
The Logical Difference Problem for Description
Logic Terminologies

Boris Konev, Dirk Walther, and Frank Wolter

University of Liverpool, Liverpool, UK
{konev, dwalther, wolter}@liverpool.ac.uk

Abstract. We consider the problem of computing the logical differ-
ence between distinct versions of description logic terminologies. For the
lightweight description logic EL, we present a tractable algorithm which,
given two terminologies and a signature, outputs a set of concepts, which
can be regarded as the logical difference between the two terminologies.
As a consequence, the algorithm can also decide whether they imply the
same concept implications in the signature. A prototype implementa-
tion CEX of this algorithm is presented and experimental results based
on distinct versions of Snomed ct, the Systematized Nomenclature of
Medicine, Clinical Terms, are discussed. Finally, results regarding the re-
lation to uniform interpolants and possible extensions to more expressive
description logics are presented.

1 Introduction

The standard diff operation for text files is an indispensable tool for comparing
different versions of texts, and similar operations are available to software en-
gineers comparing distinct versions of code produced in collaborative software
projects. As observed, e.g., in [14], such a purely syntactic diff operation is hardly
useful if the text consists of a set of axioms of an ontology. In this case, one is
usually not interested in a comparison of the syntactic form of axioms, but in
the consequences that the ontologies have. The authors of [14] present a number
of heuristic rules to address this problem and develop a diff operator for ontolo-
gies. Except theoretical results in [12, 13, 9], we are not aware of any logic-based
approach to computing the logical diff of ontologies.

Our formalisation of the logical difference problem is based on the observation
that when comparing distinct versions of ontologies one should take into account
their signatures. In fact, the interesting differences between ontologies are those
formulated in their shared signature (or even subsets thereof), and not those
involving symbols used only in one of the two ontologies. Thus, the proposed
notion of logical difference is based on the notion of Σ-entailment : an ontology
T Σ-entails an ontology T ′ for a signature Σ, if for all concept implications
C v D in Σ, T ′ |= C v D implies T |= C v D. If T and T ′ mutually Σ-
entail each other, then they are called Σ-inseparable. By taking Σ as the set
of shared symbols of T and T ′, Σ-inseparability means that T and T ′ are not



distinguishable by means of concept implications in their shared signature. In
this case, their logical difference will be regarded as empty.

We show that deciding Σ-entailment is tractable for EL-terminologies, i.e.,
sets of possibly cyclic concept definitions in the lightweight description logic
EL; see [1, 10]. Observe that for ontologies formulated as general TBoxes in de-
scription logics, the computational complexity of deciding Σ-entailment is by at
least one exponential harder than the deduction problem, e.g., it is 2ExpTime-
complete for expressive description logics such as ALC, ALCQ, and ALCQI [6,
12] and ExpTime-complete for EL itself [13]. Moreover, even in such simple for-
malisms as acyclic propositional Horn Logic Σ-entailment is co-NP-complete [5].

In applications, it is not enough to decide whether two ontologies are logi-
cally different, but an informative list of differences is required. We show that
for any concept implication C v D in the logical difference between two EL-
terminologies, there exist subconcepts C ′ and D′ of C and D, respectively, such
that C ′ v D′ is in the logical difference and C ′ or D′ is a concept name. Thus, list-
ing the set of all concept names involved in such implications appears to be an in-
formative approximation of the logical difference between two EL-terminologies.
This list is empty if, and only if, there is no logical difference between the two
terminologies.

The system CEX implements, by employing a dynamic programming ap-
proach, the algorithm deciding Σ-entailment and lists the set of logical dif-
ferences described above for acyclic EL-terminologies. We present a variety of
experiments in which CEX is applied to different versions of Snomed ct, the
Systematized Nomenclature of Medicine, Clinical Terms. This terminology com-
prises ∼0.4 million terms and underlies the systematised medical terminology
used in the health systems of the US, the UK, and other countries [17].

Finally, we discuss an alternative approach to deciding Σ-entailment us-
ing uniform interpolants and explore the complexity of corresponding reasoning
problems for acyclic ALC-terminologies.

Detailed proofs are provided in the technical report [11].

2 Preliminaries

Let NC and NR be countably infinite and disjoint sets of concept names and role
names, respectively. In the description logic EL, concepts C are built according
to the syntax rule

C ::= > | A | C uD | ∃r.C,

where A ranges over NC, r ranges over NR, and C,D range over concepts. The
semantics of concepts is defined by means of interpretations I = (∆I , ·I), where
the interpretation domain ∆I is a non-empty set, and ·I is a function mapping
each concept name A to a subset AI of ∆I and each role name rI to a binary
relation rI ⊆ ∆I × ∆I . The function ·I is inductively extended to arbitrary
concepts by setting >I := ∆I , (C uD)I := CI ∩DI , and (∃r.C)I := {d ∈ ∆I |
∃e ∈ CI : (d, e) ∈ rI}.



A general TBox is a finite set of axioms, where an axiom can be either a
concept inclusion (CI) C v D or a concept equality (CE) C ≡ D, where C, D
are concepts. An interpretation I satisfies a CI C v D (written I |= C v D)
if CI ⊆ DI ; it satisfies a CE C ≡ D (written I |= C ≡ D) if CI = DI . I is a
model of a general TBox T if it satisfies all axioms in T . We write T |= C v D
(T |= C ≡ D) if every model of T satisfies C v D (C ≡ D, respectively).

