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Abstract

The first result of this paper shows that some dynamic topological logics interpreted in various
topological spaces with homeomorphisms are not recursively enumerable (and so are not recurs-
ively axiomatisable). This gives a ‘negative’ solution to a conjecture of Kremer and Mints [11].
Second, we prove the non-elementary decidability of the dynamic metric logic with distance op-
erators of the form ‘somewhere in the ball of radajor a € Q™ interpreted in arbitrary metric
spaces with distance preserving automorphisms.

1 Introduction

Dynamic topological logics were first introduced in 1997 (see, e.g., [9, 10, 12, 2, 11]) as a logical
formalism for describing the behaviour dffnamical system®.g., in order to specify liveness and
safety properties of hybrid systems [5]. Dynamical systems [4, 8] are usually represented by some
‘mathematical’ spac®/ (modelling possible system states) and a functioon W (modelling the
evolution of the system), with one of the main research problems being the study of iteratiqiirs of
particular, the orbit©(w) = {w, f (w), f2(w),...} of statesv € W.

A natural logical formalism for speaking about such iterations is a variant of temporal logic. For
example, given a subsgt of W, we can introduce the standard temporal operatofsat the next
moment’),0¢ (‘always in the future’), and its duabg (‘eventually’) by taking

V=1V),  BeV= (] f(V)  and  oev= | (V).
Oo<n<w Oo<n<w

Using this language we can describe in a succinct and transparent way properties like

e starting from a state in some regi®none will never leave a regio@: P — OpQ;

e starting from a state in a regidh one will eventually reach a state@ P — OpQ;

e W 'visits’ P ever and ever againv € O CpP.

To speak about the structure of the underlying spéleeimportant examples are (subspaces of)

the Euclidean spaceR", general topological spaces, metric spaces, and measure spaces—as well
as the type of the intended functiofis one may require different non-temporal operators. So far,



research has mainly been focused on topological spaces with continuous mappings. The correspond-
ing logical constructors are those of modal lo&§ié which can be regarded also as the topological
closure and interior operators—we denote thenChgndl, respectively. For example, a property
similar to Poincai’s recurrence theorem corresponds in this language to the validity of the formula
C(lp— OCkl p) in spaces based on the unit disc with measure preserving continuous mappings.

Metric operators were suggested in [15] in order to formulate safety properties. For example,
using the operataf=2, wherea is a positive rational number, the formPa— O -3=2Q states that,
having started from a point iR, one can never reach theneighbourhood of some ‘unsafe’ ara

The resulting combinations of temporal and topological/metric logics are of a clear ‘two-dimen-
sional character, which makes it very difficult to analyse their computational properties (see, e.g., [6]).
Perhaps this is the main reason why in the field of dynamic topological systems no (un)decidability
or axiomatisability results have been obtained yet for the full language containing-batid the
infinitary Of.

This note provides answers to some of the open problems. First, we show that some dynamic topo-
logical logics introduced in [11] and interpreted in various topological spaces with homeomorphisms
are not recursively enumerable (and so are not recursively axiomatisable). This result gives negative
solutions to Conjectures 2.7 (ii) and 2.7 (iv) from [11]. Second, we prove the non-elementary decid-
ability of the dynamic metric logic with distance operators of the faf# from [13] interpreted in
arbitrary metric spaces with distance preserving automorphisms.

Although numerous problems remain open, the obtained results clearly indicate that the logics for
dynamic systems are very sensitive to the available operators (say, topological vs metric) as well as the
constraints imposed on the spa¢®s f) (e.g., the proof of the undecidability result mentioned above
does not go through for continuous functions, while the decidability proof only workarfoirary
metric spaces, but not for, say, compact ones).

2 Definitions

Syntax. The languageD7 £ of dynamic topological logi¢or dynamic topo-logicfor short) [2, 11]
is constructed from a countably infinite set of propositional variables using the Booleand —,
the modal operatornsandC (for topological interior and closure), and the temporal operatoffor
‘next’), O and O (for ‘always’ and ‘eventually’). ByDT L we denote the fragment ab7 L
which does not usélr and Or. We write O ¢ for ¢ A O and duallyOfd = ¢ v O, for every
DT L-formulad.

