TBoxes
are easily translated to guarded fixpoint logic of finite width.

Thus, we use concept variables X1, . . . that can be
used like concept names, we have simultaneous fixpoints
νiX1 · · ·Xm.C1 · · ·Cm, where 1 ≤ i ≤ m, and we can con-
struct, for a finite set Γ of roles, the concept ∃Γ.C which is
interpreted by setting d ∈ (∃Γ.C)I iff there exists d′ ∈ CI
with (d, d′) ∈ RI for all R ∈ Γ. The semantics of the
greatest fixpoint constructor is as follows, where V is an as-
signment that maps concept variables to subsets of ∆I and
V[X 7→ W ] denotes V modified by setting V(X) = W .
Then (νiX1 · · ·Xm.C1 · · ·Cm)I,V is interpreted as⋃
{Wi | ∃W1, . . . ,Wi−1,Wi+1, . . . ,Wm s.t. for

1 ≤ j ≤ m : Wj ⊆ CI,V[X1 7→W1,...,Xm 7→Wm]
j }

For IK2
and MK2

we use the following notation. We
assume that ∆IK2 = {1, . . . , n} with a = 1. We set i;Σ j
iff i ;K2 j and there exists R ∈ Σ with (i, j) ∈ RI2 . Let
D ⊆ ∆IK2 be the set of all m ∈ ∆IK2 such that there does
not exist k with k ;Σ m.

For m ∈ D, denote by Im the Σ-reduct of the interpre-
tation induced by the set of points reachable from m along
;Σ-paths in IK2

.
Similarly, call π′ a Σ-son of π in MK2

, in symbols
π ;Σ π′, if π′ = π · w[R] for some R and (π, π′) ∈ SMK2

for some S ∈ Σ. Denote by Nm the Σ-reduct of the inter-
pretation induced by the set of points reachable from some
(fixed) π ∈ ∆MK2 with tail(π) = m along ;Σ. Note that,
up to isomorphims, Nm does not depend on π, but on m
only. We denote the root of Nm by πm.

Clearly, if is sufficient to decide whether, for every m ∈
D, Nm is finitely Σ-homomorphically embeddable into
MK1

. Recall that, by Example 6 this is not equivalent to
having a Σ-homomorphism from each Nm toMK1

. How-
ever, as the image of a ∈ ∆N1 is fixed as a, for N1 finite Σ-
homomorphic embeddability is equivalent to the existence
of a Σ-homomorphism from N1, by König’s Lemma. For
the remaining Nm, we require a slightly more general con-
dition.

A partial Σ-homomorphism h : Nm → MK1 is e-
complete, for some e ∈ ∆MK1 , if
• h(πm) is defined;
• the range of h is contained in the set of points that are

;Σ-reachable from e;
• if h(π) is defined and h(π) is not a son of e, then h(π′) is

defined, for all sons π′ of π.
In MK1

, we call π′ a son of π, in symbols π ; π′ if
π′ = π ·w[R] for some R. Now the following can be proved
using König’s Lemma.

Lemma 20. (i) N1 is finitely Σ-homomorphically embed-
dable into MK1 iff there exists a Σ-homomorphism h :
N1 →MK1

(note that h(a) = a).
(ii) Let m ∈ D \ {a}. Nm is finitely Σ-homomorphically

embeddable intoMK1
iff at least one of the following con-

ditions holds:
• there exists a ;-path p inMK1

through some e such that
for infinitely many σ ∈ p there there exists a partial Σ-
homomorphism hσ : Nm → MK1

with hσ(πm)) = σ
that is e-complete.

• there exists a Σ-homomorphism h : Nm →MK1
.

We now encode the existence of such Σ-homomorphisms
into ALCIH∩ν . Let, for 1 ≤ i, j ≤ n with i ;Σ j = wS ,
Γi,j denote the set of Σ-roles R with T2 |= S v R. Let Xi

be concept variables and set

Ci = (
l

A∈Σ,i∈AIK2

A) u (
l

i;Σj

∃Γi,j .Xj)

For every i ∈ D let ~Xi and ~Ci denote the subse-
quencesXi1 , . . . , Xim andCi1 , . . . , Cim ofX1, . . . , Xn and
C1, . . . , Cn, respectively, with ij ∈ ∆Ii for 1 ≤ j ≤ m.
Now let

C(Ii) = νi ~Xi. ~Ci.