Our main concern in this paper are terminologies, i.e., general TBoxes T
satisfying the following two conditions:

– T consists of CEs of the form A ≡ C (concept definitions) and CIs of the
form A v C (primitive concept definitions) only, where A is a concept name;

– no concept name occurs more than once on the left hand side of an axiom
in T .

Define the relation ≺T between concept names by setting A ≺T B if there exists
an axiom of the form A ≡ C or A v C in T such that B occurs in C. A
terminology T is called acyclic if the transitive closure ≺∗

T of ≺T is irreflexive.
A signature Σ is a finite subset of NC ∪ NR. The signature sig(C) (sig(α),

sig(T )) of a concept C (axiom α, terminology T ) is the set of concept and role
names which occur in C (α, T , respectively). If sig(C) ⊆ Σ, we also call C a
Σ-concept and similarly for axioms and terminologies.

Definition 1 (Σ-difference, Σ-entailment). Let T and T ′ be terminologies
and Σ a signature. The Σ-difference, DiffΣ(T , T ′), between T and T ′ is defined
as

DiffΣ(T , T ′) = {C v D | T 6|= C v D and T ′ |= C v D and sig(C v D) ⊆ Σ}.

T Σ-entails T ′ if, and only if, DiffΣ(T , T ′) = ∅. T and T ′ are called Σ-
inseparable if T and T ′ Σ-entail each other.

Example 1. Observe that, in some cases, DiffΣ(T , T ′) only contains concept im-
plications of at least exponential size, even for acyclic terminologies. To start
with, let T = ∅,

T ′ = {A0 v B0, A1 ≡ Bn} ∪ {Bi+1 ≡ ∃r.Bi u ∃s.Bi | 0 ≤ i < n},

and Σ = {A0, A1, r, s}. Then T ′ is not Σ-entailed by T , and a minimal implica-
tion of the form C v A1 in DiffΣ(T , T ′) is given by Cn v A1, where C0 = A0 and
Ci+1 = ∃r.Ciu∃s.Ci, for i ≥ 0. Clearly, Cn is of exponential size. Observe, how-
ever, that there exist much smaller implications than Cn v A1 in DiffΣ(T , T ′).
Namely, A1 v ∃r.>, A1 v ∃s.>, A1 v ∃r.> u ∃s.>, etc. To avoid this type of
implications in DiffΣ(T , T ′) replace T by

T0 = {A1 v F0} ∪ {Fi v ∃r.Fi+1 u ∃s.Fi+1 | 0 ≤ i < n}.

Then one can easily see that Cn v A1 is the smallest implication in DiffΣ(T0, T ′).
Observe, however, that if we use structure sharing and define the size of Cn as
the number of its subconcepts, then Cn is only of polynomial size.
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where A v CA ∈ T

Fig. 1. Gentzen-style proof system for EL terminologies.

Observe that if T Σ-entails T ′, then T Σ′-entails T ′ for any Σ′ with Σ′ ∩
sig(T ′) ⊆ Σ. This follows immediately from the following interpolation re-
sult [16].

Theorem 1. EL has the interpolation property, i.e., if T |= C v D, then there
exists a finite set T0 of CIs with sig(T0) ⊆ sig(T )∩ sig(C v D) such that T |= T0

and T0 |= C v D.

3 Basic properties of EL

We derive basic properties of EL from the Gentzen-style sequent calculus of
Hofmann [10], see Figure 1.1 The basic calculus of [10] considers EL without
the constant > and for terminologies without primitive concept definitions. To
take care of >, we have added the rule (AxTop), and (PDefL) is the rule
representing axioms of the form A v C. Cut-elimination, completeness, and
correctness can now be proved by a straightforward extension of the proof in [10].
For a terminology T and concepts C,D, we write T ` C v D iff there exists a
proof of C v D in the calculus of Figure 1.

Theorem 2 (Hofmann). For all terminologies T and concepts C,D, it holds
that T |= C v D if, and only if, T ` C v D.

We apply this calculus to derive a description of the syntactic form of concepts
C such that T |= C v D, where D is not equivalent to a conjunction. Call a
concept name A primitive in T if A does not occur on the left hand side of an
axiom in T . Call A pseudo-primitive in T if it is primitive in T or occurs on
the left hand side of primitive concept definitions in T . In what follows, we say
that a concept F is a conjunction of concepts if F =

d
D∈X D, for a set X of

concepts. Any D ∈ X is then called a conjunct of F and, if D is a concept name,
1 Alternatively, one could start from the model-theoretic analysis of EL terminologies

in [1].



then it is called an atomic conjunct of F . We sometimes write D ∈ F instead of
D ∈ X and if X is empty, then F denotes the concept >.

Lemma 1. Let T be a terminology and C = F u
d

(r,D)∈Q ∃r.D, where F is a
conjunction of concept names and Q is a set of pairs (r, D) in which r is a role
and D a concept.

1. If T |= C v A for an A which is pseudo-primitive in T , then T |= B v A,
for some atomic conjunct B of F .

2. If T |= C v ∃s.C0, then
– T |= B v ∃s.C0, for some atomic conjunct B of F , or
– there exists (r, D) ∈ Q such that r = s and T |= D v C0.

