Practical Uniform Interpolation and Forgetting for ALC TBoxes with Applications
to Logical Difference

Michel Ludwig
Institute for Theoretical Computer Science
TU Dresden, Germany

Abstract

We develop a clausal resolution-based approach for comput-
ing uniform interpolants of TBoxes formulated in the descrip-
tion logic ALC when such uniform interpolants exist. We
also present an experimental evaluation of our approach and
of its application to the logical difference problem for real-life
ALC ontologies. Our results indicate that in many practical
cases uniform interpolants exist and that they can be com-
puted with the presented algorithm.

Introduction

Ontologies or TBoxes expressed in Description Logics (DL)
provide a common vocabulary for a domain of interest to-
gether with a description of the meaning of the terms built
from the vocabulary and of the relationships between them.
Modern applications of ontologies, especially in the biolo-
gical, medical, or healthcare domain, often demand large
and complex ontologies; for example, the National Can-
cer Institute ontology (NCI) consists of more than 60 000
term definitions. For developing, maintaining, and deploy-
ing such large-scale ontologies it can be advantageous for
ontology engineers to concentrate on specific parts of an on-
tology and ignore or forget the rest. Ignoring parts of an
ontology can be formalised with the help of predicate for-
getting and its dual uniform interpolation, which have both
been extensively studied in the Al and DL literature (ten
Cate et al. 2006; Eiter et al. 2006; Herzig and Mengin 2008;
Konev, Walther, and Wolter 2009; Wang et al. 2008; 2010;
Lutz and Wolter 2011; Wang et al. 2012).

Forgetting parts of an ontology can be used, for ex-
ample, in the following practical scenarios. Exhibiting hid-
den relations: in addition to the explicitly stated connec-
tions between terms, additional relations can also be de-
rived from ontologies with the help of reasoners. Such in-
ferred connections are often harder to understand or debug.
By forgetting everything but a handful of terms of interest,
it then becomes possible to exhibit inferred relations that
were hidden initially, potentially simplifying the understand-
ing of the ontology structure. Ontology obfuscation: in soft-
ware engineering, obfuscation (Collberg, Thomborson, and
Low 1998) transforms a given program into a functionally

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Boris Konev
Department of Computer Science
University of Liverpool, United Kingdom

equivalent one that is more difficult to read and understand
for humans for the purpose of preventing reverse engineer-
ing. Forgetting can provide a similar function in the context
of ontology engineering. Terms are often defined with the
help of auxiliary terms which give structure to TBox inclu-
sions. However, such a structure might be considered pro-
prietary knowledge that should not be exposed, or it could
simply be of little interest for ontology users. By forgetting
these intermediate auxiliary terms, we obtain an ontology
that is functionally equivalent, yet harder to read, under-
stand, and modify by humans. Further applications of for-
getting can be found in (Konev, Walther, and Wolter 2009;
Lutz, Seylan, and Wolter 2012).

A promising and important application area of forgetting
is the computation of the logical difference between onto-
logy versions. Determining whether two versions of a docu-
ment have differences is a standard task in information tech-
nology, and finding differences is particularly relevant for
text processing and software development. Already in these
areas, it is important to be able to identify which changes
are significant and which are not (e.g., a software developer
might want to ignore changes in the formatting style of the
code such as the number of indentation spaces). Detecting
significant changes is even more important in the setting of
Knowledge Representation, where differences in the know-
ledge captured by ontologies are often more relevant than
syntactic changes. Arguably, one of the most important con-
cerns of an ontology engineer when modifying an existing
ontology is to ensure that the introduced changes do not
interfere with the meaning of the terms outside the frag-
ment under consideration. Notice that neither the version
comparison based on the syntactic form of the documents
representing ontologies (Conradi and Westfechtel 1998) nor
methods based on the structural transformations of onto-
logy statements (Noy and Musen 2002; Klein et al. 2002;
Jiménez-Ruiz et al. 2011) can be used to identify changes
to the logical meaning of terms in every situation. However,
such a correctness guarantee can be achieved by checking
the equivalence of the ontologies resulting from forgetting
the terms under consideration before and after the changes
occurred.