We first encode part (i) of Lemma 20:
Lemma 21. There exists a Σ-homomorphism h : N1 →
MK1

(with h(a) = a) iff T1 |= B v C(Ii).

Proof. Assume first that T1 |= B v C(I1).MK1
is a model

of T1 satisfying B in a. Thus, 1 = a ∈ C(I1)MK1 . Take V1

with a ∈ V1(X1) and V1(Xj) ⊆ C
MK1

,V1

j for all j ∈ ∆I1 .
Now we define a Σ-homomorphism f : N1 → MK1 in

such a way that for all π ∈ ∆N1 with tail(π) = j we have
f(π) ∈ V1(Xj). First set f(a) = a ∈ V1(X1).

Assume now that π ∈ ∆N1 , f(π) has not yet been de-
fined, tail(π) = k, πpre ;Σ π, and that f(πpre) has been
defined such that f(πpre) ∈ V1(Xj) for tail(πpre) = j

and j ∈ I1. Then f(πpre) ∈ C
MK1

,V1

j . Thus, f(πpre) ∈
(∃Γj,k.Xk)MK1

,V1 and so we can define f(π) as a member
of V1(Xk) with (πpre, π) ∈ RMK1 for all R ∈ Γj,k.

It is readily checked that f is a Σ-homomorphism.

Conversely, let f : N1 → MK1 we a Σ-homomorphism
with f(a) = a. Let I |= T1 and assume d ∈ BI . We have a
Σ-homomorphism g :M1 → I with g(a) = d.

Let, for j ∈ ∆I1 ,
V1(Xj) = {g(f(π)) | tail(π) = j}.

We show that V1(Xj) ⊆ CI,V1

j for all j ∈ ∆I1 . From
gf(1) = gf(a) = d we then obtain d ∈ C(I1)I , as re-
quired. Let e ∈ V1(Xj). Then e = g(f(π)) for some π
with tail(π) = j. As gf is a Σ-homomorphism, e ∈ AI

for all A ∈ Σ with π ∈ AN1 . From tail(π) ∈ AIK2 iff
π ∈ AN1 we obtain e ∈ AI for all A ∈ Σ with j ∈ AIK2 .
Now assume j ;Σ j′. Then (π, π · j′) ∈ RN1 for all
R ∈ Γj,j′ . Thus (gf(π), gf(π · j′)) ∈ RI . By defini-
tion, gf(π · j′) ∈ V1(Xj′). Thus e ∈ (∃Γj,j′ .Xj′)

I,V1 , as
required.



To encode Condition (ii) of Lemma 20, we have to recog-
nize ;-paths. To this end, we consider a fresh role ρ and
add to T1 the inclusions

B v ∃(ΓS ∪ {ρ}).∃S−,

for every w[S] ∈ ∆I1 with a ; w[S] and R ∈ ΓS iff
(a,w[S]) ∈ RIK1 , and

∃R− v ∃(ΓR,S ∪ {ρ}).∃S−

for everyw[S], w[R] ∈ ∆I1 withw[R] ; w[S] andR ∈ ΓR,S
iff (w[R], w[S]) ∈ RIK1 . Call the resulting TBox T ′1 .

By ρ∗ we denote the transitive reflexive closure of the
role ρ. Then ∃ρ∗.C has the standard PDL semantics: d ∈
(∃ρ∗.C)I iff there exists a ρ-path from d to some d′ with
d′ ∈ CI . Clearly, ∃ρ∗.C can be expressed in the guarded
fixpoint logic of finite width. The following lemma can be
proved in the same way as Lemma 21.

Lemma 22. Let i ∈ D \ {a}. The following conditions are
equivalent:

• There exists a Σ-homomorphism h from Ni toM1

• T ′1 |= B v ∃ρ∗.C(Ii)
So far, we have encoded the existence of Σ-

homomorphisms. Now we encode e-complete partial
Σ-homomorphisms. It remains to encode the first condition
of (ii) in Lemma 20. Let P be a fresh concept name. We
use P to denote the point e at which an e-complete partial
Σ-homomorphism does not have to be “expanded” further.
Define

Ci(P ) = (
l

A∈Σ,i∈AIK2

A) u
l

i;Σj

∃Γi,j .(Xj t P ).