Proof. We use Theorem 2 and prove Point 1. Point 2 is proved similarly. Let
T ` C v A, where A is pseudo-primitive in T . Let D be a proof of C v A. Note
that, since A is pseudo-primitive in T , D can only end with one of Ax, AndL1,
AndL2, DefL, or PDefL. We show that then T ` B v A, for some conjunct
B of F , by induction on the number n of conjuncts in C.

The base case of n = 1 is trivial: D can only end with one of Ax, PDefL,
or DefL; so, C is a concept name itself.

Assume n > 1. Then D can only end with one of AndL1 or AndL2. In any
case, there exists a conjunct C ′ of C such that T ` C ′ v A and C ′ contains
less conjuncts than C. By induction, there exists a concept name B which is a
conjunct in C ′ such that T ` B v A. Note now that B is also a conjunct of C.

We apply Lemma 1 to show that if T does not Σ-entail T ′, then there exists
C v D ∈ DiffΣ(T , T ′) such that C or D is a concept name.

Lemma 2. Let T and T ′ be terminologies and Σ a signature. If C v D ∈
DiffΣ(T , T ′), then there exist subconcepts C ′ and D′ of C and D, respectively,
such that C ′ v D′ ∈ DiffΣ(T , T ′) and C ′ v D′ is of the form A v ∃r.D0 or
C0 v A, where A is a concept name.

Proof. Let C v D ∈ DiffΣ(T , T ′). Then D 6= > because otherwise T |= C v D.
If D = D1uD2, then one of C v Di, i = 1, 2, is in the Σ-difference. If D = ∃r.D1

then, by Lemma 1, either there exists a subconcept A of C, A a concept name,
such that A v D is in the Σ-difference, or there exists a subconcept ∃r.C1 of C,
such that C1 v D1 is in the Σ-difference. Simplify C v D until none of these
simplification rules is applicable. The resulting CI is as required.

4 Deciding Σ-entailment: theory

By Lemma 2, to decide Σ-entailment, it is sufficient to decide whether the set
DiffΣ(T , T ′) contains Σ-implications of the form C v A or A v D, where A is
a concept name. The latter problem is decidable in polynomial time already for
general EL-TBoxes [13]. So, in what follows we concentrate on Σ-implications of
the form C v A. We first transform T into a normalised terminology. A concept



For A ∈ NC,

– if A is pseudo-primitive in T , then

noimplyT ,Σ(A) = {ξA}, NoimplyT ,Σ(A) = {ξA v
l

A′∈(Σ\preΣ
T (A))

A′ u AllΣ};

– if A is conjunctive in T and A ≡ F ∈ T , then

noimplyT ,Σ(A) = {ξB | B ∈ F}, NoimplyT ,Σ(A) = ∅

– if A ≡ ∃r.B ∈ T , then noimplyT ,Σ(A) = {ξA} and NoimplyT ,Σ(A) = {αA}, where

αA = ξA v (
l

A′∈(Σ\preΣ
T (A))

A′) u (
l

r 6=s∈Σ

∃s.(
l

A′∈Σ

A′ u AllΣ)) u
l

ξ∈noimplyT ,Σ(B)

∃r.ξ.

Fig. 2. Computing NoimplyT ,Σ(A) and noimplyT ,Σ(A)

name A is called non-conjunctive in T if it is pseudo-primitive in T or has a
definition of the form A ≡ ∃r.C ∈ T . Otherwise A is called conjunctive in T . A
terminology T is normalised if it consists of axioms of the following form:

– A ≡ ∃r.B or A v ∃r.B, where B is a concept name;
– A ≡ F or A v F , where F is a (possibly empty) conjunction of concept

names such that every conjunct B of F is non-conjunctive in T .

Normalised terminologies in the sense defined above are a minor modification of
normalised terminologies as defined in [1]. Say that two interpretations I and J
coincide on a signature Σ, in symbols I|Σ = J |Σ , if ∆I = ∆J and XI = XJ

for all X ∈ Σ.

Lemma 3. For every terminology T , one can construct in polynomial time a
normalised terminology T ′ of polynomial size in |T | such that sig(T ) ⊆ sig(T ′),
T ′ |= T , and for every model I of T there exists a model J of T ′ which coincides
with I on Σ. Moreover, T ′ is acyclic if T is acyclic.

The proof is a straightforward modification of the proof in [1]. From now on we
will work with normalised terminologies only.

Intuitively, to decide whether there exists C v A ∈ DiffΣ(T , T ′), we want
to construct the most specific2 Σ-concept CA such that T 6|= CA v A. Then
there exists some Σ-concept C such that C v A ∈ DiffΣ(T , T ′) if, and only if,
T ′ |= CA v A. Unfortunately, most specific Σ-concepts with this property do
not always exist and, therefore (and also to enable structure sharing), we use an
additional terminology. We use the following sets and axiom:

– Σfresh = {AllΣ} ∪ {ξA | A ∈ NC non-conjunctive in T }, where AllΣ and each
ξA are fresh concept names not occurring in Σ ∪ sig(T );

2 Recall that a concept C is more specific than a concept D if |= C v D.



– α denotes the concept inclusion AllΣ v
d

r∈Σ ∃r.(
d

A′∈Σ A′ u AllΣ);
– preΣ

T (A) = {B ∈ Σ | T |= B v A}, for A ∈ NC. These sets can be computed
in polynomial time [1].