In this paper we develop an algorithm based on clausal
resolution for computing uniform interpolants of TBoxes
formulated in the description logic .ALC which can preserve

all the consequences that do not make use of some given
concept names. Subsequently, we present an experimental
evaluation of our approach which demonstrates that in many
practical cases uniform interpolants exist and that they can
be computed with our algorithm. We also apply our proto-
type tool to compute the logical difference between versions
of ontologies from the biomedical domain.

This is an updated and extended version of (Lud-
wig and Konev 2013). All missing proofs can be
found in the full version of this paper, which is
available from http://lat.inf.tu-dresden.de/
~michel/krld4-ui-full.pdf

Related work. Until recently research on uniform inter-
polation and forgetting in the setting of DL mainly has
concentrated on theoretical foundations of forgetting. This
could be partly explained by the high computational com-
plexity of this task and by the fact that uniform interpolants
do not always exist. The notion of forgetting has been in-
troduced by Reiter and Lin (1994). (Konev, Walther, and
Wolter 2009) prove tractability of uniform interpolation for
EL TBoxes of a specific syntactic form. (Wang et al. 2008;
2010; 2012) have developed algorithms for forgetting in ex-
pressive description logics. A tight 2-EXPTIME-complete
bound on the complexity for deciding the existence of
a X-uniform interpolant in ALC and a worst-case triple-
exponential procedure for computing a X-uniform inter-
polant if it exists, have been given in (Lutz and Wolter
2011). Koopmann and Schmidt (2013) have introduced a
two-stage resolution-based algorithm for computing uni-
form interpolants. As outcome of the first stage, a repres-
entation of the uniform interpolant in a description logic
with fixpoint operators is computed (such a representation
always exists) Then in the second stage an attempt is made
to eliminate the newly-introduced fixpoints (which may not
succeed). In contrast to this approach, our algorithm has one
stage and it can be guaranteed that a uniform interpolant of
bounded depth is returned.

The notion of the logical difference has been introduced
in (Konev, Walther, and Wolter 2008) as a way of capturing
the difference in the meaning of terms that is independent of
the representation of ontologies.

Preliminaries

We start with introducing the description logic ALC. Let
Nc and Nr be countably infinite and mutually disjoint sets
of concept names and role names. ALC-concepts are built
according to the following syntax rule

Cu= A | T | =C | FC | CNOD,

where A € N¢ and r € Ng. As usual, other ALC concept
constructors are introduced as abbreviations: L stands for
=T, C U D stands for =(=C M =D) and Vr.C' stands for
—3r.—~C. An ALC-TBox 7T is a finite set of ALC-inclusions
of the form C' = D, where C and D are ALC-concepts.
A concept equation C' = D is an abbreviation for the two
inclusions C C D and D C C. An ALC-TBox is acyclic if
all its inclusions are of the form A C C and A = C, where
A € Nc and C is an ALC-concept, such that no concept

name occurs more than once on the left-hand side and 7
contains no cycle in its definitions, that is, it does not contain

inclusions A; <t Ch,..., Ag 1 C, where 1 € {C, =},
such that A; 7 occursin Cy, fori =1,...,k — 1 and Ay =
Aj.

A signature X is a finite subset of Nc U Ng. The signature
of a concept C, denoted by sig(C'), is the set of concept and
role names that occur in C'. If sig(C) C ¥, we call C a X-
concept. We assume that the two previous definitions also
apply to concept inclusions/equations C' > D with 1 €
{C,=} and to TBoxes 7. The size of a concept C is the
length of the string that represents it, where concept names
and role names are considered to be of length one. The size
of an inclusion/equation C' <1 D with <1 € {C, =} is the
sum of the sizes of C' and D plus one. The size of a TBox 7
is the sum of the sizes of its inclusions.

The semantics of ALC is given by interpretations T =
(AT, .1), where the domain AT is a non-empty set, and - is
a function mapping each concept name A to a subset A% of
AT, each role name 7 to a binary relation 77 C A x AZ.
The extension CT of a concept C' is defined by induction as
follows:

Tz = AT

(~C) = AT\ C?T

3r.C)r = {deAl|3ecCT:(de) ert}
(cnbDyt = cftnDI.

Then Z satisfies a concept inclusion C' T D, in symbols
IECCD,ifct C D

We say that an interpretation Z is a model of a TBox T if
ZECCE DforallC C D e T.An ALC-inclusion C' C D
follows from (or is entailed by) a TBox T if every model
of 7 is amodel of C C D, in symbols 7 = C C D. We
use = C' C D to denote that C' = D follows from the empty
TBox. Finally, a TBox T~ follows from (or is entailed by) a
TBox T if every model of 7 is a model of 77, in symbols
TET.

