
A Model for Learning Description Logic Ontologies Based on Exact Learning

Boris Konev
University of Liverpool

United Kingdom

Ana Ozaki
University of Liverpool

United Kingdom

Frank Wolter
University of Liverpool

United Kingdom

Abstract

We investigate the problem of learning description logic
(DL) ontologies in Angluin et al.’s framework of exact
learning via queries posed to an oracle. We consider
membership queries of the form “is a tuple ~a of indi-
viduals a certain answer to a data retrieval query q in
a given ABox and the unknown target ontology?” and
completeness queries of the form “does a hypothesis
ontology entail the unknown target ontology?”. Given a
DL L and a data retrieval query language Q, we study
polynomial learnability of ontologies in L using data
retrieval queries in Q and provide an almost complete
classification for DLs that are fragments of EL with role
inclusions and of DL-Lite and for data retrieval queries
that range from atomic queries and EL/ELI-instance
queries to conjunctive queries. Some results are proved
by non-trivial reductions to learning from subsumption
examples.

Introduction
Building an ontology is prone to errors, time consuming, and
costly. The research community has addressed this problem in
many different ways, for example, by supplying tool support
for editing ontologies (Musen 2013; Bechhofer et al. 2001;
Day-Richter et al. 2007), developing reasoning support for
debugging ontologies (Wang et al. 2005; Schlobach et al.
2007), supporting modular ontology design (Stuckenschmidt,
Parent, and Spaccapietra 2009), and by investigating auto-
mated ontology generation from data or text (Cimiano, Hotho,
and Staab 2005; Buitelaar, Cimiano, and Magnini 2005;
Lehmann and Völker 2014; Borchmann and Distel 2011;
Ma and Distel 2013). One major problem when building an
ontology is the fact that domain experts are rarely ontology
engineering experts and that, conversely, ontology engineers
are typically not familiar with the domain of the ontology.
An ontology building project therefore often relies on the
successful communication between an ontology engineer
(familiar with the semantics of ontology languages) and a
domain expert (familiar with the domain of interest). In this
paper, we consider a simple model of this communication
process and analyse, within this model, the computational
complexity of reaching a correct and complete domain ontol-
ogy. We assume that

• the domain expert knows the domain ontology and its vo-

cabulary without being able to formalize or communicate
this ontology;

• the domain expert is able to communicate the vocabulary
of the ontology and shares it with the ontology engineer.
Thus, the domain expert and ontology engineer have a com-
mon understanding of the vocabulary of the ontology. The
ontology engineer knows nothing else about the domain.

• the ontology engineer can pose queries to the domain ex-
pert which the domain expert answers truthfully. Assuming
that the domain expert can interpret data in her area of ex-
pertise, the main queries posed by the ontology engineer
are based on data retrieval examples:

– assume a data instanceA and a data retrieval query q(~x)
are given. Is the tuple ~a of individuals a certain answer
to query q(~x) in A and the ontology O?

In addition, we require a way for the ontology engineer to
find out whether she has reconstructed the target ontology
already and, if this is not the case, to request an example
illustrating the incompleteness of the reconstruction. We
abstract from defining a communication protocol for this,
but assume for simplicity that the following query can be
posed by the ontology engineer:

– Is this ontology H complete? If not, return a data in-
stance A, a query q(~x), and a tuple ~a such that ~a is a
certain answer to q(~x) in A and the ontology O and is
not a certain answer to q(~x) in A and the ontologyH.

Given this model, our question is whether the ontology engi-
neer can learn the target ontologyO and which computational
resources are required for this depending on the ontology lan-
guage in which the ontology O and the hypothesis ontology
H are formulated. Our model obviously abstracts from a
number of fundamental problems in building ontologies and
communicating about them. In particular, it makes the as-
sumption that the domain expert knows the domain ontology
and its vocabulary (without being able to formalize it) de-
spite the fact that finding an appropriate vocabulary for a
domain of interest is a major problem in ontology design
(Lehmann and Völker 2014). We make this assumption here
in order to isolate the problem of communication about the
logical relationships between known vocabulary items and
its dependence on the ontology language within which the
relationships can be formulated.

The model described above is an instance of Angluin et
al.’s framework of exact learning via queries to an oracle (An-
gluin 1987). The queries using data retrieval examples can
be regarded as membership queries posed by a learner to an
oracle and the completeness query based on a hypothesisH
can be regarded as an equivalence query by the learner to the
oracle. Formulated in Angluin’s terms we are thus interested
in whether there exists a deterministic learning algorithm
that poses membership and equivalence queries of the above
form to an oracle and that polynomially learns an arbitrary
ontology over a given ontology language.

As usual in the exact learning literature, we consider two
distinct notions of polynomial learnability: polynomial time
learnability and polynomial query learnability. If one can
learn TBoxes1 in a given DL L with a deterministic algo-
rithm using polynomially many polynomial size queries, then
we say that TBoxes in L are polynomial query learnable. If
one can learn TBoxes in L with a deterministic algorithm
in polynomial time, then we say that TBoxes in L are poly-
nomial time learnable. Precise definitions are given below.
Clearly, polynomial time learnability implies polynomial
query learnability. The converse does not hold for arbitrary
learning problems. Intuitively, when studying polynomial
time learnability one takes into account potentially costly
transformations of counterexamples to equivalence queries
provided by the oracle that the learning algorithm is required
to do when it analyses the counterexamples. In contrast, when
studying polynomial query learnability one abstracts from
such intermediate computations and focuses on the learn-
ing protocol itself. It turns out that for the DLs considered
in this paper in many cases there is no difference between
polynomial time and polynomial query learnability; the only
exception, however, is rather interesting and will be discussed
in detail below.

We investigate polynomial learnability for seven DLs and
four query languages: the DLs are EL and its fragments ELlhs

and ELrhs in which complex concepts are allowed only on
the left-hand and, respectively, right-hand side of concept
inclusions. We also consider their extensions ELH, ELHlhs,
and ELHrhs with role inclusions. In addition, we consider the
DL-Lite dialect DL-Lite∃H which is defined as the extension
of ELHrhs with inverse roles. We thus consider significant
fragments of the OWL2 EL and OWL2 QL profiles of the web
ontology language OWL. The introduction of the fragments
ELlhs and ELrhs is motivated by the fact that EL TBoxes
typically cannot be polynomially learned (see below). In
data retrieval examples we consider the following standard
query languages: atomic queries (AQs), EL-instance queries
(EL-IQs), ELI-instance queries (ELI-IQs), and conjunctive
queries (CQs).

Our results regarding polynomial query learnability of
TBoxes are presented in Table 1. In the table, EL(H) ranges
over EL and ELH and (–) denotes that the query language is
not expressive enough to determine a unique (up to logical
equivalence) TBox in the corresponding DL using data re-
trieval examples. Thus, in those cases no learning algorithm
exists, whereas in all other cases one can easily construct a

1In the DL context we identify ontologies with TBoxes.

learning algorithm that makes exponentially many queries.
Note that the table shows that for the EL-dialects polynomial
query learnability does not depend on whether role inclusions
are present (though some proofs are considerably harder with
role inclusions). A particularly interesting result is that ELrhs

TBoxes are polynomially query learnable using IQs in data
retrieval examples but not using CQs. Thus, a more expres-
sive language for communication does not always lead to
more efficient communication.

The bottom row shows polynomial query learnability re-
sults for the case in which concept subsumptions rather than
data retrieval examples are used in the communication be-
tween the learner and the oracle. Except for polynomial query
learnability of ELHlhs (which we prove in this paper), the
results for subsumption are from (Konev et al. 2014).2 Our
polynomial query learnability results for data retrieval ex-
amples are by reductions to learnability using concept sub-
sumptions. Our focus on data retrieval examples rather than
subsumptions is motivated by the observation that domain
experts are often more familiar with querying data in their
domain than with the logical notion of subsumption between
complex concepts.

We now discuss our results for polynomial time learnability.
As mentioned above, all non polynomial query learnability
results transfer to non polynomial time learnability results.
Moreover, in both the subsumption and the data retrieval
frameworks our proofs of positive polynomial query learn-
ability results for ELlhs, ELHlhs, ELrhs, and ELHrhs actually
prove polynomial time learnability. In fact, the only case in
which we have not been able to extend a polynomial query
learnability result to a polynomial time learnability result is
for DL-Lite∃H TBoxes: it remains open whether DL-Lite∃H
TBoxes can be learned in polynomial time using subsumption
or ELI-IQs in data retrieval queries. The reason is interest-
ing: checking whether an ELI-IQ is entailed by a DL-Lite∃H
TBox and ABox is NP-complete in combined complexity
(Kikot, Kontchakov, and Zakharyaschev 2011) and such en-
tailment checks are required in our polynomial query learning
algorithm to transform counterexamples provided by the ora-
cle. It remains open whether our learning algorithm can be
modified in such a way that no such entailment checks are
required. In contrast to DL-Lite∃H, in ELHrhs the correspond-
ing entailment problem is in PTime in combined complexity
(Bienvenu et al. 2013), and so a polynomial time learning
algorithm can use entailment checks.

Finally, we note that the two open problems in Table 1 for
polynomial query learnability are open for polynomial time

2The authors of (Konev et al. 2014) consider polynomial time
learnability only. As polynomial time learnability implies polyno-
mial query learnability, the corresponding results in Table 1 follow.
Note that the learning algorithm for DL-Lite∃H TBoxes given in
(Konev et al. 2014) only shows polynomial query learnability of
DL-Lite∃H TBoxes using subsumption queries but does not show
polynomial time learnability of DL-Lite∃H TBoxes using subsump-
tion queries (it is wrongly assumed that checking T |= C v D is
in PTime for DL-Lite∃H TBoxes T and concept inclusions C v D).
In fact, polynomial time learnability of DL-Lite∃H TBoxes using
subsumption queries is an open problem (see below). All other
polynomial time learnability results in (Konev et al. 2014) hold.

Table 1: Positive (3) and negative (7) results regarding polynomial
query learnability.

Framework EL(H)lhs EL(H)rhs EL(H) DL-Lite∃H

D
at

a AQs 3 – – –
EL-IQs 3 3 7 –
ELI-IQs 3 3 ? 3
CQs 3 7 7 ?

Subsump. 3 3 7 3

learnability as well.
Throughout this paper we focus on polynomial query learn-

ability and only provide a brief discussion of our polyno-
mial time learnability results. A more detailed discussion of
polynomial time learnability as well as other proof details
are provided in an appendix of this paper, available from
http://cgi.csc.liv.ac.uk/∼frank/publ/publ.html

Related Work Apart from Angluin’s classical learning
algorithm for propositional Horn, we highlight investigations
of exact learnability of fragments of FO Horn (Reddy and
Tadepalli 1999; Arias and Khardon 2002; Arias, Khardon,
and Maloberti 2007; Selman and Fern 2011) and, more re-
cently, schema mappings (ten Cate, Dalmau, and Kolaitis
2012). ELHlhs can be seen as a fragment of FO Horn
which, in contrast to many existing approaches, allows re-
cursion and does not impose bounds on the number of vari-
ables per clause. In DL, exact learning has been studied for
the description logic CLASSIC in (Frazier and Pitt 1996;
Cohen and Hirsh 1994) where it is shown that CLASSIC
concept expressions (but not TBoxes) can be learned in poly-
nomial time. In this case, membership queries ask whether
the target concept subsumes a given concept. Related work
on machine learning in DL also include learning DL concept
expressions using refinement operators (Lehmann and Hitzler
2010) and completing knowledge bases using formal concept
analysis (Baader et al. 2007).

All exact learning frameworks for logical theories consid-
ered so far are based on interpretations (Angluin, Frazier,
and Pitt 1992; ten Cate, Dalmau, and Kolaitis 2012; Klar-
man and Britz 2015) or entailments (Frazier and Pitt 1993;
Reddy and Tadepalli 1998; Arias and Khardon 2002). In this
paper we introduce a new class of examples based on certain
answers to data retrieval queries.

Preliminaries
Let NC and NR be countably infinite sets of concept and
role names, respectively. We begin by introducing members
of the EL family of DLs (Baader, Brandt, and Lutz 2005).
An EL concept expression is formed according to the rule
C,D := A | > | C u D | ∃r.C, where A ranges over
NC and r ranges over NR. An EL concept inclusion (CI)
takes the form C v D, where C and D are EL concept
expressions. An EL TBox T is a finite set of EL CIs. An EL
role inclusion (RI) takes the form r v s, where r, s ∈ NR and
an EL RBoxR is a finite set of EL role inclusions. The union
of an EL TBox and an EL RBox is called a ELH TBox. We
also consider the fragments ELlhs and ELrhs of EL in which

concepts on the right-hand side and, respectively, left-hand
side of CIs must be concept names. Thus, ∃r.A v B is an
ELlhs CI but not an ELrhs CI and A v ∃r.B is an ELrhs CI
but not an ELlhs CI. By ELHlhs and ELHrhs we denote the
extension of these fragments with EL RIs.

A role is a role name or an inverse role r− with r ∈ NR.
The language DL-Lite∃H is obtained from ELHrhs by admit-
ting both role names and inverse roles in concept expressions
and in role inclusions and by admitting, in addition to concept
names, basic concepts ∃r.>, with r a role, on the left-hand
side of CIs. Call an EL concept expression using inverse roles
an ELI concept expression. Then DL-Lite∃H coincides with
the extension of the language DL-LiteR (without disjointness
constraints) introduced in (Calvanese et al. 2007) with arbi-
trary ELI concept expressions on the right-hand side of CIs.
The signature ΣT of a TBox T is the set of concept and role
names that occur in T .

In description logic, data are stored in ABoxes. Let NI be
a countably infinite set of individual names. An ABox A is a
finite non-empty set containing assertions A(a) and r(a, b),
where a, b are individuals in NI, A is a concept name and r is
a role. Ind(A) denotes the set of individuals that occur in A.
A is a singleton ABox if it contains only one ABox assertion.

We consider the main query languages for retrieving data
from ABoxes using DL TBoxes. An atomic query (AQ) q
takes the form A(a) or r(a, b), where A ∈ NC, r ∈ NR,
and a, b ∈ NI. An EL-instance query (EL-IQ) q takes the
form C(a) or r(a, b), where C is an EL concept expression,
r ∈ NR and a, b ∈ NI. ELI-instance queries (ELI-IQs) are
defined in the same way by replacing EL concept expressions
with ELI concept expressions. Finally, a conjunctive query
(CQ) q is a first-order sentence ∃~xϕ(~a, ~x), where ϕ is a con-
junction of atoms of the form r(t1, t2) orA(t), where t1, t1, t
can be individual names from ~a or individual variables from
~x. We often slightly abuse notation and denote by AQ the set
of AQs and similarly for EL-IQs, ELI-IQs and CQs.

The size of a concept expression C (TBox T , ABox A,
query q), denoted by |C| (and, respectively, |T |, |A|, and |q|)
is the length of the word that represents it.

The semantics of DLs is defined as usual (Baader et al.
2003). For an interpretation I, we write I |= α to state
that a CI, RI, ABox assertion, or query α is true in I. An
interpretation I is a model of a knowledge base (KB) (T ,A)
if I |= α for all α ∈ T ∪A. We set (T ,A) |= α and say that
α is entailed by (T ,A) if I |= α for all models I of (T ,A).

A learning framework F is a triple (X,L, µ), where X is
a set of examples (also called domain or instance space), L is
a set of learning concepts, and µ is a mapping from L to 2X .
Given a DL L, the subsumption learning framework FS(L),
studied in (Konev et al. 2014), is defined as (X,L, µ), where
L is the set of all TBoxes that are formulated in L; X is the
set of concept and role inclusions α that can occur in TBoxes
of L; and µ(T) is defined as {α ∈ X | T |= α}, for every
T ∈ L. It should be clear that µ(T) = µ(T ′) iff the TBoxes
T and T ′ entail the same set of inclusions, that is, they are
logically equivalent.

For a DL L and query language Q, we study the data re-
trieval learning framework FD(L,Q) defined as (X,L, µ),
where L is again the set of all TBoxes that are formulated in

L; X is the set of data retrieval examples of the form (A, q),
where A is an ABox and q ∈ Q; and µ(T) = {(A, q) ∈
X | (T ,A) |= q}. We only consider data retrieval frame-
works FD(L,Q) in which µ(T) = µ(T ′) iff the TBoxes
T and T ′ are logically equivalent. Note that this is not the
case for the pairs (L,AQ) with L from ELrhs(H), EL(H),
DL-Lite∃H, and for the pair (DL-Lite∃H, EL-IQ) (see Table 1).
For example, for the EL TBoxes T1 = {A v ∃r.>} and
T2 = {A v ∃r.∃r.>} we have (T1,A) |= q iff (T2,A) |= q
for every ABox A and AQ q. Thus, T1 and T2 cannot be
distinguished using data retrieval examples based on AQs
and so EL TBoxes cannot be learned using such examples.

We now give a formal definition of polynomial query learn-
ability within a learning framework. Given a learning frame-
work F = (X,L, µ), we are interested in the exact identifica-
tion of a target learning concept l ∈ L by posing queries to
oracles. Let MEMl,X be the oracle that takes as input some
x ∈ X and returns ‘yes’ if x ∈ µ(l) and ‘no’ otherwise.
We say that x is a positive example for l if x ∈ µ(l) and a
negative example for l if x 6∈ µ(l). Then a membership query
is a call to the oracle MEMl,X . Similarly, for every l ∈ L, we
denote by EQl,X the oracle that takes as input a hypothesis
learning concept h ∈ L and returns ‘yes’, if µ(h) = µ(l),
or a counterexample x ∈ µ(h) ⊕ µ(l) otherwise, where ⊕
denotes the symmetric set difference. An equivalence query
is a call to the oracle EQl,X .

We say that a learning framework (X,L, µ) is exact learn-
able if there is an algorithm A such that for any target l ∈ L
the algorithm A always halts and outputs l′ ∈ L such that
µ(l) = µ(l′) using membership and equivalence queries an-
swered by the oracles MEMl,X and EQl,X , respectively. at
any stage in a run A learning framework (X,L, µ) is poly-
nomial query exact learnable if it is exact learnable by an
algorithm A such that at every step the sum of the sizes of the
inputs to membership and equivalence queries made by A up
to that step is bounded by a polynomial p(|l|, |x|), where l is
the target and x ∈ X is the largest counterexample seen so
far (Arias 2004).

An important class of learning algorithms—in particular,
all algorithms presented in (Konev et al. 2014; Frazier and
Pitt 1993; Reddy and Tadepalli 1998) fit in this class—is the
algorithm in which the hypothesis h of any equivalence query
is of polynomial size in l and such that µ(h) ⊆ µ(l). Then
counterexamples returned by the EQl,X oracles are always
positive. We say that such algorithms use positive bounded
equivalence queries. The learning algorithms studied in this
paper are positive and, therefore, the equivalence queries
posed to the domain expert are in fact completeness queries
that ask whether the hypothesis entails the target TBox.

Polynomial Query Learnability
In this section we prove the positive results presented in Table
1 for the data retrieval setting by reduction to the subsumption
setting. We employ the following result based on (Konev et
al. 2014), except for FS(ELHlhs) which is proved in the
appendix by extending the proof for FS(ELlhs) in (Konev et
al. 2014).

A

r,s

A
A

...

A
s

A
r

s

...

A
s

A
r

r

s
A

...

A
s

A
r

s

...

A
s

A
r

r

r

Figure 1: An ABox A = {r(a, a), s(a, a), A(a)} and its unravel-
ling up to level n.

Theorem 1 The subsumption learning frameworks
FS(ELlhs), FS(ELHlhs), FS(ELrhs), FS(ELHrhs) and
FS(DL-Lite∃H) are polynomial query exact learnable with
membership and positive bounded equivalence queries.

We begin by illustrating the idea of the reduction for ELlhs

and AQs. To learn a TBox from data retrieval examples we
run a learning from subsumptions algorithm as a ‘black box’.
Every time the learning from subsumptions algorithm makes
a membership or an equivalence query we rewrite the query
into the data setting and pass it on to the data retrieval oracle.
The oracle’s answer, rewritten back to the subsumption set-
ting, is given to the learning from subsumptions algorithm.
When the learning from subsumptions algorithm terminates
we return the learnt TBox. This reduction is made possible by
the close relationship between data retrieval and subsumption
examples. For every TBox T and inclusions C v B, one can
interpret a concept expression C as a labelled tree and encode
this tree as an ABoxAC with root ρC such that T |= C v B
iff (T ,AC) |= B(ρC).

Then, membership queries in the subsumption setting can
be answered with the help of a data retrieval oracle due to
the relation between subsumptions and AQs described above.
An inclusion C v B is a (positive) subsumption example
for some target TBox T if, and only if, (AC , B(ρC)) is a
(positive) data retrieval example for the same target T . To
handle equivalence queries, we need to be able to rewrite
data retrieval counterexamples returned by the data retrieval
oracle into the subsumption setting. For every TBox T and
data retrieval query (A, B(a)) one can construct a concept
expression CA such that (T ,A) |= B(a) iff T |= CA v B.
Such a concept expression CA can be obtained by unrav-
elling A into a tree-shaped ABox and representing it as a
concept expression. This unravelling, however, can increase
the ABox size exponentially. Thus, to obtain a polynomial
query bound on the the learning process, CA v D cannot be
simply returned as an answer to a subsumption equivalence
query.

For example, for a target TBox T = {∃rn.A v
B} and a hypothesis H = ∅ the data retrieval query
(A, B(a)), where A = {r(a, a), s(a, a), A(a)}, is a pos-
itive counterexample. The tree-shaped unravelling of A
up to level n is a full binary tree of depth n, as shown
in Fig. 1. On the other hand, the non-equivalence of T
and H can already be witnessed by (A′, B(a)), where
A′ = {r(a, a), A(a)}. The unravelling of A′ up to level
n produces a linear size ABox {r(a, a2), r(a2, a3), . . . ,
r(an−1, an), A(a), A(a2), . . . , A(an)}, corresponding to

the left-most path in Fig. 1, which, in turn, is linear-size
w.r.t. the target inclusion ∃rn.A v B. Notice that A′ is ob-
tained from A by removing the s(a, a) edge and checking,
using membership queries, whether (T ,A′) |= q still holds.
In other words, one might need to ask further membership
queries in order to rewrite answers to data retrieval equiv-
alence queries given by the data retrieval oracle into the
subsumption setting.

We address the need of rewriting counterexamples by in-
troducing an abstract notion of reduction between different
exact learning frameworks. To simplify, we assume that both
learning frameworks use the same set of learning concepts L
and only consider positive bounded equivalence queries. We
say that a learning framework F = (X,L, µ) positively poly-
nomial query reduces to F′ = (X ′,L, µ′) if, for any l, h ∈ L,
µ(h) ⊆ µ(l) if, and only if, µ′(h) ⊆ µ′(l); and for some
polynomials p1(·), p2(·) and p3(·, ·) there exist a function
fMEM : X ′ → X , translating an F′ membership query to F,
and a partial function fEQ : L × L × X → X ′ defined for
every (l, h, x) such that |h| ≤ p1(|l|), translating an answer
to an F equivalence query to F′, such that:

• for all x′ ∈ X ′ we have x′ ∈ µ′(l) iff fMEM(x′) ∈ µ(l);

• for all x ∈ X we have x ∈ µ(l) \ µ(h) iff fEQ(l, h, x) ∈
µ′(l) \ µ′(h);

• |fMEM(x′)| ≤ p2(|x′|);

• the sum of sizes of inputs to queries used to compute
fEQ(l, h, x) is bounded by p3(|l|, |x|), |fEQ(l, h, x)| ≤
p3(|l|, |x|) and l can only be accessed by calls to the oracle
MEMl,X .