Semantics. In this paper, by alynamic topological structuréor DTS, for short) we understand
a pair of the form¥ = (%, f), where¥ = (T,I) is a topological space with an interior operaior
(satisfying the standard Kuratowski axioms) anig a homeomorphisti(i.e., a bijective continuous
and open mapping) of. A dynamic topological moddbr DTM) is a pairdt = (§,0), whereg
is a DTS andy, avaluation associates with each propositional variapla subse®(p) of T. The
truth-relation (91, w) = ¢, for a DT L-formulad, is defined as follows:

Mw) =p it weD(p),
(M,w) =1¢ iff wel{veT | (9mVv) Eo},

1in a more general setting,can be a continuous mapping.



) = C¢ iff  weC{veT|[(MV) ¢},
) EOd iff (9, f(w)) =9,

W) = Op¢ iff (9, f"(w)) = ¢ for everyn > 0,
W) = Opd iff (9, f"(w)) = ¢ for somen > 0.

Here f"(w) = ... f(w). If (M,w) |= ¢ for somew € T, then we say thap is satisfiedin 2. A
DT L-formula¢ is satisfiablein a DTS if ¢ is satisfied in a DTM based dh

Given a classk’ of dynamic topological structures, we denotellmg X (respectivelylog, X)
the logic of X in the languageDT L (or DT L), i.e., the set of allDT L-formulas (respectively,
DT L-formulas)¢ such that i, w) = ¢ holds for every modelt based on a structure i and
every pointw in 9.

We remind the reader that every quasi-oréier (W,R) (Ris a reflexive and transitive relation on
W) gives rise to a topological spa@g; = (W, 1), where, for everyk CW,

IsX ={xeX|VyeW (xRy—yeX)}.

Such spaces are knownAkeksandrov spaced\lternatively they can be defined as topological spaces
where arbitrary (not only finite) intersections of open sets are open; for details see [1, 3]. Clearly, for
M= ((Tg, f), V) we have

(Mm,w) =1¢ iff (M, v) = ¢ for everyv € W with wRvy
(M,w) =Cod iff there isv € W such thawRvand (90, V) |= ¢.

It should be also clear that a functidn W — W is a continuous mapping ¢ if, for all w,v € W,
wRv implies f(w)Rf(v).

The functionf is ahomeomorphisman T if f is bijective and the converse implication holds as well.
Let R" denote the standard Euclidean space of dimensiandR is the real line. Fon> 2, a
unit ballis a DTS®B" = (B", f), whereB" is a ball inR" of radius 1, andf is ameasure preserving
homeomorphism oB".
The results of the theorem below were explicitly proved in or easily follow from [2, 12, 11].

Theorem 1. The four dynamic topo-logics listed below coincide, have the finite model property, are
finitely axiomatisable, and so decidable:

1. Log {(%,f) | (%, f) aDTS,

2. Log {(R", f) | (R",f) aDTS n>1},

3. Log {(%, f) | (%,f) aDTS T an Aleksandrov spage

4. Log {B" | B" a unit ball, n > 2}.
Later on we will use the fact thabg . { (R,x+— x+ 1)} coincides with all of the logics above as well
(see [11)).

We show now that the computational behaviour of dynamic topo-logics becomes completely dif-
ferent if we allow the use of the operatang and<k.



3 Undecidability and non-axiomatisability

Theorem 2. No logic from the list below is recursively enumerable:

1. Log{(%, )| (%,f) aDTS,

2. Log {(R",f) [ (R",f) aDTS n> 1},

3. Log{(%,f) | (%, f) aDTS,T an Aleksandrov spa¢e

4. Log{®B" | B" a unitball, n> 2}.
Remark 3. Before proceeding to the proof, we note that all logics mentioned in this theorem are
different. As was shown in [17], the formul&r (p A Cl—p) is not satisfiable in any DTS of the form
(R", f), while it is clearly satisfiable. According to [11], the formu@&l p — OCgl p) is valid in all
unit balls, but refuted in a DTS based on both an Aleksandrov spacéRénd— x+ 1). Finally, the

formula®eCp «+ COgpis valid in DTSs based on Aleksandrov spaces, but refuted bofR'inf )
and in all unit balls.