We now introduce the main notion that we study in this
paper.
Definition 1. Let T be an ALC-TBox and let ¥ C sig(T)
be a signature. We say that an ALC-TBox Ty, is a ¥.-uniform
interpolant of the TBox T iff sig(Tx) C 2, T |= Ty, and for
every ALC Y-concept inclusion C C D with T = C C D
it holds that Ty, = C C D.

Uniform interpolation can be seen as the dual notion of
forgetting: a TBox Tv is the result of forgetting about a sig-
nature T in a TBox 7 iff 7 is a uniform interpolant of 7
wrt. ¥ = sig(7T) \ T. As the following example shows,
uniform interpolants of ALC-TBoxes do not always exist.

Example 2. Ler T = {A C B, B C CnN3r.B} and
Y = {A,C,r}. Then there does not exist a X-uniform in-
terpolant of T as (in particular) the infinite number of con-
sequences of the form A C Ir.C, A C Ir.3r.C,... cannot
be captured by an ALC-TBox T’ with sig(T’) C X. On the
other hand, for 7' = {AC B, BC Cn3r.B, D = B}
and ' = {A,C,D,r}, a ¥'-uniform interpolant of T is
{ACD, DCCN3rD.

Uniform interpolation is also related to the notion of lo-
gical difference between ontologies.

Definition 3. The X-logical difference between ALC-
TBoxes T1 and Tz is the set Diffs(T1,T2) of all ALC-
concept inclusions C' T D such that sig(C T D) C %,
TiECCD,andTs - CE D.

It is easy to see that Diffs(77,72) = 0 if, and only if,
T2 E 7'1(2) where 7'1(2) is a X-uniform interpolant of 7;.

Moreover, if T3 P~ Tl(z), every inclusion C' C D € ’Tl(z)
with 7o £ C C D can be regarded as a witness of
Diffs (71, T2)-

With the exception of acyclic ££-TBoxes, checking
whether the logical difference between two ontologies is
nonempty is at least one exponential harder than reason-
ing (Konev et al. 2012). Additionally, if the set Diffs (71, 72)
is nonempty, it is typically infinite. Therefore, in practice,
the notion of logical difference is primarily used as a theoret-
ical underpinning of its approximations that limit the choice
of inclusions C' C D in Definition 3 to Y-inclusions con-
structed according to some syntactic rules, see e.g. (Jiménez-
Ruiz et al. 2009), (Gongalves, Parsia, and Sattler 2012a;
2012b).

Computing Uniform Interpolants by
ALC-Resolution

The aim of our work is to investigate a practical approach
for computing uniform interpolants when they exist. Note
that the procedure given in (Lutz and Wolter 2011) is in-
herently inefficient as it requires one to explicitly construct
the double-exponential size internalisation C'y of a given
TBox 7.

Our approach is to introduce a resolution-like calculus for
ALC that derives consequences of a TBox T such that a
concept inclusion C' C D is entailed by 7 iff a contradiction
can be derived from 7 and C'—D. Similarly to (Herzig and
Mengin 2008), we then show that any derivation can be re-
structured in such a way that inferences on selected concept
names always precede inferences on other concept names.
Then, if the signature ¥ is such that sig(7) \ X only contains
concept names, we generate a set of X-consequences 7'
of T by applying the inference rules in a forward chain-
ing manner such that for an arbitrary >-inclusion C' T D
a contradiction can be derived from 7 and C' M —D iff a
contradiction can be derived from 7’ and C M —D. Thus, if
the forward-chaining process terminates, 7' is a ¥-uniform-
interpolant for 7.

ALC-Resolution. ALC-resolution operates on ALC for-
mulae in conjunctive normal form defined according to the

following grammar (this is similar to (Herzig and Mengin
2008)):

Literal == A | =A | Vr.Clause | 3r.CNF
Clause ::= Literal | Clause U Clause | L
CNF := T | Clause | Clause N CNF

To simplify the presentation, we assume that clauses are sets
of literals and that CNF expressions are sets of clauses. Then
L corresponds to the empty clause and T to the empty set

of clauses. In the following, the calligraphic letters C,D, &
symbolise clauses and F, G represent sets of clauses. Simil-
arly to first-order formulae, every ALC concept can be trans-
formed into an equivalent set of ALC clauses. The depth of
a clause C, Depth(C), is defined to be the maximal nesting
depth of the quantifiers contained in C.