Theorem 3. Let T be a normalised terminology and Σ a signature. The ter-
minologies NoimplyT ,Σ(A) and sets of concepts names noimplyT ,Σ(A) are con-
structed, in polynomial time, in Figure 2. Set

NoimplyT ,Σ = {α} ∪
⋃

A∈Σ∪sig(T )

NoimplyT ,Σ(A).

The following conditions are equivalent, for every concept name A ∈ Σ ∪ sig(T )
and terminology T ′ with sig(T ′) ∩Σfresh = ∅:

– there exists a Σ-concept C with T ′ |= C v A and T 6|= C v A;
– T ′ ∪ NoimplyT ,Σ |= ξ v A, for some ξ ∈ noimplyT ,Σ(A).

Observe that, in Theorem 3, NoimplyT ,Σ and noimplyT ,Σ(A) do not depend on
T ′. Thus, once they have been constructed, they can be used to check the exis-
tence of concept implications C v A ∈ DiffΣ(T , T ′) for arbitrary terminologies
T ′. It is worth noting as well that the proof of Theorem 3 will show that the
result holds for arbitrary general TBoxes T ′ formulated in description logics
which are fragments of first-order logic, and, indeed, for T ′ any first-order the-
ory. In this case, Theorem 3 provides a reduction of checking whether there exists
C v A ∈ DiffΣ(T , T ′) to deduction in the language of T ′.

Example 2. Let T = {A ≡ ∃r.B,B ≡ ∃r.A} and Σ = {r, A,B}. Then we have
noimplyT ,Σ(A) = {ξA} and NoimplyT ,Σ = {ξA v B u ∃r.ξB , ξB v A u ∃r.ξA}.
Intuitively, {ξA}∪NoimplyT ,Σ stands for the “infinitary” most specific Σ-concept
not subsumed by A relative to T .

In the remainder of this section we prove Theorem 3. To this end, we first
prove an “infinitary” version of Theorem 3 by associating with every concept
name A a sequence noimplyn

T ,Σ(A), n ≥ 0, of sets of Σ-concepts such that the
following holds:

C1. T 6|= C v A, for all n ≥ 0 and for all C ∈ noimplyn
T ,Σ(A).

C2. For all Σ-concepts D, if T 6|= D v A, then |= C v D for some C ∈
noimplyn

T ,Σ(A), where n is the role-depth depth(D) of D (i.e., the number of
nestings of existential restrictions in D).3

The sets noimplyn
T ,Σ(A) are defined in Figure 3. Observe that noimplyn

T ,Σ(A)
is well-defined because in the definition A ≡ F ∈ T of a conjunctive concept
name A no conjunctive concept name occurs. This observation will also be used
in the inductive proofs below.

3 More precisely depth(A) = 0, depth(C1 u C2) = max{depth(C1), depth(C2)}, and
depth(∃r.D) = depth(D) + 1.



Set, inductively, all0Σ = > and alln+1
Σ =

d
r∈Σ ∃r.(

d
A′∈Σ A′ u allnΣ). Define

noimply0
T ,Σ(A) as follows:

– if A is non-conjunctive in T , then noimply0
T ,Σ(A) = {

d
A′∈Σ\preΣ

T (A) A′};
– if A is conjunctive and A ≡ F ∈ T , then noimply0

T ,Σ(A) =
S

B∈F noimply0
T ,Σ(B);

and define, inductively, noimplyn+1
T ,Σ(A) by

– if A is pseudo-primitive in T , then noimplyn+1
T ,Σ(A) = {

d
A′∈(Σ\preΣ

T (A)) A′ualln+1
Σ }.

– If A is conjunctive and A ≡ F ∈ T , then noimplyn+1
T ,Σ(A) =

S
B∈F noimplyn+1

T ,Σ(B).

– If A ≡ ∃r.B ∈ T , then noimplyn+1
T ,Σ(A) = {Cn+1

Σ,T }, where

Cn+1
Σ,T = (

l

A′∈(Σ\preΣ
T (A))

A′ u (
l

r 6=s∈Σ

∃s.(
l

A′∈Σ

A′ u allnΣ)) u
l

E∈noimplyn
T ,Σ

(B)

∃r.E.

Fig. 3. Computing noimplyn
T ,Σ(A)

Example 3. For the terminology T and signature Σ from Example 2, we have
noimply0

T ,Σ(A) = {B}, noimply1
T ,Σ(A) = {B u ∃r.A}, noimply2

T ,Σ(A) = {B u
∃r.(Au∃r.B)}, etc. Thus, intuitively, noimplyn

T ,Σ(A) is the unfolding up to depth
n of ξA relative to NoimplyT ,Σ .

Lemma 4. Let T be a normalised terminology, signature Σ, and A ∈ NC. The
sets noimplyn

T ,Σ(A) satisfy conditions C1 and C2 above.

Proof. We start with the proof of C1. Assume first that A is pseudo-primitive in
T . Then noimplyn

T ,Σ(A) consists of C =
d

A′∈(Σ\preΣ
T (A)) A′ u allnΣ . By Lemma 1,

T 6|= C v A because the only atomic conjuncts of C are in Σ \ preΣ
T (A).

