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Abstract

We develop a framework for forgetting concepts
and roles (aka uniform interpolation) in termi-
nologies in the lightweight description logic £L£
extended with role inclusions and domain and
range restrictions. Three different notions of for-
getting, preserving, respectively, concept inclu-
sions, concept instances, and answers to conjunc-
tive queries, with corresponding languages for uni-
form interpolants are investigated. Experiments
based on SNOMED CT (Systematised Nomencla-
ture of Medicine Clinical Terms) and NCI (Na-
tional Cancer Institute Ontology) demonstrate that
forgetting is often feasible in practice for large-
scale terminologies.

1 Introduction

The main application of ontologies in computer science is to
fix the vocabulary of an application domain and to provide
a formal theory that defines the meaning of terms built from
the vocabulary and their relationships. Current applications
lead to the development of very large and comprehensive on-
tologies such as the medical ontology SNOMED CT (Sys-
tematised Nomenclature of Medicine Clinical Terms) [Spack-
man, 2000] containing about 380 000 concept definitions and
the National Cancer Institute ontology (NCI) [Sioutos et al.,
2006] containing more than 60 000 axioms. For ontologies
T of this size, it is often of interest to forget a subvocab-
ulary ¥ of the vocabulary of 7 i.e., to transform 7 into
a new ontology 7y (called a X-interpolant of T) that con-
tains no symbols from ¥ and that is indistinguishable from
T regarding its consequences that do not use . In Al this
problem has been studied under a variety of names such as
forgetting and variable elimination [Reiter and Lin, 1994,
Eiter and Wang, 2008; Lang et al., 2003]. In mathematical
logic, this problem has been investigated as the uniform inter-
polation problem [Visser, 1996]. Computing Y-interpolants
of ontologies has a number of potential applications, e.g.,
Re-use of ontologies: when using ontologies such as
SNOMED CT in an application, often only a very small frac-
tion of its vocabulary is of interest. In this case, one could use
a Y-interpolant instead of the whole ontology, where X is the
vocabulary not of interest for the application.

Predicate hiding: an ontology developer might not want to
publish an ontology completely because a certain part of its
vocabulary is not intended for public use. Again, publishing
Y -interpolants, where ¥ is the vocabulary to be hidden, ap-
pears to be a solution to this problem.

Exhibiting hidden relations between terms: large ontologies
are difficult to maintain as small changes to its axioms can
have drastic and damaging effects. To analyze possibly un-
wanted consequences over a certain part I' of the vocabulary,
an ontology developer can automatically generate a complete
axiomatization of the relations between terms over I' by com-
puting a X-interpolant, where ¥ is the complement of T".
Ontology versioning: to check whether two versions of an
ontology have the same consequences over their common vo-
cabulary (or a subset thereof), one can first compute their in-
terpolants by forgetting the vocabulary not shared by the two
versions and then check whether the two interpolants are log-
ically equivalent (i.e., have the same models).

In the description of X-interpolants given above, we have
neither specified a language in which they are axiomatized
nor did we specify the language wrt. which X-interpolants
should be indistinguishable from the original ontology. The
choice of the latter language depends on the application: for
example, if one is interested in inclusions between concepts,
then a X-interpolant should imply the same concept inclu-
sions using no symbols from X as the original ontology. On
the other hand, if the ontology is used to query instance data
using conjunctive queries, then a X-interpolant together with
any instance data using no symbols from ¥ should imply the
same certain answers to conjunctive queries using no symbols
from X as the original ontology.

Regarding the language £ in which X-interpolants should
be axiomatized, one has to find a compromise between the
following three conflicting goals:

(R) Standard reasoning problems (e.g., logical equivalence)
in £ should not be more complex than reasoning in the lan-
guage underlying the ontology.

(I) X-interpolants in £ should be uniquely determined up to
logical equivalence: if 7; and 7 are X-interpolants in £ of
ontologies 77 and 75 that have the same consequences not
using X, then 7 and 73 should be logically equivalent.