For every i ∈ D let ~Ci(P ) denote the subsequence
Ci1(P ), . . . , Cim(P ) of C1, . . . , Cn with ij ∈ ∆Ii for
1 ≤ j ≤ m. Now let

CP (Ii) = νi ~Xi. ~Ci(P ).

Now the following can be proved in a straightforward way.

Lemma 23. Let m ∈ D \{a}. The following conditions are
equivalent:

• there exists a ;-path p inMK1
starting at some σ0 with

tail(σ0) = w[R] such that for infinitely many σ ∈ p
there there exists a partial Σ-homomorphism hσ : Nm →
MK1

with hσ(πm)) = σ that is σ0-complete.

• We have
T ′1 |= (P u ∃R−) v γ(Ci, P )

where γ(Ci, P ) is the guarded fixpoint formula stating
“there is a ρ-path p such thatCP (Ii) holds infinitely often
on p.

Lemmas 21, 22, and 23 together give the reduction to
TBox reasoning in ALCIH∩ν , as required.

Proof of Theorem 13
Let us turn now to strong Σ-query entailment. Suppose that
we are given two DL-LiteHcore TBoxes T1 and T2 and a sig-
nature Σ such that T1 Σ-query entails T2. Our task is to find
out whether there exists a Σ-TBox T such that T1 ∪ T does
not Σ-query entail T2 ∪ T . In our constructions, we will be
using the following operation of gluing models.

Suppose we have two models I1 and I2 of a Σ-TBox T
with ∆I1 ∩ ∆I2 = ∅. A bijection g between subsets of
Λ1 ⊆ ∆I1 and Λ2 ⊆ ∆I2 induces an equivalence relation
∼ on ∆I1 ∪∆I2 by taking x ∼ y in case x = y or y = g(x)
or x = g(y). We call these interpretations T -compatible
w.r.t. such an equivalence relation ∼ if

T 6|= B1 uB2 v ⊥, for all Bi ∈ tIiΣ (xi), i = 1, 2,

T 6|= R1 uR2 v ⊥, for all Ri ∈ rIiΣ (xi, yi), i = 1, 2,

for all x1, y1 ∈ Λ1 and x2, y2 ∈ Λ2 with x1 ∼ x2 and
y1 ∼ y2. Denote by [x] the ∼-equivalence class of x. Then
I is said to be the glueing of I1 and I2 along ∼ if

∆I = {[x] | x ∈ ∆I1 ∪∆I2},
aI = [aI1 ],

AI = {[x] | x ∈ AI1 ∪AI2},
P I = {([x], [y]) | (x, y) ∈ P I1 ∪ P I2}.

In particular, we have x ∈ AI iff x ∈ AIi \ Λi for i = 1 or
i = 2 or x ∈ Λ1 with either x ∈ AI1 or g(x) ∈ AI2 .
Lemma 24. Let I be the glueing along ∼ of T -compatible
models I1 and I2 of T . Then I |= T .

Proof. Here we use the form of the axioms in DL-LiteHcore.
If we glue two points from different models, then all axioms
of the form B1 v B2 or R1 v R2 will be satisfied. Only
axioms of the form B1 u B2 v ⊥ or R1 u R2 may become
false in the glueing, but that would mean that I1 and I2 are
not T -compatible w.r.t. ∼.

Theorem 25. Suppose that T1 Σ-query entails T2, for
DL-LiteHcore TBoxes T1, T2 and a signature Σ. Then T1 does
not strongly Σ-query entail T2 iff there exist a Σ-TBox T and
a Σ-concept C such that (T1 ∪ T , {C(a)}) is consistent but
(T2 ∪ T , {C(a)}) is inconsistent.

Proof. The implication (⇐) is trivial. To prove the con-
verse, suppose that, for any Σ-TBox T and Σ-concept C,
if (T1 ∪ T , {C(a)}) is consistent then (T2 ∪ T , {C(a)}) is
consistent as well.

