
Decomposing Description Logic Ontologies

Boris Konev
Liverpool University

United Kingdom
konev@liverpool.ac.uk

Carsten Lutz
Universtiy of Bremen

Germany
clu@uni-bremen.de

Denis Ponomaryov
Institute of Informatics Systems

Novosibirsk, Russia
ponom@iis.nsk.su

Frank Wolter
Liverpool University

United Kingdom
wolter@liverpool.ac.uk

Abstract

Recent years have seen the advent of large and com-
plex ontologies, most notably in the medical domain.
As a consequence, structuring mechanisms for ontolo-
gies are nowadays viewed as an indispensible tool. A
basic such mechanism is the automatic decomposition
of the vocabulary of an ontology into independent parts.
In this paper, we study decompositions that are syntax
independent in the sense that the resulting partitioning
depends only on the meaning of the vocabulary items,
but not on the concrete syntactic form of the axioms in
the ontology.
We present the first systematic investigation of de-
compositions of this type in the context of ontologies.
Specifically, we focus on ontologies formulated in de-
scription logics and provide a variety of results that
range from theorems stating the existence of unique
finest decompositions to complexity results and algo-
rithms computing decompositions. We also investigate
the relationship between the existence of unique finite
decompositions and a variant of the Craig interpolation
property called parallel interpolation.

Introduction
The purpose of an ontology in knowledge representation is
to fix the vocabulary of an application domain and to for-
mally describe the meaning of this vocabulary using a logic-
based language. This simple idea has proved to be rather
successful, and consequently a considerable number of on-
tologies have been developed for various application do-
mains. In broad domains such as medicine, ontologies used
in practice can be extremely large; as an example, take the
medical ontology SNOMED CT that covers almost half a
million vocabulary items. Unsurprisingly, the design and
maintenance of logical theories of this size poses serious
challenges and it has long been a major goal of the KR com-
munity to provide support in the form of automated reason-
ing techniques.

Basic reasoning support for ontology design and main-
tenance aims to make explicit the structure of an ontology,
for example by using classification (computing the subcon-
cept/superconcept hierarchy). This is fundamental for an

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ontology designer who can easily lose track of the overall
structure of an ontology—especially when it is constructed
by multiple designers working in parallel as in the case of
SNOMED CT. Making explicit the structure is also essen-
tial when an existing ontology has to be re-engineered due to
changes in the modeled application domain or to customize
it for a novel application—especially when the ontology was
designed by somebody else.

In this paper, we consider a way of analyzing the struc-
ture of an ontology that aims at making explicit the depen-
dencies among vocabulary items in the ontology. Our ap-
proach is based on signature decompositions, a partition of
the signature of an ontology (i.e., of the symbols used to
describe vocabulary items) into parts that are independent
regarding their meaning. Similar kinds of structural anal-
ysis of an ontology have been advocated, e.g. in (d’Aquin
et al. 2009). However, all existing approaches are syntax-
dependent in the sense that two semantically equivalent, but
syntactically different ontologies may yield different decom-
positions. Thus, the quality of the computed signature de-
composition depends on the quality of the representation of
the analyzed ontology (when the goal of the analysis may
actually be to improve the quality of a poorly organized on-
tology).

Our aim is to establish the theoretical foundations for a
purely semantic approach to signature decompositions that
is not syntax-dependent in the above sense. Formally, the ba-
sic notion studied in this paper is the following: a partition
Σ1, . . . ,Σn of the signature of an ontology T formulated in
an ontology language L is a signature decomposition of T
in L if there are ontologies T1, . . . , Tn formulated in L such
that (i) each Ti uses only symbols from Σi and (ii) the union
T1 ∪ · · · ∪ Tn is logically equivalent to T . This notion has
first been proposed by Parikh (1999) and Kourousias and
Makinson (2007) in the context of propositional logic and
belief revision. We emphasize that the ontologies T1, . . . , Tn
used in the definition of signature decompositions need not
be subsets of the original ontology T . Moreover, as we
are interested in decompositions of signatures, we only de-
mand the existence of these ontologies, but do not insist
they are explicitly computed. There is a close relationship
between signature decompositions and approaches to mod-
ularization of ontologies that aim at a partition of the ax-
ioms (rather than signature) of an ontology into independent

parts (Cuenca Grau et al. 2006; Amir and McIlraith 2005;
Stuckenschmidt, Parent, and Spaccapietra 2009). Again,
however, all existing approaches are syntax-dependent and
aim at partitioning the existing axiomatization.

In many cases, the initial version of signature decompo-
sitions defined above can be expected to be too coarse to
be informative. To see this, consider a description logic
(DL) ontology T that consists of the axioms α = (Car v
∃has part.Tire) and β = (Ship v ∃has part.Deck). It is
not difficult to show that, due to the use of the role has part,
the only decomposition of T consists of only one set that
contains the whole signature. From an ontology design per-
spective, though, the ontology T contains cars and ships as
two separate subject areas that should not be ‘merged’ due
to using the general-purpose role has part that, intuitively,
does not belong to any specific subject area. From a logical
viewpoint, has part behaves like a logical symbol much like
the equality symbol or the symbol ⊥ for contradiction. This
example suggests to generalize the initial version of signa-
ture decompositon by adding a set of symbols ∆ that do not
induce dependencies and do not participate in the decom-
position. Formally, a signature ∆-decomposition is defined
just like a signature decomposition, except that each ontol-
ogy Ti is allowed to use symbols from Σi and ∆. This gener-
alization was first proposed by Ponomaryov (2008). In prac-
tice, it may not be easy to determine a suitable ∆. In fact,
we do not expect signature decompositions to be a push-
button technique, but rather envision an iterative and inter-
active process of understanding and improving the structure
of an ontology, where the designer repeatedly chooses sets
∆ and analyzes the impact on the resulting decomposition.

It is important to observe that the definition of a signature
decomposition, both with and without the set ∆, depends on
the language L used to formulate the ontologies T1, . . . , Tn
that realize the signature decomposition (henceforth called
realizations). In principle, this is a point of concern as it
may not be clear which language L is appropriate here; for
example, when decomposing an ontology T given in a DL,
one might expect more fine-grained decompositions if L is
second-order logic (SO) compared to when L is again a DL.
Therefore, the first aim of this paper is to study in how far
decompositions of DL ontologies depend on the language
for the realizations. Fortunately, it turns out that for many
standard DLs, decompositions of TBoxes do not depend on
whether one uses SO or the DL for realizations. The main
tool for proving this and related results is establishing the
parallel interpolation property, a type of interpolation that
has not yet been investigated in the context of ontologies.

In general, one may expect that there can be many dis-
tinct and incomparable signature decompositions of a given
ontology T . This is another point of concern because facing
a large number of incomparable decompositions is likely to
be confusing rather than helpful for an ontology designer.
Therefore and since finer decompositions are clearly more
informative than coarser ones, one would ideally like to have
a unique finest decomposition to work with. Thus, the sec-
ond aim of this paper is to investigate when unique finest
decompositions exist. Fortunately, we can use parallel in-
terpolation to show that this is the case for many standard

Syntax FO EL ALC Short
> x = x X X
⊥ ¬(x = x) X
A A(x) X X
¬C ¬C(x) X
C uD C(x) ∧D(x) X X
∃r.C ∃y (r(x, y) ∧ C(y)) X X

(6 n r C) ∃≥ny (r(x, y) ∧ C(y)) Q
{a} x = a O
r− r(y, x) I

C v D ∀x (C(x)→ D(x)) X X
r v s ∀xy (r(x, y)→ s(x, y)) H

Figure 1: Standard translation

DLs.
Finally, we provide a first analysis of the complexity of

some computational problems related to signature decompo-
sitions in DL ontologies. We show that for many expressive
DLs, these problems are not harder than standard reasoning.
Given that there is a very close connection between signa-
ture decompositions on the one hand, and computationally
very expensive notions such as conservative extensions and
uniform interpolation on the other hand, this result is rather
surprising. We also show that in the lightweight descrip-
tion logic DL-Lite, signature decompositions can typically
be computed in polynomial time. For the lightweight DL
EL, we establish the same result for some restricted, but nat-
ural cases.

