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Abstract

The first result of this paper shows that some dynamic topological logics interpreted in various
topological spaces with homeomorphisms are not recursively enumerable (and so are not recurs-
ively axiomatisable). This gives a ‘negative’ solution to a conjecture of Kremer and Mints [11].
Second, we prove the non-elementary decidability of the dynamic metric logic with distance op-
erators of the form ‘somewhere in the ball of radiusa,’ for a∈Q+, interpreted in arbitrary metric
spaces with distance preserving automorphisms.

1 Introduction

Dynamic topological logics were first introduced in 1997 (see, e.g., [9, 10, 12, 2, 11]) as a logical
formalism for describing the behaviour ofdynamical systems, e.g., in order to specify liveness and
safety properties of hybrid systems [5]. Dynamical systems [4, 8] are usually represented by some
‘mathematical’ spaceW (modelling possible system states) and a functionf on W (modelling the
evolution of the system), with one of the main research problems being the study of iterations off , in
particular, the orbitsO(w) = {w, f (w), f 2(w), . . .} of statesw∈W.

A natural logical formalism for speaking about such iterations is a variant of temporal logic. For
example, given a subsetV of W, we can introduce the standard temporal operators© (‘at the next
moment’),2F (‘always in the future’), and its dual3F (‘eventually’) by taking

©V = f−1(V), 2FV =
⋂

0<n<ω
f−n(V) and 3FV =

⋃
0<n<ω

f−n(V).

Using this language we can describe in a succinct and transparent way properties like

• starting from a state in some regionP, one will never leave a regionQ: P→2FQ;

• starting from a state in a regionP, one will eventually reach a state inQ: P→3FQ;

• w ‘visits’ P ever and ever again:w∈2F3FP.

To speak about the structure of the underlying spaceW—important examples are (subspaces of)
the Euclidean spacesRn, general topological spaces, metric spaces, and measure spaces—as well
as the type of the intended functionsf , one may require different non-temporal operators. So far,
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research has mainly been focused on topological spaces with continuous mappings. The correspond-
ing logical constructors are those of modal logicS4 which can be regarded also as the topological
closure and interior operators—we denote them byC and I , respectively. For example, a property
similar to Poincaŕe’s recurrence theorem corresponds in this language to the validity of the formula
C(I p→ ©3F I p) in spaces based on the unit disc with measure preserving continuous mappings.

Metric operators were suggested in [15] in order to formulate safety properties. For example,
using the operator∃≤a, wherea is a positive rational number, the formulaP→2F¬∃≤aQ states that,
having started from a point inP, one can never reach thea-neighbourhood of some ‘unsafe’ areaQ.

The resulting combinations of temporal and topological/metric logics are of a clear ‘two-dimen-
sional character,’ which makes it very difficult to analyse their computational properties (see, e.g., [6]).
Perhaps this is the main reason why in the field of dynamic topological systems no (un)decidability
or axiomatisability results have been obtained yet for the full language containing both© and the
infinitary 2F .

This note provides answers to some of the open problems. First, we show that some dynamic topo-
logical logics introduced in [11] and interpreted in various topological spaces with homeomorphisms
are not recursively enumerable (and so are not recursively axiomatisable). This result gives negative
solutions to Conjectures 2.7 (ii) and 2.7 (iv) from [11]. Second, we prove the non-elementary decid-
ability of the dynamic metric logic with distance operators of the form∃≤a from [13] interpreted in
arbitrary metric spaces with distance preserving automorphisms.

Although numerous problems remain open, the obtained results clearly indicate that the logics for
dynamic systems are very sensitive to the available operators (say, topological vs metric) as well as the
constraints imposed on the spaces〈W, f 〉 (e.g., the proof of the undecidability result mentioned above
does not go through for continuous functions, while the decidability proof only works forarbitrary
metric spaces, but not for, say, compact ones).