We additionally assume that every clause is assigned a
type. Clauses obtained from the clausification of TBox in-
clusions are of the type universal, and clauses resulting from
the clausification of inclusions to be tested for entailment by
the TBox are of the type initial. The type of a derived clause
is determined by the types of the clauses from which it is
derived and by the derivation rule that is used.

Example 4. The clausification of T from Example 2 pro-
duces three universal clauses: ~AUB, -BUC, -BU3r.B.

We now introduce the two resolution calculi ¥ and T*.
The former calculus assumes the TBox to be empty, whereas
the latter takes TBox inclusions into account. Thus, ¥ de-
rives the empty clause from the set of initial clauses stem-
ming from the clausification of an inclusion T C C 1 —~D
iff = C C D; and T derives the empty clause from the uni-
versal clauses stemming from the clausification of a TBox 7
and the initial clauses stemming from the clausification of an
inclusion T ECN—-Diff T = CC D.

The calculus ¥ is defined with the help of the relation =,
given in Fig. 1. For every o € N¢ U {L}, the relation =,
associates with a set of clauses N a new clause C which
can be ‘derived’ from the set A/ by ‘resolving’ on a.. T now
consists of the following two inference rules.

€ (ifC =4) C D (ife, D=, &),
& &
where C, D, and £ are initial clauses.
The calculus T operates initial and universal clauses and

also consists of two rules:

/

€ irc=ae) <2
where C, C’, D are initial or universal clauses, and C', D =
&' holds iff either C', D =, &', or D is a universal clause
and there exist role names rq,...,7, € Ng (n > 1) such
that C',Vry....Vr,.D =, &'. (Intuitively, the calculus T
allows for inferences with universal clauses at arbitrary nest-
ing levels of quantifiers, which the calculus T does not.)
Then £ is a universal clause if C is a universal clause, and
an initial clause otherwise. Similarly, £’ is a universal clause
if both C’ and D are universal clauses, and an initial clause
otherwise.

We assume that every clause £ that results from a T- or
T¥-inference is implicitly simplified by exhaustively remov-
ing all occurrences of literals of the form 3r.(F, L).

(ifc’', D=t &,

Example 5. For the universal clauses from Example 4, we
have for instance,

-AUB,-BU3r.B =g —-AU3Ir.B by (rule A).

So, the universal clause —~A Ll 3r.B is derivable by T" from
—AU B and -B U 3r.B. As ~B U C is a universal clause
and

-BU3r.B,Vr—~BUC =5 -BU3r.(B,C) by (rule ¥3),

(rule 1) Ciuvr.l, CoUTIrF =, CiuUC)

(rule A) CilUA, CoU—-A=,CiUC,

(rule V3) Ci L vr.Cy, Cé (] HT.(CQ,f) 0 Ci L Cé L E'T’.(CQ,f, C3), if C1,Co =, C3
(rule YV) Ci uvr.Cy, Cé UVr.Co = Ci L Cé U vr.Cs, if C1,Co = C3
(rule 9;) C/L’H?".(Cl,]:) —a C/UHT.(C1,]:7CQ), if C1 =4 Ca
(rule 35) C/LIHT.(Cl,CQ,]:) —a C/UHT‘.(Cl,CQ,]:,Cg), if C1,Co = C3
(rule V) c'u Vr.Ci =4 c'u Vr.Ca, if (1 =, Co

Figure 1: Rules of =,.

the universal clause ~BU3r.(B, C) is derivable by T from
B U 3r.Band -B U C. By applying the inference rules to
old and newly generated clauses, one can conclude that the
universal clauses - A U Ir.(B,C) and =AU Ir.(B,3Ir.B)
are also derivable by T from N' = {-A U B, =B U
C, -BU3r.B}.