Note that even though fEQ takes h as input, the polynomial
query bound on computing fEQ(l, h, x) does not depend on
the size of h as fEQ is only defined for h polynomial in the
size of l.

Theorem 2 Let F = (X,L, µ) and F′ = (X ′,L, µ′) be
learning frameworks. If there exists a positive polynomial
query reduction from F to F′ and a polynomial query learning
algorithm for F′ that uses membership queries and positive
bounded equivalence queries then F is polynomial query
exact learnable.

We use Theorem 2 to prove polynomial query learnability
of FD(DL-Lite∃H, ELI-IQ) and FD(ELHlhs,AQ) by reduc-
tion to FS(DL-Lite∃H) and, respectively, FS(ELHlhs). The
remaining positive results in Table 1 are similar and given in
the appendix.

The function fMEM required in Theorem 2 is easily de-
fined by setting fMEM(r v s) := ({r(a, b)}, s(a, b)) (for
distinct a, b ∈ NI) and fMEM(C v D) := (AC , D(ρC)) since
(T , {r(a, b)}) |= s(a, b) iff T |= r v s and (T ,AC) |=
D(ρC) iff T |= C v D.

Conversely, given a positive counterexample (A, r(a, b))
(that is, (T ,A) |= r(a, b) and (H,A) 6|= r(a, b) for target
TBox T and hypothesisH) there always exists s(a, b) ∈ A
such that ({s(a, b)}, r(a, b)) is a positive counterexample as
well. Thus, we define fEQ(T ,H, (A, r(a, b))) := s v r. In
what follows we define the image of fEQ for counterexamples
of the form (A, C(a)).

Algorithm 1 Reducing a positive counterexample
1: function REDUCECOUNTEREXAMPLE(A, C(a))
2: Find a role saturated and parent/child merged C(a)
3: if C = C0 u ... u Cn then
4: Find Ci, 0 ≤ i ≤ n, such that (H,A) 6|= Ci(a)
5: C := Ci
6: if C = ∃r.C ′ and there is s(a, b) ∈ A such that
7: (T , {s(a, b)}) |= r(a, b) and (T ,A) |= C ′(b) then
8: REDUCECOUNTEREXAMPLE(A, C ′(b))
9: else

10: Find a singleton A′ ⊆ A such that
11: (T ,A′) |= C(a) but (H,A′) 6|= C(a)
12: return (A′,C(a))

Construction of fEQ for FD(DL-Lite∃H, ELI-IQ) Given
a target T and hypothesisH such that T |= H, Algorithm 1
transforms every positive counterexample (A, C(a)) into
a positive counterexample (A′, D(b)) where A′ ⊆ A is a
singleton ABox (i.e., of the form {A(a)} or {r(a, b)}). Using
the equivalences (T , {A(b)}) |= D(b) iff T |= A v D and
(T , {r(b, c)}) |= D(b) iff T |= ∃r.> v D, we then obtain
a positive subsumption counterexample which will be the
image of (T ,H, (A, C(a))) under fEQ.

Given a positive data retrieval counterexample (A, C(a)),
Algorithm 1 exhaustively applies the role saturation and
parent-child merging rules introduced in (Konev et al. 2014).
We say that an ELI-IQ C(a) is role saturated for (T ,A)
if (T ,A) 6|= C ′(a) whenever C ′ is the result of replacing
an occurrence of a role r by some role s with T 6|= r v s
and T |= s v r. To define parent/child merging, we identify
each ELI concept C with a finite tree TC whose nodes are
labeled with concept names and edges are labeled with roles.
For example, if C = ∃t.(A u ∃r.∃r−.∃r.B) u ∃s.> then
Fig. 2a illustrates TC . Now, we say that an ELI-IQ C(a) is
parent/child merged for T and A if for nodes n1, n2, n3 in
TC such that n2 is an r-successor of n1, n3 is an s-successor
of n2 and T |= r− ≡ s we have (T ,A) 6|= C ′(a) if C ′ is the
concept that results from identifying n1 and n3. For instance,
the concept in Fig. 2c is the result of identifying the leaf
labeled with B in Fig. 2b with the parent of its parent. The
corresponding role saturation and parent-child merging rules
are formulated in the obvious way.

In Algorithm 1 the learner uses membership queries
in Lines 2, 7 and 10-11. We present a run for T =
{A v ∃s.B, s v r} and H = {s v r}. Assume the
oracle gives as counterexample (A, C(a)), where A =
{t(a, b), A(b), s(a, c)} andC(a) = ∃t.(Au∃r.∃r−.∃r.B)u
∃s.>(a) (Fig. 2a). Role saturation produces C(a) = ∃t.(Au
∃s.∃s−.∃s.B) u ∃s.>(a) (Fig. 2b). Then, applying par-
ent/child merging twice we obtain C(a) = ∃t.(A u ∃s.B) u
∃s.>(a) (Fig. 2c and 2d).

Since (H,A) 6|= ∃t.(A u ∃s.B)(a), after Lines 3-5, Algo-
rithm 1 updates C by choosing the conjunct ∃t.(A u ∃s.B).
As C is of the form ∃t.C ′ and there is t(a, b) ∈ A such
that (T ,A) |= C ′(b), the algorithm recursively calls the
function “ReduceCounterExample” with A u ∃s.B(b). Now,
since (H,A) 6|= ∃s.B(b), after Lines 3-5, C is updated

A
t

B

s

r

r

r

s

t

B

s

s

s

A

(a) (b)
s

A
s t

B
s

s t
A
s
B

(c) (d)

Figure 2: Concept C being role saturated and parent/child merged.

to ∃s.B. Finally, C is of the form ∃t.C ′ and there is no
t(b, c) ∈ A such that (T ,A) |= C ′(c). So the algorithm
proceeds to Lines 10-11, where it chooses A(b) ∈ A. Since
(T , {A(b)}) |= ∃s.B(b) and (H, {A(b)}) 6|= ∃s.B(b) we
have that T |= A v ∃s.B andH 6|= A v ∃s.B.

The following two lemmas state the main properties of
Algorithm 1. A detailed analysis is given in the appendix.

Lemma 3 Let (A, C(a)) be a positive counterexample. Then
the following holds:

1. if C is a basic concept then there is a singleton A′ ⊆ A
such that (T ,A′) |= C(a);

2. if C is of the form ∃r.C ′ and C is role saturated and par-
ent/child merged then either there is s(a, b) ∈ A (where
r, s are roles) such that (T , {s(a, b)}) |= r(a, b) and
(T ,A) |= C ′(b) or there is a singleton A′ ⊆ A such
that (T ,A′) |= C(a).

Lemma 4 For any DL-Lite∃H target T and any DL-Lite∃H
hypothesis H with size polynomial in |T |, given a positive
counterexample (A, C(a)), Algorithm 1 computes with poly-
nomially many polynomial size queries in |T |, |A| and |C|
a positive counterexample (A′, D(b)), where A′ ⊆ A is a
singleton ABox.

Proof. (Sketch) Let (A, C(a)) be the input of “Reduce-
CounterExample”. The computation of Line 2 requires
polynomially many polynomial size queries in |C| and |T |.
If C has more than one conjunct then it is updated in Lines
3-5, so C becomes either (1) a basic concept or (2) of the
form ∃r.C ′. By Lemma 3 in case (1) there is a singleton
A′ ⊆ A such that (T ,A′) |= C(a), computed by Lines
10-11 of Algorithm 1. In case (2) either there is a singleton
A′ ⊆ A such that (T ,A′) |= C(a), computed by Lines
10-11 of Algorithm 1, or we obtain a counterexample with a
refined C. Since the size of the refined counterexample is
strictly smaller after every recursive call of “ReduceCoun-
terExample”, the total number of calls is bounded by |C|. o

Using Theorem 1 and Theorem 2 we now obtain that
FD(DL-Lite∃H, ELI-IQ) is polynomial query exact learn-
able.

Construction of fEQ for FD(ELHlhs,AQ) We first trans-
form a positive counterexample of the form (A, A(a)) into a
positive counterexample of the form (A′, B(ρA′)) with A′ a
tree-shaped ABox rooted in ρA′ . We then define the image of
(T ,H, (A, A(a))) under fEQ as CA′ v B, where CA′ is the
EL concept expression corresponding to A′. Our algorithm

Algorithm 2 Minimizing an ABox A
1: function MINIMIZEABOX(A)
2: Concept saturate A withH
3: for every A ∈ NC ∩ ΣT and a ∈ Ind(A) such that
4: (T ,A) |= A(a) and (H,A) 6|= A(a) do
5: Domain Minimize A with A(a)
6: Role Minimize A with A(a)

7: return (A)

is based on two operations: minimization, computed by Algo-
rithm 2, and cycle unfolding. Algorithm 2 minimizes a given
ABox with the following three rules:

(Concept saturate A withH) If A(a) /∈ A and (H,A) |=
A(a) then replace A by A ∪ {A(a)}, where A ∈ NC ∩ ΣT
and a ∈ Ind(A).

(Domain Minimize A with A(a)) If (A, A(a)) is a coun-
terexample and (T ,A−b) |= A(a) then replace A by A−b,
where A−b is the result of removing from A all ABox asser-
tions in which b occurs.

(Role Minimize A with A(a)) If (A, A(a)) is a coun-
terexample and (T ,A−r(b,c)) |= A(a) then replace A by
A−r(b,c), where A−r(b,c) is obtained by removing a role as-
sertion r(b, c) from A.
Lemma 5 For any ELHlhs target T and any ELHlhs hypoth-
esisH with size polynomial in |T |, given a positive counterex-
ample (A, A(a)), Algorithm 2 computes, with polynomially
many polynomial size queries in |A| and |T |, an ABox A′
such that |A′| ≤ |T | and there exists an AQ A′(a′) such that
(A′, A′(a′)) is a positive counterexample.
It remains to show that the ABox can be made tree-shaped.
We say that an ABox A has an (undirected) cycle if there
is a finite sequence a0 · r1 · a1 · ... · rk · ak such that (i)
a0 = ak and (ii) there are mutually distinct assertions of the
form ri+1(ai, ai+1) or ri+1(ai+1, ai) in A, for 0 ≤ i < k.
The unfolding of a cycle c = a0 · r1 · a1 · ... · rk · ak in
a given ABox A is obtained by replacing c by the cycle
c′ = a0 · r1 · a1 · ... · rk · ak−1 · rk · â0 · r1 · · · âk−1 · rk · a0,
where âi are fresh individual names, 0 ≤ i ≤ k − 1, in
such a way that (i) if r(ai, d) ∈ A, for an individual d not
in the cycle, then r(âi, d) ∈ A; and (ii) if A(ai) ∈ A then
A(âi) ∈ A.

We prove in the appendix that after every cycle unfold-
ing/minimisation step in Algorithm 3 the ABox A on the
one hand becomes strictly larger and on the other does not
exceed the size of the target TBox T . Thus Algorithm 3
terminates after a polynomial number of steps yielding a
tree-shaped (by Line 3) ABox A such that (A, B(ρA)) is a
positive counterexample.
Lemma 6 For any ELHlhs target T and any ELHlhs hypoth-
esisH with size polynomial in |T |, given a positive counterex-
ample (A, A(a)), Algorithm 3 computes, with polynomially
many polynomial size queries in |T | and |A|, a tree shaped
ABox A rooted in ρA and B ∈ NC such that (A, B(ρA)) is
a positive counterexample.

Using Theorem 1 and Theorem 2 we obtain that the learn-
ing framework FD(ELHlhs, AQ) is polynomial query exact

Algorithm 3 Computing a tree shaped ABox
1: function FINDTREE(A)
2: MINIMIZEABOX(A)
3: while there is a cycle c in A do
4: Unfold a ∈ Ind(A) in cycle c
5: MINIMIZEABOX(A)
6: Find B ∈ NC ∩ ΣT such that for root ρA of A
7: (T ,A) |= B(ρA) but (H,A) 6|= B(ρA)
8: return (A, B(ρA))

learnable.

Limits of Polynomial Query Learnability
We prove that ELrhs TBoxes are not polynomial query learn-
able using data retrieval examples with CQs. This is in con-
trast to polynomial query learnability of DL-Lite∃H and ELrhs

TBoxes using data retrieval examples with ELI-IQs and, re-
spectively, EL-IQs. Surprisingly, the negative result holds
already if queries of the form ∃x.A(x) are admitted in addi-
tion to EL-IQs.

To prove our result, we define a superpolynomial set S of
TBoxes and show that (i) any polynomial size membership
query can distinguish at most polynomially many TBoxes
from S; and (ii) there exist superpolynomially many polyno-
mial size data retrieval examples that the oracle can give as
counterexamples which distinguish at most one TBox from
S. To present the TBoxes in S, fix two role names r and s.
For any sequence σ = σ1σ2 . . . σn with σi ∈ {r, s}, the
expression ∃σ.C stands for ∃σ1.∃σ2 . . . ∃σn.C. Denote by
L the set of all sequences σ, of which there are N = 2n

many. For every such sequence σ, consider the ELrhs TBox
Tσ defined as

Tσ = {A v ∃σ.M} ∪ T0 with
T0 = {A v X0,M v ∃r.M u ∃s.M}∪

{Xi v ∃r.Xi+1 u ∃s.Xi+1 | 0 ≤ i < n}
Here theXi are used to generate a binary tree of depth n from
the ABox {A(a)}. The inclusion A v ∃σ.M singles out one
path in this tree for each Tσ . Finally, wheneverM holds, then
each Tσ generates an infinite binary tree with Ms. Denote by
Γn = {r, s, A,M,X0, . . . , Xn} the signature of the TBoxes
Tσ ∈ S. Notice that T0 is easy to learn. Moreover, if T0 is
known to the learner and only IQs are available in responses
to equivalences queries, then a single equivalence query can
force the oracle to reveal Tσ as A v ∃σ.M can be found
‘inside’ every counterexample. On the other hand, if CQs are
used then the oracle can provide counterexamples of the form
({A(a)},∃x.M(x)), without giving any useful information
about Tσ . Points (i) and (ii) above follow from Lemma 7 and,
respectively, Lemma 8, proved in the appendix.

Lemma 7 For any ABox A and CQ q over Γn either:

• for every Tσ ∈ S, (Tσ,A) |= q; or
• the number of Tσ ∈ S such that (Tσ,A) |= q does not

exceed |q|.

Lemma 8 For any n > 1 and any ELrhs TBox H over Γn
there are a singleton ABoxA over Γn and a query q that is an
EL-IQ over Γn with |q| ≤ n+1 or of the form q = ∃x.M(x)
such that either:
• (H,A) |= q and (Tσ,A) |= q for at most one Tσ ∈ S; or
• (H,A) 6|= q and for every Tσ ∈ S we have (Tσ,A) |= q.

Lemmas 7 and 8 together imply that ELrhs TBoxes are not
polynomial query learnable usings CQs in data retrieval ex-
amples. Moreover, it is sufficient to admit CQs of the form
∃x.M(x) in addition to EL-IQs.

The two lemmas above hold for ELHrhs, EL, and ELH
as well. This proves the non polynomial query learnability
results involving CQs in Table 1. The non polynomial query
learnability for FD(EL, EL-IQ) and FD(ELH, EL-IQ) are
proved in the appendix by a nontrivial extension of the non
polynomial query learnability result for EL TBoxes from
subsumptions in (Konev et al. 2014).

Polynomial Time Learnability
We briefly comment on our results for polynomial time
learnability. The learning algorithm for FS(ELHlhs) in the
appendix of this paper and the learning algorithms for
FS(ELlhs), FS(ELrhs) and FS(ELHrhs) given in (Konev et
al. 2014) are in fact polynomial time algorithms. Thus, we
obtain:
Theorem 9 The subsumption learning frameworks
FS(ELlhs), FS(ELHlhs), FS(ELrhs), and FS(ELHrhs) are
polynomial time exact learnable with membership and
positive bounded equivalence queries.
Then one can modify the notion of positive polynomial query
reducibility to an appropriate notion of positive polynomial
time reducibility and provide positive polynomial time reduc-
tions to prove that the results of Table 1 for ELlhs, ELHlhs,
ELrhs and ELHrhs hold for polynomial time learnability as
well.

Open Problems
A great number of challenging problems remain open.
Firstly, it would be of great in interest to find out whether
FS(DL-Lite∃H) and FD(DL-Lite∃H, ELI-IQ) are not only
polynomial query learnable but also polynomial time learn-
able. We conjecture that this is not the case (if P 6=NP) but
did not yet find a way of proving this. Secondly, as stated in
Table 1, polynomial query learnability of FD(EL, ELI-IQ)

and FD(DL-Lite∃H,CQ) remain open problems. Polynomial
time learnability of those frameworks is open as well. In
both cases we conjecture non polynomial query (and, there-
fore, time) learnability but a significant modification of the
techniques introduced here will be required to prove this.
Finally, it would be of interest to apply modified versions
of the algorithms presented here to obtain worst-case expo-
nential but practical algorithms for frameworks that are not
polynomial query learnable. Examples one might consider
are the DLs EL and ELH with either subsumption queries
or data retrieval queries.
Acknowledgements Ozaki is supported by the Science with-
out Borders scholarship programme.

References
Angluin, D.; Frazier, M.; and Pitt, L. 1992. Learning con-
junctions of Horn clauses. Machine Learning 9:147–164.
Angluin, D. 1987. Queries and concept learning. Machine
Learning 2(4):319–342.
Arias, M., and Khardon, R. 2002. Learning closed Horn
expressions. Inf. Comput. 178(1):214–240.
Arias, M.; Khardon, R.; and Maloberti, J. 2007. Learn-
ing Horn expressions with LOGAN-H. Journal of Machine
Learning Research 8:549–587.
Arias, M. 2004. Exact learning of first-order expressions
from queries. Ph.D. Dissertation, Citeseer.
Baader, F.; Calvanese, D.; McGuiness, D.; Nardi, D.; and
Patel-Schneider, P. 2003. The Description Logic Handbook:
Theory, implementation and applications. Cambridge Uni-
versity Press.
Baader, F.; Ganter, B.; Sertkaya, B.; and Sattler, U. 2007.
Completing description logic knowledge bases using formal
concept analysis. In IJCAI, volume 7, 230–235.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In IJCAI, 364–369. Professional Book Center.
Bechhofer, S.; Horrocks, I.; Goble, C.; and Stevens, R. 2001.
Oiled: a reason-able ontology editor for the semantic web. In
KI. Springer. 396–408.
Bienvenu, M.; Ortiz, M.; Šimkus, M.; and Xiao, G. 2013.
Tractable queries for lightweight description logics. In AAAI,
768–774. AAAI Press.
Blackburn, P.; Benthem, J. F. A. K. v.; and Wolter, F. 2006.
Handbook of Modal Logic, Volume 3 (Studies in Logic and
Practical Reasoning). New York, NY, USA: Elsevier Science
Inc.
Borchmann, D., and Distel, F. 2011. Mining of EL-GCIs.
In The 11th IEEE International Conference on Data Mining
Workshops. Vancouver, Canada: IEEE Computer Society.
Buitelaar, P.; Cimiano, P.; and Magnini, B., eds. 2005. On-
tology Learning from Text: Methods, Evaluation and Appli-
cations. IOS Press.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. Journal
of Automated reasoning 39(3):385–429.
Cimiano, P.; Hotho, A.; and Staab, S. 2005. Learning concept
hierarchies from text corpora using formal concept analysis.
J. Artif. Intell. Res. (JAIR) 24:305–339.
Cohen, W. W., and Hirsh, H. 1994. Learning the CLASSIC
description logic: Theoretical and experimental results. In
KR, 121–133. Morgan Kaufmann.
Day-Richter, J.; Harris, M. A.; Haendel, M.; Lewis, S.; et al.
2007. Obo-edit an ontology editor for biologists. Bioinfor-
matics 23(16):2198–2200.
Frazier, M., and Pitt, L. 1993. Learning From Entailment:
An Application to Propositional Horn Sentences. In ICML,
120–127.
Frazier, M., and Pitt, L. 1996. Classic learning. Machine
Learning 25(2-3):151–193.

Kikot, S.; Kontchakov, R.; and Zakharyaschev, M. 2011. On
(in) tractability of OBDA with OWL 2 QL. CEUR Workshop
Proceedings.
Klarman, S., and Britz, K. 2015. Ontology learning from
interpretations in lightweight description logics. In ILP.
Konev, B.; Ludwig, M.; Walther, D.; and Wolter, F. 2012.
The logical difference for the lightweight description logic
EL. J. Artif. Intell. Res. (JAIR) 44:633–708.
Konev, B.; Lutz, C.; Ozaki, A.; and Wolter, F. 2014. Exact
learning of lightweight description logic ontologies. In KR.
Lehmann, J., and Hitzler, P. 2010. Concept learning in de-
scription logics using refinement operators. Machine Learn-
ing 78(1-2):203–250.
Lehmann, J., and Völker, J. 2014. Perspectives on Ontology
Learning, volume 18. IOS Press.
Lutz, C.; Piro, R.; and Wolter, F. 2011. Description logic
TBoxes: Model-theoretic characterizations and rewritability.
In IJCAI, 983–988.
Ma, Y., and Distel, F. 2013. Learning formal definitions for
snomed CT from text. In AIME, 73–77.
Musen, M. A. 2013. Protégé ontology editor. Encyclopedia
of Systems Biology 1763–1765.
Reddy, C., and Tadepalli, P. 1998. Learning First-Order
Acyclic Horn Programs from Entailment. In ICML, 23–37.
Morgan Kaufmann.
Reddy, C., and Tadepalli, P. 1999. Learning Horn definitions:
Theory and an application to planning. New Generation
Comput. 17(1):77–98.
Schlobach, S.; Huang, Z.; Cornet, R.; and Van Harmelen,
F. 2007. Debugging incoherent terminologies. Journal of
Automated Reasoning 39(3):317–349.
Selman, J., and Fern, A. 2011. Learning first-order definite
theories via object-based queries. In ECML/PKDD (3), 159–
174.
Stuckenschmidt, H.; Parent, C.; and Spaccapietra, S., eds.
2009. Modular Ontologies: Concepts, Theories and Tech-
niques for Knowledge Modularization, volume 5445 of Lec-
ture Notes in Computer Science. Springer.
ten Cate, B.; Dalmau, V.; and Kolaitis, P. G. 2012. Learning
schema mappings. In ICDT, 182–195.
Wang, H.; Horridge, M.; Rector, A.; Drummond, N.; and Sei-
denberg, J. 2005. Debugging OWL-DL ontologies: A heuris-
tic approach. In The Semantic Web–ISWC 2005. Springer.
745–757.

Technical Tools
We start by introducing basic tools for studying the DLs
considered in this paper. These include the canonical (also
called universal or minimal) model of DL knowledge bases,
the well known link between homomorphisms, relational
structures and CQ evaluation, and also the translation be-
tween tree-shaped interpretations and ELI-IQs. The DLs
studied in this paper are fragments of the DL ELIH, where
an ELIH TBox consists of a finite set of CIs C v D with
C,D as ELI concepts and a finite set of RIs r v s, with r, s

roles. The semantics of ELIH is given by interpretations.
An interpretation I = (∆I , ·I) consists of a non-empty set
∆I and a function ·I that assigns each concept name A to
a set AI ⊆ ∆I and each role name r to a binary relation
rI ⊆ ∆I × ∆I . To interpret an ABox A, we consider in-
terpretations I which also assign to each a ∈ Ind(A) an
element aI ∈ ∆I , where we assume that aI 6= bI whenever
a 6= b (the unique name assumption). The extension CI of an
ELI concept expression C is inductively defined as follows:

• >I = ∆I

• (C uD)I = CI ∩DI
• (∃r.C)I = {d ∈ ∆I | ∃e ∈ CI : (d, e) ∈ rI}
• (∃r−.C)I = {d ∈ ∆I | ∃e ∈ CI : (e, d) ∈ rI}

An interpretation I satisfies:

• a concept inclusion C v D, in symbols I |= C v D, if
CI ⊆ DI ;

• a role inclusion r v s, in symbols I |= r v s, if rI ⊆ sI ;

• an instance assertion C(a), in symbols I |= C(a), if aI ∈
CI ;

• a role assertion r(a, b), in symbols I |= r(a, b), if
(aI , bI) ∈ rI .