It suffices to show that, for all Σ-inclusions α and Σ-
concepts C, if K1α = (T1 ∪ {α}, {C(a)}) is consistent
and the canonical model M2 of K2 = (T2, {C(a)}) is
finitely Σ-homomorphically embeddable in the canonical
model M1 of K1 = (T1, {C(a)}), then the canonical
model M2α of K2α = (T2 ∪ {α}, {C(a)}) is finitely Σ-
homomorphically embeddable in the canonical modelM1α

of K1α as well.
For any of our canonical modelsM in this proof (with a

single named individual a) and n > 0, we denote by tn(M)
the sub-interpretation consisting of all points of distance ≤



n from aM (we note that suchM are connected in the sense
that every point has a uniquely defined distance from the
root). Our aim is to show that, for each n > 0, there is
a Σ-homomorphism from tn(M2α) intoM1α. We do this
by ‘lifting’ Σ-homomorphisms from tn(M2) intoM1. The
construction depends on the form of α.

Case 1: α = AuB v ⊥ or α = RuS v ⊥. In this case,
Mi =Miα and the Σ-homomorphisms coincide.

Case 2: α = A v B. If AM2 = ∅ thenM2α =M2 and
again the Σ-homomorphisms coincide.

So, suppose AM2 6= ∅, and so, as T1 Σ-query entails T2,
we have AM1 6= ∅. As Kiα is consistent, (Ti, {B(b)}) is
also consistent, for i = 1, 2. Denote their canonical models
by MB

i . Since T1 Σ-query entails T2, MB
2 is finitely Σ-

embeddable intoMB
1 .

Let h : tn(M2) → M1 be a Σ-homomorphism. Set
M0

1 = M1, M0
2 = M2 and h0 = h. We repeat the fol-

lowing procedure until there is x2 ∈ AM
k
2 \ BMk

2 (a ‘de-
fect’) with a distance ≤ n from aM

k
2 . We select such an

x2 so that no other such point is located at a smaller dis-
tance from the root aM

k
2 . Define Mk+1

2 to be the glueing
ofMk

2 and a fresh copyMB
2 along x2 ∼ bM

B
2 , which are

clearly T2-compatible w.r.t. this equivalence relation. So,
Mk+1

2 |= T2. (Note, however, thatMk+1
2 may contain ‘re-

dundant’ successors of x witnessing some concepts of the
form ∃R despite that there are such R-witnesses in Mk

2 .)
Also, we defineMk+1

1 to be the glueing ofMk
1 and a fresh

copy MB
1 along hk(x2) ∼ bM

B
1 , which are clearly T1-

compatible w.r.t. this equivalence relation. So,Mk+1
1 |= T1.

We also define hk+1 by extending hk to the set of new points
in the copy ofMB

2 with the help of the Σ-homomorphism
from tn(MB

2 ) intoMB
1 .

Since we always select a ‘defect’ closest to the root, there
is a k such that a subtree of tn(Mk

2) is Σ-isomorphic to
tn(M2α) (i.e., Mk

2 has no ‘defects’ up to depth n). On
the other hand, hk is a Σ-homomorphism from tn(Mk

2) to
Mk

1 . So, there is a Σ-homomorphism from tn(M2α) into
Mk

1 . Repeating the above procedure forMk
1 alone, we can

extend the Σ-homomorphism from tn(M2α) toM1α.
Case 3: α = R v S. If RM2 = ∅ thenM2α =M2 and

the Σ-homomorphisms coincide.
So, suppose RM2 6= ∅, and so, as T1 Σ-query entails T2,

RM1 6= ∅. As the Kiα are consistent, (Ti, {S(b, c)}) is also
consistent. Denote their canonical models by MS

i . Since
T1 Σ-query entails T2, MS

2 is finitely Σ-homomorphically
embeddable intoMS

1 .
As in the previous case, for each n, we can constructMk

1 ,
Mk

2 and hk such that a subtree of tn(Mk
2) is Σ-isomorphic

to tn(M2α) and hk is a Σ-homomorphism from tn(Mk
2)

toMk
1 (this time though, defects are pairs (x, y) ∈ RMk

2 \
SM

k
2 , which are ‘cured’ by glueingMk

i and a fresh copy of
MS

i along x ∼ bMS
i and y ∼ cMS

i ). The rest of the proof is
the same as in Case 2.