For z € {¥, %"}, a x-derivation (tree) A built from a set
of clauses N is a finite binary tree where each leaf is labelled
with a clause from A/ and each non-leaf node n is labelled
with a clause C such that C results from an z-inference on
the parent(s) of n in A. We say that A is a derivation of
a clause C if the root of A is labelled with C. A deriva-
tion of the empty clause is called a refutation. Every path
ni,..., Ny, of nodes in A where n, is a leaf node and n,, is
the root node induces an inference path s, . . ., &y, where
a; € Nc U{L} (2 <i < m) denotes the concept name, or
1, which has been resolved upon to obtain the clause that
is the label of the node n;. For a signature T C N¢ and a
strict total order = C T x T, a derivation A is a (z, T, >)-
derivation if for every inference path s, . .., a;, of A (with
a; € NcU{L}forevery 1 <i < mn)thereexists0 < k <n
such that {a1,...,ax} € T, oj = ajy1 or oj = avjyq for
every 1 <j<k,anda; € T forevery k < j < n.

We prove that for every unsatisfiable set of initial clauses
there always exists a (T, T, >)-refutation by extending the
results and proof methods of (Herzig and Mengin 2008).

Theorem 6 (¥-Completeness). Let T C N¢, let - C Tx T
be a strict total order on Y and let C' and D be ALC
concepts. Then it holds that = C' T D iff there exists
a (%,Y,>)-derivation of the empty clause from the initial
clauses Cls(C' M —D).

A weaker version of this result, stating that any derivation
in T can be reordered so that inferences on concept names
from T always precede inferences on other concept names,
or L, has been previously announced in (Herzig and Mengin
2008); however, as we show in the full version of the paper,
the proof appears to have some gaps.

To prove completeness for T, we observe the following
link between derivations in T and T“. Let N be a set of
clauses and let

Univo(N) = N;
UnivH_l(N) = Univi (N) U

UTENRﬁsig(N){VT'C | Ce UIliVi(N) }
and Univ(N) = ;5 Univi(N).

Theorem 7. Let M be a set of initial clauses and let
N be a set of universal clauses. Additionally, let A be a
(%, Y, =)-refutation from M U Univ(N') such that there ex-
ists n € N with Depth(C) < n for every C € Clauses(A).
Then there exists a (S%, Y, >)-derivation A" of the empty
clause from M U N such that Depth(C) < n for every
C € Clauses(A").

We then use Theorems 6 and 7 and the fact that every
ALC-TBox can be internalised. Notice that the actual TBox
internalisation C'1 does not have to be computed as it is only
used for the proof of completeness.

Corollary 8 (T“-Completeness). Let T be an ALC-TBox,
let T C Ng, let = C Y x Y be a strict total order on Y and
let C and D be ALC concepts. Then it holds that T = C C
D iff there exists a (", Y, >)-derivation of the empty clause

from the universal clauses Cls(T) and the initial clauses
Cls(C' m=D).

Computing Uniform Interpolants. The procedure
UNIFORMINTERPOLANT depicted in Algorithm 1 takes as
input an ALC-TBox T, a signature 3 C sig(7) such that
¥ N Ng = sig(7T) N Ng and a strict total order = C T x T
over T = sig(T) \ 2. Following the outline of (Herzig and
Mengin 2008), after the clausification of 7T, the procedure
iterates over the concept names contained in Y in descend-
ing order according to the relation >. In each iteration the
clause set A is expanded with all possible T“-inferences
on the current concept name A € Y. Finally, after iterating
over all the concept names from Y = sig(7) \ X, the
operator ‘Supp’ is applied on the resulting clauses, which
replaces all occurrences of T concept names in clauses with
T and then simplifies the resulting CNF.

Example 9. For the clauses obtained in Example 5,
Supp({B},-AUC) = =AUC, Supp({B},-AUIr.B) =
=AU 3r.T, Supp({B},~AUI(B,C)) =-AUIr.C.

One can show that if Algorithm 1 terminates, for all
ALC Y-concepts C, D such that there exists a (%, T, >)-
refutation A* from the universal clauses Cls(7) and the ini-
tial clauses Cls(C' M —D) it holds that Fx(7) = C C D.
Thus, it follows from Corollary 8 that if Algorithm 1 ter-
minates, it computes a >-uniform interpolant of 7. How-
ever, Algorithm 1 does not terminate if a uniform inter-
polant does not exist. For example, when applied to 7 from
Example 2, Algorithm 1 can generate, among others, the
infinite sequence of universal clauses —A U Jr.C, =A U
Ir.(C,3Ir.C),... and so it does not terminate. Moreover,

Algorithm 1

1: procedure UNIFORMINTERPOLANT(T, %,)
2 T :=sig(T)\ X

3 N :=Cls(T)

4 while T = () do

5: A := max, (T)
6: N = Reszu (43 (N)
7

8

9

0:

T:=7T\{A4}
end while
return Fx(7) = Supp(sig(T) \ 3, N)

10: end procedure

as the TBox 7 from Example 2 is a subset of 77, and so
Cls(T) C Cls(T"), Algorithm 1 will derive, among others,
the same clauses when it is applied on 7. Thus, in some
cases Algorithm 1 does not terminate even though a uniform
interpolant exists.