We say that an interpretation I is a model of a TBox T
(an ABox A) if I |= α for all α ∈ T (α ∈ A). A CI (a RI)
α follows from a TBox T if every model of T is a model
of α, in symbols T |= α. We use |= α to denote that α
follows from the empty TBox. A knowledge base (KB) is
a pair K = (T ,A) consisting of a TBox T and an ABox
A. A query q follows from K = (T ,A) if every model of
(T ,A) is a model of q, in symbols (T ,A) |= q. If the DL at
hand allows inverse roles then we assume that the ABox A
is closed under inverses, i.e. r(a, b) ∈ A iff r−(b, a) ∈ A.
If we add an assertion r(a, b) in A then we do so assuming
that r−(b, a) is also added and, so, the resulting A is again
closed under inverses. Similarly, if an assertion r(a, b) is
removed from A then we do so assuming that r−(b, a) is
also removed.

Trees and Homomorphisms A path in an ELI concept
expressionC is a finite sequenceC0 ·r1 ·C1 ·...·rk ·Ck, where
C0 = C, k ≥ 0, and ∃ri+1.Ci+1 is a top-level conjunct of
Ci, for 0 ≤ i < k. The set paths(C) contains all paths in C.
We also define tail(p) = {A | A is a top-level conjunct of
Ck}, where Ck is the last concept expression in path p.

Definition 10 The interpretation IC of an ELI concept ex-
pression C is defined as follows:

• ∆IC = paths(C)

• AIC = {p ∈ paths(C) | A ∈ tail(p)}
• rIC = {(p, p′) ∈ paths(C)× paths(C) | p′ = p · r ·D}
We denote the root of IC by ρC .

The next lemma relates homomorphisms from interpretations
IC into interpretations I to the extension of the concept C
in I. Given two interpretations I and J , a homomorphism
h : I → J is a mapping from ∆I to ∆J such that

• if d ∈ AI , then h(d) ∈ AJ for all A ∈ NC;
• if (d, d′) ∈ rI , then (h(d), h(d′)) ∈ rJ , for all r ∈ NR.

The proof of the following lemma is straightforward.

Lemma 11 Let C be an ELI concept expression. Let I be
an interpretation with d ∈ ∆I . Then, d ∈ CI if, and only if,
there is a homomorphism h : IC → I such that h(ρC) = d.

Canonical Models for ELIH
We introduce the canonical model IT ,A of a knowledge base
consisting of a TBox T and an ABox A and the canonical
model IC,T of an ELI concept expression C ond TBox T .
We start by introducing the canonical model IA of an ABox
A.

Definition 12 The canonical model IA = (∆IA , ·IA) of an
ABox A is defined as follows:

• ∆IA = {a | a ∈ Ind(A)}
• AIA = {a | A(a) ∈ A, A ∈ NC}
• rIA = {(a, b) | r(a, b) ∈ A, r ∈ NR}

The canonical model IT ,A of an ELIH knowledge base
K = (T ,A) is defined as the union of a sequence of interpre-
tations I0, I1, We define I0 by extending IA with

rI0 = {(a, b) | s(a, b) ∈ A, T |= s v r},
where r, s are roles. Assume now that In has been defined.
Its domain ∆In consists of sequences a0 ·r0 ·C0 ·r1 ·C1 · ... ·
rm · Cm, where a0 ∈ Ind(A). To define In+1, we introduce
some notation. For sequences

p = a0 · r0 · C0 · r1 · C1 · ... · rm · Cm
and

q = C ′0 · r′1 · C ′1 · ... · r′m′ · C ′m′
we define the concatenation p · s · q of p and q through a role
s as

a0 ·r0 ·C0 ·r1 ·C1 · ... ·rm ·Cm ·s ·C ′0 ·r′1 ·C ′1 · ... ·r′m′ ·C ′m′
Now let k ≤ n be minimal such that there is C v D ∈ T
and p ∈ ∆Ik with p ∈ CIk , but p /∈ DIn . Let D be of the
form

d
1≤i≤lAi u

d
1≤j≤l′ ∃sj .Ej , where Ai are concept

names; sj are roles and Cj are ELI concept expressions
with 1 ≤ i ≤ l, 1 ≤ j ≤ l′; and l, l′ ≥ 0. Then we define
In+1 as follows:

∆In+1 = ∆In ∪ {p · sj · q | q ∈ paths(Ej), 1 ≤ j ≤ l′};
for all A ∈ NC:

AIn+1 = AIn ∪
{p · sj · q | A ∈ tail(q), 1 ≤ j ≤ l′} ∪
{p | Ai = A, 1 ≤ i ≤ l};

for all role r:

rIn+1 = rIn ∪
{(p · sj · q, p · sj · q′) | (q, q′) ∈ sIEj ,
T |= s v r, 1 ≤ j ≤ l′} ∪

{(p, p · sj · Ej) | T |= sj v r, 1 ≤ j ≤ l′}.

b

s
c

r

a

B

A
s

r

s

b

ca

A

(a) The canonical model IA (b) The canonical model IT ,A

Figure 3: Canonical Models with A = {r(a, b), A(b),
s(a, c)} and T = {A v ∃s.B}

This concludes the inductive definition of the sequence
I0, I1, Finally, we set IT ,A =

⋃
n≥0 In. As an example

let A = {r(a, b), A(b), s(a, c)} and T = {A v ∃s.B}.
Figures 3-a and 3-b show the interpretations IA and IT ,A,
respectively.

The following two lemmas summarize the main properties
of IT ,A. The proofs are straightforward.

Lemma 13 Let q be a CQ and (T ,A) an ELIH knowledge
base. Then IT ,A |= q if and only if (T ,A) |= q.

The canonical model IC,T of an ELI concept expression
C and a ELIH TBox T is defined as IT ,AC .

Lemma 14 Let C and D be ELI concept expressions and
T an ELIH TBox. Then IC,T |= D(ρC) if, and only if,
T |= C v D.

Definition of Polynomial Time Learnability
We employ the following standard definition of polynomial
time exact learnability. A learning framework (X,L, µ) is
polynomial time exact learnable if it is exact learnable by
an algorithm A such that at every step (we count each call
to an oracle as one step of computation) of computation the
time used by A up to that step is bounded by a polynomial
p(|l|, |x|), where l is the target and x ∈ X is the largest
counterexample seen so far.

The following proposition is a direct consequence of fact
that any polynomial time algorithm only generates polyno-
mial size output.
Proposition 15 If a learning framework F is polynomially
time exact learnable then F is polynomially query exact learn-
able.
In what follows, whenever possible, we prove polynomial
time learnability for the positive results in Table 1. By Propo-
sition 15 this implies polynomial query learnability.

Proofs for Theorem 1 and Theorem 9
It remains to prove polynomial time exact learnability of
ELHlhs TBoxes in the subsumption framework. To this end,
we extend the polynomial time learnability proof for ELlhs

TBoxes presented in (Konev et al. 2014) to ELHlhs TBoxes.
The main challenge in allowing role inclusions is that the
product construction, which is fundamental for the learning
algorithm presented in (Konev et al. 2014), has to take into
account the role hierarchy. In particular, the product construc-
tion can lead to non-tree shaped interpretations which may

not be easily mapped into polynomial size tree interpretations
as was done in the construction for ELlhs.

We start by giving a brief overview of the algorithm pro-
vided in (Konev et al. 2014), show that two naive attempts to
extend it with role inclusions fail and then demonstrate how
it can be modified. Before that, we need to introduce some
notions.

We often work with interpretations which have the struc-
ture of a tree. A directed graph G is a pair (V,E) where V
is a set of vertices and E ⊆ V × V is a set of ordered pairs
of vertices (called edges) connecting vertices. A path in a di-
rected graph G = (V,E) is a finite sequence d0 · d1 · . . . · dk,
k ≥ 0, where (di, di+1) ∈ E, for 0 ≤ i < k. The set
paths(G, d) contains all paths in G starting from d ∈ V .
That is, if d0 · d1 · . . . · dk ∈ paths(G, d) then d0 = d. Let
tailG(p) = dk be the last element in path p = d0 ·d1 · . . . ·dk.
A directed graph G is tree shaped if there is a unique el-
ement (the root), denoted by ρG, such that (i) for every
d ∈ V there is p ∈ paths(G, ρG) such that d = tailG(p)
and (ii) for every distinct p1, p2 ∈ paths(G, ρG), we have
that tailG(p1) 6= tailG(p2).

Definition 16 (Tree shaped interpretation) An interpreta-
tion I is tree shaped if the directed graph GI =
(∆I , {(d, d′) | ∃r ∈ NR, (d, d′) ∈ rI}) is tree shaped and
rI ∩ sI = ∅ for distinct r, s ∈ NR.

Given a tree shaped interpretation I, we denote by ρI the
unique element of ∆I that is the root of GI . Every tree
shaped interpretation I can be viewed as an EL concept
expression CI in a straightforward way. Also, the tree inter-
pretation IC of an EL concept expression C (Definition 10)
is tree shaped.

Definition 17 (Product) The product of two interpretations
I and J is the interpretation I × J with

• ∆I×J = ∆I ×∆J ;
• (d, e) ∈ AI×J if d ∈ AI and e ∈ AJ ;
• ((d, e), (d′, e′)) ∈ rI×J if (d, d′) ∈ rI and (e, e′) ∈ rJ .

One can show that the product of tree shaped interpreta-
tions is a disjoint union of tree shaped interpretations. If I
and J are tree shaped interpretations, we denote by I ×ρ J
the maximal tree shaped interpretation that is contained in
I × J with root (ρI , ρJ). Products preserve the truth of EL
concept expressions (Lutz, Piro, and Wolter 2011):

Lemma 18 For all EL concepts C: d ∈ CI and e ∈ CJ iff
(d, e) ∈ CI×J .

Definition 19 (Simulation) Let I,J be interpretations,
d0 ∈ ∆I and e0 ∈ ∆J . A relation S ⊆ ∆I × ∆J is a
simulation from (I, d0) to (J , e0) if (d0, e0) ∈ S and the
following conditions are satisfied:

• for all concept names A ∈ NC and all (d, e) ∈ S, if
d ∈ AI then e ∈ AJ ;

• for all role names r ∈ NR, all (d, e) ∈ S and all d′ ∈
∆I , if (d, d′) ∈ rI then there exists e′ ∈ ∆J such that
(e, e′) ∈ rJ and (d′, e′) ∈ S.

Algorithm 4 The learning algorithm for ELlhs TBoxes.
1: Let I = ∅ andH = ∅
2: while H 6≡ T do
3: Let C v A be the returned positive counterexample

for T relative toH
4: Find a T -essential T -countermodel I forH
5: if there is a J ∈ I such that J 6⇒ (I ×ρ J) and

I ×ρ J 6|= T then
6: Let J be the first such element of I
7: Find T -essential T -countermodel J ′ ⊆ I ×ρ J forH
8: Replace J in I with J ′
9: else

10: Append I to I

11: SetH = {CI v A | I ∈ I, T |= CI v A}

We write (I, d0)⇒ (J , e0) if there is a simulation from
(I, d0) to (J , e0). If I and J are tree shaped then we write
I ⇒ J as a shorthand for (I, ρI) ⇒ (J , ρJ), where ρI
and ρJ are the roots of I and J , respectively. Simulations
preserve the membership to EL concept expressions (Lutz,
Piro, and Wolter 2011):
Lemma 20 For all EL concept expressions C: if d ∈ CI

and (I, d)⇒ (J , e), then e ∈ CJ .
We can now give an overview of Algorithm 4 presented

in (Konev et al. 2014) to learn ELlhs TBoxes . Algorithm 4
maintains a sequence I of tree shaped interpretations that
intuitively represents the TBoxH constructed in Line 11. In
each iteration of the main loop (Line 2), if the hypothesisH is
not equivalent to the target T then the oracle returns an ELlhs

CI C v A that is a positive counterexample. The assumption
that C v A is a positive counterexample is justified by the
construction of H, which ensures that at all times T |= H.
A T -countermodel is an interpretation that satisfies T but
not H or vice-versa. In Line 4, Algorithm 4 takes the tree
interpretation IC of C and computes a T -countermodel I
with some properties which are defined in (Konev et al. 2014)
as ‘T -essential’ (we do not enter into details here). This T -
essential T -countermodel I is either used to refine an element
of I (Line 8), or it is appended to I (Line 10). The conditions
for refinement are given in Line 5. One wants to refine an
element J in I if the product of I and J ‘maximizes’ J
and also does not satisfy a CI in T , where the condition I ×ρ
J 6|= T is implemented by posing queries of the form T |=
C× v A with C× as the concept expression corresponding
to I ×ρ J . After updating I, the algorithm returns to the
main loop and asks again whetherH ≡ T .

We know that an ELHlhs TBox consists of a finite set of
RIs and a finite set of ELlhs CIs. Since the learner knows the
signature ΣT of the target T , it can learn all role inclusions
in T by simply posing membership queries of the form T |=
r v s, for all r, s ∈ ΣT .

Suppose that we know the RIs in T and try to use Algo-
rithm 4 without any modifications to learn the ELlhs CIs in
T . A simple example shows why this algorithm may not
be polynomial in the presence of role inclusions. Let T =
{∃sn1 .> u ∃sn2 .> v A, r1 v s1, r1 v s2, r2 v s1, r2 v s2},
where sni is an abbreviation for nesting si existentials n times,
i ∈ {1, 2}. Suppose that the hypothesis initially contains

r1 r2

s1

s2

I∃σ′.>

s1

r2

I∃σ.>

s2

r2 r1

s2

× s1

r1

(I∃σ.>)R ×ρ (I∃σ′.>)R

Figure 4: Product of (I∃σ.>)R ×ρ (I∃σ′.>)R with σ =
r1r2r1, σ′ = r2r1r2 and R = {r1 v s1, r1 v s2, r2 v
s1, r2 v s2}.

{r1 v s1, r1 v s2, r2 v s1, r2 v s2}. For any sequence
σ = σ1σ2 . . . σn with σj ∈ {r1, r2}, 1 ≤ j ≤ n, the con-
cept expression ∃σ.> stands for ∃σ1.∃σ2. . . .∃σn.>. Then
the oracle can give as counterexample ∃σ.> v A, where
σ is any of the 2n sequences of length n. Since the product
of I∃σ.> and I∃σ′.> for any σ 6= σ′ would correspond to a
concept expression C× such that T 6|= C× v A, Algorithm 4
would append all these 2n interpretations to I.

The reason why Algorithm 4 does not work with role inclu-
sions is that, by not taking into account the role hierarchy, we
do not refine elements of I not satisfying the same CI in T
(in this example ∃sn1 .>u∃sn2 .> v A). To have a polynomial
bound on the size of I, we want to ensure that at all times
each CI in T is not satisfied by at most one element J in I.

We now modify the algorithm above to learn T by also
taking into account the role hierarchy and by refining the
notion of a T -essential interpretation. For this purpose, we in-
troduce the notion of role completion IR of an interpretation
I w.r.t. a setR of RIs in T .
Definition 21 (Role Completion) Let R be a set of RIs
and I be an interpretation. The role completion IR =
(∆IR , ·IR) of I w.r.t.R is defined as follows:
• ∆IR := ∆I

• d ∈ AIR iff d ∈ AI
• sIR := {(d, e) | (d, e) ∈ rI ,R |= r v s}

Observe that IR is polynomially computable in |I| and
|R|. If I and J do not satisfy some CI in T then the product
of their role completions also does not satisfy it. In fact, we
can see that in our example, for any σ 6= σ′, the product of
(I∃σ.>)R and (I∃σ′.>)R does not satisfy ∃sn1 .>u∃sn2 .> v
A. Though, given two tree shaped interpretations I and J ,
the product of their role completions may not be tree shaped
(see Figure 4). Because of the RIs, the resulting structure is
what can be called multi-edge tree shaped.

A multi-edge tree shaped interpretation is a generalization
of a tree shaped interpretation where one allows elements to
be connected by multiple roles. Figure 5 illustrates interpre-
tations which we classify as:
• tree shaped (left); and
• multi-edge tree shaped (right).

Definition 22 An interpretation I is multi-edge tree shaped
if the directed graph GI = (∆I , {(d, e) | ∃r ∈ NR, (d, e) ∈
rI}) is tree shaped.

r

A

t

r′
r

t t′′
t′

s

ss

s

A

Figure 5: Tree shaped (left) and multi-edge tree shaped inter-
pretation (right).

In what follows we often call tree shaped interpretations
single-edge tree shaped to emphasize the difference to multi-
edge tree shaped interpretations. Note that if I is multi-edge
tree shaped then IR is also multi-edge tree shaped.

For our second attempt to learn ELHlhs TBoxes, we need
to introduce a few more notions. Let I be a multi-edge tree
shaped interpretation. We denote by

• I−r(d,e) the result of removing the pair (d, e) from rI ;
• I−d↓ the result of removing the subtree rooted at d from
I;

• I−ρI the result of removing the root ρI from I.

Definition 23 (Multi-edge reduced) An interpretation I is
called multi-edge reduced if the preconditions of the follow-
ing two rules do not apply to I:

• (Remove Subtrees) If IR ⇒ (I−d↓)R, then replace I by
I−d↓.

• (Remove Pairs of Elements) If IR = (I−r(d,e))R, then
replace I by I−r(d,e).

Intuitively, in the definition above, the first rule removes
‘redundant’ elements from ∆I and the second rule removes
‘redundant’ role assertions from I. If I and J are multi-
edge tree shaped interpretations, we denote by IR×r

ρJR the
maximal multi-edge reduced tree shaped interpretation that
is contained in IR × JR with root (ρI , ρJ). The following
lemma is immediate from the definition of the rules above.

Lemma 24 LetJ be the result of applying the rules (Remove
subtrees) and (Remove Pairs of Elements) exhaustively to I.
Then, JR ⇒ IR and IR ⇒ JR.

An interpretation I is an (T ,R)-countermodel for H if
IR |= H and IR 6|= T . We describe a class of (T ,R)-
countermodels for H that can be viewed as a variant of the
T -essential T -countermodels forH studied in (Konev et al.
2014).

Definition 25 A (T ,R)-countermodel I for H is T -
essential if the following conditions are satisfied:

1. I is single-edge tree shaped;
2. (I−ρI)R |= T ;
3. (I−d↓)R |= T for all d ∈ ∆I \ {ρI}.

It follows from Points 1 and 3 of Definition 25 that T -
essential (T ,R)-countermodels forH do not have redundant
role assertions nor redundant subtrees, which implies that
such interpretations are already multi-edge reduced.

Lemma 26 T -essential (T ,R)-countermodels for H are
multi-edge reduced.

Now, consider Algorithm 5, which is very similar to Al-
gorithm 4 for ELlhs (this time taking into account the role
hierarchy). We assume that at each state in the run of the
learning algorithm, the hypothesisH of the learner is of the
form Hbasic ∪ Hadd, where Hbasic contains the set R of
RIs in T and Hadd contains only ELlhs CIs. As illustrated
by Figure 4, even if multi-edge reduced, the product of the
role completion of tree shaped interpretations may not be
single-edge tree shaped. Since membership queries receive
as input subsumptions C v A and the underlying structure of
an EL concept expression C is single-edge tree shaped, we
need our interpretations to be of this form. Though, simply
unfolding a multi-edge tree can result in an exponentially
larger single-edge tree. So, in Line 7, we additionally check
whether the product IR ×r

ρ JR is single-edge tree shaped.
This algorithm may also not be polynomial in the presence

of RIs. To illustrate, consider again that T = {∃sn1 .> u
∃sn2 .> v A, r1 v s1, r1 v s2, r2 v s1, r2 v s2}. Suppose
that the hypothesis initially contains {r1 v s1, r1 v s2, r2 v
s1, r2 v s2}. Then the oracle can give as counterexample
∃σ.> v A, whereσ is any of the 2n sequences of r1s and r2s
of length n. Note that the product of the role completion of
the tree interpretations of any two concepts ∃σ.> and ∃σ′.>
would not be single-edge tree shaped. Then, Algorithm 5
would append all of these counterexamples.

Algorithm 5 Naive learning algorithm for ELHlhs TBoxes
1: Let I = ∅ andHadd = ∅
2: SetHbasic = {r v s | T |= r v s where r, s ∈ NR}
3: SetH = Hbasic ∪Hadd
4: whileH 6≡ T do
5: Let C v A be the returned positive counterexample

for T relative toH
6: Find a T -essential (T ,R)-countermodel I forH
7: if there is a J ∈ I such that JR 6⇒ (IR ×ρ JR),

(IR ×r
ρ JR) is single-edge tree shaped and

(IR ×ρ JR) 6|= T then
8: Let J be the first such element of I
9: Find a T -essential (T ,R)-countermodel

J ′ ⊆ (IR ×r
ρ JR) forH

10: Replace J in I with J ′
11: else
12: Append I to I

13: SetHadd = {CJ v A | J ∈ I, T |= CJ v A}
14: SetH = Hbasic ∪Hadd

The reason why Algorithm 5 also does not work is that,
by not replacing J when IR ×r

ρ JR is not single-edge tree
shaped, we may have exponentially many elements J ∈ I
such that JR does not satisfy the same CI in T (in this
example ∃sn1 .> u ∃sn2 .> v A).

We finally solve this in Algorithm 6 by calling the recursive
function ‘RefineCounterModel’ (Line 7), which refines the
T -essential (T ,R)-countermodel I with the elements of I
before updating I with I . Whenever IR×ρ JR is not single-
edge tree shaped (otherwise we are done), we compute an
interpretation that we call ‘I-candidate for J ’ (Line 11 of
Algorithm 7). An I-candidate I× for J can be thought of
as an ‘intermediate’ between I and IR ×ρ JR which can
be transformed in polynomial time into a single-edge tree

Algorithm 6 The learning algorithm for ELHlhs TBoxes
1: Let I = ∅ andHadd = ∅
2: SetHbasic = {r v s | T |= r v s where r, s ∈ NR}
3: SetH = Hbasic ∪Hadd
4: whileH 6≡ T do
5: Let i = 0
6: Let C v A be the returned positive counterexample

for T relative toH
7: (I, i) :=REFINECOUNTERMODEL(IC , i)
8: if i ≥ 1 then
9: Let J i be the element at position i in I

10: Find a T -essential (T ,R)-countermodel
J ′ ⊆ (IR ×r

ρ J iR) forH
11: Replace J i in I with J ′
12: else
13: Append I to I

14: SetHadd = {CJ v A | J ∈ I, T |= CJ v A}
15: SetH = Hbasic ∪Hadd

Algorithm 7 Refining a (T ,R)-countermodel I forH
1: function REFINECOUNTERMODEL(K, i)
2: Find T -essential (T ,R)-countermodel I ⊆ K(R)

H forH
3: Let j = 1
4: while j ≤ |I| do
5: Let J j be the element at position j in I
6: if J jR 6⇒ (IR ×ρ J jR) then
7: if (IR ×ρ J jR) 6|= T and (IR ×r

ρ J jR)
is single-edge tree shaped then

8: i = j
9: return (IR ×r

ρ J jR, i)
10: else
11: Find a single-edge tree shaped

I-candidate I× for J j
12: if I× is such that I×R 6|= T then
13: (I, i) :=REFINECOUNTERMODEL(I×, i)
14: return (I, i)
15: j = j + 1

16: return (I, i)

shaped interpretation.
We can detect whether there is J which needs to be re-

placed by posing queries of the form CI× v A. However, we
cannot use I× to replace J ∈ I. The reason is that we may
not find a T -essential (T ,R)-countermodel from a single-
edge tree shaped I-candidate for J just by removing subtrees
(a property we show we would have for single-edge products
IR ×r

ρ JR). So we recursively call ‘RefineCounterModel’
with this I-candidate I× for J as input.