We show now that, if T1 does not strongly Σ-query entail
T2, then this can be detected using a Σ-TBox T with a single

axiom.
Theorem 13. Suppose that T1 Σ-query entails T2. Then T1

does not strongly Σ-query entail T2 iff there is a Σ-concept
C and Σ-TBox T with a single inclusion of the form B1 v
B2 orR1 v R2 such that (T1∪T , {C(a)}) is consistent but
(T2 ∪ T , {C(a)}) is inconsistent.

Proof. For any TBox T , denote by v∗T the reflexive and
transitive closure of {(R1, R2), (R−1 , R

−
2 ) | R1 v R2 ∈

T }, where R− = P if R = P− and R− = P− if R =
P , for a role name P . We define an analogous relation on
concepts: v∗T is the reflexive and transitive closure of

{(B,>) | B a concept in T } ∪
{(B1, B2) | B1 v B2 ∈ T } ∪

{(∃R1,∃R2) | R1 v∗T R2}.

We say that a concept C is locally T -consistent if the fol-
lowing three conditions hold:

• C 6v∗T ⊥,
• there is no B1, B2 with C v∗T Bi for i = 1, 2 and B1 u
B2 v ⊥,

• there is no R,R1, R2 with C v∗T ∃R, R v∗T Ri for i =
1, 2 and R1 uR2 v ⊥.

Otherwise, C is said to be locally T -inconsistent.
Suppose (T1 ∪ T , C(a)) is consistent, and so is

(T2, C(a)), but (T2 ∪ T , C(a)) is not. Then either C is
locally T2 ∪ T -inconsistent or there is a sequence of roles
R1, . . . , Rn such that

• C v∗T2∪T ∃R1,

• ∃R−i v∗T2∪T ∃Ri+1 and ∃R−i is locally T2∪T -consistent,
for all 1 ≤ i < n,

• ∃R−n is locally T2 ∪ T -inconsistent.

Denote ∃R−n by D in the latter case and C by D in the for-
mer case. We know that D is locally T2∪T -inconsistent. In
the latter case without loss of generality we can even assume
that

• there is no Σ-concept B with C v∗T2∪T B v∗T2∪T ∃R1

and B 6v∗T2∪T C,
• for all 1 ≤ i < n, there is no Σ-concept B with
∃R−i v∗T2∪T B v

∗
T2∪T ∃Ri+1;

for if it is not the case, we could start from (T2 ∪ T , B(a)).
It follows that none of the axioms from T is involved in
‘deriving’ the ∃Ri an so,

C v∗T2
∃R1 and ∃R−i v

∗
T2
∃Ri+1, for 1 ≤ i < n.

Therefore, the canonical model of (T2, C(a)) must contain
a point in ∃R−n . So, in either case (i.e., whether D is C or
∃R−n ) the canonical model of (T2, C(a)) contains a point in
D (thus, D is T2-consistent). So, we need to pin-point a
single axiom that is a reason for local T2 ∪ T -inconsistency
of D. Consider all possible cases:



Case 1: Suppose there areB1, B2 such thatD v∗T2∪T Bi,
for i = 1, 2, and B1 u B2 v ⊥ ∈ T2 ∪ T . Suppose further
that, for both i = 1, 2, we have Σ-conceptsB1

i , . . . , B
n
i with

D v∗T2
B1
i v∗T B2

i v∗T2
B3
i v∗T · · · v∗T Bni v∗T2

Bi;

that is,B1
i is a minimal andBni a maximal (w.r.t.v∗T2∪T ) Σ-

concepts between D and Bi and each consecutive Bj+1
i is

derived fromBji by axioms in either T2 or T . As T1 Σ-query
entails T2, by (h), the canonical model of (T1, C(a)) has a
point in both B1