2 Definitions

Syntax. The languageDT L of dynamic topological logic(or dynamic topo-logic, for short) [2, 11]
is constructed from a countably infinite set of propositional variables using the Booleans∧ and¬,
the modal operatorsI andC (for topological interior and closure), and the temporal operators© (for
‘next’), 2F and3F (for ‘always’ and ‘eventually’). ByDT L© we denote the fragment ofDT L
which does not use2F and3F . We write2+

F ϕ for ϕ∧2Fϕ and dually3+
F ϕ = ϕ∨3Fϕ, for every

DT L-formulaϕ.

Semantics. In this paper, by adynamic topological structure(or DTS, for short) we understand
a pair of the formF = 〈T, f 〉, whereT = 〈T,I〉 is a topological space with an interior operatorI
(satisfying the standard Kuratowski axioms) andf is a homeomorphism1 (i.e., a bijective continuous
and open mapping) onT. A dynamic topological model(or DTM) is a pairM = 〈F,V〉, whereF

is a DTS andV, a valuation, associates with each propositional variablep a subsetV(p) of T. The
truth-relation(M,w) |= ϕ, for aDT L-formulaϕ, is defined as follows:

(M,w) |= p iff w∈V(p),
(M,w) |= Iϕ iff w∈ I{v∈ T | (M,v) |= ϕ},

1In a more general setting,f can be a continuous mapping.
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(M,w) |= Cϕ iff w∈ C{v∈ T | (M,v) |= ϕ},
(M,w) |= ©ϕ iff (M, f (w)) |= ϕ,

(M,w) |= 2Fϕ iff (M, f n(w)) |= ϕ for everyn > 0,

(M,w) |= 3Fϕ iff (M, f n(w)) |= ϕ for somen > 0.

Here f n(w) =

n︷ ︸︸ ︷
f . . . f (w). If (M,w) |= ϕ for somew ∈ T, then we say thatϕ is satisfiedin M. A

DT L-formulaϕ is satisfiablein a DTSF if ϕ is satisfied in a DTM based onF.
Given a classK of dynamic topological structures, we denote byLogK (respectively,Log©K )

the logic of K in the languageDT L (or DT L©), i.e., the set of allDT L-formulas (respectively,
DT L©-formulas)ϕ such that(M,w) |= ϕ holds for every modelM based on a structure inK and
every pointw in M.

We remind the reader that every quasi-orderG = 〈W,R〉 (R is a reflexive and transitive relation on
W) gives rise to a topological spaceTG = 〈W,IG〉, where, for everyX ⊆W,

IG X = {x∈ X | ∀y∈W (xRy→ y∈ X)}.

Such spaces are known asAleksandrov spaces. Alternatively they can be defined as topological spaces
where arbitrary (not only finite) intersections of open sets are open; for details see [1, 3]. Clearly, for
M = 〈〈TG, f 〉 ,V〉 we have

(M,w) |= Iϕ iff (M,v) |= ϕ for everyv∈W with wRv,

(M,w) |= Cϕ iff there isv∈W such thatwRvand(M,v) |= ϕ.

It should be also clear that a functionf : W →W is a continuous mapping onTG if, for all w,v∈W,

wRv implies f (w)R f(v).

The functionf is ahomeomorphismonTG if f is bijective and the converse implication holds as well.
Let Rn denote the standard Euclidean space of dimensionn andR is the real line. Forn≥ 2, a

unit ball is a DTSBn = 〈Bn, f 〉, whereBn is a ball inRn of radius 1, andf is ameasure preserving
homeomorphism onBn.

The results of the theorem below were explicitly proved in or easily follow from [2, 12, 11].

Theorem 1. The four dynamic topo-logics listed below coincide, have the finite model property, are
finitely axiomatisable, and so decidable:

1. Log©{〈T, f 〉 | 〈T, f 〉 a DTS},
2. Log©{〈Rn, f 〉 | 〈Rn, f 〉 a DTS, n≥ 1},
3. Log©{〈T, f 〉 | 〈T, f 〉 a DTS, T an Aleksandrov space},
4. Log©{Bn |Bn a unit ball, n≥ 2}.