We prove Theorem 2 by reductionBbdst’s correspondence problamPCP, for short [16]. (Cases
(2) and (4) will only be proved fon = 1 andn = 2, respectively.) The idea of the proof is taken from
[6]. Let A be a finite alphabet arfda finite set of pairgvs,us), ..., (vk, Ux) of nonempty finite words

Vi:<bi1,...,bii>, Ui:<Cil,...,Ci’i> (I:l,,k)

overA. For a sequence of indices ..., iy ranging over 1...,k, let

mj =li, + - +1j, and nj =ri,+--+rij,
for 1 < j <N. The following problem is undecidable (for a proof see, e.qg., [@Jen a set P of pairs
of words as above, decide whether there exist an Nand a sequenca,i..., iy of indices such that
Vipk -k Vi = Ui * -k Uiy, (1)

wherex is the concatenation operation. If the condition above holds for a PCP indeathesn we
say thatP has a solutionLater, we will use a consequence of this result, namely, that the set of PCP
instances without solutions not recursively enumerahble

The reduction formulga p is constructed using the propositional variables left andright, left,
andright,, for everya € A, as well agair;, for every pair(vi,u;) in P, 1 <i <k.

The variablesis used to introduce a new operagwhich can be interpreted as a ‘strict diamond’
in Kripke quasi-ordered frames). Namely, for evapyg” £-formulay, we put

SY = (s— C(-SACY)) A (=s— C(SACY)).

Denote byS™ a string ofm operatorsS (so thatS’y = (). The variable is used to ‘relativiselg in
the following ways: O™ = OF (Or — @) andOE" @ = OF (Ofr — ).
Now @a p is defined as the conjunction

Pap = ¢eq A ¢pair A ¢stripe A ¢Ieft A ¢right,
where

deq=Or (r A /\ I(lefty < right,)),

acA
¢pai,:D§f( \/ pair; A /\ ﬁ(pairi/\pairj)>,
1<i<k 1<i<j<k



Dstripe = DE” (s 0s),

dleft is the conjunction of (2)—(8), for £ i <Kk,

NOCE 1= (left,Alefty) A O (left— \/ left,), )
a#£b acA
a,beA

N\ D" (left, — Olefty), 3)
acA
|-left A OF"1 (—left — —Sleft), 4)
D" (pair; — | (—left — O-Sileft)), (5)
O (pair, — A\ OI ((SleftA =S/ *Meft) — lefty ), (6)

i<li "

pair; — Olw;, (7)
O (pair; — 1 ((leftA —Sleft) — SOlw;)), (8)

where
Iw; = Ieftbil A S(|eftbi2 A S(|eftbi3 JARERWA S|eftb=_ ).. )

(remember that; is the length of the word; = <b‘l,...,b}i>), and the conjuncigh—the ‘right
counterpart’ ofpierr—is defined by replacing ier all occurrences deft with right, left, with right,,
li with rj, etc.

We also requireDT L -formulas@j , n > 0, which are defined similarly tga p by replacing

o (eqWith O" Ageal (lefty < right,), and
e every occurrence afi=" (or O£" W) with D" (respectivelyd="y), where

OE"Y = WAOYPAOOPA---AO"Y  and  OF"Y=PAOPAOOPYA--- A"ty

We denote the subformula qﬂf\yp corresponding to a subformuaof @a p by ¢".
Lemma 4. If @ap is satisfiable inT, f) then there is n> 0 such thawAP is satisfiable in(T, f).

Proof. SupposegMt,w) = @ap. Then(M,w) = Cr(r A Ageal (lefty < right,)), that is, there exists
m > 0 such that1, f™(w)) = r A Aaeal (left, < right,). Let n be the minimal sucim. One can

easily check that, w) |= @ p. O

Lemma 5. If P has a solution, then the following hold:

(i) @apis satisfiable in a DTSZ, f), where¥ is an Aleksandrov space;
(i) @ap is satisfiable ina DTS;
(iii) @ap is satisfiable irB?;
(iv) @ap is satisfiable iR, f), where f: x+— x+ 1.

Proof. Suppose tha® has a solution

Vi -+ Vi = Uj % - - -k Uiy« 9)



Letvi *---x Vi, = (bo,...,bmy—1).