1 and B1
2 . It also follows that the canon-

ical model of (T1 ∪ T , C(a)) has a point in both B1
1 and

B1
2 . On the other hand, for each 1 ≤ j < n, the inclusion

Bji v Bj+1
i is a consequence of either T2 or T . The latter

case is trivial and in the former case, as T1 Σ-query entails
T2, by (p), we have T1 |= Bji v Bj+1

i . Summing up, we
have T1 ∪ T |= B1

i v Bni and so, the canonical model of
(T1 ∪ T , C(a)) has a point in both Bn1 and Bn2 . Now, we
have either B1 v B2 ∈ T or B1 v B2 ∈ T2. In the former
case Bn1 = B1 and Bn2 = B2 and thus, (T1 ∪ T , C(a)) is
inconsistent. In the latter case, provided that both both se-
quencesBj1 andBj2 exist, we have T2 |= Bn1 uBn2 v ⊥, and
so, by (p), T1 |= Bn1 u Bn2 v ⊥, whence (T1 ∪ T , C(a))
is inconsistent. Either way, we arrive at a contradiction pro-
vided that both both sequences of Σ-concepts exist. On the
other hand, one of the sequences must exist for otherwise D
is not T2-consistent.

Suppose that D v∗T2
B2. Let B1

1 and Bn1 be a minimal
and a maximal Σ-concepts as above. We then take T ′ =
{B1

1 v Bn1 }, which gives us D vT2∪T ′ B1 and so, (T2 ∪
T ′, C(a)) is inconsistent. On the other hand, (T1∪T ′, C(a))
is clearly consistent because (T1∪T , C(a)) is consistent and
T1 ∪ T |= T ′.

Case 2: Suppose there is a concept B such that D v∗T2∪T
B and B v ⊥ ∈ T2 ∪ T . By the argument of Case 1 with
B1 = B2, we obtain a contradiction if assume that there is
a Σ-concept B′ such that D vT2 B

′. So, this case is in fact
impossible.

Case 3: Suppose there areR,R1, R2 such thatD vT2∪T ∗
∃R, R v∗T2∪T Ri, for i = 1, 2 and R1 uR2 v ⊥ ∈ T2 ∪ T .
The argument of Case 1 is repeated for rolesR1 andR2.

Proof of Theorem 15
In this section, we prove the following

Theorem 15 Let T1, T2 be DL-LiteHcore TBoxes and Σ a sig-
nature. If (y) holds, then T1 Σ-query entails T2. If (n) holds,
then T1 does not Σ-query entail T2.

Proof. By Theorem 8 it suffices to show that

1. If MB
T2

is finitely Σ-homomorphically embeddable into
MB
T1

then there exists a Σ-simulation of GBT2
in GBT1

;

2. If there exists a forward simulation of GBT2
in GBT1

then
there exists a Σ-homomorphism fromMB

T2
toMB

T1
.

Let for i = 1, 2, Gi = (Ii,;i) denote GBTi andMi denote
MB
Ti .
We prove 1 first. For any π ∈ ∆M2 and n ≥ 0 by

M2(n, π) we denote the induced subinterpretation of M2

with domain ∆M2(n,π) = {π · π′ | |π′| ≤ n}. Intuitively,
M2(n, π) is a tree rooted at π unravelled up to level n. No-
tice thatM2(n, π) is a finite structure for any n and, hence,
there exists a Σ-homomorphism fromM2(n, π) toM1.

For n ≥ 0 we define now a sequence of relations ρn ⊆
∆I2 × ∆I1 as follows: let (x, x′) ∈ ρn iff there exist
π ∈ ∆M2 and a Σ-homomorphism h from M2(n, π) to
M1 such that

• x = tail(π) and x′ = tail(h(π)).

It can be readily seen that

• for every n the domain of ρn is ∆I2 and (aI2 , aI1) ∈ ρn;
• tI2

Σ (x) ⊆ tI1

Σ (x′), for all (x, x′) ∈ ρn;
• if x;K2w[R] and (x, x′) ∈ ρn+1, then there is y′ ∈ ∆I1

such that (w[R], y
′) ∈ ρn and S ∈ rI1

Σ (x′, y′) for every
Σ-role S with [R] ≤T2

[S].
• ρn+1 ⊆ ρn.

Since ρn is a relation on finite structures, there must exist N
such that ρN = ρi for all i > N . It can be readily seen that
ρN is a simulation of G2 in G1.

We prove now item 2. Let η be a forward simulation of
G2 in G1. For every π = aw[R1] · · ·w[Rn] ∈ ∆M2 we define
h(π) by induction on n. The constructed function h has the
additional property that tail(π)ηh(tail(π)) for any π.