Later on we will use the fact thatLog©{〈R,x 7→ x+1〉} coincides with all of the logics above as well
(see [11]).

We show now that the computational behaviour of dynamic topo-logics becomes completely dif-
ferent if we allow the use of the operators2F and3F .
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3 Undecidability and non-axiomatisability

Theorem 2. No logic from the list below is recursively enumerable:

1. Log{〈T, f 〉 | 〈T, f 〉 a DTS},
2. Log{〈Rn, f 〉 | 〈Rn, f 〉 a DTS, n≥ 1},
3. Log{〈T, f 〉 | 〈T, f 〉 a DTS,T an Aleksandrov space},
4. Log{Bn |Bn a unit ball, n≥ 2}.

Remark 3. Before proceeding to the proof, we note that all logics mentioned in this theorem are
different. As was shown in [17], the formulaI3F(p∧CI¬p) is not satisfiable in any DTS of the form
〈Rn, f 〉, while it is clearly satisfiable. According to [11], the formulaC(I p→ ©3F I p) is valid in all
unit balls, but refuted in a DTS based on both an Aleksandrov space and〈Rn,x 7→ x+1〉. Finally, the
formula3FCp↔ C3F p is valid in DTSs based on Aleksandrov spaces, but refuted both in〈Rn, f 〉
and in all unit balls.

We prove Theorem 2 by reduction ofPost’s correspondence problemor PCP, for short [16]. (Cases
(2) and (4) will only be proved forn = 1 andn = 2, respectively.) The idea of the proof is taken from
[6]. Let A be a finite alphabet andP a finite set of pairs〈v1,u1〉 , . . . ,〈vk,uk〉 of nonempty finite words

vi =
〈
bi

1, . . . ,b
i
l i

〉
, ui =

〈
ci

1, . . . ,c
i
r i

〉
(i = 1, . . . ,k)

overA. For a sequence of indicesi1, . . . , iN ranging over 1, . . . ,k, let

mj = l i1 + · · ·+ l i j and n j = r i1 + · · ·+ r i j ,

for 1≤ j ≤N. The following problem is undecidable (for a proof see, e.g., [7]):given a set P of pairs
of words as above, decide whether there exist an N≥ 1 and a sequence i1, . . . , iN of indices such that

vi1∗ · · · ∗viN = ui1∗ · · · ∗uiN , (1)

where∗ is the concatenation operation. If the condition above holds for a PCP instanceP then we
say thatP has a solution. Later, we will use a consequence of this result, namely, that the set of PCP
instances without solutionsis not recursively enumerable.

The reduction formulaφA,P is constructed using the propositional variablesr, s, left andright, lefta
andrighta, for everya∈ A, as well aspairi , for every pair〈vi ,ui〉 in P, 1≤ i ≤ k.

The variables is used to introduce a new operatorS (which can be interpreted as a ‘strict diamond’
in Kripke quasi-ordered frames). Namely, for everyDT L-formulaψ, we put

Sψ =
(
s→ C(¬s∧Cψ)

)
∧

(
¬s→ C(s∧Cψ)

)
.

Denote bySm a string ofm operatorsS (so thatS0ψ = ψ). The variabler is used to ‘relativise’2F in
the following ways:2<r

F ψ = 2+
F (3F r → ψ) and2

≤r
F ψ = 2+

F (3+
F r → ψ).