(i) Define a quasi-orde® = (W, R) by takingW = {0,...,2my} x Z, whereZ is the set of integers,
and(x,y)R(X,Y) iff x<x andy =Y. Definef : W — W by taking f (x,y) = (x,y+ 1). Clearly, f is
a homeomorphism o . Finally, define by taking

B(s)={(2n,z2) |0 < 2n < 2y, z€ Z}, B(r)={(0,N)},
P (pair;) = {(0,j—1) | i=ij, for somej < N},
B(lefty) = {(2k,j) |0< j <N, k<mj, by=a}, B(left) = Uaca D (lefty),
B(righty) = {(2k,j) |0< j <N, k<nj, by =a}, U(right) = U,ca D (right,).

LetM = (T, V). Itis an easy exercise to sha®i, (0,0)) = @ap. We leave this to the reader.

(i) follows from (i).

(iii) We only consider the two-dimensional unit bai> = (B2, g), whereg is therotation of B
clockwise by someational anglea such that O< a < 21t/N + 1 andN is given by (9) (fom > 2, the
construction is similar: we rotate the ball around a fixed axis by the same andglbviously,g is a
measure preserving homeomorphism.

Let E be an open set, say, a smaller open ball contained in the $ectg?, a /2] of B® and letE; =
d(E), fori < w. Note thatE = Eg,Ey,...,Ey are pairwise disjoint sets. L&t = ({0,...,2my}, <).
By the main result of McKinsey and Tarski [14], there exists a continuous majppiingm E; onto
T 4. Moreover, one may assume that, for everyE;, we haveh;(x) = hi1(g(x)) and that;(e) =0,
whereg is the center of the bal;. Define a valuatioflJ on 82 by taking

B(s) = UiLofhi *(2n) | 0< 2n < 2my}, B(r) = {en},
Y (pair;) = {€j_1 | i =ij, for somej < N},
B(lefty) = ULy {h(2k) [k <mj, be=a}, D(left) = Uaca V(lefty),
V(right,) = UL, {hj*(2k) | k < nj, b =a}, B(right) = Uca B(right,,).

As a is rational, we have! (ep) = ey iff j = N. Itis not hard to check now th&{B, ) , &) = @ap.
(iv) We know from (i) and Lemma 4 that there exists- 0 such thatp, p, is satisfiable in a DTS
(T, f). Then, by the remark following Theorem 1 and sighg is a D7 L- -formula, (M,W) = @ p,
for some modeMt = ((R, f), ) andf : x+— x+ 1. Define a new valuatio®’ on R which coincides
with G except for only one case: now we $8f(r) = {f"(w)}. (Note thatr does not occur i, p.)
Lett = ((R, f),’). Then clearly(9V',w) = @ap. O

Lemma 6. Suppose that there exists-r0 such thatpy  is satisfiable ina DTS based on an Aleksandrov
space. Then P has a solution.

Proof. Suppose tha®t,wl) = (p’,}'vp for some DTMI = ((T e, f), V), where® = (W, R) is a quasi-
order,f a homeomorphism of g andw € W. For j < w, let

W = {weW | fl(wd)Rw}.
As (M, W0) = ON A el (left, < right,), we have

(o, tNw)) = A I(left, < right,). (10)

acA

Since(IM,wW2) = q)smpe, for eachw € Wy and eachj < N, we have(9t,w) = siff (90, fl(w)) = s.
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Denote byS;, j <N, the transitive binary relation oW, defined by takingv§yv iff there isu e W,
such thatvRuRvand (90t,w) = siff (9%,u) = s. Then we clearly have that, for evejy< N and every
weWw,,

(M, w) =Syp iff there isve W, such thawSvand(9,v) = Y.
Note that, sincef is a homeomorphism and in view 0, wW9) = q>’s\'tripe, for allw,v € W andi <N,
we havewSyv iff f'(w)S fi(v).

Letiy,...,in be the sequence of indices such that, fer 1< N, we have(I, fI-1(wW0)) = pair;

(cl)yair ensures that there is a unique sequence of this sort). We claim that (1) holds for this sequence.
For everyj with 1 < j <N, let

={weW; | (M, w) |= left}.

Call a sequencén, ..., w) of (not necessarily distinct) points fro\ildjL anSj-path in V\f of length |
if wiSW,S;...Sjw, and set

leftword; (W, ..., W) = (a,...,a),

where theg; are the (uniquely determined by (2)) symbols frérsuch tha(d,w;) = left,, .