We now prove C1 for concept names A which are not pseudo-primitive in
T . The proof is by induction on n. For n = 0 and A ≡ ∃r.B ∈ T the claim
follows again from Lemma 1 and the observation that B′ ∈ preΣ

T (A) if, and only
if, T |= B′ v ∃r.B. For n = 0 and A conjunctive with A ≡ F ∈ T , C1 follows
since it has been proved for all conjuncts of F and T 6|= C v A if, and only if,
there exists an atomic conjunct B of F such that T 6|= C v B.

For the induction step, assume C1 has been proved for n ≥ 0.
Let A ≡ ∃r.B ∈ T and let Cn+1

T ,Σ be the only element of noimplyn+1
T ,Σ(A).

Assume T |= Cn+1
T ,Σ v A. By Lemma 1 there are two cases:

– T |=
d

A′∈(Σ\preΣ
T (A)) A′ v ∃r.B. This is excluded, by Lemma 1.

– There exists E ∈ noimplyn
T ,Σ(B) such that T |= E v B. This is excluded by

the IH.

We have derived a contradiction. The case A ≡ F ∈ T , A conjunctive in T , is
considered similarly to the case n = 0 and left to the reader.

We come to the proof of C2. The proof is by induction on n. Let n = 0 and
assume first that A is non-conjunctive. Let D be a Σ-concept with depth(D) = 0



and T 6|= D v A. Then all conjuncts of D are in Σ \ preΣ
T (A) and we obtain

|=
d

A′∈Σ\preΣ
T (A) A′ v D. Now assume A is conjunctive in T and A ≡ F ∈ T .

Let D be a Σ-concept with depth(D) = 0 and T 6|= D v A. Then T 6|= D v B,
for some conjunct B of F . By IH, |= C v D for the (unique) C ∈ noimply0

T ,Σ(B),
and therefore |= C v D for some C ∈ noimply0

T ,Σ(A).
For the induction step, assume that C2 has been shown for n. Let D be a

Σ-concept with T 6|= D v A and depth(D) = n+1. Assume first that A is pseudo-
primitive in T . Then the atomic conjuncts of D are included in Σ \preΣ

T (A). So,
from C =

d
A′∈Σ\preΣ

T (A) A′ u alln+1
Σ we obtain |= C v D.

Now assume A ≡ ∃r.B ∈ T . Let Cn+1
T ,Σ be the only element of noimplyn+1

T ,Σ(A)
and assume

D =
l

B∈Q0

B u
l

(s,D′)∈Q1

∃s.D′.

Then Q0 ⊆ Σ \ preΣ
T (A). Hence, |= Cn+1

T ,Σ v
d

B∈Q0
B. Now consider a conjunct

∃s.D′ of D. There are two cases:

– s 6= r. Then, by construction, |= Cn+1
T ,Σ v ∃s.D′.

– s = r. It is enough to show that there exists E ∈ noimplyn
T ,Σ(B) such

that |= E v D′. Suppose there does not exist such an E. Then, by IH,
T |= D′ v B. Hence, T |= ∃r.D′ v ∃r.B and we obtain T |= D v A, which
is a contradiction.

The case in which A is conjunctive in T is straightforward and is left to the
reader.

Corollary 1. For all terminologies T ′ and A ∈ NC the following are equivalent:

1. there exists a Σ-concept C such that T 6|= C v A and T ′ |= C v A;
2. there exists n ≥ 0 and C ∈ noimplyn

T ,Σ(A) such that T ′ |= C v A.

Proof. The direction from Point 2 to Point 1 follows immediately from C1.
Conversely, assume that there exists a Σ-concept C such that T ′ |= C v A
and T 6|= C v A. By C1 and C2, there exist n and C ′ ∈ noimplyn

T ,Σ(A) with
|= C ′ v C and T 6|= C ′ v A. Then T ′ |= C ′ v A.

In contrast to the formulation of Theorem 3, Corollary 1 does not provide us
with a polynomial time algorithm. First, no upper bound on n is given and,
second, the concepts in noimplyn

T ,Σ(A) are of exponential size in n. Example 1
is easily extended so as to show that this is unavoidable: one can construct a
terminology T and a sequence of terminologies T ′

n such that in minimal impli-
cations in DiffΣ(T , T ′) of the form Cn v A the concept Cn has at least depth n
and is of size 2n. However, Theorem 3 is now an immediate consequence of the
following lemma and Corollary 1.

Lemma 5. Let T ′ be a terminology such that sig(T ′) ∩ Σfresh = ∅ and A ∈
sig(T ) ∪Σ. Then the following conditions are equivalent:

1. T ′ ∪ NoimplyT ,Σ |= ξ v A, for some ξ ∈ noimplyT ,Σ(A);



2. T ′ |= C v A, for some n ≥ 0 and C ∈ noimplyn
T ,Σ(A).

Proof. Point 2 implies Point 1. For concept names A which are non-conjunctive
in T this follows because NoimplyT ,Σ |= ξA v C for the only element C of
noimplyn

T ,Σ(A). The conjunctive case follows by induction.
Point 1 implies Point 2 is proved by a compactness argument. Intuitively,

if T ′ ∪
⋃

n≥0 noimplyn
T ,Σ(A) 6|= A, then T ′ ∪ NoimplyT ,Σ 6|= ξ v A, for all ξ ∈

noimplyT ,Σ(A). However, to prove this, one has to re-construct the concepts
noimplyn

T ,Σ(A); details of the proof are given in the technical report.