Now φA,P is defined as the conjunction

φA,P = ϕeq ∧ ϕpair ∧ ϕstripe ∧ ϕleft ∧ ϕright,

where

ϕeq = 3F
(
r ∧

∧
a∈A

I(lefta ↔ righta)
)
,

ϕpair = 2<r
F

( ∨
1≤i≤k

pairi ∧
∧

1≤i< j≤k

¬(pairi ∧pair j)
)
,
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ϕstripe = 2<r
F I(s↔ ©s),

ϕleft is the conjunction of (2)–(8), for 1≤ i ≤ k,∧
a6=b

a,b∈A

2
≤r
F I¬

(
lefta∧ leftb

)
∧ 2

≤r
F I

(
left↔

∨
a∈A

lefta
)
, (2)

∧
a∈A

2<r
F I(lefta → ©lefta), (3)

I¬left ∧ 2
≤r
F I(¬left→¬Sleft), (4)

2<r
F

(
pairi → I(¬left→ ©¬Sl i left)

)
, (5)

2<r
F

(
pairi →

∧
j<l i

©I
(
(Sj left∧¬Sj+1left)→ leftbi

li− j

))
, (6)

pairi → ©lwi , (7)

2<r
F

(
pairi → I((left∧¬Sleft)→ S©lwi)

)
, (8)

where
lwi = leftbi

1
∧S

(
leftbi

2
∧S(leftbi

3
∧·· ·∧Sleftbi

li
) . . .

)
(remember thatl i is the length of the wordvi =

〈
bi

1, . . . ,b
i
l i

〉
), and the conjunctϕright—the ‘right

counterpart’ ofϕleft—is defined by replacing inϕleft all occurrences ofleft with right, lefta with righta,
l i with r i , etc.

We also requireDT L©-formulasφn
A,P, n > 0, which are defined similarly toφA,P by replacing

• ϕeq with ©n∧
a∈A I(lefta ↔ righta), and

• every occurrence of2≤r
F ψ (or 2<r

F ψ) with 2
≤n
F ψ (respectively,2<n

F ψ), where

2
≤n
F ψ = ψ∧©ψ∧©©ψ∧·· ·∧©nψ and 2<n

F ψ = ψ∧©ψ∧©©ψ∧·· ·∧©n−1ψ.

We denote the subformula ofφn
A,P corresponding to a subformulaϕ of φA,P by ϕn.

Lemma 4. If φA,P is satisfiable in〈T, f 〉 then there is n> 0 such thatφn
A,P is satisfiable in〈T, f 〉.

Proof. Suppose(M,w) |= φA,P. Then(M,w) |= 3F(r ∧
∧

a∈A I(lefta ↔ righta)), that is, there exists
m > 0 such that(M, f m(w)) |= r ∧

∧
a∈A I(lefta ↔ righta). Let n be the minimal suchm. One can

easily check that(M,w) |= φn
A,P.

Lemma 5. If P has a solution, then the following hold:

(i) φA,P is satisfiable in a DTS〈T, f 〉, whereT is an Aleksandrov space;

(ii) φA,P is satisfiable in a DTS;

(iii) φA,P is satisfiable inB2;

(iv) φA,P is satisfiable in〈R, f 〉, where f: x 7→ x+1.

Proof. Suppose thatP has a solution

vi1∗ · · · ∗viN = ui1∗ · · · ∗uiN . (9)
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Let vi1∗ · · · ∗viN = 〈b0, . . . ,bmN−1〉.
(i) Define a quasi-orderG = 〈W,R〉 by takingW = {0, . . . ,2mN}×Z, whereZ is the set of integers,

and(x,y)R(x′,y′) iff x≤ x′ andy = y′. Define f : W →W by taking f (x,y) = (x,y+1). Clearly, f is
a homeomorphism onTG. Finally, defineV by taking

V(s) = {(2n,z) | 0≤ 2n≤ 2mN, z∈ Z}, V(r) = {(0,N)},
V(pairi) = {(0, j−1) | i = i j , for somej ≤ N},
V(lefta) = {(2k, j) | 0 < j ≤ N, k < mj , bk = a}, V(left) =

⋃
a∈AV(lefta),

V(righta) = {(2k, j) | 0 < j ≤ N, k < n j , bk = a}, V(right) =
⋃

a∈AV(righta).