To bound the number of recursive calls, I× needs to be a
(T ,R)-countermodel that is strictly ‘more general’ than the
previous I. Since we can show that the number of recursive
calls is bounded, Algorithm 7 enters the ‘if’ in Line 7 if
the conditions for replacement (1) JR 6⇒ (IR ×ρ JR) and
(2) (IR ×ρ JR) 6|= T are satisfied, returns from the function
‘RefineCounterModel’ and replaces J , as required (a variable
i indicates the position in I where an element J should be
replaced in Algorithm 6).

The notion of an I-candidate for J is defined as follows.

For multi-edge tree shaped interpretations I and J , if there
is a homomorphism h : I → J (mapping the respective
roots) and J 6⇒ I then we write I :→ J .

Definition 27 An interpretation I× is an I-candidate for J
if the following conditions are satisfied:

1. IR ×ρ JR :→ I×R
:→ IR;

2. I×R |= H.

Intuitively, Point (2) says that I× is strictly ‘more general’
than I and strictly ‘more restricted’ than IR ×ρ JR.

Recall the scenario described in the example above. Let
T = {∃sn1 .>u∃sn2 .> v A, r1 v s1, r1 v s2, r2 v s1, r2 v
s2} and H = {r1 v s1, r1 v s2, r2 v s1, r2 v s2}. Sup-
pose the oracle chooses a sequence σ of length n and returns
the counterexample ∃σ.> v A, with σ = σ1σ2 . . . σn and
σj ∈ {r1, r2}, 1 ≤ j ≤ n. Algorithm 6 calls ‘RefineCoun-
terModel’ with (I∃σ.>, 0) as input. As I is initially empty,
we return from ‘RefineCounterModel’ with (I∃σ.>, 0). Note
that I∃σ.> is already a T -essential (T ,R)-countermodel.
Then, Algorithm 6 appends I∃σ.> to I. Suppose that in the
second iteration the oracle chooses a sequence σ′ 6= σ and
returns the counterexample ∃σ′.> v A. Now, Algorithm 6
calls ‘RefineCounterModel’ with (I∃σ′.>, 0) as input. Since
(I∃σ.>)R 6⇒ ((I∃σ.>)R ×ρ (I∃σ′.>)R) and ((I∃σ.>)R ×r

ρ

(I∃σ′.>)R) is not single-edge tree shaped we compute a
single-edge tree shaped I∃σ′.>-candidate for I∃σ.>, which
could be I×C withC = ∃σ1.∃σ2. . . .∃σn−1.(∃s1.>u∃s2.>),
if σ and σ′ differ in the last role. Then, we make a recur-
sive call to ‘RefineCounterModel’ with (I×C , 0) as input. To
simplify the example suppose that σ and σ′ only differ in
the last role. Then, I×C = (I×C)R ×r

ρ (I∃σ.>)R. As I×C is
single-edge tree shaped we would enter in the ‘if’ in Line
7 of Algorithm 7, return from ‘RefineCounterModel’ with
(I×C , 1) and replace I∃σ.> in I (Line 11 of Algorithm 6).

The intuition for why Algorithm 6 works is that, by com-
puting ‘intermediate’ interpretations, we can detect whether
there is an element of I which should be replaced. By making
the replacements correctly, we can ensure that each CI in T
is not satisfied by at most one J ∈ I.

We now formally show that Algorithm 6 runs in polyno-
mial time and learns ELHlhs TBoxes. Clearly, if Algorithm
6 terminates, then the output is equivalent to the target TBox.
Thus, it is sufficient to show that the learning algorithm ter-
minates in polynomial time with respect to the size of the
target TBox T and the largest counterexample received so
far.

T -essential (T ,R)-countermodels
First we present some properties of T -essential (T ,R)-
countermodels forH. These properties are:
• T -essential (T ,R)-countermodels forH are polynomially

computable (Lemma 29);
• T -essential (T ,R)-countermodels for H have size

bounded by the target TBox (Lemma 30);
• if IR ×r

ρ JR is single-edge tree shaped then it can be
transformed into a T -essential (T ,R)-countermodel for
H by removing subtrees (Lemma 31).

Before we show the three properties listed above, we in-
troduce the notion of concept completion, which is used to
manipulate an interpretation I so that IR is a model ofH.

Definition 28 (Concept Completion) Let H be a hypothe-
sis, R be a finite set of RIs, and let I be an interpretation.
Define a sequence of interpretations I0, I1, . . . by setting

• I0 = I;
• assume In has been defined. If there is no k ≤ n such

that there is a d ∈ ∆I
0

with d ∈ DIkR , D v A ∈ H but
d /∈ AIk , then let In+1 := In. Otherwise assume that k is
minimal with this property and define In+1 as In except
that AI

n+1

:= AI
n ∪ {d}.

The concept completion I(R)

H of I w.r.t. H for R is defined
as the limit

⋃
n≥0 In.

Note that the concept completion I(R)

H of I w.r.t. H for R
modifies I only by adding elements to the extension of con-
cept names; there is no role completion in this case (we use
R only to check if d ∈ DIkR). By the definition of J = I(R)

H ,
we have that JR |= H. Since Hadd contains only ELlhs

concept inclusions, if JR |= H then J |= Hadd.
We write Id↓ to denote the multi-edge subtree rooted in

d. Recall that we use I−d↓ to denote I with the multi-edge
subtree rooted in d removed.

Lemma 29 Given a positive counterexample C v A for T
relative toH, one can construct a single-edge tree shaped T -
essential (T ,R)-countermodel I forH in polynomial time
in |T |+ |C| by making membership queries.

Proof. Let C v A be a positive counterexample for T
relative to H. Let I be the single-edge tree interpretation
of C. First observe that IR 6|= T : since H 6|= C v A, we
know that A does not occur as a top-level conjunct in C.
Consequently, ρIR ∈ (C \ A)IR and thus IR 6|= T . J is
constructed by applying the following rules to J := I.

1. Let J (R)

H be the concept completion of J w.r.t. H for
R. Set J := J (R)

H . That is, transform J into J (R)

H by
exhaustively applying the CIs inH as rules: ifD v B ∈ H
and d ∈ DJR , then add d to BJ .

2. Replace J by a minimal single-edge subtree of J re-
futing T to address Condition 1 of T -essential (T ,R)-
countermodels forH: replace J by J d↓ if J d↓ is minimal
with J d↓R 6|= T (checked by making queries of the form
CJ d↓ v A).

3. Exhaustively remove subtrees from J until Condition 2 of
T -essential (T ,R) - countermodels forH is also satisfied:
if (J−d↓)R 6|= T (checked by making queries of the form
CJ−d↓ v A), then replace J by J−d↓.
Now we show that the interpretation J constructed above

has the required properties:

• JR |= H: clearly, the interpretation JR constructed in
Step 1 is a model of H. Taking subtrees and removing
subtrees from J preserves being a model of H, and so
JR |= H.

• JR 6|= T : the interpretation J constructed in Step 1 (and
its role completion JR) is not a model of T . In fact, we can
use CJ v A as a positive counterexample for T relative to
H instead of C v A. Observe that ∅ |= CJ v C, and thus
T |= C v A implies T |= CJ v A. On the other hand,
since H 6|= C v A, we have ρJ /∈ AJ . Thus JR 6|= T .
Steps 2 and 3 preserve the condition that JR is not a model
of T and so JR 6|= T .

• J satisfies Condition 1 for T -essential models because of
Step 2.

• J satisfies Condition 2 for T -essential models because of
Step 3.

o

Lemma 30 If I is a T -essential (T ,R)-countermodel for
H, then |∆I | ≤ |T |.
Proof. Let I be a T -essential (T ,R)-countermodel forH. As
I is an (T ,R)-countermodel forH, IR 6|= T . By Property 2
of being a T -essential (T ,R)-countermodel forH we have
(I−ρI)R |= T . It follows that there is a C v A ∈ T such
that ρIR ∈ (C \ A)IR . Consequently, there is a simulation
IC ⇒ IR, where IC is the single-edge tree interpretation
of C. Since IC is single-edge tree shaped, we can assume
that the simulation S ⊆ ∆IC ×∆IR is a total function (that
is, a homomorphism). To show that |∆IR | = |∆I | ≤ |C|
and thus |∆I | ≤ |T | as required, it clearly suffices to show
that S is surjective. Assume that this is not the case, and
let d ∈ ∆I be outside the range of S. Let J = I−d↓
(Property 1 I is single-edge tree shaped). All descendants of
d must be outside the range of S as well and thus S is a sim-
ulation IC ⇒ JR. Therefore, ρJR ∈ CJR , which implies
JR 6|= C v A ∈ T , in contradiction to I being a T -essential
(T ,R)-countermodel forH: Property 3 requires JR |= T . o

For two T -essential (T ,R)-countermodels I and J for
H (with roots ρI and ρJ respectively), let IR ×r

ρ JR be
the maximal multi-edge reduced tree interpretation that is
contained in IR × JR with root (ρI , ρJ). In Line 10 of
Algorithm 6, we compute J ′ ⊆ IR ×r

ρ JR, where J ′ is a
subinterpretation of IR ×r

ρ JR that is obtained from IR ×r
ρ

JR by removing subtrees.

Lemma 31 Let I and J be T -essential (T ,R)-
countermodels for H such that IR ×ρ JR 6|= T . Let
IR×r

ρ JR be the result of multi-edge reducing IR×ρ JR. If
IR ×r

ρ JR is single-edge tree shaped then one can construct
a T -essential (T ,R)-countermodel J ′ ⊆ IR ×r

ρ JR forH
in polynomial time in |T | by making membership queries.

Proof. Let I and J be T -essential (T ,R)-countermodels
forH with IR ×ρ JR 6|= T .

Set J ′ = IR ×r
ρ JR and then exhaustively remove

subtrees from J ′ until Condition 2 of T -essential (T ,R)-
countermodels forH is satisfied: if (J ′−d↓)R 6|= T (checked
by making membership queries, then replace J ′ by J ′−d↓.
Clearly, the new J ′ is an (T ,R)-countermodel forH. More-
over, it is T -essential:

• (J ′−ρJ′)R |= T : by Lemma 18, (I−ρI)R |= T and
(J−ρJ)R |= T imply (I−ρI)R × (J−ρJ)R |= T . It
follows from Lemma 24, that (IR ×r

ρ JR)R |= T iff
IR×ρJR |= T . Also, if (IR×r

ρJR)R |= T then IR×r
ρ

JR |= T . Now J ′−ρJ′ can be obtained from IR ×r
ρ

J−ρIR×
r
ρJR

R by removing subtrees, and removing subtrees
clearly preserves being a model of an ELHlhs TBox.

• (J ′−d↓)R |= T for all d ∈ ∆J
′ \ {ρJ ′}: otherwise, the

subtree rooted at d would have been removed during the
construction of J ′.

So we have seen that one can construct a T -essential
(T ,R)-countermodel J ′ ⊆ IR ×r

ρ JR for H using only
polynomially many membership queries in |T |+ |I|+ |J |.
Since I and J are T -essential (T ,R)-countermodels forH,
by Lemma 30, |∆I | ≤ |T | and |∆J | ≤ |T |. Then we have
that J ′ is constructed in polynomial time in |T | by making
membership queries. o

I-candidates for J
We want to show that single-edge tree shaped I-candidates
for J are polynomially computable (Lemma 36). First we
introduce some notions used in our proofs.
Definition 32 (Bisimulation) Let I,J be interpretations,
d0 ∈ ∆I and e0 ∈ ∆J . A relation S ⊆ ∆I × ∆J is a
bisimulation between (I, d0) and (J , e0) if (d0, e0) ∈ S
and the following conditions are satisfied:
• for all concept names A ∈ NC and all (d, e) ∈ S, d ∈ AI

iff e ∈ AJ ;
• for all role names r ∈ NR, all (d, e) ∈ S and all d′ ∈

∆I , if (d, d′) ∈ rI then there exists e′ ∈ ∆J such that
(e, e′) ∈ rJ and (d′, e′) ∈ S;
• for all role names r ∈ NR, all (d, e) ∈ S and all e′ ∈

∆J , if (e, e′) ∈ rJ then there exists d′ ∈ ∆I such that
(d, d′) ∈ rI and (d′, e′) ∈ S.
We write (I, d0)⇔ (J , e0) when we have a bisimulation

between (I, d0) and (J , e0). If I and J are tree shaped then
we write I ⇔ J as a shorthand for (I, ρI) ⇔ (J , ρJ),
where ρI and ρJ are the roots of I and J , respectively.

One can obtain a single-edge tree shaped interpretation
from a multi-edge one by unfolding it. For a multi-edge
tree shaped interpretation I rooted in ρI , let paths(I) =
{d0 ·r0 ·. . .·rn−1 ·dn | d0, . . . , dn ∈ ∆I , r0, . . . , rn−1 ∈ NR,
d0 = ρI and (di, di+1) ∈ rIi , 0 ≤ i < n} be the set of paths
in I. We also define tailI(p) = dn as the last element in p.
Definition 33 (Unfolding) The unfolding J of a multi-edge
tree shaped interpretation I is defined as:
• ∆J = paths(I);
• AJ = {p ∈ paths(I) | tailI(p) ∈ AI};
• rJ = {(p, p′) ∈ paths(I)× paths(I) | p′ = p · r · d}.

We observe that given an interpretation I, we have that

S = {(tailI(p), p) | p ∈ paths(I)}
is a bisimulation between I and J (Blackburn, Benthem, and
Wolter 2006):

Lemma 34 Let J be the result of unfolding a multi-edge
tree shaped interpretation I. Then, I ⇔ J .

For a multi-edge interpretation I, let [(d, e)]I denote the
set of role names r such that (d, e) ∈ rI , where d, e ∈ ∆I .
We say that a pair of elements is multi-edge if |[(d, e)]I | > 1.
If |[(d, e)]I | = 1 then we say that (d, e) is single-edge. If
(d, e) is a multi-edge pair then we say that d, e are members
of a multi-edge pair. The predecessors of d are elements of
the set nodes(p) \ {d} where p is a path such that tail(p) =
d. The successors of e are the elements which have e as a
predecessor.

Let I,J be T -essential (T ,R)-countermodels such that
IR ×r

ρ JR is not single-edge tree shaped. Let I× be an
I-candidate for J . By definition of I×, there is a homomor-
phism h : I×R → IR and a homomorphism g : IR×r

ρJR →
I×R (mapping the respective roots). We describe an opera-
tion that transforms a multi-edge pair (d, e) in I× into a
single-edge one by replacing it by the unique role s such that
(h(d), h(e)) ∈ sI .
Definition 35 We restrict to I a multi-edge pair (d, e) in
an I-candidate I× for J as follows. For all r ∈ [(d, e)]I× ,
remove (d, e) from rI

×
Let s be the unique role connecting

the pair (h(d), h(e)) in I . That is, s such that (h(d), h(e)) ∈
sI . Now, add (d, e) to sI

×
.

Note that this operation preserves the homomorphisms h
and g of an I-candidate for J . We can now show how we
construct single-edge tree shaped I-candidates for J .

Lemma 36 Given two T -essential (T ,R)-countermodels I
and J such that IR ×r

ρ JR is not single-edge tree shaped,
one can compute in polynomial time in |T | a single-edge
tree shaped I-candidate I× for J with |∆I× | bounded by
|T |2 · (|R|+ 1).

Proof. We show how to construct in polynomial time a single-
edge tree shaped I-candidate I× for J . Initially set I× :=
(IR ×r

ρ JR). By definition of I×: there is a homomorphism
h : I×R → IR (defined by the projection of IR×r

ρJR to IR);
and an automorphism g : IR ×ρ JR → I×R. By assumption
I× has a multi-edge pair. Now, apply the following steps.

1. Exhaustively apply the following rule: if I× has a multi-
edge pair and IR 6⇒ J ′R, where J ′ is the result of re-
stricting to I a multi-edge pair in I× (Definition 35) and
multi-edge reducing; then replace I× by J ′

2. Let I×,(R)

H be the concept completion of I× w.r.t. H for
R (Definition 28). Set I× := I×,(R)

H . That is, transform
I× into I×,(R)

H by exhaustively applying the CIs inH as
rules: if D v A′ ∈ H and d ∈ DI×R , then add d to A′I

×
.

3. Unfold I× (Definition 33).

Before we show that I× is a single-edge tree shaped
I-candidate for J with |∆I× | bounded by |T |2 · (|R|+ 1),
we show the following 3 claims. Claim 1 is immediate.

Claim 1. Let I and J be two multi-edge tree inter-
pretations. Assume S ⊆ ∆I ×∆J is a simulation I ⇒ J .

For all (d, e) ∈ S, there is a simulation Id↓ ⇒ J e↓, where
Id↓ and J e↓ denote the multi-edge subtree of I and J
rooted in d and e, respectively.

Claim 2. Let I and J be multi-edge reduced tree in-
terpretations. If S ⊆ ∆IR ×∆JR is a simulation IR ⇒ JR
and Q ⊆ ∆JR × ∆IR is a simulation JR ⇒ IR then
there is a bisimulation S′ ⊆ S between IR and JR. That is,
IR ⇔ JR.

Define S′ ⊆ S as follows: for all (d, e) ∈ ∆IR ×∆JR ,
(d, e) ∈ S′ iff (e, d) ∈ Q and (d, e) ∈ S. Now, we show that
S′ is a bisimulation between IR and JR. That is,

1. for all concept names A ∈ NC and all (d, e) ∈ S′, d ∈
AIR iff e ∈ AJR ;

2. for all role names r ∈ NR, all (d, e) ∈ S′ and all d′ ∈ ∆IR ,
if (d, d′) ∈ rIR then there exists e′ ∈ ∆JR such that
(e, e′) ∈ rJR and (d′, e′) ∈ S′;

3. for all role names r ∈ NR, all (d, e) ∈ S′ and all e′ ∈
∆JR , if (e, e′) ∈ rJR then there exists d′ ∈ ∆IR such
that (d, d′) ∈ rIR and (d′, e′) ∈ S′.
Point 1 is clear. We show in Claims 1 and 2 that Points

2 and 3 hold for roles in I and J . For the roles included
in IR by the role completion of I with R, we have that
if (d, e) ∈ S′ and (d, d′) ∈ sIR , where R |= r v s for
some r ∈ [(d, d′)]I , then by Claim 1 there is e′ ∈ ∆JR
such that (e, e′) ∈ rJR and (d′, e′) ∈ S′. Since R |= r v s
and (e, e′) ∈ rJR , we have that (e, e′) ∈ sJR . The same
argument holds for roles included in JR by the role
completion of J withR.

Claim 2.1. For all role names r ∈ NR, all (d, e) ∈ S′ and all
d′ ∈ ∆I = ∆IR , if (d, d′) ∈ rI then there exists e′ ∈ ∆JR
such that (e, e′) ∈ rJR and (d′, e′) ∈ S′.

If (d, e) ∈ S′ then (d, e) ∈ S and (e, d) ∈ Q. If
(d, e) ∈ S and (d, d′) ∈ rI then there is e′ ∈ ∆JR such
that (e, e′) ∈ rJR and (d′, e′) ∈ S. If (e′, d′) ∈ Q then
we are done. Suppose this is not the case. Then there is
d′′ 6= d′ ∈ ∆IR such that (d, d′′) ∈ rIR and (e′, d′′) ∈ Q.
Then, by Claim 1, Id

′↓
R ⇒ J e

′↓
R and J e

′↓
R ⇒ Id

′′↓
R , which

means that Id
′↓
R ⇒ Id

′′↓
R . Let I−r(d,d′) be the result

of removing (d, d′) from rI . Since (d, d′′) ∈ rIR and
Id
′↓
R ⇒ Id

′′↓
R , we have that IR ⇒ (I−r(d,d′))R. This

contradicts the fact that I is multi-edge reduced.

Claim 2.2. For all role names r ∈ NR, all (d, e) ∈ S′ and all
e′ ∈ ∆J = ∆JR , if (e, e′) ∈ rJ then there exists d′ ∈ ∆IR
such that (d, d′) ∈ rIR and (d′, e′) ∈ S′.

The argument is analogous to Claim 2.1.

Claim 3. Let I be a single-edge tree interpretation
and J a multi-edge tree interpretation with a multi-edge pair,
where both I and J are multi-edge reduced. If there is a
homomorphism h : JR → IR mapping the roots of I and
J then IR 6⇒ JR.

Suppose to the contrary that IR ⇒ JR. By assump-
tion I and J are multi-edge reduced and there is a
homomorphism h : JR → IR mapping the roots. Then
we can apply Claim 2 to obtain that there is a bisimulation
S ⊆ h between IR and JR. By assumption there is a
multi-edge pair (d, d′) in J . Since h is a homomorphism
and S ⊆ h, we have that there is a unique pair (e, e′) in
I such that (d, e), (d′, e′) ∈ S. As I is single-edge tree
shaped, there is a unique role s connecting (e, e′) in I. By
definition of IR, (e, e′) ∈ sIR and for all r ∈ [(e, e′)]IR ,
R |= s v r. Since (d, d′) is multi-edge in J , we have that
s /∈ [(d, d′)]J (otherwise we would have redundant role
assertions in J). As IR ⇔ JR, there is d′′ ∈ ∆JR such that
(d, d′′) ∈ sJR and (d′′, e′) ∈ S. By Claim 1, J d

′↓
R ⇒ Ie

′↓
R

and Ie
′↓
R ⇒ J d

′′↓
R . Then we have that J d

′↓
R ⇒ J d

′′↓
R . Now,

let J−d′↓ be the result of removing the multi-edge subtree
rooted in d′ from J . By definition of J−d′↓, we have
that JR ⇒ (J−d′↓)R. This contradicts the fact that J is
multi-edge reduced. Then, IR 6⇒ JR. This finishes the
proof of Claim 3.

Now we show that the interpretation I× constructed
above is a single-edge tree shaped I-candidate for J .

• The fact that there are homomorphisms h : I×R → IR and
g : IR×r

ρ JR → I×R mapping the respective roots is justi-
fied by the definition of I× and the rule of restricting to I
multi-edge pairs, which maintain these homomorphisms.

• Since IR ×r
ρ JR is not single-edge tree shaped and I is

single-edge tree shaped we have that (IR ×r
ρ JR) 6⇒ IR

(Claim 3). Then initially we have that IR 6⇒ I×R. As we
check if this property is maintained before restricting to
I multi-edge pairs, we have that at all times IR 6⇒ I×R.
Also, by assumption, initially I× is reduced and has a
multi-edge pair. So we know that at least one multi-edge
pair in I× is restricted to I. After we restrict this multi-
edge pair to I, we have that I×R 6⇒ (IR ×r

ρ JR). This
property is maintained by the other steps.

• Step 2 ensures that I×R |= H. Since IR |= H and (IR ×r
ρ

JR)R |= H, Step 2 preserves the homomorphisms and
simulations above.

• The unfolding in Step 3 ensures that I× is single-edge tree
shaped.

It remains to show that the unfolding of I× in Step 3 above
has size polynomial in |T |. This is a consequence of the
following claim.

Claim 4. For each multi-edge pair (d, e) in I× the
successors of e are not members of multi-edge pairs.