5 Practical algorithm and system

We have seen above that the sets

– DiffRΣ(T , T ′) consisting of all A ∈ Σ such that there is a Σ-concept C with
T 6|= C v A and T ′ |= C v A, and

– DiffLΣ(T , T ′) consisting of all A ∈ Σ such that there is a Σ-concept C with
T 6|= A v C and T ′ |= A v C

can be computed in polynomial time and can be regarded, by Lemma 2, as an
informative approximation of the logical difference between T and T ′ w.r.t. Σ.

Computing both sets for large terminologies and signatures Σ using a direct
implementation of the algorithm described above will fail: considering that state
of the art description logic reasoners [2] take about 15 minutes to classify the
SNOMED CT terminology [17], the reduction to reasoning given in Section 4
is impractical for large terminologies and signatures of reasonable size (the ter-
minology NoimplyT ,Σ contains huge conjunctions of Σ-concept names). We now
discuss the implementation of the algorithms above in the system CEX for acyclic
terminologies using a dynamic programming approach.

Let T and T ′ be acyclic terminologies and Σ a signature. For expositional
reasons, we assume that Σ ⊆ sig(T ′) ⊆ sig(T ). This is justified because we
can add A v > to T ′, for all A ∈ Σ \ sig(T ′), and A v > to T , for all
A ∈ (Σ ∪ sig(T ′)) \ sig(T ). We describe the algorithm computing DiffRΣ , the
rather straightforward algorithm computing DiffLΣ is discussed in the techni-
cal report. We assume that T and T ′ are fully classified and the result of the
classification is kept in a table, so, given two concept names A and B, it takes
constant time to find out whether T |= A v B (likewise, if T ′ |= A v B). Now
the algorithm computing DiffRΣ works by induction on concept definitions and
marks, recursively, every E ∈ sig(T ′), starting with pseudo-primitive ones, with
members of Ξ = {ξA | A ∈ sig(T ) non-conjunctive in T } in such a way that

(†) E ∈ sig(T ′) is marked with ξ if, and only if, T ′ ∪ NoimplyT ,Σ 6|= ξ v E.

Then A ∈ Σ is not marked with ξ ∈ noimplyT ,Σ(A) if, and only if, T ′ ∪
NoimplyT ,Σ |= ξ v A. If this happens to be the case for some ξ ∈ noimplyT ,Σ(A),
then A is included in DiffRΣ(T , T ′) (Theorem 3).

In order to define the marking, set preΣ
T (ξA) = preΣ

T (A), for A ∈ sig(T )
non-conjunctive in T . Now mark E ∈ sig(T ′) as follows:



1. If E is pseudo-primitive in T ′, then it is marked with all ξ ∈ Ξ such that
preΣ

T ′(E) ⊆ preΣ
T (ξ);

2. If E ≡ E1 u . . . u Ek ∈ T ′, then it is marked with all ξ ∈ Ξ such that at
least one of E1,. . . , Ek is marked with ξ;

3. If E ≡ ∃r.E′ ∈ T ′ and
(a) if r /∈ Σ or T ′ ∪ {α} 6|= (

d
A′∈Σ A′ u AllΣ) v E′, then E is marked with

all ξ ∈ Ξ such that preΣ
T ′(E) ⊆ preΣ

T (ξ);
(b) if r ∈ Σ and T ′ ∪{α} |= (

d
A′∈Σ A′ uAllΣ) v E′, then E is marked with

all ξA ∈ Ξ such that
– A ≡ ∃r.A′ in T and, for all ξ′ ∈ noimplyT ,Σ(A′), E′ is marked with

ξ′ and
– preΣ

T ′(E) ⊆ preΣ
T (ξA).

Using Theorem 3 and Lemma 5, one can prove that the defined marking
has property (†). While the condition T ′ ∪ {α} |= (

d
A′∈Σ A′ u AllΣ) v E can

be checked directly, this requires operating concepts of large size for large Σ’s.
So, instead we use the following criterion: we may assume that T contains a
definition A v > such that A 6∈ sig(T ′) and A does not occur elsewhere in T .
Then it follows from the definitions that T ′ ∪ {α} |= (

d
A′∈Σ A′ u AllΣ) v E if,

and only if, E is not marked with ξA.
Let T and T ′ be the time taken to fully classify T and T ′, respectively.

Then all T ′ concept names can be marked in O(|T | × |T ′| × |Σ| + T ′) time.
Overall, checking Σ-entailment takes O(|T | × |T ′| × |Σ| + T + T ′) time and
O(|T | × |T ′| × |Σ|) space. It should be noted that in our implementation this
theoretical upper bound is often not reached due to the use of hash tables and
structure sharing.

6 Experimental evaluation

CEX (see http://www.csc.liv.ac.uk/∼konev/software/) is an OCaml program [4].
For the experiments, we use two versions of Snomed ct: one dated 09 February
2005 (SM-05) and the other 30 December 2006 (SM-06) and having 379 691 and
389 472 axioms, respectively. As CEX currently accepts acyclic EL-terminologies
only, the role inclusions of Snomed ct are not taken into account. The tests
have been carried out on a standard PC: Intel R© CoreTM 2 CPU at 2.13 GHz
and 3 GB of RAM.