Let M = 〈TG,V〉. It is an easy exercise to show(M,(0,0)) |= φA,P. We leave this to the reader.
(ii) follows from (i).
(iii) We only consider the two-dimensional unit ballB2 =

〈
B2,g

〉
, whereg is therotation of B2

clockwise by somerational angleα such that 0< α < 2π/N+1 andN is given by (9) (forn > 2, the
construction is similar: we rotate the ball around a fixed axis by the same angleα). Obviously,g is a
measure preserving homeomorphism.

Let E be an open set, say, a smaller open ball contained in the sector[−α/2,α/2] of B2 and letEi =
gi(E), for i < ω. Note thatE = E0,E1, . . . ,EN are pairwise disjoint sets. LetH = 〈{0, . . . ,2mN},≤〉.
By the main result of McKinsey and Tarski [14], there exists a continuous mappinghi from Ei onto
TH. Moreover, one may assume that, for everyx∈ Ei , we havehi(x) = hi+1(g(x)) and thathi(ei) = 0,
whereei is the center of the ballEi . Define a valuationV onB2 by taking

V(s) =
⋃N

i=0{h−1
i (2n) | 0≤ 2n≤ 2mN}, V(r) = {eN},

V(pairi) = {ej−1 | i = i j , for somej ≤ N},

V(lefta) =
⋃N

j=1{h−1
j (2k) | k < mj , bk = a}, V(left) =

⋃
a∈AV(lefta),

V(righta) =
⋃N

j=1{h−1
j (2k) | k < n j , bk = a}, V(right) =

⋃
a∈AV(righta).

As α is rational, we haveg j(e0) = eN iff j = N. It is not hard to check now that(〈B,V〉 ,e0) |= φA,P.
(iv) We know from (i) and Lemma 4 that there existsn > 0 such thatφn

A,P is satisfiable in a DTS
〈T, f 〉. Then, by the remark following Theorem 1 and sinceφn

A,P is aDT L©-formula,(M,w) |= φn
A,P,

for some modelM = 〈〈R, f 〉 ,V〉 and f : x 7→ x+1. Define a new valuationV′ onR which coincides
with V except for only one case: now we setV′(r) = { f n(w)}. (Note thatr does not occur inφn

A,P.)
Let M′ = 〈〈R, f 〉 ,V′〉. Then clearly(M′,w) |= φA,P.

Lemma 6. Suppose that there exists n> 0such thatφn
A,P is satisfiable in a DTS based on an Aleksandrov

space. Then P has a solution.

Proof. Suppose that(M,w0
1) |= φN

A,P for some DTMM = 〈〈TG, f 〉 ,V〉, whereG = 〈W,R〉 is a quasi-
order, f a homeomorphism onTG andw0

1 ∈W. For j < ω, let

Wj = {w∈W | f j(w0
1)Rw}.

As (M,w0
1) |= ©N ∧

a∈A I(lefta ↔ righta), we have

(M, f N(w0
1)) |=

∧
a∈A

I(lefta ↔ righta). (10)

Since(M,w0
1) |= ϕN

stripe, for eachw∈W0 and eachj ≤ N, we have(M,w) |= s iff (M, f j(w)) |= s.
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Denote bySj , j ≤N, the transitive binary relation onWj defined by takingwSjv iff there isu∈Wj

such thatwRuRvand(M,w) |= s iff (M,u) 6|= s. Then we clearly have that, for everyj ≤N and every
w∈Wj ,

(M,w) |= Sψ iff there isv∈Wj such thatwSjv and(M,v) |= ψ.

Note that, sincef is a homeomorphism and in view of(M,w0
1) |= ϕN

stripe, for all w,v∈W0 andi ≤ N,
we havewS0v iff f i(w)Si f i(v).