Suppose the lemma does not hold. Then, let (d, e)
and (d′, e′) be two multi-edge pairs in I× with d′, e′ as
successors of e. Now, let I ′ be the result of restricting I× to
I one of the multi-edge pairs and multi-edge reducing. Let
(d, e) be the restricted multi-edge pair (the case where (d′, e′)
is the restricted pair is similar). Since I× was multi-edge

reduced and the path containing (d, e) is exhaustively re-
stricted (Step 1 above), (d′, e′) is a multi-edge pair in I ′. By
definition of I ′R there is a homomorphism g′ : I ′R → IR.
Then, we can apply Claim 3 to obtain that IR 6⇒ I ′R.
Now this contradicts the fact that I× was exhaustively
restricted in Step 1. Then, for each multi-edge pair (d, e)
in I ′ the successors of e are not members of multi-edge pairs.

By Claim 4, the successors of multi-edge pairs are
not members of multi-edge pairs. So the unfolding of I×
increases the number of nodes by at most |R| · |∆I× |. By
assumption I and J are T -essential (T ,R)-countermodels
for H, then, by Lemma 30, |∆I | ≤ |T | and |∆J | ≤ |T |.
This means that |∆I× | ≤ |T |2. Since |∆I× | ≤ |T |2 we
have that |∆I×′ | ≤ |R| · |T |2 + |T |2 = |T |2 · (|R|+ 1). o

Polynomial Time Bound on the Algorithm
By Lemma 36, in Line 12 of Algorithm 7, I× is a polynomial
single-edge tree shaped interpretation. Next, Algorithm 6
recursively calls the function “RefineCounterModel”. Lemma
38 shows that the number of recursive calls is polynomial
with respect to |T |. To prove Lemma 38, we first show a
technical lemma.

Lemma 37 Let I0, I1, . . . , In be a sequence of T -essential
(T ,R)-countermodels for H such that, for all 0 ≤ l ≤ n,
IlR 6⇒ Il+1

R and Il+1
R ⇒ IlR. Then, n ≤ |T |(|ΣT |+ |R|+

1).

Proof. We first show that for every 0 ≤ l ≤ n either

1. there is a concept nameA such that ρIl ∈ AI
l

and ρIl+1 /∈
AI

l+1

or

2. Il+1
R ⇒ IlR via a surjective simulation.

For a proof by contradiction assume that there is 0 ≤ l ≤ n
such that neither Point 1 nor Point 2 holds. By assump-
tion Il+1

R ⇒ IlR. Since Il+1 is a T -essential (T ,R)-
countermodel for H, there is a C v A ∈ T such that
Il+1
R 6|=ρ C v A. Let J be the subinterpretation of IlR de-

termined by the range of the simulation S ⊆ ∆I
l+1
R ×∆I

l
R

from Il+1
R to IlR. Then ρJ ∈ CJ and so, since ρJ 6∈ AJ

because Point 1 does not hold, J 6|=ρ C v A. If S is not
surjective then this contradicts the fact that Il is a T -essential
(T ,R)-countermodel forH.

Since Il+1
R ⇒ IlR, we have that, for all concept names

A, if ρIl+1
∈ AIl+1 , then ρIl ∈ AIl . Now we show that

any subsequence Ii, . . . , Ij of the sequence I0, . . . , In
such that ρIk ∈ AI

k

iff ρIk+1 ∈ AI
k+1

holds for all
concept names A and all i ≤ k < j has length bounded
by |C|(|ΣT | + |R| + 1), for some C v A ∈ T . As
ρIk ∈ AI

k

iff ρIk+1 ∈ AI
k+1

and Ik is a T -essential
(T ,R)-countermodel forH, i ≤ k < j, there is C v A ∈ T
such that for all k, IkR 6|=ρ C v A. By the argument of
Lemma 30 the homomorphism h : IC → IkR is surjective.
Then there are three possible cases: (1) |∆Ik+1 | > |∆Ik |;

(2) there is a role r in Ik which is replaced by s in Ik+1

where R |= r v s (and R 6|= s v r); or (3) there is
d ∈ ∆I

k \ {ρIk} such that d ∈ AIk and d /∈ AIk+1

. Since
for all k, h : IC → IkR is surjective, Case 1 happens at
most |C|. Also, as for all k, |∆Ik | < |C| we have that Case
2 happens at most |C| · |R| and Case 3 happens at most
|C| · |ΣT |. This gives a total bound of |T |(|ΣT |+ |R|+1). o

Lemma 38 For each counterexample received from the or-
acle in Line 6 of Algorithm 6, the number of recursive calls
of the function “RefineCounterModel” in Algorithm 7 is
bounded by |T |2(|ΣT |+ |R|+ 1).

Proof. Let I1, I2, . . . , In denote the sequence of (T ,R)-
countermodels for H in each recursive call of the function
“RefineCounterModel”. Lemma 36 guarantees that, for all
1 ≤ k ≤ n, |∆Ik | is bounded by |T |2 · (|R|+ 1). Let I ′k be
the result of computing a T -essential (T ,R)-countermodel
for H from Ik, 1 ≤ k ≤ n (Line 2 of Algorithm 7). By
construction of I ′k, I ′k ⇒ (Ik, d), for some d ∈ ∆I

k

. Now
we make a case distinction:
1. d is not the root of Ik: let C v A be a counterexam-

ple given by the oracle in Line 6 of Algorithm 6. De-
note as I ′0 the result of computing a T -essential (T ,R)-
countermodel for H from IC = I0. By Lemma 30,
|∆I′0 | ≤ |T |. So the depth of I ′0 is bounded by |T |. No-
tice that products do not increase the length of EL paths.
This means that for all 1 ≤ k ≤ n, depth of Ik is bounded
by depth of I ′0. Then, the number of times where d is not
the root of Ik is bounded by |T |.

2. d is the root of Ik: let Ii, Ii+1, . . . , Ij be a subsequence
of I1, I2, . . . , In such that for all Il, i ≤ l < j, I ′l ⇒ Il.
That is, there is a simulation mapping the roots of I ′l
and Il. By Case 1, there are at most |T | subsequences of
this form. We first show that for all l, with i ≤ l < j, we
have that IlR 6⇒ Il+1

R and Il+1
R ⇒ IlR. As Il+1 is a single-

edge tree shaped I ′l-candidate for some J in I (Line 11 of
Algorithm 7), we have that I ′lR 6⇒ Il+1

R and Il+1
R ⇒ I ′lR,

where I ′l is the T -essential (T ,R)-countermodel forH of
Il (computed in Line 2 of Algorithm 7). The assumption
in this case states that for all Il, i ≤ l < j, I ′l ⇒ Il.
By construction of T -essential (T ,R)-countermodels for
H, I ′l is a subinterpretation of Il. Then, we have that
IlR 6⇒ Il+1

R and Il+1
R ⇒ IlR. By Lemma 37, the length of

a subsequence is bounded by |T |(|ΣT |+ |R|+ 1), which
gives the total bound of |T |2(|ΣT | + |R| + 1) recursive
calls.

o

Now, termination in polynomial time is a consequence of
Lemma 39 below.
Lemma 39 Let I be a sequence computed at some point of
an execution of Algorithm 6. Then

(i) the length of I is bounded by the number of CIs in T and
(ii) each interpretation in each position of I is replaced at

most |T |(|ΣT |+ |R|+ 1) often with a new interpretation.

The rest of the section is devoted to proving Lemma 39.
For easy reference, assume that at each point of the execution
of the algorithm, I has the form J 0, . . . ,J k for some k ≥ 0.
To establish Point (i) above, we closely follow (Angluin,
Frazier, and Pitt 1992) and show that

(iii) for every J i, there is a Di v Ai ∈ T with J iR 6|=ρ Di v
Ai and

(iv) if i 6= j, then Di v Ai and Dj v Aj are not identical.
In fact, Point (iii) is immediate since whenever a new
J i is added to I in the algorithm, then J i is a (T ,R)-
countermodel for H. For a multi-edge tree shaped inter-
pretation IR and a concept inclusion C v A, we write
IR |=ρ C v A if ρIR /∈ CIR or ρIR ∈ AIR ; that is,
the inclusion C v A is satisfied at the root of IR, but not
necessarily at other points in IR. It is easy to see that if some
interpretation I is a (T ,R)-countermodel, then there is a
C v A ∈ T such that IR 6|=ρ C v A. To prove Point (iv),
we need to show that at no time there are J j ,J k ∈ I refut-
ing the same CI in T . Suppose this is not the case and both
J j ,J k ∈ I refute C v A ∈ T . Without loss of generality
assume j < k. By Lemma 41, if J kR 6|=ρ C v A ∈ T and
j < k, then ρJ jR /∈ CJ jR . This contradicts the assumption

that both J j ,J k ∈ I refute C v A ∈ T in their roots.
Thus, the length of I is bounded by the number of CIs in
T . To prove Lemma 41, we first establish the intermediate
Lemma 40 below.

Lemma 40 If the interpretation I constructed in Line 2 of
Algorithm 7 satisfies IR 6|=ρ C v A ∈ T and ρJ jR ∈ C

J jR

for some j, then J = J k is replaced with J ′ in Line 11
of Algorithm 6 for some k ≤ j or I is refined in Line 11
of Algorithm 7 to some I ′ such that T |= CI′ v A and
H 6|= CI′ v A.

Proof. Assume that the interpretation I constructed in Line 2
of Algorithm 7 satisfies IR 6|=ρ C v A ∈ T and that there is
some J j ∈ I such that ρJ j ∈ CJ

j

. If there is some k < j
such that the algorithm replaces J k then we are done. Thus
assume that there is no such k. We aim to show that J = J j
is replaced with J ′ in Line 11 of Algorithm 6 or I is refined
in Line 11 of Algorithm 7 to I ′. To this end, it suffices to
prove that (a) J jR 6⇒ (IR ×ρ J jR) and (b) either :

• (IR ×r
ρ J jR)R 6|= T and IR ×r

ρ J jR is single-edge tree
shaped, where IR×r

ρ J jR is the result of multi-edge reduc-
ing IR ×ρ J jR, or;

• T |= CI× v A and H 6|= CI× v A, where I× is a
single-edge tree shaped I-candidate for J .

To show (a) assume to the contrary that J jR ⇒ (IR ×ρ
J jR). We establish a contradiction against IR |= H (which
holds by construction of I in the algorithm) by showing that

1. IR 6|=ρ CJ j v A and
2. CJ j v A ∈ H.

For Point 1, J jR ⇒ (IR ×ρ J jR) and ρJ j ∈ (CJ j)
J j imply

ρIR×ρJ jR
∈ (CJ j)

IR×ρJ jR , which gives ρIR ∈ (CJ j)
IR ,

by Lemma 20 and Lemma 18. It remains to observe that
IR 6|=ρ C v A ∈ T implies ρIR /∈ AIR . In view of the
construction ofH in the algorithm, Point 2 can be established
by showing that T |= CJ j v A. Since C v A ∈ T , it
suffices to prove that R |= CJ j v C. This, however, is
an immediate consequence of the assumption in this lemma
which says that ρJ jR ∈ C

J jR .

Now we want to show (b). The fact that IR×ρJ jR 6|= T is
a consequence of IR 6|=ρ C v A ∈ T and ρJ jR ∈ C

J jR . We

know that IR ×r
ρ J jR is the result of removing redundancies

from IR×ρJ jR. So (IR×r
ρJ jR)R 6|= T iff IR×ρJ jR 6|= T .

If IR ×r
ρ J jR is single-edge tree shaped then Algorithm 6

replaces J j with J ′ in Line 11. Otherwise we need to show
that T |= CI× v A and H 6|= CI× v A, where I× is
the result of restrict saturating and unfolding IR ×r

ρ J jR.

Since IR 6|=ρ C v A ∈ T and ρJ jR
∈ CJ

j
R we know

that IR ×ρ J jR 6|=ρ C v A ∈ T . By definition of I×
we have that IR ×ρ J jR ⇒ I×R. Then, ρI×R ∈ CI

×
R . As

I×R ⇒ IR and ρIR /∈ AIR , we have that ρI×R /∈ AI
×
R .

Then, I×R 6|=ρ C v A ∈ T . That is, T |= CI× v A. As
I is a (T ,R)-countermodel for H, H 6|= CI v A. Since
I×R ⇒ IR, we have thatH 6|= CI× v A. o
Now, Point (iv) above is a consequence of the following.
Lemma 41 At any time of the algorithm execution, the fol-
lowing condition holds: if J kR 6|=ρ C v A ∈ T and j < k,
then ρJ jR /∈ CJ jR .

Proof. We prove the invariant formulated in Lemma 41 by
induction on the number of iterations of the while loop in
Algorithm 6. Clearly, the invariant is satisfied before the
loop is entered. We now consider the two places where I is
modified, that is, Line 11 and Line 13 of Algorithm 6, starting
with the latter. Let I be a T -essential (T ,R)-countermodel
forH.

In Line 13, I is appended to I. Assume that IR 6|=ρ C v
A ∈ T . We have to show that, before I was added to I,
there was no J j ∈ I with ρJ jR

∈ CJ
j
R . This, however,

is immediate by Lemmas 40 and 38, which shows that the
number of recursive calls is polynomial and, therefore, the
sequence is updated in a polynomial number of steps if the
conditions for Lemma 40 are satisfied.

Now suppose that the algorithm replaces some J k ∈ I
with J k′ in Line 11. Suppose by way of contradiction that
the lemma does not hold. Then, either:

1. there is j < k such that J k′R 6|=ρ C v A ∈ T and
ρJ jR

∈ CJ jR or;

2. there is some j > k such that ρJ k′R ∈ CJ
k′
R and

J jR 6|=ρ C v A ∈ T .
Suppose Case 1 holds. Let IR ×r

ρ J kR be the maximal
multi-edge reduced tree shaped interpretation that is con-
tained in IR × J kR with root (ρI , ρJ k). Since J k′ is ob-
tained from IR×r

ρJ kR by removing subtrees (see Lemma 31),

J k′R 6|=ρ C v A implies (IR ×r
ρ J kR)R 6|=ρ C v A. Con-

sequently, IR 6|=ρ C v A or J kR 6|=ρ C v A. The former
and Lemma 40 implies that there is l ≤ j < k such that J l
was refined instead of J k, a contradiction. If J kR 6|=ρ C v A
then, since ρJ jR ∈ C

J jR , this contradicts the assumption that

Lemma was true before J k was replaced by J k′.
Now, suppose Case 2 holds. If ρJ k′R ∈ CJ

k′
R then

ρJ kR ∈ C
J kR . Since J jR 6|=ρ C v A ∈ T and j > k, again

this contradicts the assumption that the Lemma was true
before J k was replaced by J k′. Thus in either case Lemma
41 holds. o

We now turn towards proving Point (ii) above. It is a con-
sequence of Lemma 42 below.

Lemma 42 Let I be a sequence computed at some point of
an execution of Algorithm 6. Then each J ∈ I is replaced at
most |T |(|ΣT |+ |R|+ 1) often with a new interpretation.

Proof. Let J 0, . . . ,J n be the sequence of interpretations
such that J l+1 replaces J l in Line 11 of Algorithm 6,
l < n. We first show that J lR 6⇒ J l+1

R and J l+1
R ⇒ J lR.

Since J l+1 is a subinterpretation of some IR ×ρ J lR
and IR ×ρ J lR ⇒ J lR we obtain that J l+1

R ⇒ J lR.
Also, by Line 7 of Algorithm 7, J lR 6⇒ IR ×ρ J lR, then,
J lR 6⇒ J l+1

R , where J l+1
R is the subinterpretation of

IR ×ρ J lR computed by Line 10 of Algorithm 6. By
Lines 10 and 2 of Algorithm 6, for all l < n, J l is a
T -essential (T ,R)-countermodel for H. Then we can
apply Lemma 37 to obtain that each J ∈ I is replaced
at most |T |(|ΣT |+|R|+1) often with a new interpretation. o

Theorem 43 The learning framework FS(ELHlhs) is poly-
nomial time exact learnable.

Proofs for Theorem 2
For convenience of the reader we state again our definition of
positive polynomial query reducibility and also Theorem 2.

Definition 44 We say that a learning framework F =
(X,L, µ) positively polynomial query reduces to F′ =
(X ′,L, µ′) if, for any l, h ∈ L, µ(h) ⊆ µ(l) if, and only
if, µ′(h) ⊆ µ′(l); and for some polynomials p1(·), p2(·) and
p3(·, ·) there exist a function fMEM : X ′ → X and a partial
function fEQ : L × L×X → X ′, defined for every (l, h, x)
such that |h| ≤ p1(|l|), for which the following conditions
hold:

• for all x′ ∈ X ′ we have x′ ∈ µ′(l) iff fMEM(x′) ∈ µ(l);
• for all x ∈ X we have x ∈ µ(l) \ µ(h) iff fEQ(l, h, x) ∈
µ′(l) \ µ′(h);

• |fMEM(x′)| ≤ p2(|x′|);
• the sum of sizes of inputs to queries used to compute
fEQ(l, h, x) is bounded by p3(|l|, |x|), |fEQ(l, h, x)| ≤
p3(|l|, |x|) and l can only be accessed by calls to the oracle
MEMl,X .

is x� � µ�(l)?

is µ(h) = µ(l)?is µ�(h) = µ�(l)?

x � µ(l) \ µ(h)A
lg
or
ith

m
A

�

Algorithm A

yes/no

Transform
query with fMEM

Transform
answer with fEQ

Forward
query

Oracle

is fMEM(x�) � µ(l)?

fEQ(l, h, x)

Figure 6: Learning by reduction algorithm

Theorem 2 (restated). Let F = (X,L, µ) and F′ =
(X ′,L, µ′) be learning frameworks. If there exists a posi-
tive polynomial query reduction from F to F′ and a polyno-
mial query learning algorithm for F′ that uses membership
queries and positive bounded equivalence queries then F is
polynomial query exact learnable.

Proof. Let A′ be a polynomial learning algorithm for
(X ′,L, µ′), which only uses positive bounded equivalence
queries. We construct a learning algorithm A for (X,L, µ),
using internally the learning algorithm A′, as follows. As
learning (X,L, µ) positively polynomially query reduces to
learning (X ′,L, µ′), we have that:

• for any l, h ∈ L, µ(h) ⊆ µ(l) if, and only if, µ′(h) ⊆
µ′(l); and

• there are functions fMEM : X ′ → X and fEQ : L × L ×
X → X ′ such that fMEM transforms a membership query
with ‘x′ ∈ X ′’ as input into a query ‘x ∈ X’ and fEQ trans-
forms a positive counterexample ‘x ∈ X’ into a positive
counterexample ‘x′ ∈ X ′’.
So, whenever a membership query with x′ ∈ X ′ as input

is called by A′ we compute fMEM(x′) and call the MEMl,X

oracle. We return ‘yes’ to A′ if fMEM(x′) ∈ µ(l) and ‘no’
otherwise, see Fig. 6. Whenever an equivalence query with
h ∈ L as input is called by A′ we pass it on to the EQl,X
oracle. If it returns ‘yes’ then the learner succeeded. Other-
wise the oracle returns ‘no’ and provides a counterexample
x ∈ X . Notice that, since A′ is a positive learning algo-
rithm, µ′(h) ⊆ µ′(l) and then µ(h) ⊆ µ(l) by definition
of a positive polynomial reduction. Thus, any counterexam-
ple x can only be positive, that is, x ∈ µ(l) \ µ(h). Then,
we compute x′ = g(l, h, x) and return it to A′. Notice that
computing fEQ(l, h, x) may require posing additional mem-
bership queries (recall that l can only be accessed via queries
to the oracle MEMl,X), not shown on Fig. 6.

By definition of fMEM and fEQ all the answers provided
to A′ are consistent with answers the oracles MEMl,X′ and
EQl,X′ would provide to A′. Clearly, if algorithm A termi-
nates then it learns l.

It remains to prove the polynomial query bound for A. Let
p1(·), p2(·) and p3(·, ·) be the polynomials of Definition 44,
that is,

• p1(|l|) is the polynomial bound on |h|;
• |fMEM(x′)| ≤ p2(|x′|);

• p3(|l|, |x|) is the polynomial query bound for computing
fEQ(l, h, x).
Let p(·, ·) be such a polynomial that in every run of A′,

the sum of the sizes of inputs to queries used by A′ up to
each step of computation is bounded by p(|l|, |y′|), where
|l| is the size of the target l ∈ L and |y′| is the size of
the largest counterexample y′ ∈ X ′ seen by A′ up to that
point of computation. As y′ is the result of transformation
with function fEQ of some counterexample y ∈ X given by
the EQl,X oracle to algorithm A, its size |y′| is bounded by
p3(|l|, |y|). Notice that y is also the largest counterexample
seen so far by A. Thus, at every step of computation the sum
of the sizes of inputs to queries used to run A′ up to that step
is bounded by a polynomial p′(|l|, |y|) = p(|l|, p3(|l|, |y|)).

For every membership query with x′ ∈ X ′ asked by A′,
the size of x′ does not exceed the polynomial query bound of
A′ up to that point, that is, |x′| ≤ p′(|l|, |y|). Then, the sum
of the sizes of inputs to queries needed to transform answers
to equivalence queries is bounded by p2(p′(|l|, |y|)) and
p3(|l|, |y|), respectively. All in all, at every step of computa-
tion the sum of the sizes of inputs to queries used by A up to
that step is bounded by p′(|l|, |y|) ·p2(p′(|l|, |y|)) ·p3(|l|, |y|)
steps, which is polynomial in |l| and |y|, as required. o

We now modify the notion of a positive polynomial query
reduction to obtain an appropriate notion of positive polyno-
mial time reduction that enables us to prove polynomial time
exact learnability results in the data retrieval framework by
reduction to the subsumption framework.
Definition 45 A learning framework F = (X,L, µ) posi-
tively polynomial time reduces to F′ = (X ′,L, µ′) if, for
any l, h ∈ L, µ(h) ⊆ µ(l) if, and only if, µ′(h) ⊆ µ′(l);
and for some polynomials p1(·), p2(·) and p3(·, ·) there
exist a function fMEM : X ′ → X and a partial function
fEQ : L× L×X → X ′, defined for every (l, h, x) such that
|h| ≤ p1(|l|), for which the following conditions hold:
• for all x′ ∈ X ′ we have x′ ∈ µ′(l) iff fMEM(x′) ∈ µ(l);
• for all x ∈ X we have x ∈ µ(l) \ µ(h) iff fEQ(l, h, x) ∈
µ′(l) \ µ′(h);

• fMEM(x′) is computable in time p2(|x′|);
• fEQ(l, h, x) is computable in time p3(|l|, |x|) and l can

only be accessed by calls to the membership oracle
MEMl,X .
Note that for time reductions the conditions for query

reductions that |fMEM(x′)| ≤ p2(|x′|) and |fEQ(l, h, x)| ≤
p3(|l|, |x|) are a consequence of the polynomial time bound
for computing fMEM(x′) and fEQ(l, h, x). The proof of Theo-
rem 2 above can be easily modified to show the following.
Theorem 46 Let F = (X,L, µ) and F′ = (X ′,L, µ′) be
proper learning frameworks. If there exists a polynomial
time reduction from F to F′ and F′ is polynomial time exact
learnable then F is polynomial time exact learnable.

Proofs for Polynomial Query Reduction of
FD(DL-Lite∃H, ELI-IQ)

In this section we prove that FD(DL-Lite∃H, ELI-IQ) is poly-
nomial query learnable. Before we start our proofs, we first

recall the notions of role saturation and parent/child merging
used in Line 2 of Algorithm 1.

(Role saturation) if (T ,A) |= C ′(a) and C ′ is the result
of replacing a role r in the labeled tree of C by some role r′,
where T |= r′ v r and r′ 6≡T r, then consider (A, C ′(a))
instead of (A, C(a)) as a counterexample.