We show now that there is a sequentg..., Ty such that, for evenj with 1 < j <N, the
following hold:
(@) m = (w{, ... ,w,jnj> is anSj-path inV\/jL of lengthm;, and there is n&;-path inWjL of length> m;
(b) f(W0) =wlandif j > 1 thenwl, = f(wh ), forallm 1<m<m;_;;
(© Ieftwordj(wi,...,wrjnj) = Vigk.. .k Vi,
(d) for everySj-path(wy, ..., Wm,) in V\/jL of lengthmj, we havdeftword, (W, .o Wiy ) = Vi %ok Vi

Indeed, by(91,wWf) = pair; , (7), (4) and (5), there exists &j-pathTy in WL such that (a)—(c) hold.
Condition (d) follows from (6).
Now assume mductlvely that conditions (a)—(d) hold for somel with 1< j—1 < N. Let

-1 = <w’1 1, WmJ 1> be anS;_;-path inW L for which (a)—(d) hold. By (3) the sequence

<f(w’1 Y, f(wh ) is ans;-path inWi-. Slnce(i)flt ij L) e leftA —Sleftand (9, wi - )#pairij,

(8) means that there exists a sequemgje of points |nV\/jL such that

j
,1—}—17 W

mJ 1+|

. j—1 1 ] ]
M = <f(W1 )7‘ f(WI!n] 1)7Wm1 1+1 ’ij—l+|ij>

is anSj-path inV\/jL of lengthm; = m;_; +1j; such thaleftword( SADERTE wjnj 1+ ) =Vi;. By (5)
and the induction hypothesis, there is$jgpath |nWjL of length> m;. Thus, (a) and (b) hold fam;,
(c) follows from (3), and (d) from (6) and the induction hypothesis.

Now define sethR in the same way a#/-, but with left replaced byright, introduce the notion

of anSj-path inWR, and, for every sequeneg, ..., w of points fromwR, set
rightword; (wa, ..., W) = (a,...,a),

where they; are the uniquely determined (by ‘right analogue’ of (2)) elemengssfch thatit, wi) =
right, . In precisely the same way as above we show now that there is a seqgencery such that,
foreveryj with 1 < j <N,



@) = (wi,... wh ) is anSj-path inWR qf lengthn;, and there is n&;-path inW of length> n;;
() f(wW)) =wlandifj > 1 thenwh = f(wh ™), forallnwith 1< n< nj_1;

(c) rightword; (W, ..., Wh;) = Uj *...xUj;

(d) for everyS;-path(wi,...,Wy,) in V\ljR of lengthn;, we haverightword; (wy, ..., Wn;) = Uj *.. .+ Uj;.

Now it is easy to see that (10) means that

Vi .ox vy = leftwordy(wh,...,wh ) = rightwordy(wY,....wh ) = ui, * ... x Uj,
as required. O

Theorem 2 now follows immediately. Just observe that we have proved that, for any of the classes
K of DTSs listed in Theorem 2ps p is satisfiable inX iff P has a solution. Indeed, the direction
from right to left is Lemma 5. The direction from left to right for DTSs based on Aleksandrov spaces
follows from Lemmas 4 and 6. For the remaining classes this direction follows from Lemmas 4, 6,
and Theorem 1, since th , are DT L -formulas.

4 Dynamic metric logic

The languageDM £ of dynamic metric logids defined in the same way d%7 L with the exception
that the topological operators are replacednwstric operatorsi=2, for a € Q*, whereQ" denotes
the set of positive rational numbers.

A dynamic metric structuréor DMS, for short) is a paif = ((W,d), f), where(W,d) is a metric
space, and : W — W is ametric automorphismi.e., a bijection such that(x,y) = d(f(x), f(y)) for
all x,y € W. For example, the mapping— x+ 1 onR and the rotatiorg on B? considered above are
metric automorphisms on the respective spaces with the Euclidean metric.

A dynamic metric modébr DMM) is a pairdt = (§,0), whereF is a DMS andy is a valuation
defined in the same way as in the topological case. The truth-relation is also defined as for DTMs with
the exception that the truth-conditions for the topological operatarslC are replaced by

o (9M,X) = 3=2¢ iff there existsy € W such that(x,y) < aand(9,x) & ¢.
In contrast to the topological case, now we have the following:

Theorem 7. The set ofDM L-formulas that are valid in all DMSs is decidable. However, the decision
problem is not elementary.