Let i1, . . . , iN be the sequence of indices such that, for 1≤ j ≤N, we have(M, f j−1(w0
1)) |= pairi j

(ϕN
pair ensures that there is a unique sequence of this sort). We claim that (1) holds for this sequence.

For everyj with 1≤ j ≤ N, let

WL
j = {w∈Wj | (M,w) |= left}.

Call a sequence〈w1, . . . ,wl 〉 of (not necessarily distinct) points fromWL
j anSj -path in WL

j of length l
if w1Sjw2Sj . . .Sjwl , and set

leftwordj(w1, . . . ,wl ) = 〈a1, . . . ,al 〉 ,

where theai are the (uniquely determined by (2)) symbols fromA such that(M,wi) |= leftai
.

We show now that there is a sequenceπ1, . . . ,πN such that, for everyj with 1 ≤ j ≤ N, the
following hold:

(a) π j = 〈w j
1, . . . ,w

j
mj 〉 is anSj -path inWL

j of lengthmj , and there is noSj -path inWL
j of length> mj ;

(b) f (w0
1) = w1

1 and if j > 1 thenw j
m = f (w j−1

m ), for all m, 1≤m≤mj−1;

(c) leftwordj(w
j
1, . . . ,w

j
mj ) = vi1∗ . . .∗vi j ;

(d) for everySj -path〈w1, . . . ,wmj 〉 in WL
j of lengthmj , we haveleftwordj(w1, . . . ,wmj ) = vi1∗ . . .∗vi j .

Indeed, by(M,w0
1) |= pairi1, (7), (4) and (5), there exists anS1-pathπ1 in WL

1 such that (a)–(c) hold.
Condition (d) follows from (6).

Now assume inductively that conditions (a)–(d) hold for somej − 1 with 1≤ j − 1 < N. Let
π j−1 = 〈w j−1

1 , . . . ,w j−1
mj−1〉 be anSj−1-path inWL

j−1 for which (a)–(d) hold. By (3), the sequence〈
f (w j−1

1 ), . . . , f (w j−1
mj−1)

〉
is anSj -path inWL

j . Since(M,w j−1
mj−1) |= left∧¬Sleft and(M,w j−1

1 ) |= pairi j
,

(8) means that there exists a sequencew j
mj−1+1, . . . ,w

j
mj−1+l i j

of points inWL
j such that

π j =
〈

f (w j−1
1 ), . . . , f (w j−1

mj−1
),w j

mj−1+1, . . . ,w
j
mj−1+l i j

〉
is anSj -path inWL

j of lengthmj = mj−1 + l i j such thatleftwordj(w
j
n j−1+1, . . . ,w

j
mj−1+l i j

) = vi j . By (5)

and the induction hypothesis, there is noSj -path inWL
j of length> mj . Thus, (a) and (b) hold forπ j ,

(c) follows from (3), and (d) from (6) and the induction hypothesis.
Now define setsWR

j in the same way asWL
j , but with left replaced byright, introduce the notion

of anSj -path inWR
j , and, for every sequencew1, . . . ,wl of points fromWR

j , set

rightwordj(w1, . . . ,wl ) = 〈a1, . . . ,al 〉 ,

where theai are the uniquely determined (by ‘right analogue’ of (2)) elements ofAsuch that(M,wi) |=
rightai

. In precisely the same way as above we show now that there is a sequenceπ′1, . . . ,π′N such that,
for every j with 1≤ j ≤ N,
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(a′) π′j =
〈
w j

1, . . . ,w
j
n j

〉
is anSj -path inWR

j of lengthn j , and there is noSj -path inWR
j of length> n j ;

(b′) f (w0
1) = w1

1 and if j > 1 thenw j
n = f (w j−1

n ), for all n with 1≤ n≤ n j−1;

(c′) rightwordj(w
j
1, . . . ,w

j
n j ) = ui1∗ . . .∗ui j ;

(d′) for everySj -path〈w1, . . . ,wn j 〉 in WR
j of lengthn j , we haverightwordj(w1, . . . ,wn j ) = ui1∗ . . .∗ui j .