(Parent/child merging) if, for nodes n1, n2, n3 in the la-
beled tree TC of C where n2 is an r-successor of n1,
n3 is an s-successor of n2 and r− ≡T s, we have that
(T ,A) |= C ′(a) with C ′ as the result of identifying n1 and
n3; then consider (A, C ′(a)) instead of (A, C(a)) as coun-
terexample.
Lemma 3 (restated). Let (A, C(a)) be a positive counterex-
ample. Then the following holds:

1. if C is a basic concept then there is a singleton A′ ⊆ A
such that (T ,A′) |= C(a);

2. if C is of the form ∃r.C ′ and C is role saturated and
parent/child merged then either there is s(a, b) ∈ A (where
r and s are roles) such that (T , {s(a, b)}) |= r(a, b) and
(T ,A) |= C ′(b) or there is a singleton A′ ⊆ A such that
(T ,A′) |= C(a).

Proof. For Point (1), assume that C is a basic concept
B. By Lemma 13, if (T ,A) |= B(a) then IT ,A |= B(a),
where IT ,A =

⋃ In≥0 is the canonical model of (T ,A).
Point (1) of this lemma follows from Claim 1 below.

Claim 1. For all n, if a ∈ BIn , where B is a basic
concept, then there is a singleton A′ ⊆ A such that
a ∈ BIT ,A′ .

For n = 0, as I0 = IA, if I0 |= B(a) then we are
done. Otherwise, there is k ≤ n such that Ik 6|= B(a)
and Ik+1 |= B(a). By construction of IT ,A, there is
B′ v D ∈ T such that a ∈ (B′ \ D)Ik , a ∈ DIk+1 and
R |= D v B (where R is the set of RIs in T). As T is a
DL-Lite∃H TBox, B′ is a basic concept. Suppose the claim
holds for a ∈ B′Ik . Then, there is a singleton A′ ⊆ A such
that (T ,A′) |= B′(a). As B′ v D ∈ T and R |= D v B,
(T ,A′) |= B(a), as required.

We now prove Point (2). Assume C is of the form
∃r.C ′ with r a role. If (T ,A) |= ∃r.C ′(a) then, by
Lemma 13, IT ,A |= ∃r.C ′(a). By semantics of ∃,
there is d ∈ ∆IT ,A such that (a, d) ∈ rIT ,A and
d ∈ CIT ,A . If d ∈ ∆IA then there is s(a, d) ∈ A such
that T |= s v r and (T ,A) |= C ′(d) and, so, we are
done. Otherwise, we have that d ∈ ∆IT ,A \ ∆IA . By
Lemma 11, there is a homomorphism h : IC′ → IT ,A
mapping ρC′ to d. To simplify notation, consider labeled
tree TC′ (isomorphic to IC′) as the domain of h. Let
Imh = {e ∈ ∆IT ,A | h(n) = e for some n in TC′} be the
image of h.

Claim 2. If ∃r.C ′(a) is role saturated and parent/child
merged then Imh ⊆ ∆IT ,A \∆IA .

We can assume that C ′ is not > (otherwise ∃r.C ′ is a
basic concept, which is treated in Point (1)). Then, the root

ρTC′ of TC′ has an s-successor n which is either mapped to
a or to a child of d in ∆IT ,A \ ∆IA . If h(n) = a then, as
(a, d) ∈ rIT ,A and ∃r.C ′(a) is role saturated, we have that
r ≡T s−. Then (T ,A) |= C ′′(a), where C ′′ is the result of
identifying n with the root of the tree corresponding to ∃r.C ′.
This contradicts the fact that ∃r.C ′(a) is parent/child merged.
Otherwise, n is mapped to a child of d in ∆IT ,A \∆IA . In
this case, suppose to the contrary that there is n′ in TC′ such
that h(n′) ∈ ∆IA . This can only be if there are n1, n2, n3

in TC′ such that n2 is an r′-successor of n1, n3 is an
s′-successor of n2 and h(n1) = h(n3). By construction of
IT ,A, there is a role t such that (h(n1), h(n2)) ∈ tIT ,A and
for all roles t′ if (h(n1), h(n2)) ∈ t′IT ,A then T |= t v t′.
By role saturation, r′ ≡T t and s′− ≡T t, which means
that r′ ≡T s′−. Since n1, n3 are distinct nodes in TC′ , this
contradicts the fact that ∃r.C ′(a) is parent/child merged.

By Claim 2 the whole image of h is outside of ∆IA . Then,
by construction of IT ,A, there is B v D ∈ T such that
IT ,A |= B(a) and T |= D v ∃r.C ′. By Claim 1 above, if
IT ,A |= B(a) then there is a singleton A′ ⊆ A such that
(T ,A′) |= B(a). Since B v D ∈ T and T |= D v ∃r.C ′
we have that (T ,A′) |= ∃r.C ′(a), as required. o

Lemma 4 (restated). For any DL-Lite∃H target T and any
DL-Lite∃H hypothesisH with size polynomial in |T |, given a
positive counterexample (A, C(a)), Algorithm 1 computes
with polynomially many polynomial size queries in |T |, |A|
and |C| a positive counterexample (A′, D(b)), where A′ ⊆
A is a singleton ABox.

Proof. Let (A, C(a)) be the counterexample given to the
function “ReduceCounterExample” (Line 1). In Line 2 of
Algorithm 1, we exhaustively apply the rules role saturation
and parent/child merging. Let (A, C∗(a)) denote the coun-
terexample obtained by the application of these rules. If C∗
is of the form C∗0 u ... u C∗n then there is a C∗i , 0 ≤ i ≤ n,
such that (A, C∗i (a)) is also a counterexample. In Line 4,
Algorithm 1, chooses a conjunct C∗i such that (A, C∗i (a)) is
a counterexample. Otherwise, C∗ is a basic concept or C∗ is
of the form ∃r.C ′. In this case consider C∗i = C∗. Now, we
make a case distinction:
• C∗i is a basic concept B: then Point (1) of Lemma 3 ap-

plies.
• C∗i is of the form ∃r.C ′ and we make a case distinction:

1. there is r(a, b) ∈ A such that (T ,A) |= C ′(b). In
this case, Algorithm 1 recursively calls the function
“ReduceCounterExample” (Line 8).

2. otherwise, notice that since C∗(a) is role saturated and
parent/child merged, C∗i (a) also have the same proper-
ties. Then, Point (2) of Lemma 3 applies.

In case (1), with (A, C ′(b)) as the counterexample, ob-
serve that (A, C ′(b)) is a refined version of the initial coun-
terexample (A, C(a)). Since the size of the refined coun-
terexample is strictly smaller in every recursive call of the
function “ReduceCounterExample”, the number of calls to
this function is bounded by |C|. Then, conditions for Point
(1) or Point (2) of Lemma 3 are satisfied after polynomially
many recursive calls.

It remains to show that each call of the function “Re-
duceCounterExample” is computable with polynomial
query bound with respect to |T |, |C| and |A|. Note that by
assumption |H| is polynomial in |T |. Algorithm 1 makes
membership queries in Lines 2, 7 and 11. In Line 2 the sum
of inputs of membership queries is bounded by |C|3 · |ΣT |.
In Line 7 it is verified for every s(a, b) ∈ A such that
T |= s v r whether (T ,A) |= C ′(b). So the sum of inputs
of membership queries is bounded by |A| · |C|. Finally, in
Line 11 the sum of inputs of membership queries is bounded
by |Aa| · |C|, where Aa ⊆ A is the set of assertions in A
where individual a occurs. o

We now detail the polynomials of Definition 44 involved in
our proof for DL-Lite∃H. Let T be the target DL-Lite∃H TBox
with signature ΣT . We want to define p1(·), p2(·, ·), p3(·, ·)
such that:
• p1(|T |) is the polynomial bound on |H|;
• p2(|A v C|) is the polynomial bound on |fMEM(A v C)|;
• p3(|T |, |(A, D(a))|) is the polynomial query bound for

computing fEQ(T ,H, (A, D(a))).

In the learning algorithm for DL-Lite∃H presented in
(Konev et al. 2014), H is the union of Hadd and Hbasic.
We have that |Hbasic| is bounded by 2 · |ΣT |2 (combinations
of two in the signature plus inverse roles) and Hadd has at
most |ΣT | CIs. The left hand side of each CI inHadd has size
1 and the right hand side of each CI is bounded by |ΣT | · |T |.
Then, |Hadd| ≤ |ΣT |(|ΣT | · |T | + 1). As |ΣT | ≤ |T |, we
have |H| ≤ p1(|T |) with p1(|T |) = |T |3 + 2 · |T |2 + |T |
(we note that normally the size of the signature is much
smaller than the size of the TBox and, so, this rough es-
timate only serves for the purpose of defining our poly-
nomials). As fMEM(A v C) = ({A(a)}, C(a)), we have
p2(|A v C|) = |C| + 1. By the proof of the lemma above,
we have that p3(|T |, |(A, D(a))|) =

k · |D|︸︷︷︸
recursive calls

(

role sat., parent/child︷ ︸︸ ︷
(|D|3 · |T |) +

queries on T︷ ︸︸ ︷
|A| · |D|)

for some constant k ∈ N.

Proofs for Polynomial Time Reduction of
FD(ELHlhs,AQ)

We now prove polynomial time learnability for the learning
framework FD(ELHlhs,AQ). We employ Theorem 46 in our
polynomial time reduction to FS(ELHlhs). Before we start
our proofs, we first define the notion of a minimal ABox A
and show in Lemma 47 that the size of A is polynomially
bounded by |T |. Recall that we denote by A−a the result of
removing from A all ABox assertions where a occurs. That
is, A−a = A \ Aa, where Aa = {r(a, b) | b ∈ Ind(A), r ∈
ΣT ∩NR}∪{r(b, a) | b ∈ Ind(A), r ∈ ΣT ∩NR}∪{A(a) |
A ∈ ΣT ∩ NC}. Also, A−r(a,b) is obtained by removing a
role assertion r(a, b) from A. Let IA be the canonical model
of an ABox A. We say that IA is a countermodel if IA 6|= T
and IA |= H. We define A as minimal if the following
conditions are satisfied:

1. IA is a countermodel;

2. IA−a |= T ; and

3. IA−r(a,b) |= T .

The following lemma shows that the size of a minimal
ABox is polynomial in |T |.
Lemma 47 Let IA be the canonical model of a minimal
ABox A. Then, |∆IA | ≤ |T |.
Proof. By Condition 1 of minimal ABoxes, IA is a
countermodel. So IA 6|= T . Then there is C v A ∈ T such
that a ∈ (C \ A)IA , for some a ∈ ∆IA . If a ∈ CIA then
(by Lemma 11) there is a homomorphism h : IC → IA
mapping ρC to a, where ρC is the root of IC . We need
to show that h is surjective. Suppose this is not the
case. Then, there is d ∈ ∆IA such that d /∈ Imh, where
Imh = {e ∈ ∆IA | e = h(p) for some p ∈ ∆IC}. Now,
denote as IA−d the result of removing d /∈ Imh from IA.
Since IA−d is a subinterpretation of IA, if a /∈ AIA then
a /∈ AIA−d . So a ∈ (C \ A)IA−d , which means that
IA−d 6|= T . This contradicts the fact that IA−d |= T for
any element d from ∆IA (Condition 3 of minimal ABoxes).
Since C v A ∈ T , we know that |∆IC | ≤ |T |. Thus,
|∆IA | ≤ |∆IC | ≤ |T |. o

Algorithm 2 minimizes A to an A′ with the properties
described above. Since the Algorithm receives a positive
counterexample, we know that IA is not a model of T , that
is, IA 6|= T . In order to satisfy Condition 1 above and reduce
A (Conditions 2 and 3), Algorithm 2 applies rules ‘Concept
saturate’, ‘Domain Minimize’ and ‘Role Minimize’.

We now show Lemma 48, which implies Lemma 5.

Lemma 48 For any ELHlhs target T and any ELHlhs hy-
pothesisH with size polynomial in |T |, given a positive coun-
terexample (A, A(a)), Algorithm 2 computes in polynomial
time in |A| and |T | an ABox A′ such that |A′| ≤ |T | and
there exists an AQ A′(a′) such that (A′, A′(a′)) is a positive
counterexample.

Proof. By Lemma 47, if A is a minimal ABox then
|Ind(A)| ≤ |T |. Then, we only need the following claims to
show this lemma.

Claim 1. Algorithm 2 computes a minimal ABox
A.

For Condition 1, we have that, in Line 2, Algorithm
2 concept saturates A with H. Then, after computing Line
2, we have that IA |= H. Since the minimization rules
described above do not remove any concept name implied
by H, the ABox computed by the algorithm is a model of
H in all steps that follow Line 2. By definition of the rules,
at least one example (A, A(a)) is such that (T ,A) |= A(a)
and (H,A) 6|= A(a), which is the counterexample where the
rules are being applied. So for all iterations of Algorithm 2,
IA 6|= T .

For Condition 2, suppose there is A−d such that
IA−d 6|= T . Then there is C v A ∈ T and a ∈ ∆IA−d such
that a ∈ (C \ A)IA−d . This contradicts the fact that, in

A2

B′

A3

t

c

a
B

s

b
A1

r

t
s

d

r

A2

c
s

A1

B′
t

a
B

b

(a) Initial A with the AQs A1(b), A2(a), A3(d)

(b) Minimal A with the AQs A1(b), A2(a)

Figure 7: Minimizing A

Line 5, domain minimization was applied in A for all
counterexamples. Thus, IA−d |= T . The argument is similar
for role minimization (Condition 3).

Claim 2. Algorithm 2 runs in polynomially many
steps with respect to |A| and |NC ∩ΣT |, where NC ∩ΣT are
the concept names in the vocabulary.

We know that the number of possible concept name
assertions in A is |NC ∩ ΣT | · |Ind(A)|. So, in Line 2, the
number of applications of the rule Concept Saturate withH
is bounded by |NC ∩ ΣT | · |Ind(A)|. Also, the number of
iterations in Line 3 is at most |NC∩ΣT | · |Ind(A)|. Since role
and domain minimization is linear in |A|, we have that Al-
gorithm 2 is polynomial with respect to |A| and |NC∩ΣT |. o

As an example, let T = {∃s.∃r.(∃s.B u ∃t.B′) v
A1,∃r.(∃t.B′ u ∃s.B) v A2, ∃t.(∃s.B u ∃t.B′) v
A3,∃r.∃t.B′ v B}, H = {∃r.∃t.B′ v B} and A =
{r(a, b), s(b, a), t(b, c), s(b, d), t(d, b), B′(c)}. After con-
cept saturating A with H we have that B(a) is added to
A. Then we have (A, A1(b)), (A, A2(a)) and (A, A3(d)) as
counterexamples (Figure 7-(a)). Assume Algorithm 2 starts
minimizing A with the counterexample (A, A1(b)). The al-
gorithm eliminates s(b, d) and t(d, b) from A. As a result,
(A, A3(d)) is not a counterexample any more. In the next it-
eration, the algorithm tries to minimizeA with A2(a), which
does not eliminates any other assertion from A. So A is now
minimal. The result of minimizing A is shown by Figure
7-(b), it contains now only (A, A1(b)) and (A, A2(a)) as
counterexamples.

We have seen that a minimal ABox A is a countermodel
bounded by |T |. Algorithm 3 is based on two operations
(i) minimization, presented above, and (ii) cycle unfolding.
The cycle unfolding operation doubles the length of a cy-
cle in A. By increasing the length of cycles and then min-

imizing, the algorithm proceeds unfolding elements until
A is tree shaped. We say that A has a (undirected) cycle
if there is a finite sequence a0 · r1 · a1 · ... · rk · ak such
that (i) a0 = ak and (ii) there are mutually distinct asser-
tions of the form ri+1(ai, ai+1) or ri+1(ai+1, ai) in A, for
0 ≤ i < k. For a cycle c = a0 · r1 · a1 · ... · rk · ak, denote
as nodes(c) = {a0, a1, ..., ak−1} the set of individuals that
occur in c. Also, roles(c) = {r1, r2, ..., rk} is the set of roles
that occur in c. We denote by â the copy of an element a
created by the unfolding cycle operation described below.
The set of copies of individuals that occur in c is denoted
by nodes(ĉ) = {â0, â1, ..., âk−1}. Let IA be the canonical
interpretation of an ABox A. An element a ∈ ∆IA is folded
if there is a cycle c = a0 ·r1 ·a1 · ... ·rk ·ak with a = a0 = ak.
Without loss of generality we assume that r1(a0, a1) ∈ A.
The cycle unfolding of c is described below.

1. We first open the cycle by removing r1(a0, a1) from A.
So rIA1 := rIA1 \ {(a0, a1)}.

2. Then we create copies of the nodes in the cycle:

• ∆IA := ∆IA ∪ {b̂ | b ∈ nodes(c)}
• AIA := AIA ∪ {b̂ | b ∈ AIA}
• rIA := rIA∪{(̂b, d̂) | (b, d) ∈ rIA} ∪{(̂b, e) | (b, e) ∈
rIA , e /∈ nodes(c)}

3. As a third step we close again the cycle, now with double
size. So we update rIA1 := rIA1 ∪ {(a0, â1), (â0, a1)}.
We now show that our cycle unfolding operation maintains

the invariant that if (A, A(a)) is a counterexample for T
relative toH then (A, A(a)) will remain as a counterexample
after applying this operation over an arbitrary cycle inA. This
is obtained by Lemmas 49 and 50.

Lemma 49 Let A′ be the result of unfolding a cycle c in A.
Then the following relation S ⊆ ∆IA×∆IA′ is a simulation
IA ⇒ IA′ :
• for a ∈ ∆IA \ nodes(c), (aIA , aIA′) ∈ S;
• for a ∈ nodes(c), (aIA , aIA′) ∈ S and (aIA , âIA′) ∈ S.

Proof. We need to show that S is a simulation IA ⇒ IA′ .
That is, for d, d1 ∈ ∆IA and e, e1 ∈ ∆IA′ :

1. for all concept names A ∈ NC and all (d, e) ∈ S, if
d ∈ AIA then e ∈ AIA′ ;

2. for all role names r ∈ NR, all (d1, e1) ∈ S and all d2 ∈
∆IA , if (d1, d2) ∈ rIA then there exists e2 ∈ ∆IA′ such
that (e1, e2) ∈ rIA′ and (d2, e2) ∈ S.

For Point 1 we have that by definition of the cycle unfolding
operation (Step 2), if a ∈ AIA then a ∈ AIA′ and â ∈ AIA′ .
Point 2 follows from Claims 1 and 2 below.

Claim 1. If aIA has an r-successor b then aIA′ has
an r-successor d with (b, d) ∈ S.

By definition of the cycle unfolding operation (Step
1), r1(a0, a1) is the only role assertion removed from A. In
Step 3 we include (a0, â1) to rIA1 . By definition of S, we
have that (a1, â1) ∈ S. So if aIA has an r-successor b then

aIA′ has an r-successor d with (b, d) ∈ S.

Claim 2. If aIA has an r-successor b then âIA′ has
an r-successor e with (b, e) ∈ S.

For (a0, a1) ∈ rIA1 , in Step 3 we include (â0, a1) to
r
I′A
1 . By definition of S, (a

IA′
1 , a

IA′
1) ∈ S. Otherwise,

in Step 2 we have that for all r-successors bIA of aIA
such that b /∈ nodes(c), (âIA′ , bIA′) ∈ rIA′ . By defi-
nition of S, (bIA , bIA′) ∈ S. Also, in Step 2, for the
r-successors bIA of aIA such that b ∈ nodes(c), we have
that (âIA′ , b̂IA′) ∈ rIA′ , where b̂IA′ is the copy of bIA′ .
Again, by definition of S, (bIA , b̂IA′) ∈ S. o

Lemma 50 Let A′ be the result of unfolding a cycle c in A.
Let h∗ : IA′ → IA be the following mapping:

• for a ∈ ∆IA \ nodes(c), h∗(aIA′) = aIA ;
• for a ∈ nodes(c), h∗(aIA′) = aIA and h∗(âIA′) = aIA .

Then, h∗ : IA′ → IA is a homomorphism.

Proof. By definition of the cycle unfolding operation, no
concept name assertion is removed from A′. So a ∈ AIA′ iff
a ∈ AIA . Also, in Step 2 of the cycle unfolding operation we
have that â ∈ AIA′ iff a ∈ AIA . So if a ∈ AIA′ or â ∈ AIA′
then h∗(a) = h∗(â) = a ∈ AIA . Now, for (a, b) ∈ rIA′ , we
make a case distinction:
• a, b /∈ nodes(ĉ): in this case, the cycle unfolding operation

does not include any new role assertion. Then, (a, b) ∈
rIA′ implies (a, b) ∈ rIA .

• â, b̂ ∈ nodes(ĉ): by Step 2 of the cycle unfolding operation,
if (â, b̂) ∈ rIA′ then (a, b) ∈ rIA .

• â ∈ nodes(ĉ) and b /∈ nodes(ĉ): for (â0, a1) ∈ r
IA′
1

we know that (a0, a1) ∈ rIA1 . Otherwise, by Step 2, if
(â, b) ∈ rIA′ then (a, b) ∈ rIA .

• a /∈ nodes(ĉ) and b̂ ∈ nodes(ĉ): by the definition of the
cycle unfolding operation there is only one case, in Step
3, which is (a0, â1) ∈ r

IA′
1 . In this case we know that

(a0, a1) ∈ rIA1 .

In all cases we have that for a, b ∈ ∆IA′ , (a, b) ∈ rIA′

implies (h∗(a), h∗(b)) ∈ rIA . o

Before we show Lemma 6 we need the following lemma,
which shows the progress of our cycle unfolding operations.

Lemma 51 Let In be the canonical model of the minimal
ABox computed in the n-th iteration in Line 5 of Algorithm 3.
Assume In has a cycle. For all n ≥ 0, |∆In+1 | > |∆In |.

Proof. By assumption In has a cycle c. Let I ′n be the result
of unfolding cycle c and In+1 be the result of minimizing I ′n.
Let h∗ : I ′n → In be the homomorphism defined in Lemma
50. Let g = h∗|∆In+1 be h∗ restricted to ∆In+1 ⊆ ∆I

′
n .

Since In+1 is a subinterpretation of I ′n, g : In+1 → In is a
homomorphism.

Claim 1. g : In+1 → In is a surjective homomor-
phism.

Suppose g is not surjective. Since In+1 is a countermodel
(Condition 1 of minimal ABoxes) there is C v A ∈ T
such that a ∈ (C \ A)In+1 , with a ∈ ∆In+1 . Let J be the
subinterpretation of In determined by the range of g. By
the cycle unfolding definition, a ∈ AIn+1 iff g(a) ∈ AIn .
Then g(a) ∈ (C \A)J . Since In is the canonical model of
a minimal ABox, if g is not surjective then this contradicts
Condition 2 of minimal ABoxes.

Claim 2. Suppose g : In+1 → In is an injective homo-
morphism. Then, for d1, d2 ∈ ∆In+1 , (g(d1), g(d2)) ∈ rIn
implies (d1, d2) ∈ rIn+1 .

Suppose this is not the case and there is d1, d2 ∈ ∆In+1

such that (g(d1), g(d2)) ∈ rIn and (d1, d2) /∈ rIn+1 . Let J
be the result of removing (g(d1), g(d2)) from rIn . Since g is
injective, g : In+1 → J is also a homomorphism. As In+1

is a countermodel (Condition 1 of minimal ABoxes) there is
C v A ∈ T such that a ∈ (C \ A)In+1 , with a ∈ ∆In+1 .
Then, g(a) ∈ CJ . By the cycle unfolding definition,
a ∈ AIn+1 iff g(a) ∈ AIn . By definition of J , g(a) ∈ AIn
iff g(a) ∈ AJ . Then g(a) ∈ (C \ A)J . Since J is In
with (g(d1), g(d2)) removed from rIn , this contradicts the
fact that In is role minimal (Condition 3 of minimal ABoxes).