(E) The language £ should be powerful enough to admit fi-
nite and succinct (ideally, polynomial size) axiomatizations
of Y-interpolants, and it should be possible to compute -



interpolants efficiently (ideally, in polynomial time).

For ontologies given in standard description logics (DLs)
such as ££ and any language between ALC and SHZQO,
there do not exist languages £ achieving all these goals si-
multaneously.! To illustrate this point, let £ be second-order
logic. Then L trivially satisfies (E) but fails to satisfy (R)
and (I), for ontologies in any standard DL.

In this paper, we consider forgetting in the lightweight de-
scription logic £L underlying the designated OWL2-EL pro-
file of the upcoming OWL Version 2 extended with role in-
clusions and domain and range restrictions [Baader er al.,
2008]. This choice it motivated by the fact that forgetting ap-
pears to be of particular interest for large-scale and compre-
hensive ontologies and that many such ontologies are given
in this language. We introduce three DLs for axiomatiz-
ing Y-interpolants satisfying criteria (R) and (I) and preserv-
ing, respectively, inclusions between concepts, concept in-
stances, and answers to conjunctive queries. These DLs do
not satisfy (E), as X-interpolants sometimes to not exist or
are of exponential size. We demonstrate that, nevertheless,
Y-interpolants typically exist and can be computed in prac-
tice for large-scale terminologies such as SNOMED CT and
appropriate versions of NCI. Detailed proofs and additional
experiments are available in a technical report [Konev et al.,
2009].

2 Preliminaries

Let N¢, Ng, and N; be countably infinite and mutually disjoint
sets of concept names, role names, and individual names. £ £-
concepts C are built according to the rule

C= A | T | ¢nD | 3rC,

where A € N¢, r € Ng, and C, D range over £ L-concepts.
The set of £LH" -inclusions consists of concept inclusions
C C D and concept equations C = D, domain restrictions
dom(r) C C, range restrictions ran(r) C C and role inclu-
sions r C s, where C, D are £L-concepts and 7, s € Ng.
An ELH"-TBox 7 is a finite set of £LH" -inclusions. An
ELH"-TBox is called ELH"-terminology if all its concept
inclusions and equations are of the form A C C and A = C
and no concept name occurs more than once on the left hand
side. In what follows we use A > C' to denote expressions of
the form AC C and A = C.

Assertions of the form A(a) and r(a,b), where a,b € Ny,
A € Nc, and r € NR, are called ABox-assertions. An ABox
is a finite set of ABox-assertions. By obj(.4) we denote the
set of individual names in A. A knowledge base (KB) is a
pair (7, .A) consisting of a TBox 7 and an ABox A. As-
sertions of the form C(a) and r(a,b), where a,b € N, C
a EL-concept, and r € N, are called instance assertions.
To define the semantics of DLs considered in this paper we
make use of the fact that DL-expressions can be regarded as
formulas in FO, where FO denotes the set of first-order pred-
icate logic formulas with equality using unary predicates in

!This follows from the fact that deciding whether TBoxes in
these DLs imply the same concept inclusions over a signature is by at
least one exponential harder than deciding logical equivalence [Lutz
and Wolter, 2009; Lutz et al., 2007].

l Concept C' ‘ Translation C*
T r=x
A A(z)
cnb C*(z) A D¥(z)
Ir.C Jy (r(z,y) A C*(y))
dom(r) y( (z,))
ran(r) Jy (r(y, z))
Fu.C (x=z)AJyCHy)
Iy Nrp.C | Jylri(z,y) A Arp(z, y)/\C’ﬁ(y))
| Inclusion « | Translation o l
cCCD Vi (C*(z) — D¥(z))
C=D Va (C*(x) « D*(z))
rCs Vay (r(z,y) — s(z,y))