Now it is easy to see that (10) means that

vi1 ∗ . . . ∗ viN = leftwordN(wN
1 , . . . ,wN

mN
) = rightwordN(wN

1 , . . . ,wN
nN

) = ui1 ∗ . . . ∗ uiN ,

as required.

Theorem 2 now follows immediately. Just observe that we have proved that, for any of the classes
K of DTSs listed in Theorem 2,φA,P is satisfiable inK iff P has a solution. Indeed, the direction
from right to left is Lemma 5. The direction from left to right for DTSs based on Aleksandrov spaces
follows from Lemmas 4 and 6. For the remaining classes this direction follows from Lemmas 4, 6,
and Theorem 1, since theφn

A,P areDT L©-formulas.

4 Dynamic metric logic

The languageDM L of dynamic metric logicis defined in the same way asDT L with the exception
that the topological operators are replaced bymetric operators∃≤a, for a∈ Q+, whereQ+ denotes
the set of positive rational numbers.

A dynamic metric structure(or DMS, for short) is a pairF = 〈〈W,d〉 , f 〉, where〈W,d〉 is a metric
space, andf : W →W is ametric automorphism, i.e., a bijection such thatd(x,y) = d( f (x), f (y)) for
all x,y∈W. For example, the mappingx 7→ x+1 onR and the rotationg onB2 considered above are
metric automorphisms on the respective spaces with the Euclidean metric.

A dynamic metric model(or DMM) is a pairM = 〈F,V〉, whereF is a DMS andV is a valuation
defined in the same way as in the topological case. The truth-relation is also defined as for DTMs with
the exception that the truth-conditions for the topological operatorsI andC are replaced by

• (M,x) |= ∃≤aϕ iff there existsy∈W such thatd(x,y)≤ a and(M,x) |= ϕ.

In contrast to the topological case, now we have the following:

Theorem 7. The set ofDM L-formulas that are valid in all DMSs is decidable. However, the decision
problem is not elementary.

Roughly, the idea of the decidability proof is similar to that of Theorem 13.6 from [6]: first
we represents DMMs in the form ofquasimodelsand then show that quasimodels can be encoded
in monadic second-order logic. The main novelty of this proof is the rather involved notion of a
quasimodel. We give the definition of quasimodels and formulate their main properties below. Details
of the proofs are left to the reader; they will be available on the web shortly.

Given a formulaϕ, denote byγϕ the maximal numerical parameter inϕ and byM[ϕ] ⊆ Q+ the
smallest set containing all parameters inϕ and closed under (i) ifa,b ∈ M[ϕ] anda+ b≤ γϕ, then
a+ b∈ M[ϕ], and (ii) if a,b∈ M[ϕ] anda−b > 0, thena−b∈ M[ϕ]. Clearly,M[ϕ] is finite. The
closureclϕ of ϕ is the set

{ψ,¬ψ | ψ ∈ subϕ}∪{∃≤aψ,¬∃≤aψ | ψ ∈ subϕ anda∈M[ϕ]},

wheresubϕ is the set of all subformulas ofϕ. A type t for ϕ is a subset ofclϕ such that
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(t1) for every¬ψ ∈ clϕ, ψ ∈ t iff ¬ψ /∈ t;
(t2) for everyψ1∧ψ2 ∈ clϕ, ψ1∧ψ2 ∈ t iff ψ1 ∈ t andψ2 ∈ t;
(t3) for every∃≤aψ ∈ clϕ, ∃≤aψ ∈ t iff ∃≤bψ ∈ t for all b∈M[ϕ]∩ [a,+∞).

Themetric depthof ϕ is defined as follows:

mtd(p) = 0, mtd(∃≤aϕ) = mtd(ϕ)+a,

mtd(¬ϕ) = mtd(ϕ), mtd(©ϕ) = mtd(ϕ),
mtd(ϕ1∧ϕ2) = max(mtd(ϕ1),mtd(ϕ2)), mtd(2Fϕ) = mtd(ϕ).