Claim 3. g : In+1 → In is not an injective homo-
morphism.

Recall that cycle c is a sequence a0 · r1 · a1 · ... · rk · ak,
with a0 = ak, where we defined w.l.g. that (a0, a1) ∈ rIn1 .
As g is surjective (Claim 1), for all 0 ≤ i ≤ k, ai or âi is in
∆In+1 . Suppose to the contrary that g is injective. Then,

(∗) for all 0 ≤ i ≤ k, exactly one of {ai, âi} is in ∆In+1 .

Assume that a0 ∈ ∆In+1 (the case where â0 ∈ ∆In+1 is
analogous). By Point 1 of the definition of cycle unfolding,
(a0, a1) 6∈ rI

′
n

1 , where I ′n is the result of unfolding a cycle in
In. Then (a0, a1) 6∈ rIn+1

1 . As (g(a0), g(a1)) ∈ rIn1 , if a1 ∈
∆In+1 then this contradicts Claim 2. So a1 6∈ ∆In+1 . For
k = 1 (that is, the cycle is a reflexive element) we have a0 =
a1. This contradicts our assumption that a0 ∈ ∆In+1 . Now
suppose k > 1. As a1 6∈ ∆In+1 , by (∗), â1 ∈ ∆In+1 . By
Points 2 and 3 of the definition of cycle unfolding, r1(a0, â1),
r1(â0, a1) are the only role assertions between elements in
nodes(c) and nodes(ĉ) in I ′n. This means that

(∗′) neither (âi, ai+1) or (ai+1, âi) are in rIn+1

i+1 ⊆ r
I′n
i+1,

for 1 ≤ i < k.

Then, for 1 ≤ i < k, ai 6∈ ∆In+1 and âi ∈ ∆In+1 ,
otherwise we would obtain a contradiction with Claim 2
or (∗). In particular, ak−1 /∈ ∆In+1 and âk−1 ∈ ∆In+1 .
Since a0 = ak ∈ ∆In+1 , by (∗), we have â0 = âk /∈ ∆In+1 .
By definition of c, either (ak−1, ak) or (ak, ak−1) are in
rInk . Together with the fact (∗′) that neither (âk−1, ak) or

(ak, âk−1) are in rIn+1

k ⊆ r
I′n
k , we obtain a contradiction

with Claim 2. Then g is not injective. Since g is surjective
(Claim 1) and not injective (Claim 3), |∆In+1 | > |∆In |. o

We show Lemma 52, which implies Lemma 6.
Lemma 52 For any ELHlhs target T and any ELHlhs hy-
pothesisH with size polynomial in |T |, given a positive coun-
terexample (A, A(a)), Algorithm 3 computes in polynomial
time in |T | and |A| a tree shaped ABox A rooted in ρA and
B ∈ NC such that (A, B(ρA)) is a positive counterexample.

Proof. The fact that the computed ABox is tree shaped
follows from Line 3. Also, by Lemma 5 the size of the ABox
is bounded by |T |. So it remains to show that Algorithm
3 terminates after at polynomially many steps in |T | and
|A|. By Lemma 5, Lines 2 and 5 is polynomial in |A| and
|NC ∩ ΣT |. Also, unfolding a cycle c in Line 4 is linear
in |A|. It remains to show that the number of iterations is
bounded by |T |. Let In be the minimal ABox computed in
the n-th iteration in Line 5 of Algorithm 3. By Lemma 5, for
all n iterations of Algorithm 3, in Line 5 |∆In | is bounded
by |T |. By Lemma 51, after each n + 1-th iteration of the
algorithm, |∆In+1 | increases by at least one element with
respect to |∆In |. So the number of iterations is bounded by
|T |. o

We now detail the polynomials of Definition 45 involved
in our proof for ELHlhs. Let T be the target ELHlhs TBox
with signature ΣT . We want to define p1(·), p2(·, ·), p3(·, ·)
such that:
• p1(|T |) is the polynomial bound on |H|;
• p2(|C v A|) is the polynomial time bound for computing
fMEM(C v A);

• p3(|T |, |(A, B(a))|) is the polynomial time bound for
computing fEQ(T ,H, (A, B(a))) (where B ∈ NC).
In the learning algorithm for ELHlhs proved in this paper,

H is the union ofHadd andHbasic. We have that |Hbasic| is
bounded by |ΣT |2 andHadd has at most |T | · |ΣT | CIs. The
right hand side of each CI in Hadd has size 1 and left hand
side of each CI is bounded by |ΣT |·|T |. Then, |Hadd| ≤ |T |·
|ΣT |·(|ΣT |·|T |+1). As |ΣT | ≤ |T |, we have |H| ≤ p1(|T |)
with p1(|T |) = |T |4+2·|T |2 (we note that normally the size
of the signature is much smaller than the size of the TBox and,
so, this rough estimate only serves for the purpose of defining
our polynomials). As fMEM(C v A) = ({C(a)}, A(a)), we
have p2(|C v A|) = |C| + 1. By the proof of the lemma
above, we have that p3(|T |, |(A, B(a))|) =

k · |T |︸︷︷︸
unfold/min times

(

unfolding︷︸︸︷
|A| +

concept sat. withH︷ ︸︸ ︷
p1(|T |)|A| + p1(|T |)|T ||A|2︸ ︷︷ ︸

domain and role min.

)

for some k ∈ N. That is, p3(|T |, |(A, B(a))|) is O(|T |6 ·
|A|2)).

Remaining Positive Results in Table 1
We proved that

• the learning framework FD(DL-Lite∃H, ELI-IQ) is poly-
nomial query exact learnable and

• the learning framework FD(ELHlhs, AQ) is polynomial
time exact learnable.

Now we discuss how one can obtain the remaining positive
results for the data retrieval framework presented in Table 1
for polynomial time exact learnability.

(1) FD(ELrhs, ELI-IQ) and FD(ELHrhs, ELI-IQ).

Observe that given an ELI-IQ C(a) and ELH TBox H,
the problem of checking whether (H,A) |= C(a) is in
PTime in combined complexity (Bienvenu et al. 2013). (This
is in contrast to the NP-completeness of this problem for
DL-Lite∃H TBoxes (Kikot, Kontchakov, and Zakharyaschev
2011).) Now the polynomial query learning algorithm for the
framework FD(DL-Lite∃H, ELI-IQ) given above is (modulo
minor modifications) a polynomial time learning algorithm
for the frameworks FD(ELrhs, ELI-IQ) and FD(ELHrhs,
ELI-IQ): the checks ‘(H,A) |= C(a)’ can be performed in
polynomial time, membership queries coincide, and a close
inspection of the learning algorithm shows that if the target
is an ELrhs or ELHrhs TBox, then all equivalence queries
contain ELrhs or, respectively, ELHrhs TBoxes only.

(2) FD(ELrhs, EL-IQ) and FD(ELHrhs, EL-IQ).

For FD(ELrhs, EL-IQ) and FD(ELHrhs, EL-IQ) polyno-
mial time learnability follow from polynomial time learn-
ability of FD(ELrhs, ELI-IQ) and FD(ELHrhs, ELI-IQ).
In fact, removing parent/child merging from the learning al-
gorithms for FD(ELrhs, ELI-IQ) and FD(ELHrhs, ELI-IQ)
gives the required learning algorithms.

(3) FD(L, Q) for L ∈ {ELlhs, ELHlhs} and Q ∈ {AQ, EL-
IQ, ELI-IQ, CQ}.

We focus on FD(ELHlhs,CQ) and reduce learning
FD(ELHlhs,CQ) to learning FD(ELHlhs,AQ) (and then use
that polynomial time learnability of FD(ELHlhs,AQ) has
been proved above). The remaining learning frameworks are
considered similarly.

To learn FD(ELHlhs,CQ), we can assume that the RIs of
the target TBox T are known by the learner. The following
lemma shows that given a positive counterexample (A, q)
with q a CQ, we can find a positive counterexample with an
AQ by posing membership queries of the form (T ,A) |=
A(b) to the oracle, with A ∈ NC ∩ ΣT and b ∈ Ind(A).

Lemma 53 For T an ELHlhs target TBox andH an ELHlhs

hypothesis TBox, assume that H |= r v s iff T |= r v s,
for all r, s ∈ NR. If (A, q) is a positive counterexample then
there exists a concept name A and an individual b ∈ Ind(A)
such that (A, A(b)) is also a positive counterexample.

Proof. As (A, q) is a positive counterexample, (T ,A) |=
q and (H,A) 6|= q. Then, by Lemma 13, IT ,A |= q and
IH,A 6|= q, where IT ,A and IH,A are the canonical models
of (T ,A) and (H,A), respectively. Let π be a mapping from
the terms of q into IT ,A such that π(a) = a for all individuals
a in q and such that

• if r(t1, t2) is a conjunct in q, then (π(t1), π(t2)) ∈ rIT ,A ;

• if A(t) is a conjunct of q, then π(t) ∈ AIT ,A .

We have (π(t1), π(t2)) ∈ rIH,A for all conjuncts r(t1, t2)
of q since H |= r v s iff T |= r v s for all r, s ∈ NR.
Thus, since IH,A 6|= q, there exists a conjunct A(t) of q
with π(t) 6∈ AIH,A . Since T and H are ELHlhs TBoxes,
Ind(A) = ∆IT ,A = ∆IH,A . So we can assume that
π(t) = b, for some b ∈ Ind(A). Then (T ,A) |= A(b) and
(H,A) 6|= A(b), as required. o

Proofs for Non-Polynomial Query Learnability
with CQs

We show Lemmas 7 and 8 for the hardness result of learn-
ing ELrhs TBoxes with CQs. Let q be a CQ. We denote by
Term(q) the set of terms occurring in q. Similarly, the set
of atoms occurring in a CQ q is denoted by Atoms(q). The
size |q| of a CQ q is given by the cardinality of Atoms(q).
A CQ q is connected if, for all distinct t, t′ ∈ Terms(q),
there exists a sequence t0 · r1 · t1 · . . . · tk−1 · rk · tk with
t0 = t, tk = t′ and, for all 0 < i ≤ k, there is a role ri with
ri(ti−1, ti) ∈ Atoms(q).

It is easy to see that if there is a polynomial query learning
algorithm with arbitrary CQs, then there is a polynomial
query learning algorithm with connected CQs. Thus, from
now on we only consider connected CQs.

For a CQ q and an interpretation I , we have I |= q if, and
only if, there is a match π : q → ∆I defined as a function
from Terms(q) to ∆I , where for t, t′ ∈ Terms(q):
• if A(t) ∈ Atoms(q) then π(t) ∈ AI ;
• if r(t, t′) ∈ Atoms(q) then (π(t), π(t′)) ∈ rI ;
• if t ∈ NI then π(t) = tI ∈ ∆I .
Recall that for any sequence σ = σ1σ2 . . . σn with σi ∈
{r, s} and r, s ∈ NR, the expression ∃σ.C stands for
∃σ1.∃σ2 . . . ∃σn.C. For a sequence σ, let I∃σ.M be the
tree interpretation corresponding to the concept expression
∃σ.M .

Lemma 7 (restated). For any ABox A and CQ q over Γn
either:
• for every Tσ ∈ S, (Tσ,A) |= q; or
• the number of Tσ ∈ S such that (Tσ,A) |= q does not

exceed |q|.
Proof. Assume (A, q) is given. For each σ let Πσ be the set
of all matches π : q → ITσ,A, where ITσ,A is the canonical
model of Tσ and A. For any π ∈ Πσ , let

Imσ,π = {p ∈ ∆ITσ,A | π(t) = p, for some t ∈ Terms(q)}.
We make the following case distinction.
1. Imπ ⊆ ∆IT0,A for some σ and π ∈ Πσ. In this case

(T0,A) |= q. Thus, for every Tσ ∈ S, (Tσ,A) |= q, as
required.

2. Imπ ⊆ ∆ITσ,A \∆IT0,A for some σ and π ∈ Πσ . In this
case, all terms in q are variables (that is, there is no indi-
vidual from A occurring in q). There exists p ∈ ∆IT0,A
such that p ∈ AIT0,A (otherwise ∆ITσ,A \∆IT0,A = ∅).
But then MITσ,A 6= ∅ and so q has a match in the infinite
binary tree generated by M v ∃r.M u ∃s.M . It follows
that (Tσ,A) |= q for every Tσ ∈ S.

3. For all σ and π ∈ Πσ there are p1, p2 ∈ Imσ,π such that

• p1 ∈ ∆IT0,A ;
• p2 ∈ ∆ITσ,A \∆IT0,A .
We have to show that there are at most |q| distinct σ for
which Πσ 6= ∅. Fix one σ with Πσ 6= ∅. Assume π ∈ Πσ
is given and let p1, p2 ∈ Imσ,π such that p1 ∈ ∆IT0,A and
p2 ∈ ∆ITσ,A \∆IT0,A . As p2 ∈ ∆ITσ,A \∆IT0,A , there
is p3 ∈ AITσ,A such that p2 is in the tree generated by
A v ∃σ.M . As q is connected and there is a p1 ∈ Imσ,π∩
∆IT0,A we have that p3 ∈ ∆IT0,A ∩ Imσ,π . Denote by δσ
the successor of p3 corresponding to the path p3 · σ ·M
in ∆ITσ,A . We have δσ ∈ Imσ,π (since otherwise we find
π ∈ Πσ such that Imσ,π ⊆ ∆IT0,A).
The above holds for any σ with Πσ 6= ∅. Thus, if the
number of σ with Πσ 6= ∅ exceeds |q|, then there is a
variable x in q and two distinct σ1,σ2 with matches π1, π2

of q in ITσ1
,A and ITσ2

,A, respectively, such that π1(x) =

δσ1
and π2(x) = δσ2

. This directly leads to a contradiction
as one can easily show that the paths σ1 and σ2 have to
coincide.

o

Lemma 8 (restated). For any n > 1 and any ELrhs TBoxH
over Γn there are a singleton ABox A over Γn and a query
q that is an EL-IQ over Γn with |q| ≤ n+ 1 or of the form
q = ∃x.M(x) such that either:
• (H,A) |= q and (Tσ,A) |= q for at most one Tσ ∈ S; or
• (H,A) 6|= q and for every Tσ ∈ S we have (Tσ,A) |= q.

Proof. Since every Tσ ∈ S has a concept inclusion
A v ∃σ.M (unique for each Tσ), for every Tσ ∈ S,
(Tσ, {A(a)}) |= ∃x.M(x). If (H, {A(a)}) 6|= ∃x.M(x)
then the pair ({A(a)},∃x.M(x)) is as required. Other-
wise, (H, {A(a)}) |= ∃x.M(x). In this case, there is a
sequence of role names t1 · · · tm (which can be empty
and, then, we say that m = 0) such that H |= A v
∃t1 · · · ∃tm.M . We write ∃t1 · · · ∃tm.M(a) as an abbrevi-
ation for ∃x1, . . . , xm.t1(a, x1) ∧ · · · ∧ tm(xm−1, xm) ∧
M(xm). We make the following case distinction:

• If m < n then, since there is no Tσ ∈ S such that Tσ |=
A v ∃t1 · · · ∃tm.M , we have that there is no Tσ ∈ S
such that (Tσ, {A(a)}) |= ∃t1 · · · ∃tm.M(a). Then the
pair ({A(a)},∃t1 · · · ∃tm.M(a)) is as required.

• If m = n then there is exactly one Tσ ∈ S
such that Tσ |= A v ∃t1 · · · ∃tm.M . Then the pair
({A(a)},∃t1 · · · ∃tm.M(a)) is as required.
• Otherwise m > n. In this case let

q = ∃x1, . . . ,∃xn+1.t1(a, x1) ∧ · · · ∧ tn+1(xn, xn+1),

where t1, . . . , tn+1 are the first n + 1 roles in
∃t1 . . . ∃tm.M . As H |= A v ∃t1 . . . ∃tm.M , we have
that (H, {A(a)}) |= q. By definition of Tσ , there is exactly
one Tσ ∈ S such that (Tσ, {A(a)}) |= q, as required.

o

Proofs for Non-Polynomial Query Learnability of
FD(EL, EL-IQ)

We prove that EL TBoxes are not polynomial query learnable
from data retrieval examples with EL-IQs. The proof signifi-
cantly extends the proof of non-polynomial query learnability
of EL TBoxes from subsumptions (Konev et al. 2014).

We start by giving a brief overview of the construction
in (Konev et al. 2014), show that it fails in the data retrieval
setting and then demonstrate how it can be modified.

The non-learnability proof in (Konev et al. 2014) proceeds
as follows. A learner tries to exactly identify one of the pos-
sible target TBoxes {TL | L ∈ Ln}, for a superpolynomial
in n set Ln defined below. At every stage of computation
the oracle maintains a set of TBoxes S, which the learner
is unable to distinguish based on the answers given so far.
Initially S = {TL | L ∈ Ln}. {TL | L ∈ Ln} is con-
structed in such a way that for any EL inclusion C v D
either TL |= C v D for every L ∈ Ln or the number of
L ∈ Ln such that TL |= C v D does not exceed |C|. When
a polynomial learner asks a membership query C v D the
oracle answers ‘yes’ if TL |= C v D for every L ∈ Ln and
‘no’ otherwise. In the latter case the oracle removes polyno-
mially many TL such that TL |= C v D from S. Similarly,
for any equivalence query with hypothesis H asked by a
polynomial learning algorithm there exists a polynomial size
inclusionC v D, which can be returned as a counterexample
and that excludes only polynomially many TBoxes from S.
Thus, every query to the oracle reduces the size of S at most
polynomially in n and the learner cannot distinguish between
the remaining TBoxes of the initial superpolynomial set S.

The set of indices Ln and the target TBoxes TL are defined
as follows. Fix two role names r and s. An n-tuple L is a
sequence of role sequences (σ1, . . . ,σn), where everyσi is a
sequence of role names r and s, that isσi = σ1

i σ
2
i . . . σ

n
i with

σji ∈ {r, s}. Then Ln is a set of n-tuples such that for every
L,L′ ∈ Ln with L = (σ1, . . . ,σn), L′ = (σ′1, . . . ,σ

′
n), if

σi = σ′j then L = L′ and i = j. There are N = b2n/nc
different tuples in Ln. For every n > 0 and every n-tuple
L = (σ1, . . . ,σn) we define an acyclic EL TBox TL as the
union of T0 = {Xi v ∃r.Xi+1 u ∃s.Xi+1 | 0 ≤ i < n} and
the following inclusions:

A1 v ∃σ1.M uX0

B1 v ∃σ1.M uX0
. . .

An v ∃σn.M uX0

Bn v ∃σn.M uX0

A ≡ X0 u ∃σ1.M u · · · u ∃σn.M.

where the expression ∃σ.C stands for ∃σ1.∃σ2 . . . ∃σn.C,
M is a concept name that ‘marks’ a designated path given
by σ and T0 generates a full binary tree whose edges are
labelled with the role names r and s and with X0 at the root,
X1 at level 1 and so on.

In contrast to the subsumption framework, every TL can
be exactly identified using data retrieval queries. For ex-
ample, as X0 u ∃σ1.M u · · · u ∃σn.M v A ∈ TL, a
learning from data retrieval queries algorithm can learn
all the sequences in the n-tuple L = (σ1, . . . ,σn), by
defining an ABox A = {X0(a1), r(a1, a2), s(a1, a2), . . . ,
r(an−1, an), s(an−1, an), M(an)} and then proceed unfold-
ing cycles and minimizing A via membership queries of the

form (TL,A) |= A(a1).
To show the non-tractability for data retrieval queries, we

first modify S in such a way that the concept expression
which ‘marks’ the sequences in L = (σ1, . . . ,σn) is now
given by the set Bn of all conjunctions F1 u · · · uFn, where
Fi ∈ {Ei, Ēi}, for 1 ≤ i ≤ n. Intuitively, every member of
Bn encodes a binary string of length n with Ei encoding 1
and Ēi encoding 0. For every L ∈ Ln and every B ∈ Bn

we define T B
L as the union of T0 and the concept inclusions

defined above with B replacing M .
Then for any sequence σ of length n there exists at most

one L ∈ Ln, at most one 1 ≤ i ≤ n and at most one B ∈ Bn

such that T B
L |= Ai v ∃σ.B and T B

L |= Bi v ∃σ.B.
Notice that the size of each T B

L is polynomial in n and so
Ln contains superpolynomially many n-tuples in the size
of each T B

L , with L ∈ Ln and B ∈ Bn. Every T B
L entails,

among other inclusions,
dn
i=1 Ci v A, where every Ci is

either Ai or Bi. Let Σn be the signature of the TBoxes T B
L

and consider the TBox T ∗ defined as the following set of
concept inclusions:

∃r.(E1 u Ē1) v (E1 u Ē1)
∃s.(E1 u Ē1) v (E1 u Ē1)

(E1 u Ē1) v ∃r.(E1 u Ē1)
(E1 u Ē1) v ∃s.(E1 u Ē1)

(Ei u Ēi) v A for every 1 ≤ i ≤ n and A ∈ Σn ∩ NC

The basic idea of extending our TBoxes with T ∗ is that if
a ∈ (Ei u Ēi)IA , for an ABoxA and individual a ∈ Ind(A),
then for all L ∈ Ln and B ∈ Bn, we have (T B

L ,A) |=
D(b), where D is any EL concept expression over Σn and
b ∈ Ind(A) is any successor or predecessor of a (or a itself).
This means that for each individual in A at most one B of
the 2n binary strings in Bn can be distinguished by data
retrieval queries. The following lemma enables us to respond
to membership queries without eliminating too many L ∈ Ln
and B ∈ Bn used to encode T B

L in the set of TBoxes that
the learner cannot distinguish.

Lemma 54 For any ABoxA, any EL concept assertionD(a)
over Σn, and any a ∈ Ind(A), if there is L ∈ Ln and B ∈
Bn such that (T B

L ∪ T ∗,A) |= D(a) then either

• (T B
L ∪ T ∗,A) |= D(a), for every L ∈ Ln and B ∈ Bn,

or
• (T B

L ∪ T ∗,A) |= D(a) for at most |D| elements L ∈ Ln,
or

• (T B
L ∪ T ∗,A) |= D(a) for at most |A| elements B ∈ Bn.

To show Lemma 54, we first show Lemma 58, which uses
Lemmas 56 and 57 from (Konev et al. 2014). We also require
the following lemma from (Konev et al. 2012), which charac-
terizes concept inclusions entailed by acyclic EL TBoxes.

Lemma 55 ((Konev et al. 2012)) Let T be an acyclic EL
TBox, r a role name and D an EL concept expression. Sup-
pose that T |= d

1≤i≤nAi u
d

1≤j≤m ∃rj .Cj v D, where
Ai are concept names for 1 ≤ i ≤ n, Cj are EL concept
expressions for 1 ≤ j ≤ m, and m,n ≥ 0, then

• if D is a concept name such that T does not contain an
inclusion D ≡ C, for some concept expression C, then
there exists Ai, 1 ≤ i ≤ n, such that T |= Ai v D;

• if D is of the form ∃r.D′ then either (i) there exists Ai,
1 ≤ i ≤ n, such that T |= Ai v ∃r.D′ or (ii) there exists
rj , 1 ≤ j ≤ m, such that rj = r and T |= Cj v D′.