Logical difference between SM-05 and SM-06. Table 1 shows the average sizes
of the lists DiffLΣ(SM-05,SM-06) and DiffRΣ(SM-05,SM-06) for 20 randomly
generated signatures Σ ⊆ sig(SM-05) ∩ sig(SM-06) for each of the 12 possible
signature sizes containing 100, 1 000, etc. concept names and 0, 20, or 40 role
names.4 The execution time and memory consumption of CEX when computing
these lists vary from 477 to 596 seconds and from 1 393 to 1 496 MByte, respec-
tively. The numbers show that there is a huge difference between SM-05 and
SM-06. Also, adding a role name to the signature has a larger impact on the
number of differences than adding a concept name.
4 There are 50 role names in sig(SM-05) ∩ sig(SM-06).



|Σ ∩ NC| |Σ ∩ NR| = 0 |Σ ∩ NR| = 20 |Σ ∩ NR| = 40

|diffLΣ | |diffRΣ | |diffLΣ | |diffRΣ | |diffLΣ | |diffRΣ |

100 0.10 0.10 0.90 0.15 2.95 0.20

1 000 2.35 2.15 15.55 2.95 28.85 3.75

10 000 155.35 125.35 257.35 136.20 514.10 209.90

100 000 11 795.90 4 108.60 12 954.45 4 358.30 14 942.55 6 823.60

Table 1. Computing logical difference with CEX: DiffΣ(SM-05,SM-06)

(a) Number of differences (b) Proportion of detected differences

Fig. 4. Comparison of CEX and classification-based approach

Comparison with the classification approach. We compare the size of DiffLΣ ∪
DiffRΣ as computed by CEX with the number of concept names in Σ for which
there is a difference in the class hierarchy restricted to Σ; i.e., the set of A ∈ Σ
such that there exists B ∈ Σ such that A v B ∈ DiffΣ or B v A ∈ DiffΣ .
The experiments show how many of the differences between two terminologies
detected by CEX can be extracted from a straightforward comparison of class
hierarchies.

To facilitate the experiments, we use an empty terminology and an SM-05
fragment containing about 140 000 axioms. For every number between 10 and
270 with the step of 10, we generated 500 samples of a random signature con-
taining this number of concepts and 20 roles. The results of the experiments are
given in Figure 4. 4(a) shows that, for these signatures, the number of concept
names CEX outputs is about five times larger than the number of concept names
occurring in differences between the class hierarchies. In 4(b), we do not count
the number of differences but analyse how often the two approaches detect dif-
ferences at all. More precisely, we give the percentage of cases when CEX detects
a difference between the two terminologies and when a difference is visible in
the class hierarchies. For signatures larger than 200, both approaches almost
always detect differences. But for smaller signatures there is again a significant
gap between the two approaches.

Scalability. We demonstrated in the previous section that CEX is capable of find-
ing the logical difference in two unmodified versions of Snomed ct. In order to
see how CEX’s performance scales, we now test it on randomly generated acyclic



terminologies of various sizes. Each randomly generated terminology contains a
certain number of defined- and primitive concept names and role names. The
ratio between concept equations and concept inclusions is fixed, as is the ra-
tio between existential restrictions and conjunctions. The random terminologies
were generated for a varying number of defined concept names using the pa-
rameters of SM-05: 62 role names; the average number of conjuncts is 2.59; the
equality-inclusion ratio is 0.102; and the exists-conjunction ratio is 0.652. For
every chosen size, we generate a number of samples consisting of two random
terminologies as described above. We apply CEX to find the logical difference
of the two terminologies over their joint signature. Figure 5 shows the time and
memory consumption of CEX on randomly generated terminologies of various
sizes. In 5(a) the maximum length of conjunctions was fixed as two (M=2), and
in 5(b) the number of conjuncts in each conjunction is randomly selected between
two and M. It can be seen that the performance of CEX crucially depends on the
length of conjunctions. In 5(b), the curves break off at the point where CEX runs
out of memory. For instance, in the case M=22, this happens for terminologies
with more than 9 500 defined concept names.

(a) Short conjunctions (b) Long conjunctions

Fig. 5. Memory consumption of CEX on randomly generated terminologies

7 Uniform Interpolation

Let T be a terminology and Σ a signature. A general TBox TΣ is called a uniform
interpolant for T w.r.t. Σ if sig(TΣ) ⊆ Σ and TΣ and T are Σ-inseparable. The
question whether uniform interpolants exist for every terminology T 5 and sig-
nature Σ in a logic (i.e., whether the logic has uniform interpolation), has been
investigated extensively in the literature, in particular in modal and intuition-
istic logic [15, 18, 8]. For instance, modal logic K has uniform interpolation [18],
but S4 does not [8]. Observe that, if a uniform interpolant T ′

Σ of T ′ w.r.t. Σ

5 In modal or intuitionistic logic T is, of course, a formula.



exists, then T Σ-entails T ′ if, and only if, T |= T ′
Σ . Thus, the problem of decid-

ing Σ-entailment is reduced to computing a uniform interpolant and standard
deduction. Unfortunately, even for EL-terminologies uniform interpolants do not
always exist.