Figure 1: Standard translation

N¢, binary predicates in Ngr, and constants from N,; see Fig-
ure 1 (in which the DL-constructors not considered so far are
defined later). In what follows, we will not distinguish be-
tween DL-expressions and their translation into FO and re-
gard TBoxes, ABoxes and KBs as finite subsets of FO. Thus,
we use 7 = ¢ to denote that ¢ follows from 7 in first-order
logic even if ¢ is an ELH" -inclusion and 7 a subset of FO
and similar conventions apply to DLs introduced later in this
paper. FO (and, therefore, ELH") is interpreted in models
T = (AT, .T), where the domain A” is a non-empty set, and
- is a function mapping each concept name A to a subset A%
of AZ, each role name 7 to a binary relation 2 C AZ x A7,
and each individual name a to an element a” € AL,

The most important ways of querying £L£H"-TBoxes and
KBs are subsumption (check whether 7 |= « for an ELH"-
inclusion «), instance checking (check whether (7, 4) = «
for an instance assertion «), and conjunctive query answer-
ing. To define the latter, call a first-order formula ¢(Z) a con-
Junctive query if it is of the form 3y (Z, 77), where ¢ is a con-
junction of expressions A(t) and r(t1,t2) with ¢, ¢1,to drawn
from N, and sequences of variables Z and ¢. If & has length &,
then a sequence @ of elements of obj(.A) of length k is called
a certain answer to q(¥) of aKB (7, A) if (7, A) |= q(a).

3 Forgetting

A signature X is a subset of Nc U Ng?. Given a signature
¥, weset X = (Nc UNg)\ X. Given a concept, role,
concept inclusion, TBox, ABox, FO-sentence, set of FO-
sentences F, we denote by sig(E) the signature of E, that is,
the set of concept and role names occurring in it. We use the
term £LH;-inclusion (X-ABox, X-query, Lx-sentence, etc.)
to denote £LH"-inclusions (ABoxes, queries, £-sentences,
etc.) whose signature is contained in 3.

To define forgetting, we first formalize the notion of in-
separability between TBoxes wrt. a signature. Intuitively,
two TBoxes 77 and 75 are inseparable wrt. a signature >
if they have the same }-consequences, where the set of
Y-consequences considered can either reflect subsumption
queries, instance queries, or conjunctive queries, depending
on the application. We give the definitions for sets of FO-

“We investigate forgetting for TBoxes for DLs without nominals;
thus we do not include individual names into the signature.



sentences because we later require these notions for a variety
of DLs.

Definition 1. Let 7; and 75 be sets of FO-sentences and X a
signature.

—7; and 75 are concept Z-inseparable, in symbols 7y Eg Ts,
if for all ELHg-inclusions o 77 = a < T3 = o

~T; and 75 are instance Y-inseparable, in symbols 7; =i,
75, if for all 3-ABoxes A and Y-instance assertions « using
individual names from obj(A): (71, A) = o < (12, A) |= a.
—T; and 75 are query Y-inseparable, in symbols 7; =% 7o,
if for all -ABoxes A, conjunctive Y-queries ¢(Z), and vec-
tors @ of the same length as Z of individual names in obj(.A):
(T, A) = q(@) & (T2, A) [ q(a@).

The definition of forgetting (2-interpolants) is now straight-
forward.

Definition 2 (X-interpolant). Let 7 be an ELH-TBox, ¥ a
finite signature, and £ a set of FO-sentences. If 7y; is a finite
set of Lw-sentences such that 7 = ¢ for all ¢ € Ty, then Ty,
is

e a concept X-interpolant of 7 in L if 7 E% Ts;

e an instance X-interpolant of 7 in L if 7 E% Ts;

e aquery X-interpolant of 7 in L if 7 qu Ts.
One can show that every query X-interpolant is an instance
Y-interpolant and every instance Y-interpolant is a concept
Y-interpolant. The converse implications do not hold, even

for £LH"-terminologies:

Example 3. Let 7 = {ran(r) C Aj,ran(s) C Ay, B =
Ay M As} and ¥ = {A;,As}. One can show that the
empty TBox is a concept Y-interpolant of 7. However,
the empty TBox is not an instance Y-interpolant of 7. To
show this, consider the ¥-ABox A = {r(ag,b),s(a1,b)}.
Then (7,A) = B(b) but (§,.A) = B(b). Observe that
no ELH"-TBox (and even no SHQ-TBox) is an instance
Y-interpolant of 7 because it is impossible to capture the
ABox A in a DL in which one cannot refer to the range of
distinct roles in one concept. On the other hand, the TBox
7' = {ran(r) Mran(s) C B} given in an extension of ELH"
is an instance Y-interpolant of 7 .

Example 4. Let 7 = {A C 3s.T,s C r1,s C r9} and
Y ={s}. Then 7' = {A C 3r,. T M 3ry. T} is an instance
Y-interpolant of 7, but 7 is not a query Y-interpolant of 7.
To show the latter, let A = {A(a)} and let ¢ = 3z (r1(a,x) A
ro(a,x)). Then (7, A) = g but (77, A) = ¢. Again, no
ELH"-TBox (and even no TBox in SHZQ) is a query X-
interpolant of 7. On the other hand, the TBox 7" = {A C
Ir1Mre. T} given in an extension of ELH" with conjunctions
of roles names is a query X-interpolant of 7.

Besides of exhibiting examples where concept, instance, and
query Y-interpolants are distinct, Example 3 and 4 also show
that even in extremely simple cases E£LH" and a variety of
more expressive DLs are not sufficiently powerful to express
instance and query Y-interpolants of £LH"-terminologies.
Rather surprisingly, there also exist simple examples in which
ELH"-TBoxes are not sufficiently expressive to axiomatize
concept Y-interpolants of £LH"-terminologies.

Example 5. Let ¥ = {Research_Inst, Education_Inst} and

T be

University Research_Inst M Education_Inst

School C
ran(PhD_from) C

Then there does not exist an £LH"-TBox that is a concept
Y-interpolant of 7. Intuitively, the reason is that there is no
ELHE-TBox which follows from 7 and has the following

infinite set of Y-consequences (which are consequences of
7).

IPhD_from.(School M A) C 3PhD_from.(University 1 A),

where A € X. On the other hand, the TBox 7' =
{ran(PhD_from) M School C University} given in an exten-
sion of ELH" is a concept E-interpolant of 7.

We now introduce three extensions of £LH" which we
propose to axiomatize concept, instance, and query 3i-
interpolants.

Definition 6 (££°™°0, ££7", ££7™™"), Cr"O_concepts are
constructed using the following syntax rule
C:= D | ran(r) | ran(r)M1 D,

where D ranges over £L-concepts and € Ng. The set of
££7" % inclusions consists of concept inclusions C' T D and
role inclusions r C s, where C is a C""%-concept, D an £L-
concept, and r, s € Ng.

Cr®"-concepts are constructed using the following syntax

e o A4 | ran@) | ¢AD | 3G,
where A € N¢, C, D range over C™"-concepts and r € Ng.
The set of £L£™"-inclusions consists of all concept inclusions
C C D and role inclusions 7 C s, where C'is a C"™"-concept,
D an £L-concept, and r, s € NRg.

Let u (the universal role) be a fresh logical symbol. C"-
concepts are constructed using the following syntax rule

c:= A | ¢nD | 3RC | FuC,

where A € N¢, C, D range over C""%-concepts and R =
riM---Mr, with 71,...,r, € Nr. The set of ££=™-
inclusions consists of concept inclusions C' = D and role in-
clusions r C s, where C'is a C™"-concept, D a C""“-concept,
and r, s € Ng.