Many proofs are omitted and can be found in the full ver-
sion of this paper (Konev et al. 2010).

Preliminaries
Let NC, NR, and NI be countably infinite and mutually dis-
joint sets of concept names (unary predicates), role names
(binary predicates), and individual names. We use NC, NR,
and NI as the vocabulary for second-order logic (SO), first-
order logic (FO), and a variety of DLs. More precisely,
we consider SO (and FO) with equality, the predicates from
NC ∪NR and constants from NI.1 Matching this vocabulary,
second-order quantification is over set variables and binary
relation variables. We use T ⊆ SO and T ⊆fin SO to de-
note that T is a set, respectively finite set, of SO-sentences;
we write T |= ϕ if ϕ is an SO-sentence that is a conse-
quence of T . A set T ⊆ SO is satisfiable iff T has a model.
Two sets T1 ⊆ SO and T2 ⊆ SO are equivalent, in symbols
T1 ≡ T2, if they have the same models or, equivalently, if
T1 |= ϕ for all ϕ ∈ T2 and vice versa. We sometimes write
T1 |= T2 as shorthand for ‘T1 |= ϕ for all ϕ ∈ T2’. The sig-
nature sig(ϕ) of an SO-formula is the set of all predicate and
constant symbols (except equality) used in ϕ. This notion is
lifted to sets of sentences in the obvious way. A fragment of
second-order logic is simply a subset L ⊆ SO.

Description logics can be viewed as fragments of FO. DL
concepts are formed starting from concept names by induc-

1This is only for uniformity with DLs. The results presented in
this paper do not depend on the restricted arity.

tively applying concept constructors such as those shown
in the upper part of Figure 1. The choice of different con-
structors gives rise to different DLs. In the figure, we have
marked the constructors of the basic DLs EL and ALC and
assigned to each additional constructor a letter that allows
the systematic appellation of extended DLs. The extension
I is with a role constructor for inverse roles, not a concept
constructor. When I is present, inverse roles can be used in-
side existential restrictions, number restrictions Q and role
hierarchies H. For details, we refer the reader to (Baader et
al. 2003).

To simplify notation, we identify models of SO (and,
therefore, of FO and DLs) with interpretations I = (∆I , ·I)
consisting of a non-empty domain ∆I and a function ·I that
assigns a set AI ⊆ ∆I to each A ∈ NC, a relation rI over
∆I to each r ∈ NC, and an element aI ∈ ∆I to each a ∈ NI.
The extension CI ⊆ ∆I of a DL concept C is defined by
the standard inductive translation of C into an FO-formula
with one free variable x as shown in Figure 1.

A TBox (or ontology) is a finite set of concept inclusions
(CIs) C v D, where C,D are concepts. An interpretation
satisfies a CI C v D (written I |= C v D) iff CI ⊆ DI

and a TBox T (written I |= T) if I |= C v D for all
C v D ∈ T . In the presence of role hierarchies (indi-
cated by the letter H), TBoxes can also include role inclu-
sions r v s whose semantics can be found in Figure 1. We
will typically not distinguish between DL concepts (resp.
TBoxes) and their FO translations. In particular, we often
regard DL TBoxes as finite sets of FO-sentences (and thus
SO-sentences).

Signature Decomposition
We introduce and illustrate the basic notion of this paper and
identify some of its fundamental properties.

Definition 1 (Signature Decomposition) Let T ⊆fin SO,
∆ ⊆ sig(T) andL a fragment of SO. A partition Σ1, . . . ,Σn
of sig(T)\∆ is called a signature ∆-decomposition of T in
L if there are T1, . . . , Tn ⊆ L such that

• sig(Ti) ⊆ Σi ∪∆ for 1 ≤ i ≤ n;
• T1 ∪ · · · ∪ Tn ≡ T .

In this case, we say that T1, . . . , Tn realize the signature ∆-
decomposition Σ1, . . . ,Σn in L.

For simplicity, we will often speak only of ∆-
decompositions instead of signature ∆-decompositons.
When ∆ = ∅, we simply drop it and speak only of (signa-
ture) decompositions. Note that in contrast to Kourousias
and Makinson (2007), we consider only finitely axiomatized
theories, which suffices for our purposes. Some proofs
actually depend on this assumption.

For any T and ∆, there exists at least one ∆-
decomposition, namely the trivial decomposition consist-
ing only of the single set sig(T) \ ∆. We call a partition
Σ1, . . . ,Σn finer than a partition Π1, . . . ,Πm if they are dis-
tinct and for every i ≤ m there exist i1, . . . , ik ≤ n such that
Πi =

⋃
`≤k Σi` .

Example 2 Let T be the TBox consisting of α1 = (Ball v
Physical Object), α2 = (Table v Physical Object), α3 =
(Ball v ∃has colour.>), α4 = (Table v ∃has colour.>),
α5 = (OrangeBall v Ball).

For any of ∆ = ∅, ∆ = {Physical object} and ∆ =
{has colour}, there are no non-trivial ∆-decompositions
of T because, intuitively, Ball and Table are connected
independently via both Phyical object and has colour.
In many contexts, one would not regard this as a rel-
evant dependency between the two terms. In fact,
for ∆ = {Physical object, has colour} the finest ∆-
decomposition of T is {Ball,OrangeBall}, {Table}, real-
ized by {α1, α3, α5} and {α2, α4}.

One way to extend T such that Ball and Table are
separated already when choosing ∆ = {has colour}
is to add α6 = (∃has colour.> v Physical Object).
In the resulting T ′, the axioms α1, α2 become
redundant and the finest ∆-decomposition is
{Physical Object}, {Ball,OrangeBall}, {Table}, real-
ized by {α6}, {α3, α5}, {α4}.

Finally, note that OrangeBall and Ball cannot be separated
in a non-trivial way because one would have to extend ∆ by
at least one of the two concepts.

Signature decompositions that can be obtained by analyzing
the syntactic form of axioms are a special case of signature
decompositions in the sense of Definition 1. The following
example shows how such syntactic decompositions can be
computed.

Example 3 (Syntactic decomposition) Let T ⊆fin SO
and ∆ ⊆ sig(T). There always exists a (unique) finest
∆-decomposition Σ1, . . . ,Σn that is realized by subsets
T1, . . . , Tn of T . We denote this ∆-decomposition by
sdeco∆(T) and call it the syntactic ∆-decomposition of T .
sdeco∆(T) can be obtained as the partition of sig(T)\∆ in-
duced by the smallest equivalence relation on sig(T)\∆ that
contains all pairs (σ1, σ2) for which there exists α ∈ T with
{σ1, σ2} ⊆ sig(α) \∆. In general, sdeco∆(T) is of course
not the finest decomposition possible. Note that sdeco∆(T)
can be computed in poly-time.

We now establish some basic properties of decompositons
in SO, i.e., decompositions of ontologies based on realiza-
tions T1, . . . , Tn that are formulated in SO. As announced in
the introduction, decompositions in SO play a special role
in this paper as they are easy to work with and turn out
to be equivalent to decompositions in many standard DLs.
To formulate SO decompositions succinctly, we write ∃σ.ϕ
to denote ∃P.ϕ[P/σ], where either σ is a predicate and P
a fresh predicate variable of the same arity as σ, or σ is
an individual constant and P a fresh individual variable.
Clearly, sig(∃σ.ϕ) = sig(ϕ) \ {σ}. ∃Σ.ϕ is shorthand for
∃σ1 · · · ∃σn.ϕ if Σ = {σ1, . . . , σn}.
Theorem 4 (Characterization) Let T ⊆fin SO and ∆ ⊆
sig(T). A partition Σ1, . . . ,Σn of sig(T) \∆ is a signature
∆-decomposition of T in SO iff

{∃Σ1.
∧
ϕ∈T

ϕ, · · · ,∃Σn.
∧
ϕ∈T

ϕ} |= T (∗)

where Σi :=
⋃

1≤j≤n,j 6=i Σj .