A quasistate qfor ϕ is a tripleq = 〈〈Tq,<q〉,δq, tq〉, where

• 〈Tq,<q〉 is an intransitive tree;

• δq : {(u,v)∈ Tq×Tq | u<q v}→M[ϕ] is a labelling function satisfying the following condition:
themetric depth

max
u0<qu1<q···<qun

n

∑
i=1

δq(ui−1,ui)

of the tree metric space
〈
Tq,δ∗q

〉
induced by〈〈Tq,<q〉,δq〉 is bounded bymtd(ϕ);

• tq is a labelling function such thattq(u) is a type forϕ, for everyu∈ Tq, and

(qs1) for every u ∈ Tq and every∃≤aψ, we have∃≤aψ ∈ tq(u) iff there is v ∈ Tq such that
δ∗q(u,v)≤ a andψ ∈ tq(v);

(qs2) for everyu∈ Tq, there are no isomorphic substructures induced by immediate successors
v of u located at the same distanceδq(u,v).

We say that a pointu∈ Tq hasindex〈a1, . . . ,an〉 if there is a sequenceu0 <q u1 <q · · ·<q un of points
in Tq such thatu0 is the root of

〈
Tq,<q

〉
, un = u andai = δq(ui−1,ui), for all i, 1≤ i ≤ n.

Let q be a function associating with eachi ∈ N a quasistateq(i) = 〈〈Ti ,<i〉 ,δi , t i〉 for ϕ. A run of
index〈a1, . . . ,an〉 throughq is a functionr mapping eachi ∈N to a pointr(i)∈ Ti of index〈a1, . . . ,an〉
such that, for everyi ∈ N

• and every©ψ ∈ clϕ, ©ψ ∈ t i(r(i)) iff ψ ∈ t i+1(r(i +1));
• and every2Fψ ∈ clϕ, 2Fψ ∈ t i(r(i)) iff ψ ∈ t j(r( j)) for all j > i.

Given a setR of runs, we denote byR〈a1,...,an〉 its subset of all runs of index〈a1, . . . ,an〉.
A quasimodelfor ϕ is a pair〈q,R〉, whereq(i) = 〈〈Ti ,<i〉 ,δi , t i〉 is a quasistate forϕ for every

i ∈ N such that

(qm2) ϕ ∈ t0(u0), whereu0 is the root of〈T0,<0〉,
andR is a set of runs throughq satisfying the following condition

(qm3) R〈〉 6= /0 and, for allr ∈ R〈a1,...,an〉, i ∈ N andu ∈ Ti , if r(i) <i u andδi(r(i),u) = an+1 then
there is a runr ′ ∈R〈a1,...,an,an+1〉 such thatr ′(i) = u andr(i) <i r ′(i) for all i ∈ N.

Using the decidability of monadic second-order logic over〈N,<〉, one can now prove the decidab-
ility result by showing that (i) aDM L-formulaϕ is satisfiable in a DMS iff there exists a quasimodel
for ϕ, and, (ii) for everyDM L-formula ϕ, one can effectively construct a sentenceϕ] of monadic
second-order logic such that there exists a quasimodel forϕ iff ϕ] is satisfiable in〈N,<〉.

The non-elementarity result can be proved by a polynomial reduction of the satisfiability problem
for the product modal logicPTL ×K (which is non-elementary by Theorem 6.37 from [6]) to the
satisfiability problem forDM L-formulas in DMSs.
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Open problems. Interesting and challenging open problems are (i) the decidability of dynamic to-
pological logics interpreted in various topological spaces withcontinuousmappings, and (ii) the de-
cidability of dynamic metric logics interpreted in variouscompactmetric spaces; for a justification
and more details see, e.g., [11].
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