An X-TBox is a finite set of X -inclusions, where X ranges
over EL7", ££™0 and £L£7M .
We have the following inclusions:

5£HT 4 gﬁran,O 4 gﬁran 4 5£ran,l‘l7u

where £, < Lo means that every £1-TBox is logically equiv-
alent to some L5-TBox. The semantics of the additional con-
structors is straightforward and given in Figure 1. We regard
the universal role u as a logical symbol (i.e., u & Ng). This
interpretation reflects the fact that the signature of the first-
order translation of Ju.C' coincides with the signature of C.
Observe that the TBox given as a concept X-interpolant in
Example 5 is an EL™™Y_TBox; the instance Y-interpolant
given in Example 3 is an £L£™"-TBox, and the query Y-
interpolant in Example 4 is an ££°™"“-TBox. The univer-
sal role is needed for query Y -interpolants as it was observed
in [Lutz and Wolter, 2009].

We show that the languages introduced in Definition 6 sat-
isfy criteria (R) and (I) from the introduction. (R) is a conse-
quence of the following result.

Education_Inst
Research_Inst



Theorem 7. The following problems are PTIME-complete
for EL™™ - TBoxes T and ABoxes A: decide whether

e T |=CC D, forCC DanEL™™ ""inclusion;
o (7, A) = C(a), where C is an EL-concept.

Deciding whether (T, A) = q(&), where q is a conjunctive
query, is NP-complete, and deciding this problem for fixed
q(@) (knowledge base complexity) is PTIME-complete.

It follows, in particular, that logical equivalence of ££"""""-

TBoxes is decidable in PTime. These complexity results are
exactly the same as for £LH-TBoxes [Rosati, 2007]. For (),
we first provide a very general result relating the distinct in-
separability notions introduced in Definition 1 to insepara-
bility wrt. the new languages and showing that the new lan-
guages are exactly what is required for X-interpolants. Let
X range over the superscripts ran,0 and ran and ran, 1, .
Say that two finite sets of FO-sentences 7; and 75 are X-
inseparable wrt. 3, in symbols 77 E)E( L if T Eae
T, |= a, for all £L5 -inclusions a.

Theorem 8. Let T; and T3 be EL™™™-TBoxes and ¥ an
infinite signature. Then the following holds:

o L =S Liff [, =5 To;
° f]‘l 5127‘21]7‘/]‘1 —ran /]‘2,.
o T, =L L iff T, =" T

We note that the condition that 3 is infinite is required only
for the implication from right to left in Point 1 and exludes
degenerate counterexamples. As we are interested in forget-
ting a finite signature ¥, the complement ¥ is always infinite.

From Theorem 8 we immediately obtain that (I) is met for
the three notions of X-interpolants. For example, assume that
T, and 75 are ELH"-TBoxes such that 7; qu 75 and let
7/ and 7T be query -interpolants in ££™™" of 7; and 75,
respectively. By Theorem 8, 7/ E%’“"—"“ 7, . But then 77 and
T, are logically equivalent: we have 7{ = a forall & € 7
because all such « are ££2"""-inclusions and 73 = a. The

converse direction holds for the same reason.

4 Computing > -interpolants

We give a recursive algorithm computing instance 3-
interpolants for £LH"-terminologies satisfying certain
acyclicity conditions (similar algorithms computing con-
cept and query X-interpolants are given in the technical
report [Konev et al., 2009]). In this section we assume
w.l.0.g. that terminologies are normalized £LH" terminolo-
gies; i.e., ELH"-terminologies 7 consisting of role inclu-
sions and axioms of the form (here, and in what follows, we
writer 7 sif 7 =7 C s)

e Apa3r.B,where B € NcU{T};

e AxiByM---B,, where By,...,B, € N¢;

e dom(s) C Aandran(s) C A, where A € N¢

such that dom(s) C A € 7 and r C7 s imply dom(r) C
AeT;ran(s) C A€ T andr Ty simply ran(r) C A €
T,andr Cy sand s Ty r implies r = s. We give the
acyclicity conditions required for the algorithms to terminate.