Proof. “⇒”. Assume that the partition Σ1, . . . ,Σn of
sig(T) \ ∆ is a ∆-decomposition of T in SO realized by
T1, . . . , Tn. To show that (∗) holds, let I be a model of the
left-hand side of (∗). Then I is a model of Ti for 1 ≤ i ≤ n:
since I |= ∃Σi.

∧
ϕ∈T ϕ, there is a modelJ of T that agrees

with I on the interpretation of all symbols from Σi ∪ ∆;
since T |= T1 ∪ · · · ∪ Tn, we have J |= Ti and due to
sig(Ti) ⊆ Σi ∪ ∆, it follows that I |= Ti as stated. Thus
I |= T1 ∪ · · · ∪ Tn and T1 ∪ · · · ∪ Tn |= T yields that I is a
model of T , as required.

“⇐” If (∗) holds, then Ti = {∃Σi.
∧
ϕ∈T ϕ}, 1 ≤ i ≤ n,

clearly realize Σ1, . . . ,Σn. o

As a consequence of the proof of Theorem 4, for each
decomposition Σ1, . . . ,Σn in SO, there exists a realiza-
tion of the canonical (though rather uninformative) form
Ti = {∃Σi.

∧
ϕ∈T ϕ}, 1 ≤ i ≤ n. Clearly, this canon-

ical form relies on second-order quantifiers and does not
exist in (fragments of) FO. As a first application of Theo-
rem 4, one can show that there always exists a unique finest
∆-decomposition in SO.

Theorem 5 (Unique Finest Decomposition) Let T ⊆fin
SO, ∆ ⊆ sig(T), and let Σ1, . . . ,Σn and Π1, . . . ,Πm be ∆-
decompositions of T in SO. Then the partition Σi∩Πj for all
i, j with Σi ∩Πj 6= ∅ of sig(T) \∆ is a ∆-decomposition of
T in SO. Thus, there exists a unique finest ∆-decomposition
of T in SO.

In the following example, we compute the finest ∆-
decomposition in SO of concept hierarchies.

Example 6 Let T be a concept hierarchy, i.e., a finite set of
inclusions A v B between concept names A,B. A realiza-
tion of the unique finest ∆-decomposition in SO of T is ob-
tained by first adding to T all CIs A v B with T |= A v B
that contain at most one non-∆ symbol. Then remove from
the resulting TBox all A v B with two non-∆-symbols for
which there exists D ∈ ∆ with A v D,D v B ∈ T ,
and denote by T ′ the resulting TBox. It can be shown that
sdeco∆(T ′) is the unique finest ∆-decomposition of T in
SO which, in this case, is realized using again a concept hi-
erarchy and no second-order quantifiers.

Although there is always a unique finest decomposition in
SO, the theories that realize this (finest) decomposition are
generally not uniquely determined. To see this, consider the
TBox T = {> v AuB1uB2} and let ∆ = {A}. Then the
unique finest ∆-decomposition {B1}, {B2} is realized by
both {> v A uB1}, {> v B2} and {> v B1}, {> v A u
B2}. Clearly, there are no two sets in these two realizations
that are logically equivalent.

We now present a condition under which realizations are
unique, for many fragments of SO. Say that T1, T2 ⊆ L
are ∆-inseparable w.r.t. L if, and only if, T1 |= ϕ iff
T2 |= ϕ for all ϕ in L such that sig(ϕ) ⊆ ∆. Clearly, if
∆ contains the signatures sig(T1) and sig(T2), then T1 and
T2 are ∆-inseparable w.r.t. L iff they are logically equiv-
alent. Otherwise, ∆-inseparability is weaker than logical

equivalence and is an extension of the notion of a con-
servative extension (for which, in addition to being ∆-
inseparable, it is required that T1 ⊆ T2 and ∆ = sig(T1))
that has been used to develop a formal framework for mod-
ular ontologies and module extraction (Konev et al. 2009;
Lutz and Wolter 2010). Note that for the canonical re-
alization Ti = {∃Σi.

∧
ϕ∈T ϕ}, 1 ≤ i ≤ n, of Theo-

rem 4 we have that Ti, Tj are ∆-inseparable w.r.t. SO for
all 1 ≤ i, j ≤ n.

Definition 7 (Unique Decomposition Realizations) Let L
be a fragment of SO. We say that L has unique decompo-
sition realizations (UDR) if for all satisfiable T ⊆fin L and
all finite L-realizations T1, . . . , Tn and T ′1 , . . . , T ′n of a ∆-
decomposition of T such that

• Ti, Tj are ∆-inseparable w.r.t. L for i, j ≤ n and
• T ′i , T ′j are ∆-inseparable w.r.t. L for i, j ≤ n,

we have Ti ≡ T ′i for all i ≤ n.

UDR has interesting consequences. For example, if
T1, . . . , Tn satisfy the conditions of Definition 7 and L
has UDR, then one can show that T is a conservative ex-
tension of each Ti (i.e., Ti |= ϕ iff T |= ϕ for all ϕ
with sig(ϕ) ⊆ sig(Ti)). Thus, realizations satisfy the ba-
sic conditions for logic-based ontology modules as pro-
posed and discussed in (Cuenca Grau et al. 2006; 2008;
Konev et al. 2009).

Theorem 8 SO has UDR.

One can show that the canonical realization provided by
Theorem 4 satisfies the conditions of Definition 7 for SO.
Therefore, by Theorem 8, all realizations of a given ∆-
decomposition that satisfy the conditions of Definition 7 for
SO are equivalent to its canonical realization.

In this section, we have seen that decompositions in SO
have a variety of desirable properties. The aim of the next
section is to investigate in how far these are also enjoyed by
decompositions in DLs.

Signature decompositions and parallel
interpolation in DLs

By definition, if L1 is a fragment of L2, then every ∆-
decomposition of some T in L1 is a ∆-decomposition of
T in L2. In particular, every ∆-decomposition of T in some
fragment of SO is a ∆-decomposition of T in SO. In this
section, we show that for many DLs the converse implica-
tion holds as well and that, therefore, DLs inherit many of
the desirable properties of decompositions in SO.

Definition 9 (L-decompositions = SO-decompositions)
Let L be a fragment of SO. We say that L-decompositions
coincide with SO-decompositions if for every T ⊆fin L
and every signature ∆ ⊆ sig(T), the ∆-decompositions of
T in L coincide with the ∆-decompositions of T in SO.

Before we provide methodologies for proving this property
for a wide range of DLs, we provide a counterexample show-
ing that ALCO-decompositions do not coincide with SO-
decompositions.

Example 10 Let ∆ = ∅ and T consist of the ALCO-
inclusions

{a} v (∃r.¬{a}) u (∀r.¬{a}), > v {b} t {b′},

¬{a} v (∃r.{a}) u (∀r.{a}), {a′} v {a′}.
By the CI > v {b}t {b′}, each model of T has at most two
domain elements. Using the two CIs involving a it is, there-
fore, easy to see that T axiomatizes the class of two-element
interpretations in which b, b′ denote distinct elements and r
is a symmetric and irreflexive relation that connects the two
domain elements. In particular, T “says nothing” about a
and a′. Thus, the finest ∆-decomposition in SO (and FO)
of T is {a}, {a′}, {r}, {b, b′}. In contrast, one can show
that there is no finer ∆-decomposition of T in ALCO than
sdeco∆(T) which coincides with {a, r}, {a′}, {b, b′}. An-
other ∆-decomposition of T in ALCO, which is incompat-
ible with sdeco∆(T), is given by {a′, r}, {a}, {b, b′}. It fol-
lows thatALCO TBoxes do not always have a unique finest
∆-decomposition in ALCO.