Lemma 56 Let B = F1u...uFn, where Fi ∈ {Ei, Ēi}. For
any 0 ≤ m ≤ n, any sequence of role names σ = σ1 . . . σm,
any L = (σ1, . . . ,σn) ∈ Ln and any EL concept expression
C over Σn, if T B

L |= C v ∃σ.B then either:

1. m = n, σ = σi, for some 1 ≤ i ≤ n and C is of the
form A u C ′, Ai u C ′ or Bi u C ′, for some EL concept
expression C ′; or

2. |= C v ∃σ.B.

Proof. We prove the proposition by induction on m. Since
for all Fi occurring in B, T B

L does not contain an inclusion
Fi ≡ C, whereC is an EL concept expression, by Lemma 55,
there is a concept name Z such that T B

L |= Z v Fi. Then,
for m = 0, C is of the form Z u C ′, where Z is a concept
name, C ′ is an EL concept expression and T B

L |= Z v Fi.
This is only possible if Z is Fi itself. As this holds for all Fi,
we have that |= C v B.
For m > 0. By Lemma 55 we have one of the following two
cases:

• C is of the form Z u C ′, for some concept name Z and
some EL concept expression C ′ such that T B

L |= Z v
∃σ.B. It is easy to see that this is only possible if m = n,
σ = σi and Z is one of A, Ai or Bi.

• C is of the form ∃σ1.C ′uC ′′ for some concept expressions
C ′ and C ′′ such that T B

L |= C ′ v ∃σ2. · · · ∃σm.B. By
induction hypothesis, |= C ′ v ∃σ2. · · · ∃σm.B. But then
|= C v ∃σ.B.

o

Lemma 57 ((Konev et al. 2014)) For any acyclic EL TBox
T , any inclusion A v C ∈ T and any concept expression
of the form ∃t.D we have T |= A v ∃t.D if, and only if,
T |= C v ∃t.D.

We are now in a position to prove Lemma 58.

Lemma 58 For all EL concept inclusions C v D over Σn
where B is not a subconcept of C:

• either T B
L |= C v D for every L ∈ Ln or

• the number of L ∈ Ln such that T B
L |= C v D does not

exceed |D|.
Proof. To prove this lemma we argue by induction on the
structure of D and show the following.

Claim 1. For all EL concept inclusions C v D over Σn
where B ∈ Bn is not a subconcept of C, if there is L ∈ Ln
and B ∈ Bn such that T B

L |= C v D then:

• either T B
L |= C v D for everyL ∈ Ln and every B ∈ Bn

or

• for each L ∈ Ln such that T B
L |= C v D there is σ in L

and a sequence of roles t1, . . . , tm, m ≥ 0, such that |=
D v ∃t1. · · · ∃tm.∃σ.>, where tj ∈ {r, s}, 1 ≤ j ≤ m.

We assume throughout the proof that in all cases B is not a
subconcept of C and that there exists some L0 ∈ Ln such
that T B

L0
|= C v D.

Base case: D is a concept name. We make the following case
distinction.
• D is one of Xi, Ai, Bi, Ei or Ēi for 1 ≤ i ≤ n. By

Lemma 55, C is of the form Z u C ′, for some concept
name Z, and T B

L0
|= Z v D. If D is one of Xi, Ai, Bi, Ei

or Ēi, then this can only be the case if Z = D. But then
for every L ∈ Ln we have T B

L |= C v D.
• D is X0. By Lemma 55, C is of the form Z uC ′, for some

concept name Z, and T B
L0
|= Z v X0. This is the case if

either Z = X0, or Z is one of A, Ai, Bi, 1 ≤ i ≤ n. In
either case, for every L ∈ Ln we have T B

L |= C v X0.
• D is A. If C is of the form A u C ′ or, for all i, 1 ≤ i ≤ n,
Ai orBi is a conjunct ofC, then for everyL ∈ Ln we have
T B
L |= C v A. Assume now that C is not of this form.

Then for some j such that 1 ≤ j ≤ n, C is neither of the
formAuC ′ nor of the formAjuC ′ nor of the formBjuC ′.
Let L = (σ1, . . . ,σn) ∈ Ln be such that T B

L |= C v A.
Notice that T B

L |= C v A, for L = (σ1, . . . ,σn) ∈ Ln,
if, and only if, T B

L |= C v X0u∃σ1.Bu· · ·u∃σn.B. By
Lemma 56, for such a T B

L we must have |= C v ∃σj .B,
but then this is not possible as B is not a subconcept of C.

Thus if D is a concept name then either for every L ∈ Ln
we have T B

L |= C v D or there exists no L ∈ Ln such that
T B
L |= C v D, where B is not a subconcept of C.

Induction step. If D = D1 uD2, then T B
L |= C v D if, and

only if, T B
L |= C v Di, i ∈ {1, 2}. So the lemma follows

from the induction hypothesis.

For D = ∃t.D′, suppose that there is L ∈ Ln such that
T B
L |= C v D. Then, by Lemma 55, either (i) there exists

a conjunct Z of C, Z a concept name, such that T B
L |=

Z v ∃t.D′ or (ii) there exists a conjunct ∃t.C ′ of C with
T B
L |= C ′ v D′. Consider cases (i) and (ii).

(i) Let Z be a conjunct of C such that Z is a concept name
and T B

L |= Z v ∃t.D′. Notice that Z cannot be Ei or
Ēi as for no L ∈ Ln we have T B

L |= Ei v ∃t.D′ or
T B
L |= Ēi v ∃t.D′. Consider the remaining possibilities.

– Z is one of Xi, 0 ≤ i ≤ n. It is easy to see that for
L,L′ ∈ Ln we have T B

L |= Xi v ∃t.D′ if, and only if
T B
L′ |= Xi v ∃t.D′. Thus, for every L ∈ Ln we have
T B
L |= Z v ∃t.D′.

– Z is one of Ai, Bi for 1 ≤ i ≤ n. By Lemma 57,
T B
L |= Z v ∃t.D′ if, and only if, T B

L |= X0u∃σi.B v
∃t.D′. By Lemma 55, either T B

L |= X0 v ∃t.D′ or
T B
L |= ∃σi.B v ∃t.D′. If T B

L |= X0 v ∃t.D′ then
for every L ∈ Ln we have T B

L |= C v ∃t.D′. Now,
suppose that ∃t.D′ is such that T B

L 6|= X0 v ∃t.D′
and T B

L |= ∃σi.B v ∃t.D′. By inductive applications
of Lemma 55, this is only possible when |= ∃t.D′ v
∃σi.>. Notice that since all σi are unique, there exists
exactly one L ∈ Ln (namely, L is L0) such that T B

L |=
Z v ∃σi.F , where |= B v F .

– Z is A. Suppose that for some L = (σ1, . . . ,σn) ∈ Ln
we have T B

L |= A v ∃t.D′, equivalently T B
L |= X0 u

∃σ1.B u . . . ∃σn.B v ∃t.D′. By Lemma 55, either
T B
L |= X0 v ∃t.D′ or T B

L |= ∃σi.B v ∃t.D′, for
some i : 1 ≤ i ≤ n, so, as above, unless T B

L |= X0 v
∃t.D′ we have that |= ∃t.D′ v ∃σi.>, as required.

(ii) Let ∃t.C ′ be a conjunct of C with T B
L |= C ′ v D′. The

induction hypothesis implies that either (a) for every L ∈
Ln we have that T B

L |= C ′ v D′ or (b) for each L ∈
Ln such that T B

L |= C ′ v D′ there is σ in L and a
sequence of roles t1, . . . , tm, m ≥ 0, such that |= D′ v
∃t1. · · · ∃tm.∃σ.>, where tj ∈ {r, s}, 1 ≤ j ≤ m. In case
(a), we have that for every L ∈ Ln, T B

L |= C v ∃t.D′. In
case (b), if for each L ∈ Ln such that T B

L |= C ′ v D′

there is σ such that |= D′ v ∃t1. . . .∃tm.∃σ.> then same
happens with ∃t.D′ (notice that for every L ∈ Ln and
every B ∈ Bn we have that T B

L |= C ′ v D′ iff T B
L |=

∃t.C ′ v ∃t.D′).
To summarize, either T B

L |= C v ∃t.D′ for every L ∈ Ln
and every B ∈ Bn or T B

L |= C v ∃t.D′ implies that
|= ∃t.D′ v ∃t0. . . .∃tm.∃σ.>, m ≥ 0, for some σ in L.
Since all σ are unique for each L ∈ Ln, the number of
different L ∈ Ln such that T B

L |= C v ∃t.D′ does not
exceed |D|. o

Before we proceed to the proof of Lemma 54, we need
Lemma 60.

Definition 59 The unravelling Au of A into a (possibly infi-
nite) tree is defined as:
• Ind(Au) is the set of sequences b0r0 · · · rn−1bn with
b0, . . . , bn ∈ Ind(A),
r0, . . . , rn−1 ∈ NR and ri(bi, bi+1) ∈ A;

• for each A(b) ∈ A and α = b0r0 · · · rn−1 · bn ∈ Ind(Au)
with bn = b, we have A(α) ∈ Au;

• for each α = b0r0 · · · rn−1bn ∈ Ind(Au) with n > 0, we
have
rn−1(b0r0 · · · rn−2bn−1, α) ∈ Au.

Lemma 60 For any ABox A and EL concept expression D
over Σn there is a concept expression CA such that a ∈ CIAA
and, for every L ∈ Ln and B ∈ Bn:

(T B
L ,A) |= D(a) iff T B

L |= CA v D.
Proof. Let Au be the unravelling of A. Let T B

L be a TBox
for some arbitrary B ∈ Bn and L ∈ Ln. By definition of
Au we have that (T B

L ,A) |= D(a) iff (T B
L ,Au) |= D(a).

Denote as Au,ka the subtree of Au which is rooted in
a ∈ Ind(Au) and has depth k ∈ N. Let T B′

L be the result
of removing X0 u ∃σ1.B u · · · u ∃σn.B v A from T B

L .
Then, (T B′

L ,Au) |= D(a) iff (T B′

L ,Au,|D|a) |= D(a).
Let IT B′

L ,Au be the canonical model of T B′

L and Au. By
definition of T B

L , one can make it a canonical model

of T B
L and Au by including d ∈ A

I
TB′
L

,Au whenever

d ∈ (X0 u ∃σ1.B u · · · u ∃σn.B)
I
TB′
L

,Au . Then,
(T B
L ,Au) |= D(a) iff (T B

L ,A
u,|D|+n
a) |= D(a). Let CA be

the concept expression corresponding to the tree interpreta-
tion ofAu,|D|+na rooted in a. We have that, for every L ∈ Ln
and B ∈ Bn, (T B

L ,A) |= D(a) iff T B
L |= CA v D. o

We can now proceed to the proof of Lemma 54. We say that
an EL concept expression C occurs in an ABox A if there
exists a ∈ Ind(A) such that A |= C(a). For a, b ∈ Ind(A), a
role chain from a to b is a sequence a0 · t0 · ... · tn−1 ·an with
a0 = a, an = b and ti(ai, ai+1) ∈ A, where 0 ≤ i ≤ n− 1
and ti ∈ {r, s}.

Lemma 54 (restated). For any ABox A, any EL concept
assertion D(a) over Σn, and any a ∈ Ind(A), if there is
L ∈ Ln and B ∈ Bn such that (T B

L ∪ T ∗,A) |= D(a) then:

• either (T B
L ∪ T ∗,A) |= D(a), for every L ∈ Ln and

B ∈ Bn, or

• (T B
L ∪ T ∗,A) |= D(a) for at most |D| elements L ∈ Ln,

or

• (T B
L ∪T ∗,A) |= D(a) for at most |A| elements B ∈ Bn.

Proof. We make a case distinction:

1. for all i, 1 ≤ i ≤ n, Ei u Ēi does not occur in A: first
notice that in this case, for every EL concept expression
C over Σn, a ∈ Ind(A) and T B

L ∈ S:

(T B
L ∪ T ∗,A) |= C(a) iff (T B

L ,A) |= C(a).

For any A and EL concept expression D over Σn, by
Lemma 60, there is a concept expression CA such that
a ∈ CIAA and, for every L ∈ Ln and B ∈ Bn:

(T B
L ,A) |= D(a) iff T B

L |= CA v D.
If there is no B ∈ Bn such that B occurs in A then the
Lemma follows from Corollary 58. Notice that although
our construction of CA is not polynomial, Corollary 58
does not impose any restriction in the size of CA. Other-
wise, since for all i, 1 ≤ i ≤ n, Ei u Ēi does not occur
in A, we have that the number of B ∈ Bn such that B
occurs in A is linear |A|. So the number of B ∈ Bn such
that (T B

L ∪ T ∗,A) |= D(a) does not exceed |A|.
2. there is i, 1 ≤ i ≤ n, such that Ei u Ēi occurs in A: let
Ei u ĒiA be the set of individuals b ∈ Ind(A) such that
EiuĒi(b) ∈ A. By construction of T ∗, for every ABoxA
and every EL concept expression D over Σn we have that
(T ∗,A) |= D(b), where b ∈ Ei u ĒiA. Then, in particu-
lar, for every L ∈ Ln we have that (T B

L ∪T ∗,A) |= D(b).
For a ∈ Ind(A) \ Ei u ĒiA we make a case distinction:

• there is a role chain from a to some b ∈
Ei u ĒiA: by definition of T ∗, as (Ei u Ēi) v
A for every 1 ≤ i ≤ n and every A ∈ Σn ∩ NC, we
have that (T ∗,A) |= (E1 u Ē1)(b). Then, since
{∃r.(E1 u Ē1) v (E1 u Ē1),∃s.(E1 u Ē1) v (E1 u
Ē1)} ⊆ T ∗, we have that (T ∗,A) |= (E1 u Ē1)(a). In
this case, by the argument above, for every L ∈ Ln and
every EL concept expression D over Σn, we have that
(T B
L ∪ T ∗,A) |= D(a).

• for all b ∈ Ei u ĒiA, there is no role chain from a
to b: let A′ = A \ {Ei(b), Ēi(b) | b ∈ Ei u ĒiA}.
Since in this case, for all b ∈ Ei u ĒiA, there is no role
chain from a to b, we have that, for every EL concept
expression D, A |= D(a) iff A′ |= D(a). By definition
of A′, Ei u Ēi does not occur in A′, then the lemma
follows as in Case 1.

o

The next lemma from (Konev et al. 2014) prepares the
proof of Lemma 62.
Lemma 61 ((Konev et al. 2014)) For any 0 ≤ i ≤ n and
Σn-concept D, if T0 6|= Xi v D then there exists a sequence
of role names t1, . . . tl such that |= D v ∃t1. · · · ∃tl.Y and
T0 6|= Xi v ∃t1. · · · ∃tl.Y , where Y is either > or a concept
name, 0 ≤ l ≤ n− i+ 1.

Lemma 62 is immediate from Lemma 15 presented in
(Konev et al. 2014). It shows how the oracle can answer
equivalence queries eliminating at most one L ∈ Ln used
to encode T B

L in the set S of TBoxes that the learner cannot
distinguish.
Lemma 62 For any n > 1 and any EL TBoxH in Σn with
|H| < 2n, there exists an ABox A, an individual a ∈ Ind(A)
and an EL concept expression D over Σn such that (i) |A|+
|D| does not exceed 6n and (ii) if (H,A) |= D(a) then
(T B
L ,A) |= D(a) for at most one L ∈ Ln and if (H,A) 6|=

D(a) then for every L ∈ Ln we have (T B
L ∪T ∗,A) |= D(a).

Proof. As T B
L ∪ T ∗ |= C v D iff (T B

L ∪ T ∗,AC) |=
D(ρC), where AC is a tree shaped ABox (rooted in
ρC ∈ Ind(AC)) corresponding to the EL concept expression
C, to prove this lemma we show the following claim.

Claim 1. For any n > 1 and any EL TBox H in Σn
with |H| < 2n, there exists an EL CI C v D over Σn such
that (i) the size of C v D does not exceed 6n and (ii) if
H |= C v D then T B

L ∪ T ∗ |= C v D for at most one
L ∈ Ln and ifH 6|= C v D then for every L ∈ Ln we have
T B
L ∪ T ∗ |= C v D.

We define an exponentially large TBox T∩ and use it
to prove that one can select an EL concept inclusion C v D
in such a way that either H |= C v D and T∩ 6|= C v D,
or vice versa. Then, the oracle can return (AC , D(ρC)) as a
counterexample, where AC is a tree shaped ABox (rooted in
ρC ∈ Ind(AC)) corresponding to the EL concept expression
C.

To define T∩, for any sequence b = b1 . . . bn, where every
bi is either 0 or 1, we denote by Cb the conjunction

d
i≤n Ci,

where Ci = Ai if bi = 1 and Ci = Bi if bi = 0. Then we
define

T∩ = T0 ∪ {Cb v A uX0 | b ∈ {0, 1}n}.
Let ACb be the ABox corresponding to a concept expression
Cb, as defined above. Since, for all i, 1 ≤ i ≤ n, Ei u Ēi
does not occur in ACb , we have that (T B

L ∪ T ∗,ACb) |=
C(a) iff (T B

L ,ACb) |= C(a). Then, in the following we
only consider T B

L . Consider the possibilities forH and T∩.

(1) IfH 6|= T∩ then there exists an inclusion C v D ∈ T∩
such that H 6|= C v D. Clearly, C v D is entailed by T B

L ,
for every L ∈ Ln, and the size of C v D does not exceed
6n, so C v D is as required.

(2) Suppose that for some b ∈ {0, 1}n and a concept ex-
pression of the form ∃t.D′ we have H |= Cb v ∃t.D′ and
T∩ 6|= Cb v ∃t.D′. To ‘minimise’ Cb v ∃t.D′, notice that
T0 6|= X0 v ∃t.D′. Then, by Lemma 61, there exists a se-
quence of role names t1, . . . , tl, for 0 ≤ l ≤ n+ 1 and Y be-
ing> or a concept name such that |= ∃t.D′ v ∃t1. · · · ∃tl.Y ,
soH |= Cb v ∃t1. · · · ∃tl.Y , and T0 6|= X0 v ∃t1. · · · ∃tl.Y .
Clearly, the size of Cb v ∃t1. · · · ∃tl.Y does not exceed 6n.
It remains to prove that T B

L |= Cb v ∃t1 · · · ∃tl.Y for at
most one L ∈ Ln.

Suppose for some L ∈ Ln we have T B
L |= Cb v

∃t1. · · · ∃tl.Y . By Lemma 55, there is Aj or Bj such that
T B
L |= Aj v ∃t1. · · · ∃tl.Y (or T B

L |= Bj v ∃t1. · · · ∃tl.Y ,
respectively). As T0 6|= X0 v ∃t1. · · · ∃tl.Y it is easy to see
that this is only possible when l = n, (t1, t2, . . . , tn) = σj ,
and Y is implied by B. Since every σj is unique, for every
L′ ∈ Ln such that L′ 6= L we have T B

L′ 6|= Cb v ∃σj .Y .
Thus, Cb v ∃t1. · · · ∃tl.Y is as required.
(3) Finally, suppose that Case 1 and 2 above do not apply.

Then H |= T∩ and for every b ∈ {0, 1}n and every EL
concept expression over Σn of the form ∃t.D′: ifH |= Cb v
∃t.D′ then T0 |= X0 v ∃t.D′. We show that unless there
exists an inclusion C v D satisfying the conditions of the
lemma,H contains at least 2n different inclusions. Thus, we
have derived a contradiction.

Fix b ∈ {0, 1}n. As H |= T∩ we have H |= Cb v A.
Then there must exist an (at least one) inclusion C v A u
D ∈ H such that H |= Cb v C and 6|= C v A. Let
C = Z1 u · · · u Zm u ∃t1.C ′1 u · · · u ∃tl.C ′l , where Z1,. . . ,
Zm are different concept names. As H |= Cb v ∃tj .C ′j
we have T0 |= X0 v ∃tj .C ′j , for j = 1, . . . l. As H |= T∩
we have H |= X0 v ∃tj .C ′j , for j = 1, . . . l. So H |=
Z1 u · · · u Zm uX0 v A.

Suppose that for some i : 1 ≤ i ≤ n there exists no
j : 1 ≤ j ≤ m such that Zj is either Ai or Bi. Then we
have T B

L 6|= Z1 u · · · u Zm u X0 v A, for any L ∈ Ln.
Notice that in the worst case Z1 u · · · u Zm contains the
conjunction of all Σn-concept names, except Ai, Bi, so the
size of Z1 u · · · u Zm uX0 v A does not exceed 6n, and
Z1 u · · · u Zm uX0 v A is as required.

Assume that Z0 u · · · u Zm uX0 contains a conjunct Bi
such that bi 6= 0. ThenH |= Cb v Bi and for no L ∈ Ln we
have T B

L |= Cb v Bi. The size of Cb v Bi does not exceed
6n, so it is as required.

Assume that Z0 u · · · u Zm uX0 contains a conjunct Ai
such that bi 6= 1. ThenH |= Cb v Ai and for no L ∈ Ln we
have T B

L |= Cb v Ai. The size of Cb v Ai does not exceed
6n, so it is as required.

The only remaining option is that Z1 u · · · u Zm u X0

contains exactly the Ai with bi = 1 and exactly the Bi with
bi = 0.

This argument applies to arbitrary b ∈ {0, 1}n. Thus
if there exists no inclusion C v D satisfying the con-
ditions of the lemma thenH contains at least 2n inclusions. o

Intuitively, by Lemmas 54 and 62, we have that: (i)
any polynomial size membership query can distinguish at
most polynomially many TBoxes from S = {T B

L | L ∈
Ln and B ∈ Bn}; and (ii) if the learner’s hypothesis is poly-
nomial size then there exists a polynomial size counterex-
ample that the oracle can give which distinguishes at most
polynomially many TBoxes from S. We can now state our
theorem and give a formal argument.

Theorem 63 The learning framework FD(EL, EL-IQ) is
not polynomial query exact learnable.

Proof. Assume that TBoxes are polynomial query learn-
able in the data retrieval setting. Then there exists a learning
algorithm whose sum of inputs to queries is bounded at any
stage by a polynomial p(n,m), where k · n, k ∈ N, bounds
the size of the target and m is the largest counterexample
seen so far. Choose n such that b2n/nc > (p(n, 6n))2 and
let S = {T B

L | L ∈ Ln and B ∈ Bn}. We follow Angluin’s
strategy of removing elements from S in such a way that the
learner cannot distinguish between any of the remaining T B

L
TBoxes encoded by L ∈ Ln and B ∈ Bn. The strategy is as
follows.

Given an membership query with the data retrieval exam-
ple (A, D(a)) as input, if (T B

L ∪ T ∗,A) |= D(a) for every
L ∈ Ln and every B ∈ Bn, then the answer is ‘yes’; other-
wise the answer is ‘no’ and all L ∈ Ln and B ∈ Bn with
(T B
L ∪ T ∗,A) |= D(a) are removed from S. By Lemma 54,

at most |A|+ |D| elements can be removed from S. Given an
equivalence query withH, the answer is ‘no’ and a positive
data retrieval counterexample (A, D(a)) with size bounded
by 6n is guaranteed by Lemma 62.

As all counterexamples produced are bounded by 6n, the
sum of the sizes of inputs to queries made by the learning
algorithm is bounded by p(n, 6n). Hence, by Lemmas 54
and 62, at most p(n, 6n) elements are removed from S
during the run of the algorithm. But then the algorithm
cannot distinguish between any of the remaining TBoxes
T B
L and T B′

L′ for L 6= L′ or B 6= B′ based on the given
answers and, thus, we have derived a contradiction. o

We note that the non polynomial query learnability proof
for FD(EL, EL-IQ) given above can be easily extended
to FD(ELH, EL-IQ): the construction above does not use
RIs and in any equivalence query with an RI r v s in
the hypothesis (where T 6|= r 6≡ s), the oracle can return
({r(a, b)}, s(a, b)) as a negative counterexample.