The -cover Cx(r) of a role r wrt. a terminology 7 consists

of all s € ¥ such that » C7 s and there does not exist 7’ € &
withr’ # sandr C7 v’/ 7 s.

Definition 9 (X-loop). Let 7 be a normalized ELH"-
terminology and ¥ a signature. Define a relation <5 C (N¢ N
) x (Nc N X) as follows: A <y Bif A,B € ¥ and

(a) A< C € T for some C such that B occurs in C, or

(b) A 3r. A" € T forsome A’ € NcU{T} and r € ¥ such
that dom(r) C B € T, or

(¢c) A Ir.A’ € T for some A’ € Nc U{T} and r such that
there exists s € C=(r) withran(r) C B € 7, ran(s) C B ¢
T.

We say that 7 contains a X-loop if <x contains a cycle.

The following example illustrates this definition and shows
that the existence of X-loops typically entails the non-
existence of X-interpolants, even in FO.

Example 10. Consider the set of inclusions

Elephant T Mammal (D

Mammal C dhas_mother.Mammal (2)

Mammal T Jhas.mam’|_father. T (3)
dom(has_-mam’|_father) C Jhas_mother.Mammal (4)
ran(has_-mam’l_father) = Mammal )
has_mam’l_father C has_mother (6)

and define ELH -terminologies 77 = {(1),(2)}, 7o =

{(1),(3), (@)}, and Ty = {(1), (3), (5, (6)}, and let £, —

sig(7;) \ {Elephant, has_mother}, for i = 1,2,3. Even in

FO, there exists no concept/instance/query ;-interpolant of

7;. To see this observe that in all three cases an infinite ax-

iomatization of such a Y-interpolant is given by the inclusions
n

{Elephant C Jhas_mother. - - - Shas_mother.T | n > 1}.

This theory cannot be finitely axiomatized in FO without ad-
ditional predicates. Observe that 77 contains a 3, -loop as ax-
iom (2) implies Mammal <5, Mammal by clause (a) of Def-
inition 9 for 3;-loops; 73 contains a X)-loop as axioms (3)
and (4) imply Mammal <y, A <y, Mammal by clauses (a)
and (b), where the fresh concept name A is due to normaliza-
tion introducing

dom(has_mam’|_father) C A, A C Jhas_mother.Mammal;

and 73 contains a »3-loop as axioms (3), (5), and (6) imply
Mammal <5, Mammal by clause (c).

Call a concept name A primitive (pseudo-primitive) in a ter-
minology 7 if A does not occur on the left hand side of any
axiom in 7 (does not occur in the form A = C'in 7).

The intuition behind the following algorithm for 3I-
interpolants is as follows: first, one can show using Theo-
rem 8 and a sequent-style proof system for £LH" that un-
der the conditions of Theorem 11 there exists an instance -
interpolant consisting of (in addition to role inclusions and
domain and range restrictions) concept inclusions of the form
C C Aand A C C. In Figure 2, we compute the set Ps(A)
of Cs such that C' C A is in the interpolant by making a case
distinction: in Point 1 A is pseudo-primitive; in Point 2 it is
defined by a conjunction; in Point 3 it is defined as Jr.A’.



For A € sig(7), let Pres(A) consist of all D = ran(r), D =
Ir.T,and D € Ncsuchthat 7 |= D C Aandsig(D) C sig(7)N
3; construct Ps(A) as follows:

e for A pseudo-primitive in 7, Ps(A) = Pres(A).
o if A=B1M---MB, €7,then

Pz(A) = {CBl .- HCBH | (Bl Eial’lchi = Bl)
or (B; € ¥and Cp, € Ps(By))}.

e if A=3r. A’ € T, then Ps(A) is the union of Pres;(A) and
-ifA eX: {354 |sCrrseX)
—ifA ¢gX:{3s.D|sCrrsec%,D € Px(A)}.
Figure 2: Computing Ps(A)

For A € sig(7), let Posts(A) = {B e X nNsig(7) | 7T E AL
B} and construct Qs;(A) as follows:

e for A primitive in 7, Qx(A) = Posts(A).
o if AiB1M---M B, €7T,then

Qs(A) =Posts(A) U | Qs(By).