To guarantee termination on all inputs, we focus on the
notion of depth-bounded uniform interpolation (related to
the notion of ‘bounded forgetting’ (Zhou and Zhang 2011)).
Let 7 be an ALC-TBox and let & C sig(7) be a signature.
We say that an ALC-TBox Ty is a depth n-bounded uniform
interpolant of the TBox 7 w.rt. ¥ iff sig(7Tx) C X, T =
Ts, and for every ALC Y-concept inclusion C' © D with
T E C C D and max{Depth(C),Depth(D)} < n it
holds that 7x; = C C D. Let Fx ,,,(7) be the outcome
of Algorithm 1 where in Step 6 only clauses up to depth m
are generated. The following example shows that it might be
necessary to consider intermediate clauses of a depth m >
n in order to preserve all the Y-consequences of depth n
entailed by 7.

Example 10. Let T = {A C 3.C, C C 3s.T, =B C
Vs.1}, ¥ ={A,B,r,s}, T ={C} and = = (. Then every
(T, T, >=)-refutation from the universal clauses Cls(T)
and the initial clauses { A,¥r.~B} derives the clause —A |
Ir.(C,3s.T).

We establish, however, that by choosing the maximal
depth of derived clauses appropriately, the procedure depic-
ted in Algorithm 1 computes uniform interpolants that pre-
serve consequences up to a specified depth n.

Theorem 11. Let T be an ALC-TBox, 3 C sig(T) a sig-
nature such that ¥ N Ng = sig(7T) N Ng, and let n > 0. Set
m = n+20sCT)I+ L max{ Depth(C) | C € Cls(T) },
where sub(Cls(T)) is the set of subconcepts of Cls(T).
Then it holds that Fs, ,,(T) is a depth n-bounded uniform
interpolant of the TBox T w.r.t. ¥.

We can combine this result with the results of (Lutz and
Wolter 2011): for any ALC-TBox 7 and signature ¥, if a
>-uniform interpolant of 7~ exists, then there exists a uni-

form interpolant of depth bounded by 227 . Thus,
if ¥ N Ng = sig(7) N Ng, there exists m, which can be
computed based on the bound in Theorem 11 and the res-
ults of (Lutz and Wolter 2011), such that F; ,,,(7) is a 2-
uniform interpolant of 7.

The bound in Theorem 11 can be significantly improved
if the TBox is acyclic. For an acyclic ALC-TBox T we

define ExpansionDepth(7) = max{ Depth(A[T]) | A €
sig(T) }, where A[T] denotes the concept obtained by ex-
haustively replacing every concept B with Cp if BC Cp €
TorB=CgeT.

Theorem 12. Let T be an acyclic ALC TBox, ¥ C sig(T) a
signature such that SXNNg = sig(T)NNRg, and letn > 0. Set
m = ExpansionDepth(7)+n. Then it holds that Fs. ,,,(T)
is a uniform interpolant limited to consequence depth n of
the TBox T w.r.t. 3.

Note that in the description logic ££ (i.e. the fragment of
ALC that does not allow L, negation, disjunction, or uni-
versal quantification) the acyclicity of a TBox guarantees
the existence of uniform interpolants (Konev, Walther, and
Wolter 2009) for any signature Y. Interestingly, this is not
true in the case of ALC. Moreover, as the following example
shows, there exists an acyclic ££-TBox T and a signature
3 for which no ALC Y-uniform interpolant exists.

Example 13. Consider ¥ = {A, A, A1, A2, E,r} and
T = {A C HT.B, AO C 3T.(A1|_|B), E = A1|_|Bm
Ar.(A2 M B)}. Then for everyn > 0, T entails the inclusion

Ao I_JM(AHﬂEﬂ(Al U A9)) C 3r....Tr, Ay
i= i Vn—‘

This infinite sequence of ALC consequences of T cannot
be captured by any ALC ¥.-TBox T', which can be proved
formally using Theorem 9 in (Lutz and Wolter 2011).