We now introduce an interpolation property that is not only
sufficient to prove that SO-decompositions coincide with L-
decompositions, but also implies UDR.

Definition 11 (Parallel Interpolation) LetL be a fragment
of SO, (T1, T2) be two sets of SO-sentences, α an SO-
sentence with T1 ∪ T2 |= α, and ∆ a signature. A pair
(T ′1 , T ′2) with T ′i ⊆ L for i = 1, 2 is called a ∆-parallel
interpolant of (T1, T2) and α in L if the following conditions
hold:

• Ti |= T ′i for i = 1, 2;
• sig(T ′i) \∆ ⊆ sig(Ti) ∩ sig(α) for i = 1, 2;
• T ′1 ∪ T ′2 |= α.

L has the parallel interpolation property (PIP) if for all
T1, T2 ⊆ L, all α ∈ L, and all signatures ∆ such that

1. sig(T1) ∩ sig(T2) ⊆ ∆,
2. T1 ∪ T2 |= α,
3. T1 and T2 are ∆-inseparable w.r.t. L,

there exists a ∆-parallel interpolant of (T1, T2) and α in L.

The main reason for studying parallel interpolation is the
following result.

Theorem 12 Let L be a fragment of SO with the PIP. Then

1. L-decompositions coincide with SO-decompositions.
2. L has UDR.

In particular, every T ⊆fin L has a unique finest ∆-
decomposition in L.

Proof. (Sketch for Point 1) Assume that Σ1,Σ2 is a ∆-
decomposition in SO of T . It follows from Theorem 4
that {∃Σ2.

∧
ϕ∈T ϕ,∃Σ1.

∧
ϕ∈T ϕ} |= T . Let S1 and S2

be the subsets of L obtained from T by replacing all predi-
cates in Σ2 and Σ1, respectively, by fresh predicates. Then
S1∪S2 |= T and the componentwise union of the ∆-parallel
interpolants of (S1,S2) and α in L, α ∈ T , realizes Σ1,Σ2

in L. o

The proof shows that an algorithm computing ∆-parallel in-
terpolants in L can be directly employed to construct a re-
alization in L of a given ∆-decomposition. As the focus of
this paper is on signature decompositions rather than real-
izations, we concentrate on proving the PIP and leave the
computation of ∆-parallel interpolants for future work.

In FO, it is easy to prove the equivalence of the PIP
and the standard Craig interpolation property (Parikh 1999;
Kourousias and Makinson 2007). Unfortunately, this is not
the case for DLs because the proof uses the fact that FO-
sentences are closed under Boolean operations and this typi-
cally does not hold for DLs (e.g., there does not exist a TBox
T in ALC that is equivalent to ¬(> v A)). This also im-
plies that recent results on the existence and computation
of Craig interpolants in DL using tableaux are not directly
applicable (Seylan, Franconi, and de Bruijn 2009). Never-
theless, it turns our that many DLs have the PIP:

Theorem 13 The following DLs have the PIP: EL, ELH,
ALC, ALCI, ALCQ, ALCQI.

With the exception of ELH, for which a proof is given in the
full version of this paper, Theorem 13 is proved by employ-
ing known results regarding the interpolation and Robinson
joint consistency properties of DLs. Namely, let L be a set
of sentences in FO. We say that L has the Robinson Joint
Consistency Property (RJCP) if the following holds for all
T1, T2 ⊆ L and all signatures ∆: if sig(T1) ∩ sig(T2) ⊆ ∆
and T1 and T2 are ∆-inseparable w.r.t. L, then

T1 ∪ T2 |= α ⇔ T1 |= α

for all sentences α in L with sig(α) ⊆ sig(T1). We say
that L has the Boolean Craig Interpolation Property (BCIP)
if for all T ⊆ L and all Boolean combinations ϕ of L-
sentences the following holds: if T |= ϕ, then there ex-
ists a Boolean combination ψ of L-sentences with sig(ψ) ⊆
sig(T)∩sig(ϕ) such that T |= ψ and ψ |= ϕ. Finally, we say
that L has the disjoint union property if the following holds
for all T ⊆ L: for all families Ii, i ∈ I , of interpretations
the following conditions are equivalent:
• all Ii, i ∈ I , are models of T ;
• the disjoint union of all Ii, i ∈ I , is a model of T .
Note that EL, ELH,ALC,ALCQI and all standard dialects
of DL-Lite have the disjoint union property. Examples of
DLs without the disjoint union property are DLs with nomi-
nals or the universal role. Now one can prove the following
equivalences.

Theorem 14 Let L be a fragment of FO with the disjoint
union property. Then the following conditions are equiva-
lent:

• L has the PIP;
• L has RJCP;
• L has the BCIP.

We come to the proof of Theorem 13: the PIP of EL follows
from Theorem 14 and its RJCP proved in (Lutz and Wolter
2010). The PIP of ALC, ALCQ, ALCI, and ALCQI fol-
lows from Theorem 14 and their BCIP proved in (Konev et
al. 2009). It remains to apply Theorem 14.

It is interesting to observe that the addition of role inclu-
sions to EL preserves the PIP. This is true for DL-Lite (see
the analysis below) as well, but expressive DLs with role
inclusions typically do not have the PIP:

Example 15 ALCH does not have the PIP. Let ∆ =
{r1, r2}, α = ∀r1.A v ∃r2.A, T1 = {> v ∃r1.> u
∃r2.>}, and T2 = {s v r1, s v r2,> v ∃s.>}. Then
T1 ∪ T2 |= α but there does not exist a ∆-parallel inter-
polant of (T1, T2) and α in ALCH. We note that it remains
an open problem whether ALCH-decompositions coincide
with SO-decomposition.

We now show how the PIP can be restored for expressive
DLs with role inclusions and/or nominals by including into
∆ all role and individual names. To obtain the PIP in the
presence of nominals we take, in addition, the @-operator
from hybrid logic (Areces and ten Cate 2006) (an alternative
approach to restoring the PIP is to admit Boolean TBoxes or,
equivalently, the universal role). Given a DL L, we denote
by L@ the DL obtained from L by adding the @-operator as
a new concept constructor: if a is an individual name and C
an L@-concept, then @aC is an L@ concept. In every inter-
pretation I, (@aC)I = ∆I if aI ∈ CI and (@aC)I = ∅
otherwise. The following theorem can now be proved by ex-
tending results and techniques introduced in (ten Cate 2005;
ten Cate et al. 2006).

Theorem 16 Assume L ∈ {ALCH,ALCHI, ALCO@,
ALCHO@,ALCHIO@}. Then ∆-parallel interpolants
exist in L for every (T1, T2) in L and L-inclusion α such
that 1.–3. from Definition 11 hold and ∆ contains all role
and individual names in T1, T2, α.

In particular, for every T in L and ∆ containing all role
and individual names in T , ∆-decompositions of T in SO
coincide with ∆-decompositions of T in L.

Computing decompositions in expressive DLs
We now exploit the results of the previous two sections to
analyze the computational complexity of the problem of
computing, given T ⊆fin L and ∆ ⊆ sig(T), the finest
∆-decomposition of T in L. We confine ourselves to lan-
guages L in which SO-decompositions coincide with L-
decompositions and, therefore, can assume that unique finest
decompositions always exist and coincide with the finest ∆-
decomposition in SO. In this section, we prove tight com-
plexity bounds for a range of expressive DLs; in the next
section, we consider lightweight DLs.