1<i<n,B;€S
o if Axa3Ir. A" € T, then Qx(A) is the union of Posts(4),
U {@=(B) |dom(s) EB€T,s€%,B X},

rCrs
and
{3s.E, | s € CZ(r)},
where
E, = [l n []Dp n []B

BexX,ran(r)CBeT
ran(s)EBZT, DEQx(B)

DeQx(A) Bex
Alex T l=ran(r)MA’CB

Figure 3: Computing Qx(A)

Points 2 and 3 are recursive as they require the sets Py (B)
when B is used in the definition of A. Y-loops describe ex-
actly the situation in which the recursion does not terminate.
In Figure 3 we compute, in a similar way, the set Qs (A) of
C's such that A C (' is in the interpolant.

Theorem 11. Let X be a finite signature and 7 a normalized
ELH-terminology without Y-loops. Then the algorithms
computing Ps;(A) and Qx(A) in Figures 2 and 3 terminate
for all A € sig(7).

Let 75, consist of the following inclusions, where A, r, and
s range over sig(7) N X:

o rC s, forr 7 s;

e DLC A, forall D € Pg(A);

e AC D,forall D € Qx(A);

e ran(r) C D, for all D € @Qx(B) such that ran(r) C

BeTandBeX;

e dom(r) C D, for all D € Qx(B) such that dom(r)
BeTandBeX;

Then 7y, is an instance Y-interpolant of 7.

1M1

Ps(A) and Qx(A) are both of exponential size, in the worst
case. For Ps(A), this is clear from Point 2 of the construc-
tion: let 7 consist of A = By M ---M B, and A] C B,
(1<i,j<n)andletX ={B; |1 <i <n}. Then Ps(A)is

of size n"™, and one can show that there does not exist a shorter
Y-interpolant in ££™™"*. For Qx(A) this follows from the
fact that one might have to construct a complete unfolding of
the terminology.

If we admit disjunctions in C' in axioms C' T D of X-
interpolants, then we can replace, in Point 2, Ps(A) for A =
By M---M B, €T by the singleton set consisting of

Man [ || Cs.

1<i<n,B;€X 1<i<n,B;€X Cp,cPs(B;)

We will see below that in practice this construction leads to
much smaller ¥-interpolants. However, this improvement
does not come for free. Consider the language ££""™", where
the only difference to ££™" is that C™"-concepts now admit
‘LI’ as a binary concept constructor. Every ££""™"-TBox is
logically equivalent to an (exponentially larger) ££™"-TBox,
and so £L£™™" inherits many desirable properties from £L£"".
However, one can show that, in contrast to ££™", logical
equivalence between £L£"""-TBoxes is coNP-hard.

5 Experiments

We have implemented a prototype called NUI that computes
instance Y-interpolants as presented in Theorem 11. We have
applied NUI to a version of SNOMED CT dated 09 February
2005 (without two left-identities) and the £LH"-fragment of
the release 08.08d of NCI. The first terminology has approx.
380K axioms, almost the same number of concept names, and
56 role names. The £LH" -fragment of NCI has approx. 63K
axioms, approx. 65K concept names, and 123 role names. We
note that the algorithms given above compute (for ease of ex-
position) a large number of redundant axioms and NUI im-
plements a variety of straightforward optimizations.

First observe that neither SNOMED CT nor NCI contain
any X-loops, for any signature . Thus, X-interpolants al-
ways exist and can, in principle, be computed using our algo-
rithm.

In our experiments, we focus on the case of forgetting a
large signature ¥ (and keeping a “small” signature X Nsig(-)),
as this corresponds to many application scenarios. The exper-
iments have been performed on a standard PC with 2.13 GHz
and 3 GB of RAM.