If π = aM2 set h(aM2) = aM1 . Next, suppose that for
all k < n and all paths of the form τ = aw[R1] · · ·w[Rk]

h(τ) is defined. Consider cases.
Suppose rI2

Σ (w[Rn−1], w[Rn]) 6= ∅. Let
aw[S1] · · ·w[Sk] = h(aw[R1] · · ·w[Rn−1]). Since
w[Rn−1]ηw[Sk], η is a forward simulation, and
rI2

Σ (w[Rn−1], wRn) 6= ∅ there must exist w[Sk+1] ∈ ∆I1

such that w[Sk] ;1 w[Sk+1], rI2

Σ (w[Rn−1], w[Rn]) ⊆
rI1

Σ (w[Sk], w[Sk+1]) and w[Rn]ηw[Sk+1]. We define h(π) as
aw[S1] · · ·w[Sk]w[Sk+1], which is a path in I1.

Suppose now that rI2

Σ (w[Rn−1], w[Rn]) = ∅. Let w[Sk] ∈
∆I1 be such that w[Rn]ηw[Sk]. Let π′ be an arbitrary path in
I1 such that tail(π′) = w[Sk]. We define h(π) = π′.

One can see that h is a Σ-homomorphism from M2 to
M1.

Proof of Theorem 16
Direction “⇒” follows from Theorem 15. For “⇐”, it suf-
fices to prove the following lemma.

Lemma 26. Suppose that (a) T1 and T2 are DL-Litecore
TBoxes, or (b) T1 = ∅ and T2 is a DL-LiteHcore TBox. Sup-
pose further that (p) holds and that, for every Σ-concept B,
there is a Σ-simulation of GBT2

in GBT1
. Then T1 Σ-query en-

tails T2.



Proof. In case (a), the claim follows from Theorem 9, using
(s1) and (s2) to obtain the required x′ associated with x ∈
∆I

B
T2 .

In case (b), let B be a Σ-concept and ρ a Σ-simulation
of GBT2

in GBT1
. Let Ki = (Ti, B(a)). We show that MK2

is Σ-homomorphically embeddable into MK1
. If B = A,

then ∆IK1 = {a}. Therefore, ρ(x) = a for all x ∈ ∆IK2 ,
and, whenever [R] ≤T2

[S] for some S ∈ Σ, the role R is
not generating, due to (s3). Set h(σ) = a, for all σ ∈MK2 .
Then h is a homomorphism because

• h(a) = a trivially;

• t
MK2

Σ (σ) = t
IK2

Σ (tail(σ)) ⊆ t
IK1

Σ (a) = t
MK1

Σ (h(σ)),
due to the construction ofMK2

, (s2) and the construction
ofMK1 ;

• if S ∈ Σ and S ∈ r
MK2

Σ (σ1, σ2), then σ2 = σ1 · w[R] for
some [R] with [R] ≤T2

[S] which is a contradiction to R
not being generating.

If B = ∃S, then ∆IK1 = {a,w[S]}. Due to (s3), when-
ever [R] ≤T2

[T ] for some T ∈ Σ, thenR can only be gener-
ating if T = S and [R] 6≤T2 [T ′] for T ′ 6= S. Then, for every
σ = σ′xw[R] with [R] ≤T2 [S], we have that ρ(x) = {a}
and ρ(w[R]) = {w[S]}, where ρ(z) = {z′ | (z, z′) ∈ ρ}.
We now set h(σ) = a if (tail(σ), a) ∈ ρ, and h(σ) = aw[R]

otherwise. Then h is a homomorphism because

• h(a) = a from (s1);
• t
MK2

Σ (σ) ⊆ t
MK1

Σ (h(σ)) follows from (s2) as above;

• if T ∈ Σ and T ∈ r
MK2

Σ (σ1, σ2), then σ2 = σ1 · w[R]

for some [R] with [R] ≤T2
[T ]. Due to the above said,

T = S. Then the observations about ρ and the definition
of h entail that h(σ1) = a and h(σ2) = w[S], hence T =

S ∈ r
MK1

Σ (h(σ1), h(σ2)).