It will be convenient to reformulate the problem of
computing the finest ∆-decomposition as a decision prob-
lem. Say that a signature Σ (concept C, CI α) is
∆-decomposable w.r.t. a TBox T iff there exists a ∆-
decomposition Σ1, . . . ,Σn of T such that Σ 6⊆ Σi ∪ ∆
(sig(C) 6⊆ Σi ∪∆, sig(α) 6⊆ Σi ∪∆) for all i ≤ n. Decid-
ing ∆-decomposability in L means, given a TBox T in L,
∆ ⊆ sig(T), and σ1, σ2 ∈ sig(T), to check whether σ1 and
σ2 are ∆-decomposable w.r.t. T . ∆-decomposability may
be viewed as the decision problem associated with comput-
ing the finest ∆-decomposition of T : it is not difficult to see
that the finest ∆-decomposition of T coincides with the par-
tition of sig(T)\∆ induced by the equivalence relation∼ de-
fined by setting σ1 ∼ σ2 iff {σ1, σ2} are ∆-indecomposable
w.r.t. T .

Theorem 17 (Complexity of ∆-decomposability)
InALC,ALCI,ALCQ, orALCQI, ∆-decomposability is
EXPTIME-complete.

Proof. We start with the upper bound. Assume a TBox T
in L, a signature ∆ ⊆ sig(T), and σ1, σ2 ∈ sig(T) \ ∆
are given. Enumerate all (exponentially many) partitions
Σ1,Σ2 of sig(T) \∆ such that σ1 ∈ Σ1 and σ2 ∈ Σ2. Then
σ1, σ2 are ∆-decomposable w.r.t. T if, and only if, at least
one these partitions is a ∆-decomposition of T . It is thus
sufficient to show that the latter problem can be decided in
EXPTIME. Assume Σ1,Σ2 is given. By Theorem 4, Σ1,Σ2

is a ∆-decomposition of T in SO (and, therefore, by the PIP,
in L) if, and only if,

{∃Σ2.
∧

CvD∈T

C v D,∃Σ1.
∧

CvD∈T

C v D} |= T .

By introducing fresh predicates for the existentially quan-
tified variables, this condition can be checked using stan-
dard subsumption checking w.r.t. L-TBoxes, thus in EXP-
TIME (Baader et al. 2003). For the EXPTIME-lower bound,
observe that a TBox T is unsatisfiable iff A,B are ∆-
decomposable w.r.t. T ∪ {A v B}, where A,B are concept
names that do not occur in T . Checking unsatisfiability of
TBoxes in L is ExpTime-hard (Baader et al. 2003). o

Clearly, this proof does not provide a practical method for
computing finest decompositions. For expressive DLs we
leave this as future work. Theorem 17 can be generalized in
various directions. In the proof, we did not use any specific
properties of L, except that SO-decompositions coincide
with L-decompositions. Thus the same proof can be used
to show that for any such language L in which subsumption
is at least EXPTIME-hard, checking ∆-decomposability of
two symbols is of the same complexity as subsumption. To-
gether with Theorem 16, we also obtain the following result.

Theorem 18 In ALCH, ALCHI, ALCO@, ALCHO@,
andALCHIO@, ∆-decomposability with ∆ containing all
role and invidual names from the input TBox is EXPTIME-
complete.

For languages L in which reasoning is strictly less complex
than EXPTIME, the proof does not necessarily work because
the enumeration step for the signature partitions requires ex-
ponential time already. In particular, we cannot use the proof
to establish tractability of ∆-decomposability for DLs such
as DL-Lite and EL in which subsumption is tractable.

Decomposition in DL-Lite
Our aim in this section is to establish the PIP and prove
tractability of computing the finest ∆-decomposition for
members of the DL-Lite family of description logics (Cal-
vanese et al. 2009). We start by investigating the basic lan-
guage DL-Litecore and then move via DL-Litehorn and full
DL-Litehorn to DL-LiteHhorn, the extension of DL-Litehorn
with role hierarchies. Using the techniques introduced in
this section, it is rather straightforward to extend the re-
sults presented here to other DL-Lite dialects such as DL-
LiteR, DL-LiteF , and DL-LiteNhorn (Calvanese et al. 2006;
Artale et al. 2009). The algorithms in this and the sub-
sequent section work by first converting the input TBox
T into an equivalent TBox T ′ in which every CI is ∆-
indecomposable w.r.t. T . It is not hard to show that, then,
sdeco∆(T ′) coincides with the finest ∆-decomposition of
T ′, and thus of T . In contrast to the “non-constructive”
second-order approach underlying the proof of Theorem 17,
this also allows to compute a realization T1, . . . , Tn formu-
lated in the same language as the input TBox T .

Recall that basic DL-Lite concepts B are defined as

B ::= > | ⊥ | A | ∃r | ∃r−,
where A ranges over NC and r over NR. DL-Litecore-
inclusions take the form B1 v B2 and B1 v ¬B2, where
B1, B2 are basic DL-Lite concepts. A DL-Litecore-TBox is
a finite set of DL-Litecore-inclusions.

Theorem 19 DL-Litecore has the PIP. For DL-Litecore-
TBoxes T and signatures ∆, one can compute in poly-
nomial time a realization in DL-Litecore of the finest ∆-
decomposition T .

Proof. The algorithm is rather straightforward and almost
identical to the algorithm for concept hierarchies in Exam-
ple 6. First add to T all DL-Litecore CIs B1 v B2 with
T |= B1 v B2 and containing not more than one non-∆-
symbol. Now remove from the resulting TBox all B1 v B2

containing two non-∆-symbols for which there exists a con-
cept D that is either a basic DL-Lite concept or its nega-
tion and such that sig(D) ⊆ ∆ and T |= B1 v D and
T |= D v B2. For the resulting TBox T ′, one can show that
sdeco∆(T ′) coincides with the finest ∆-decomposition of
T . The correctness of this algorithm and the PIP are proved
in the full version, but can also be derived from results for
more expressive DL-Lite dialects given below. o

The construction above can easily be generalized to DL-Lite
dialects admitting no conjunctions on the left-hand side of
CIs such as DL-LiteR, DL-LiteF , and the dialect underpin-
ning OWL2-QL.

The construction of realizations of finest ∆-
decompositions becomes more involved if axioms with

conjunctions on the left hand side of CIs are admitted. To
illustrate our approach, we provide an example.

Example 20 Let ∆ = {D1, D2} and

T = {A1 uA2 v B,A1 v D1, A2 v D2, D1 uD2 v A1}.

In the spirit of the proof of Theorem 19, let us try to re-
place CIs in T to make sdeco∆(T) as fine-grained as pos-
sible. Since no CI except α0 = (A1 u A2 v B) contains
more than one non-∆-symbol, all CIs distinct from α0 are
∆-indecomposable w.r.t. T and replacing them is of no help.
So the only CI we attempt to replace is α0. Intuitively, α0 is
∆-decomposable w.r.t. T because A1 u A2 is equivalent to
a concept not using A1 in T \ {α0}. More precisely,

T \ {α0} |= (A1 uA2) ≡ (D1 uA2).

Thus we can replace in T the CI α0 by D1 u A2 v B. The
resulting TBox realizes the partition {A2, B}, {A1} which
can be shown to be the finest ∆-decomposition of T . Note
that we could have used D1 uD2 uA2 instead of D1 uA2.

Example 20 suggests to extend the algorithm in the proof of
Theorem 19 as follows: for each CI C0 v B0 in a TBox T
under consideration, we check whether C0 can be replaced
by a concept C ′0 with sig(C ′0) \∆ (sig(C0) \∆ such that

T ≡ (T \ {C0 v B0}) ∪ {C ′0 v B0}.

When searching for such a C ′0, it turns out to be sufficient
to consider concepts C ′0 that are equivalent to C0 w.r.t. T \
{C0 v B0}. In other words, it is sufficient to search for an
explicit definition

C0 ≡ C ′0
of C0 that follows from T \ {C0 v B0} and in which C ′0 is
a concept using less non-∆-symbols than C0. If one adopts
this approach, it remains to find a polytime algorithm search-
ing for explicit definitions of a conceptC0 within a signature
Σ. In the case of DL-Lite, one can employ the following
greedy algorithm: for a finite signature Σ, let ConsT ,Σ(C0)
consist of all basic DL-Lite concepts D with sig(D) ⊆ Σ
such that T |= C0 v D. This set is finite (in fact, of linear
size in the size of Σ) because there are only linearly many
basic DL-Lite concepts over any finite signature. It can also
be computed in polynomial time. Thus, we can form the
conjunction over all concepts in ConsT ,Σ(C0), which, for
simplicity, we denote by ConsT ,Σ(C0) as well. In Exam-
ple 20, one obtains

ConsT \{α},{D1,D2,A2}(A1 uA2) = D1 uD2 uA2.