Success rate: Table 1 shows the rate at which NUI suc-
ceeds to compute instance X-interpolants of SNOMED CT
and NCI wrt. various signatures. All failed cases are due to
memory overflow after several hours. For each table entry,
100 samples have been used. The signatures contain con-
cept and role names randomly selected from the full signa-
ture of SNOMED CT (we never forget the role ‘roleGroup’
as this would make forgetting trivial) and NCI, respectively.
Y Nsig(-) always contains 20 role names. For NCI and sig-
natures of size < 4 000, NUI had a 100% success rate.

Size: We compare the size of instance Y-interpolants of
SNOMED CT and NCI computed by NUI with the size of
extracted X N sig(+)-modules; i.e., minimal subsets M of the
respective terminologies which preserve, e.g., inclusions be-
tween X N sig(-)-concepts. We use MEX-modules [Konev et



’ [T Nsig(-)] ‘SNOMEDCT H 1% Nsig(-)] \ NCI \

2000 93.0% 5000 97.0%
3000 84.5% 10000 81.1%
4000 67.0% 15000 72.0%
5000 59.5% 20000 59.2%

Table 1: Success rate of NUI

al., 2008a] of SNOMED CT and T-local modules [Cuenca
Grau et al., 2007] of NCI. The size of Y-interpolants, ter-
minologies, and modules is measured as number of symbols
rather than number of axioms as Y-interpolants can contain
large axioms.

For SNOMED CT, we computed instance Y-interpolants
and XNsig(-)-modules wrt. 100 random signatures with 3 000
concept names and 20 role names in % N sig(+). 48.19%
of instance X-interpolants are smaller than the correspond-
ing modules, whose sizes lie between 2.94% and 3.21% of
SNOMED CT. However, the largest instance Y-interpolant is
more than 11 times larger than SNOMED CT. B

For NCI, we computed instance X-interpolants and X N

sig(-)-modules wrt. 100 random signatures with 7000 con-
cept names and 20 role names in ¥ N sig(-). 74.47% of
the instance X-interpolants are smaller than the correspond-
ing modules, whose sizes lie between 21.62% and 23.17% of
NCI. NUI computes each of those interpolants within 25 min.
However, the largest instance Y-interpolant is more than 12
times larger than NCI.
Forgetting with disjunction: All failures in Table 1 are due
to the fact that Ps(A) is too large. Indeed, if we admit dis-
junction and consider ££"™", then NUI succeeds to compute
all Y-interpolants from Table 1, each within 15 min. More-
over, for NCI, no signature for which NUI fails has been de-
tected. For SNOMED CT, however, NUI still typically fails
for |2 Nsig(+)| > 30000.

6 Discussion

The notion of forgetting in DL ontologies has recently been
investigated in a number of research papers. [Kontchakov et
al., 2008; Wang et al., 2008] consider forgetting in DL-Lite
and [Eiter er al., 2006] investigate in how far forgetting in
DLs can be reduced to forgetting in logic programs. [Konev et
al., 2008b], on which this paper is based, proposes forgetting
for acyclic £ L-terminologies and concept inclusions.

The main novel contributions of this paper are (i) the
first algorithms with experimental results indicating the prac-
tical feasibility of forgetting in DL-terminologies and (ii)
the first systematic analysis of the distinct languages re-
quired to axiomatize X-interpolants for distinct queries lan-
guages. Many open problems remain; e.g., we conjunc-
ture that Y-interpolants of £LH"-terminologies (and possi-
bly even TBoxes) exist in the languages introduced when-
ever they exist in FO. Such a result would provide further
justification for those languages. Secondly, it would be of
interest to prove decidability (and complexity) of the deci-
sion problem whether there exists a X-interpolant for a given
ELH-terminology (TBox). Note that our acyclicity condi-
tions are sufficient but not necessary for the existence of 3-
interpolants.
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