Roughly, the idea of the decidability proof is similar to that of Theorem 13.6 from [6]: first
we represents DMMs in the form @fuasimodelsand then show that quasimodels can be encoded
in monadic second-order logic. The main novelty of this proof is the rather involved notion of a
quasimodel. We give the definition of quasimodels and formulate their main properties below. Details
of the proofs are left to the reader; they will be available on the web shortly.

Given a formulap, denote byy, the maximal numerical parametergnand byM[¢] C Q™ the
smallest set containing all parameterspirand closed under (i) if,b € M[$] anda+ b <y, then
a+b e M[¢], and (ii) if a,b € M[$p] anda—b > 0, thena—b € M[¢]. Clearly,M[9] is finite. The
closurecl¢ of ¢ is the set

{W,~W| Y€ subp} U {32, 3=y | Y € subp anda € M[p]},

wheresubg is the set of all subformulas @f. A type tfor ¢ is a subset o€l ¢ such that

8



(t1) forevery—pecld, wetiff ~Pet;
(t2) foreveryyrs Ao ecld, WiAW, etiff P etandy, et;
(t3) for every3=3y c clp, I=AY ctiff I=PyY ct for all b € M[$p] N [a, +).

Themetric depthof ¢ is defined as follows:

mtd(p) = 0, mtd(3=29) = mtd(d) + a,
mtd(—¢) = mtd(¢), mtd(O¢) = mtd(¢),
mtd(¢1 A ¢2) = maxmtd$a), mtd$2)), mMtd(Or¢) = mtd(d).

A quasistate dor ¢ is a tripleq = ((Tg, <q),9q, tq), Where
e (Tg,<q) is an intransitive tree;

o O {(uv) e TyxTq|u<qVv} — M[p] is a labelling function satisfying the following condition:
themetric depth
n
max Zl6q(Ui_l7 Ui)

Up<qU1<g---<qUn i
of the tree metric spacgTg, &) induced by((Tq, <q),8q) is bounded byntd(¢);
e tqis alabelling function such thag(u) is a type ford, for everyu € Ty, and

(gs1) for everyu € Tq and every3=2y, we have3=2y € tq(u) iff there isv € Ty such that
& (u,v) <aandy € tq(v);

(gs2) for everyu € Tq, there are no isomorphic substructures induced by immediate successors
v of ulocated at the same distanggu, V).

We say that a point € T hasindex(ay, ..., an) if there is a sequenag® <q Uy <q--- <q Un Of points
in Ty such thatyg is the root of<Tq, <q>, Un = uanda; = dq(Ui_1, i), foralli, 1L<i<n,

Let g be a function associating with eack N a quasistate(i) = ((Ti, <i),6;,ti) for ¢. A run of
index(ay, ...,an) throughq is a functionr mapping eache N to a pointr (i) € T; of index(ay, ..., a,)
such that, for everye N

e and evenyOy € cl¢, oW eti(r(i)) iff Yetiva(r(i+1));
e and everydg Y € cl g, O e ti(r(i)) iff g etj(r(j)) forall j >1i.

Given a sefi of runs, we denote bR, 5. its subset of all runs of indefay, .. ., a,).
A quasimodefor ¢ is a pair(q,9R), whereq(i) = ((Ti,<i),;,t;) is a quasistate fop for every
i € N such that

(am2) ¢ € to(up), whereuy is the root of(Tp, <o),
andfi is a set of runs throug satisfying the following condition

thereis arun’ € Ry, . a,a,,,) SUCh that'(i) = uandr(i) <; r'(i) for alli € N.

Using the decidability of monadic second-order logic o{fér<), one can now prove the decidab-
ility result by showing that (i) @M L-formula¢ is satisfiable in a DMS iff there exists a quasimodel
for ¢, and, (i) for everyDM L-formulad, one can effectively construct a senteréeof monadic
second-order logic such that there exists a quasimodél iibrd* is satisfiable inN, <).

The non-elementarity result can be proved by a polynomial reduction of the satisfiability problem
for the product modal logi®TL x K (which is non-elementary by Theorem 6.37 from [6]) to the
satisfiability problem forDM L-formulas in DMSs.

9



Open problems. Interesting and challenging open problems are (i) the decidability of dynamic to-
pological logics interpreted in various topological spaces withtinuousmappings, and (ii) the de-
cidability of dynamic metric logics interpreted in varioosmpactmetric spaces; for a justification
and more details see, e.g., [11].
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