Case Study

We have implemented a prototype of an inference compu-
tation architecture using the calculus T and the inference
relation =, in Java. It has turned out that our initial im-
plementation of Algorithm 1 did not perform well in prac-
tice. This was in particular due to the fact that clauses can
contain sets F of other clauses in existential literals 3r.F,
which renders all the possible inferences on clauses from F
‘explicit’. For example, if we resolve the universal clause
which just consists of the existential literal Jr.(A) with the
universal clauses =A U By,...,—A U B, on the concept
name A, then not only the clauses 3r.(A, By), 3r.(A, Bs),
3r.(A, Bs),...could be derived but all clauses of the form
3r.(A,G), where G is a subset of {By,...,Bp}.

A common technique to reduce the number of inferences
that have to be made is to use forward- and backward dele-
tion of subsumed clauses (Bachmair and Ganzinger 2001).
However, it is known (Auffray, Enjalbert, and Hébrard 1990)
that the subsumption lemma (stating that if a clause & res-
ults from an inference involving two clauses C and D, and
if there exist clauses C’, D’ such that C’ subsumes C and D’
subsumes D, then either £ is subsumed by one of C’, D/,
or a clause & can be derived from C’ and D’ such that &£’
subsumes &) does not hold even in the modal logic K for
the standard minimal subsumption relation <, (Auffray, En-
jalbert, and Hébrard 1990) and =,. To be able to prove that
one can safely discard subsumed clauses, we have modified
the inference relation =, by introducing the following ad-
ditional rule (rule 35)

C1 UVT’.'D, Co U dr. F :>3f CiUCy U E"I‘.(f, D)

Uniform Interpolation Forgetting
XN Nc|=5 |2 N Ne| =10 |T| =10 Y| =15 |Y| =25
Success Avrg # Success Avrg # Success Avrg # Success Avrg # Success Avrg #
Rate (%) Axioms Rate (%) Axioms Rate (%) axioms Rate (%) Axioms Rate (%) Axioms
AMINO-

ACID v1.2 100 61.40 92 143.35 100 645.67 87 665.24 64 396.98
BHO v0.4 71 30.01 16 52.43 99 2374.73 99 2363.42 91 2383.96
CAOvl4 100 279.02 100 283.33 100 369.54 100 369.22 10 366.07
CDAO 100 288.21 100 288.42 100 293.48 100 29341 10 293.02
CHEMBIO vl1.1 92 71.89 60 94.40 100 295.85 100 293.09 10 293.64
CPRO v0.85 100 585.08 100 533.82 100 307.76 100 309.46 10 316.31
DDI v0.9 100 249.80 100 25941 100 276.27 100 278.55 10 276.61
DIKB v1.4 2 1591.50 0 - 97 622.67 83 689.44 56 816.39
GRO v0.5 0 - 0 - 94 959.85 91 940.03 79 997.59
IDO 0 - 0 - 94 1202.71 90 1203.78 80 1215.36
LIPRO v1.1 73 7.93 58 13.22 91 2287.24 58 2381.43 45 2297.37
NCI v08.10e 23 887.34 1 1397.00 97 100693.26 98 100611.60 99 100889.50
NEOMARK v4.1 31 19.45 14 27.28 100 338.52 100 333.26 10 324.86
OMRSE 100 485.00 100 485.00 100 485.00 100 485.00 10 485.00
OBIWS v1.1 100 112.56 100 118.70 100 189.66 100 187.71 10 184.13
ONTODM vl.1.1 0 - 0 - 98 1711.40 98 1704.67 93 1693.61
OPL 100 829.41 100 832.93 100 848.60 100 848.99 10 848.73
PROPREO vl1.1 41 2.07 19 31.84 100 561.43 100 560.85 99 578.08
RNAO 113 100 355.86 100 362.83 100 439.64 100 439.10 10 439.71
SAOv1.2.4 0 - 0 - 99 2702.23 100 2700.85 98 2715.30
SITBAC v1.3 0 - 0 - 93 508.40 93 537.48 79 595.51
TOK v0.2.1 0 - 0 - 97 496.12 93 529.06 72 567.11
VSO 0 - 0 - 83 348.87 79 397.65 50 371.38

Table 1: Uniform Interpolation and Forgetting for BioPortal Ontologies on Small Signatures.