Lemma 6. There exists an EL-terminology T and a signature Σ such that there
does not exist an uniform interpolant of T w.r.t. Σ.

Proof. Let T = {A0 v B,B v A1 u∃r.B} and Σ = {A0, A1, r}. Then a uniform
interpolant TΣ would have to axiomatise (using symbols from Σ only) the class
of interpretations I satisfying the following condition: if d0 ∈ AI

0 , then there
exists a sequence d0r

Id1r
Id2r

I . . . with di ∈ AI
1 for all i ≥ 0. It is not difficult

to show that no such TΣ exists (even in first-order logic).

On the other hand, uniform interpolants always exist for acyclic EL-terminologies,
but minimal uniform interpolants might contain exponentially many axioms.

Theorem 4. Let T be an acyclic terminology and Σ a signature. Then there
exists a uniform interpolant of T w.r.t. Σ. In the worst case, minimal uniform
interpolants have exponentially many axioms.

Proof. First, one can show that TΣ = T l
Σ ∪ T r

Σ is a uniform interpolant for T
w.r.t. Σ if sig(TΣ) ⊆ Σ and

(a) T |= C v A if, and only if, T l
Σ |= C v A, for all Σ-concepts C and A ∈ Σ;

(b) T |= A v D if, and only if, T r
Σ |= A v D, for all Σ-concepts D and A ∈ Σ.

Due to space constraints we cannot describe the construction of T l
Σ and T r

Σ

here, and refer the reader to the technical report. The following example shows
that, in the worst case, minimal uniform interpolants require exponentially many
axioms. Let

T = {A ≡ B1 u · · · uBn} ∪ {Aij v Bi | 1 ≤ i, j ≤ n}.

and Σ = {A} ∪ {Aij | 1 ≤ i, j ≤ n}. Then

TΣ = {A1j1 u · · · uAn,jn v A | 1 ≤ j1, . . . , jn ≤ n}

is a uniform interpolant. It is easy to see that no uniform interpolant with fewer
axioms exists. This example shows as well that one has to allow for general
TBoxes when constructing uniform interpolants.

The results above show that, at least from a theoretical viewpoint, deciding Σ-
entailment via uniform interpolants is less efficient than the approach discussed
before. Still, uniform interpolants are useful for a number of applications, and
it would be of interest to see whether this approach is viable for real-world
terminologies.



8 Discussion

We have shown that computing the logical difference is tractable for EL-termino-
logies and that this approach exhibits differences which are not visible in the
class hierarchy. Our experiments with Snomed ct show that the algorithm can
be implemented in such a way that very large terminologies can be compared
efficiently.

The following result shows that there is no straightforward way of extending
these results to (even acyclic) terminologies in the basic Boolean description
logic ALC (in which concepts can be constructed using, in addition, negation).

Theorem 5. (1) Σ-entailment is NExpTime-hard for acyclic ALC-terminologies.
(2) Uniform interpolants do not always exist for acyclic ALC-terminologies.

Proof. Point (1) can be proved by a reduction of the NExpTime-hard problem
of deciding conservative extensions in modal logic K [7], details are given in the
technical report.

Point (2). We rewrite the terminology from Lemma 6. Let T = {A v (¬A0 t
B) u (¬B t (A1 u ∃r.B))} and Σ = {A,A0, A1, r}. It follows from the proof
of Lemma 6 that there does not exist a general ALC-TBox T A

Σ axiomatising
(using only the symbols from Σ) the class S of interpretations I satisfying the
following conditions: AI = ∆I and if d0 ∈ AI

0 , then there exists a sequence
d0r

Id1r
Id2r

I . . . with di ∈ AI
1 for all i ≥ 0. Now assume that there exists

a uniform interpolant TΣ of T w.r.t. Σ. Then TΣ ∪ {A ≡ >} would be an
axiomatisation of S and we have derived a contradiction.

Point (2) of Theorem 5 is slightly unexpected, because it shows that it is
not possible to lift results from modal logic K (which has uniform interpolation)
to acyclic ALC-terminologies. Besides of considering extensions of our approach
to languages with additional concept constructors, such as ALC, directions for
future research include terminologies with additional role boxes. Snomed ct
has an additional role box consisting of implications r v r′, r ◦ s v r (right-
identities), and s ◦ r v r (left-identities), where r, s, r′ are role names. It is not
difficult to extend the algorithm (and implementation) presented in this paper
to terminologies containing implications of the first type, but it remains open
whether Σ-entailment is still tractable for additional role boxes containing left-
and right-identities.

Finally, for the system CEX to be useful in practice, the outputs DiffLΣ and
DiffRΣ have to be expanded by suggesting, for A ∈ DiffRΣ , Σ-concepts C such
that C v A ∈ DiffΣ , and similarly for DiffLΣ . Computing such C’s is straight-
forward by unfolding the concept ξA relative to NoimplyT ,Σ . However, even this
might not provide enough information, because for the user it could be difficult to
find out which difference between the axioms of the two terminologies has caused
a certain Σ-difference. Thus, as a second step one might consider pinpointing
algorithms explaining from which axioms of a terminology a counterexample
C v A is derivable [3].
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