By definition, ConsT ,Σ(C0) is the most specific Σ-concept
subsuming C0 w.r.t. T . Thus, we obtain that there exists
an explicit definition C ′0 of C0 w.r.t. T \ {C0 v B0} using
symbols in Σ only if, and only if,

T \ {C0 v B0} |= ConsT \{C0vB0},Σ(C0) v C0,

and, if this happens to be the case, then
ConsT \{C0vB0},Σ(C0) is such a definition. Finally, to
test whether there is some Σ containing less non-∆-symbols
than sig(C0) with this property, one can go through all

Input: Propositional DL-Litehorn TBox T and signature ∆ ⊆
sig(T).

Apply exhaustively the following transformation rule to each
α = C v B ∈ T such that |sig(α) \∆| ≥ 2.
1. If T \ {α} |= α
2. Then
3. T := T \ {α}.
4. Else
5. If sig(C) 6⊆ ∆, sig(B) 6⊆ ∆, and T |= ConsT ,∆(C) v B
6. Then
7. T := (T \ {α});
8. T := T ∪{ConsT ,∆(C) v B} ∪

S
B′∈ConsT ,∆(C)

{C v B′}

9. If for some X ∈ sig(C) \∆
10. T \ {α} |= ConsT\{α},(sig(C)\{X})∪∆(C) v C
11. Then
12. T := (T \ {α}) ∪ {ConsT\{α},(sig(C)\{X})∪∆(C) v B}

Figure 2: Procedure RewritePropDL-Litehorn

Σ := (∆ ∪ sig(C0)) \ {X} for X ∈ sig(C0) \∆. Since the
finest decomposition is unique, the order in which we go
through such Σ’s does not matter.

We now present the algorithm implementing this ap-
proach in detail. Recall that a DL-Litehorn-inclusion takes
the form B1 u · · · uBm v B, where the B1, . . . , Bm and B
are basic DL-Lite concepts. We first consider propositional
DL-Litehorn, i.e., DL-Litehorn-inclusions and TBoxes not
containing any roles. Of course propositional DL-litehorn is
nothing else but propositional Horn-logic. We first observe
that DL-Litehorn and propositional DL-Litehorn have the PIP;
so it does not make any difference whether we consider sig-
nature decompositions realized in DL-Litehorn or in SO:

Lemma 21 DL-Litehorn and propositional DL-Litehorn have
the PIP.

Proof. It is shown in (Kontchakov, Wolter, and Za-
kharyaschev 2010) that DL-Litehorn has the RJCP. By Theo-
rem 14, DL-Litehorn has the PIP. The same proof works for
propositional DL-Litehorn. o

Theorem 22 For any propositional DL-Litehorn TBox T , the
algorithm in Figure 2 runs in poly-time and outputs an
equivalent TBox T ′ in which every CI is ∆-indecomposable
w.r.t. T . Thus, sdeco∆(T ′) coincides with the finest ∆-
decomposition of T .

Proof. We provide a sketch of the correctness proof; a de-
tailed proof can be found in the full version. Denote by T
the output of the algorithm in Figure 2. It can be verified
that this TBox is equivalent to the original TBox. Moreover
it has the following properties:

(Red) For every α ∈ T with |sig(α) \ ∆| ≥ 2, we have
T \ {α} 6|= α;

(Def) If for some α = (C v B) ∈ T and Σ ⊆ sig(C) \∆
we have

T \ {α} |= ConsT\{α},Σ∪∆(C) v C,

then Σ = sig(C) \∆.
(Int) For any C v B ∈ T such that sig(C) 6⊆ ∆ and

sig(B) 6⊆ ∆, we have

T 6|= ConsT ,∆(C) v B.

Thus, it is sufficient to prove the following

Claim. If a TBox T has properties (Red), (Def), and (Int),
then every CI in T is ∆-indecomposable w.r.t. T .

Proof of Claim. Suppose that some α = C v B ∈ T is
∆-decomposable w.r.t. T . Then either

(a) there exists a signature ∆-decomposition Σ1, Σ2 of T
such that sig(C) ∩ Σi 6= ∅ for i = 1, 2 or

(b) there exists a signature ∆-decomposition Σ1, Σ2 of T
such that sig(C) ∩ Σ2 6= ∅, sig(C) ⊆ Σ2 ∪ ∆, and
sig(B) ⊆ Σ1.

We show that, in both cases, a contradiction can be derived.
We use the following notation for renaming symbols within
concepts, CIs, and TBoxes. Let D be a concept. By DΣ1

we denote the concept obtained from D by replacing every
occurrence of a symbol x ∈ Σ2 with a fresh symbol x′. By
DΣ2 we denote the concept obtained from D by replacing
every occurrence of a symbol x ∈ Σ1 with a fresh symbol
x†. The CIs αΣ1 , αΣ2 and TBoxes TΣ1 , TΣ2 are defined
in the same way. Recall from Theorem 4 that Σ1,Σ2 is a
∆-decomposition of T if, and only if,

TΣ1 ∪ TΣ2 |= α

for all α ∈ T .
Consider now Case (a). By (Red), we have T \ {α} 6|= α.

Therefore,

(T \ {α})Σ1 ∪ (T \ {α})Σ2 6|= α. (1)

On the other hand,

TΣ1 ∪ TΣ2 |= α,

since Σ1,Σ2 is a ∆-decomposition of T . Thus, there exists
i ∈ {1, 2} such that

TΣ1 ∪ TΣ2 |= C v CΣi
(2)

because otherwise, by (1) we would find a (propositional)
model I
• satisfying (T \ {α})Σ1 ∪ (T \ {α})Σ2 and C;
• and refuting CΣ1 , CΣ2 , and B.
For such an I we would have I |= αΣ1 and I |= αΣ2 and,
therefore, I |= TΣ1 ∪ TΣ2 but I 6|= C v B, which is a
contradiction.

Now one can show (the proof is non-trivial and given in
the full paper) that (2) implies

T \ {α} |= ConsT \{α},∆∪(Σi∩sig(C)))(C) v C,
which contradicts (Def).

In Case (b), one can show (the proof is non-trivial) that

T |= ConsT ,∆(C) v B,
which contradicts (Int). o

Input: DL-Litehorn TBox T and signature ∆ ⊆ sig(T).
1. Let TAux := {∃r v ⊥ | T |= ∃r v ⊥}
2. Let T PRes := RewritePropDL-Litehorn (T

P ∪ T PAux,∆
P)

3. Let T ′ be the result of replacing in T PRes expressions of the
form P∃r , for r ∈ NR, with ∃r and P∃r− with ∃r−.

4. Return T ′

Figure 3: Procedure RewriteDL-Litehorn

We now consider DL-Litehorn. The following lemma shows
that reasoning in DL-Litehorn can be reduced to reasoning in
propositional DL-Litehorn. Its proof is similar to the ones of
results in (Artale et al. 2009) relating DL-Lite dialects and
fragments of first-order logic.

Given a DL-Litehorn concept C (CI C v B or TBox T ,
respectively), we consider a propositional DL-Litehorn con-
cept CP (propositional CI CP v BP or propositional TBox
T P) obtained by replacing every occurrence of an expres-
sion of the form ∃r (resp. ∃r−) with its surrogate, a fresh
concept name P∃r (resp. P∃r−). We assume that surrogates
do not occur in the given DL-Litehorn concept (CI, TBox, re-
spectively). Let Σ be a signature. We define its propositional
counterpart as

ΣP = {A | A ∈ Σ, A ∈ NC}∪{P∃r, P∃r− | r ∈ Σ, r ∈ NR}.
The following is readily checked.

Lemma 23 Let C v B be a DL-Litehorn CI, and T a
satisfiable DL-Litehorn TBox such that for all roles r, if
T |= ∃r v ⊥, then ∃r v ⊥ ∈ T . Then T |= C v B
if, and only if, T P |= CP v BP .

Using Lemma 23 one can now prove the correctness of
the algorithm given in Figure 3.

Theorem 24 The algorithm RewriteDL-Litehorn given in Fig. 3
transforms a given DL-Litehorn TBox into an equivalent
DL-Litehorn TBox in which every CI is ∆-indecomposable.

Finally, we consider DL-LiteHhorn, the extension of
DL-Litehorn with role inclusions r v s. This time, we em-
ploy a reduction of DL-LiteHhorn to DL-Litehorn.

Lemma 25 Let T be a DL-LiteHhorn TBox and ∆ a signature.
Let T 0 be the set of CIs in T and set

T ′ = T 0 ∪ {∃r v ∃s,∃r− v ∃s− | r v s ∈ T }.
Then T |= α if, and only if, T ′ |= α for all CIs α in
DL-Litehorn.

Using this reduction, one can show that DL-LiteHhorn has the
PIP and one can prove the correctness of the algorithm given
in Figure 4.

Theorem 26 The algorithm RewriteDL-LiteHhorn
given in Fig. 4

transforms a given DL-LiteHhorn TBox into an equiva-
lent DL-LiteHhorn TBox in which every inclusion is ∆-
indecomposable.

Input: DL-LiteHhorn TBox T and signature ∆ ⊆ sig(T).
1. Let TC be the the set of CI in T
2. Let TR be the the set of RI in T
3. TC := TC ∪ {∃r v ∃s | T |= ∃r v ∃s} ∪ {∃r v ⊥ | T |=
∃r v ⊥}
4. TC := RewriteDL-Litehorn (TC ,∆)
5. For all r v s ∈ TR do
6. If TC |= ∃r v ⊥
7. Then TR := TR \ {r v s}
8. Else if TR |= r v t and TR |= t v s for some t ∈ ∆
9. Then
10. TR := (TR \ {r v s}) ∪ {r v t} ∪ {t v s}
11. Return (TC ∪ TR)

Figure 4: Procedure RewriteDL-LiteHhorn

Decomposition in EL
We have seen already (Theorem 13) that EL and ELH have
the PIP. In this section, we focus on computing the finest
∆-decompositions in EL. In contrast to DL-Lite, we have
partial results only. Call an EL-TBox T role-acyclic if there
does not exist an EL-concept C and role names r1, . . . , rn
with n ≥ 1 such that T |= C v ∃r1. · · · ∃rn.C Note that
acyclic terminologies such as SNOMED CT satisfy this con-
dition.

Theorem 27 Let
1. ∆ = ∅ and T be an arbitrary EL-TBox; or
2. ∆ arbitrary and T be a role-acyclic TBox.
Then the finest ∆-decomposition of T can be computed in
polynomial time.

It remains an open problem whether this results holds for ar-
bitrary EL-TBoxes. We nowgive a sketch of the main ideas
behind the proof for Point 2. First, using results from (Lutz
and Wolter 2010), one can transform any given EL-TBox
T0 and signature ∆0 into a new TBox T and signature ∆
(which is, modulo fresh definitions A ≡ C, equivalent to
T0) such that the finest ∆-decomposition of T can be trans-
formed in linear time into the finest ∆0-decomposition of T0

and such that:
(Dec) if C v D ∈ T , then D is ∆-indecomposable w.r.t. T .
The full version describes how T and ∆ can be computed.
Given T and ∆ satisfying (Dec), we want to proceed in the
same way as for DL-Lite: a CI α = (C v D) ∈ T should be
simplified toC ′ v D ifC ′ is an explicit definition ofC rela-
tive to T \{α} using less non-∆-symbols than C. This sim-
plification will again rely on sets of concepts ConsT ,Σ(C)
consisting of all EL-concepts D such that T |= C v D
and sig(D) ⊆ Σ. However, there are two additional difficul-
ties compared to DL-Lite: first, we do not currently know
whether this approach is complete for arbitrary EL-TBoxes.
For this reason, our procedure is restricted to role-acyclic
TBoxes. Second, even for role-acyclic TBoxes, explicit defi-
nitions can be of exponential size. Even worse and as shown
by the following example, this problem actually manifests

itself in realizations of finest ∆-decompositions, which can
also be of exponential size.

Example 28 Let T consist of Ai ≡ ∃ri.Ai+1 u ∃si.Ai+1,
for 0 ≤ i < n, and An ≡ >. For

∆ = {r0, . . . , rn−1, s0, . . . , sn−1},
the finest ∆-decomposition of T is {A0}, . . . , {An} be-
cause we can define a realization T0, . . . , Tn by setting, in-
ductively,

Tn = {An ≡ >},
Ti = {Ai ≡ ∃ri.Ci+1 u ∃si.Ci+1},

where
Cn = ⊥, Ci = ∃ri.Ci+1 u ∃si.Ci+1.

This realization is of exponential size and that there does
not exist any smaller realization of {A0}, . . . , {An} using
EL-TBoxes: the smallest explicit definition of A0 that does
not use the symbols {A1, . . . , An} corresponds to the con-
cept representing the binary tree with edges si and ri and is,
therefore, of exponential size.

To resolve this problem, we consider realizations not in EL
but in the extension ELν+ of EL by greatest fixpoints intro-
duced and investigated in (Lutz, Piro, and Wolter 2010). In
this language, explicit definitions are always of polynomial
size, they can be computed in polynomial time, and, impor-
tantly, reasoning is still tractable. It will be convenient for us
to use a syntactic variant, ELst, of ELν+ using simulation
quantifiers instead of greatest fixpoints. To define ELst, let
I1 and I2 be interpretations, d1 ∈ ∆I1 , d2 ∈ ∆I2 and Σ a
signature. A relation S ⊆ ∆I1 ×∆I2 containing (d1, d2) is
a Σ-simulation from (I1, d1) to (I2, d2) if
• for all concept names A ∈ Σ and all (e1, e2) ∈ S, if
e1 ∈ AI1 , then e2 ∈ AI2 ;

• for all role names r ∈ Σ, all (e1, e2) ∈ S, and all e′1 ∈
∆I1 with (e1, e

′
1) ∈ rI1 , there exists e′2 ∈ ∆I2 such that

(e2, e
′
2) ∈ rI2 and (e′1, e

′
2) ∈ S.

The relationship between EL and simulations has been in-
vestigated and employed extensively (Lutz and Wolter 2010;
Lutz, Piro, and Wolter 2010). One important connection
is that whenever there is a Σ-simulation from (I1, d1) to
(I2, d2), then d2 is an instance of any Σ-concept of which
d1 is an instance; the converse holds for all interpretations
of finite outdegree. We now define ELst-concepts, CIs, and
TBoxes by simultaneous induction as follows, see (Lutz,
Piro, and Wolter 2010):
• every EL-concept (CI, TBox) is an ELst-concept (CI,

TBox);
• if C is an ELst-concept, T is an ELst-TBox, and Σ a

signature, then ∃simΣ.(T , C) is an ELst-concept;

• if C and D are ELst-concepts, then C v D is an ELst-
CI; a finite set of ELst CIs is an ELst-TBox.

The semantics of simulation operators is defined as fol-
lows. For any interpretation I and d ∈ ∆I , let d ∈
(∃simΣ.(T , C))I iff there exists a model J of T with a
d′ ∈ CJ such that there is a Γ-simulation from (J , d′) to
(I, d), where Γ = (sig(T) ∪ sig(C)) \ Σ.

Example 29 Consider the TBox T from Example 28. Then

T |= Ci ≡ ∃sim{A0, . . . , An}(T , Ai),

for all i ≤ n. Thus, one can realize {A0}, . . . , {An} using
the TBoxes Ti = {Ai ≡ ∃sim{A0, . . . , An}(T , Ai)}.

Now consider the sets of concepts ConsT ,Σ(C). In con-
trast to the DL-Lite case, these sets can clearly be infinite.
In the case of role-acyclic TBoxes, though, one can show
that there always is a finite set of EL-concepts equivalent to
ConsT ,Σ(C). To avoid exponential size as in Example 28,
we now show how to use simulation quantifiers to give a
succinct representation of this finite set.

Even for arbitrary TBoxes, it is possible to prove that the
concept ∃simΓ.(T , C), where Γ = sig(T , C)\Σ, represents
ConsT ,Σ(C) in the sense that

• T |= C v ∃simΓ.(T , C) and
• T |= ∃simΓ.(T , C) v D for all D ∈ ConsT ,Σ(C).
Since for role-acyclic TBoxes ConsT ,Σ(C) is equivalent to
a finite set of EL-concepts, we thus obtain the following.

Proposition 30 Let T be a role-acyclic TBox and C an
EL-concept. For Γ = sig(T , C) \ Σ, the concept
∃simΓ.(T , C) is equivalent to the conjunction over all con-
cepts in ConsT ,Σ(C).

It follows that we can use the linear size concept
∃simΓ.(T , C) in place of ConsT ,Σ(C). The algorithm pre-
sented in Figure 5 is now almost a copy of the transforma-
tion algorithm for propositional DL-Litehorn in Figure 2. As
reasoning in ELst is still tractable (Lutz, Piro, and Wolter
2010), this algorithm runs in polynomial time. A detailed
(and rather involved) proof of the following result is given
in the full paper.

Theorem 31 The algorithm RewriteEL given in Fig. 5
transforms a given role-acyclic EL-TBox satisfying (Dec)
into an equivalent ELst-TBox in which every CI is ∆-
indecomposable.

Conclusion
We have established the theoretical foundations for a syntax-
independent approach to signature decomposition in ontolo-
gies. Our investigation has been inspired by previous work
in propositional logic, belief revision, and abstract logi-
cal calculi (Parikh 1999; Kourousias and Makinson 2007;
Ponomaryov 2008). Of course, a semantic approach leads
to reasoning services of higher complexity than purely syn-
tactic approaches. Still, the results are quite promising:
for many lightweight DLs, the main reasoning problem
is still tractable and for expressive DLs it is not harder
than subsumption checking. This shows that signature
decomposition is computationally much simpler than se-
mantically complete approaches to other modularization
tasks such as module extraction, conservative extensions,
and forgetting/uniform interpolation (Konev et al. 2009;

Input: EL TBox T satisfying (Dec) and signature ∆ ⊆ sig(T).

Apply exhaustively the following transformation rule to each
α = C v B ∈ T such that |sig(α) \∆| ≥ 2.
1. If T \ {α} |= α
2. Then
3. T := T \ {α}.
4. Else
5. If sig(C) 6⊆ ∆, sig(D) 6⊆ ∆, and

T |= ∃sim(sig(T) \∆).(T , C) v D
6. Then
7. T := (T \ {α});
8. T := T ∪ {C v ∃sim(sig(T) \∆).(T , C)}

∪{∃sim(sig(T) \∆).(T , C) v D}
9. If forX ∈ sig(C)\∆ and Γ = {X}∪sig(T)\(∆∪sig(C))
10. T \ {α} |= ∃simΓ.(T \ {α}, C) v C
11. Then
12. T := (T \ {α}) ∪ {∃simΓ.(T \ {α}, C) v D}

Figure 5: Procedure RewriteEL

Lutz, Walther, and Wolter 2007; Cuenca Grau et al. 2008).
Future work will include decomposition experiments with
existing ontologies and the development of guidelines to de-
termine meaningful ∆’s.

References
Amir, E., and McIlraith, S. A. 2005. Partition-based logical
reasoning for first-order and propositional theories. Artifi-
cial Intelligence 162(1-2):49–88.
Areces, C., and ten Cate, B. 2006. Hybrid logics. In Black-
burn, P.; van Benthem, J.; and Wolter, F., eds., Handbook
of Modal Logic. Elsevier.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite family and relations.
Journal of Artificial Intelligence Research 36:1–69.
Baader, F.; Calvanes, D.; McGuiness, D.; Nardi, D.; and
Patel-Schneider, P. 2003. The Description Logic Hand-
book: Theory, implementation and applications. Cam-
bridge University Press.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2006. Data complexity of query answering
in description logics. In Proceedings of KR 2006, 260–270.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini,
M.; Poggi, A.; Rodriguez-Muro, M.; and Rosati, R. 2009.
Ontologies and databases: The DL-Lite approach. In Rea-
soning Web 2009. Springer. 255–356.
Cuenca Grau, B.; Parsia, B.; Sirin, E.; and Kalyanpur, A.
2006. Modularity and web ontologies. In Proceedings of
KR 2006, 198–209.
Cuenca Grau, B.; Horrocks, I.; Kazakov, Y.; and Sattler, U.
2008. Modular reuse of ontologies: Theory and practice.
Journal of Artificial Intelligence Research 31:273–318.
d’Aquin, M.; Schlicht, A.; Stuckenschmidt, H.; and Sabou,
M. 2009. Criteria and evaluation for ontology modulariza-
tion techniques. In Modular Ontologies, volume 5445 of
Lecture Notes in Computer Science. Springer. 67–89.

Konev, B.; Lutz, C.; Walther, D.; and Wolter, F. 2009.
Formal properties of modularisation. In Modular Ontolo-
gies, volume 5445 of Lecture Notes in Computer Science.
Springer. 25–66.
Konev, B.; Lutz, C.; Ponomaryov, D.; and Wolter, F. 2010.
Decomposing description logic ontologies. Technical re-
port, University of Liverpool.
Kontchakov, R.; Wolter, F.; and Zakharyaschev, M. 2010.
Logic-based ontology comparison and module extraction,
with an application to DL-Lite. To appear in Journal of
Artificial Intelligence.
Kourousias, G., and Makinson, D. 2007. Parallel interpo-
lation, splitting, and relevance in belief change. Journal of
Symbolic Logic 72(3):994–1002.
Lutz, C., and Wolter, F. 2010. Deciding inseparability
and conservative extensions in the description logic EL.
Journal of Symbolic Computation 45(2):194–228.
Lutz, C.; Piro, R.; and Wolter, F. 2010. EL-concepts
go second-order: Greatest fixpoints and simulation quan-
tifiers. Submitted.
Lutz, C.; Walther, D.; and Wolter, F. 2007. Conservative
extensions in expressive description logics. In Proc. of IJ-
CAI, 453–458.
Parikh, R. 1999. Beliefs, belief revision, and splitting lan-
guages. In Logic, Language and Information. CSLI Publi-
cations. 266–278.
Ponomaryov, D. 2008. On decomposibility in logical
calculi. Bulletin of the Novosibirsk Computing Center
28:111–120.
Seylan, I.; Franconi, E.; and de Bruijn, J. 2009. Effective
query rewriting with ontologies over dboxes. In Proceed-
ings of IJCAI 2009, 923–925.
Stuckenschmidt, H.; Parent, C.; and Spaccapietra, S., eds.
2009. Modular Ontologies: Concepts, Theories and Tech-
niques for Knowledge Modularization, volume 5445 of
Lecture Notes in Computer Science. Springer.
ten Cate, B.; Conradie, W.; Marx, M.; and Venema, Y.
2006. Definitorially complete description logics. In Pro-
ceedings of KR 2006, 79–89.
ten Cate, B. 2005. Model theory for extended modal lan-
guages. Ph.D. Dissertation, University of Amsterdam.