We will denote the resulting inference relation by =7 with
a € Nc U {L,3¢}. One can then prove that a variant of
the subsumption lemma holds for the relations < and :>£,
which allows us to employ forward- and backward deletion
of subsumed clauses in our implementation.

In order to further speed up computations, we first extract
the locality-based T _L* ¥-module (Cuenca Grau et al. 2008;
Sattler, Schneider, and Zakharyaschev 2009) for a given
TBox 7. The locality-based module entails the same X-
inclusions as the TBox 7 but it is often considerably smal-
ler in size. We also rely on ontologies to have structure: if a
concept name occurs in several inclusions, it is likely that it
occurs in the same syntactic pattern. Thus,

1. if the clause set contains some clauses C; LI D, ...,C,, U
D~ such that for every 1 < ¢ < m we have sig(C;)NT =
(0, we rewrite them into X LID~, where X = Cy11...MC,p,
perform forgetting on Y symbols and then replace X with
its definition.

2. If the clause set contains a clause C LI 3r.(Fy,G1)U. ..U
Ir.(Fr, Gm) where sig(G;)NT = () forevery 1 <i < m,
we rewrite it into C U 3r.(Fy,Y), where Y = G, U ... U
Gm, perform forgetting on Y and then replace Y with its
definition.

Succes Avrg #
%N Nel rate (%) axioms
5 85 7.482
DIKB 10 60 14.033
15 44 25.114
5 82 1.62
10 64 2.65
NCI 50 65 21.369
100 56 41.089
150 41 63.146

Table 2: Computing Uniform Interpolants of DIKB v1.4 and
of NCI v08.10e Limited to Expansion Depth 3.

Experimental setting. All experiments were conducted
on PCs equipped with an Intel Core i5-2500K CPU running
at 3.30GHz. 15 GiB of RAM were allocated to the Java VM
and an execution timeout of 60 CPU minutes was imposed
on each problem. Whenever necessary we pre-processed
the ontologies we used for our experiments as follows. For
a given ontology 7, we first rewrote concept disjointness
statements and role domain/range restrictions into ALC in-

Computing Diffs (Ti+1, 77)

Computing Diffs (73, Tit1)

Successful/ Success Average # Successful/ Success Average #

Total Runs Rate (%) of Witnesses Total Runs Rate (%) of Witnesses
BDO 3/5 60 12.33 5/5 100 211.40
CHEMINF 25/26 96 7.00 26/26 100 2.26
COGAT 4/4 100 272.00 3/4 75 4.00
JERM 8/13 61 7.00 9/13 69 9.33
NCI 101/108 93 787.10 105/108 97 906.20
NEMO 14/15 93 13.35 15/15 100 33.46
NPO 12/18 66 27.08 12/18 66 5.58
OMRSE 11/11 100 0.54 11/11 100 0.00
OPL 4/4 100 18.75 4/4 100 2.25
SIO 18/35 51 0.00 19/35 54 0.00

Table 3: Computing the Logical Difference between Ontology Versions on their Common Signature.

clusions and then removed any remaining axiom which con-
tained non-ALC concept (or role) constructors to obtain the
ALC-fragment of 7. We used Algorithm 1 to forget concept
names one by one i.e. for sig(7) \ £ = {41,..., A}, Al-
gorithm 1 was applied iteratively on Ay, ..., A,, and we did
not impose a bound on the depth of clauses; so the computed
clause sets contain depth n-bounded uniform interpolants
for every n > 0. Thus, in all the experiments reported on in
this section we computed true X-uniform interpolants (i.e.
not a depth-bounded variant). The correctness of our exten-
sions to Algorithm 1 can be shown by model-theoretic argu-
ments.

Experiments with small signatures. We applied our uniform
interpolation tool to compute uniform interpolants w.r.t.
small concept signatures ¥ C sig(7) with sig(7) N Ng =
> N Ng for 21 small to medium size ontologies taken from
the BioPortal repository'. The number of axioms in the se-
lected ontologies ranges from 192 (for the Ontology of Med-
ically Related Social Entries) to 2702 (for the Subcellular
Anatomy Ontology). To make the experiments more inter-
esting, we also included version 08.10e of the National Can-
cer Institute Thesaurus (NCI). For each considered sample
size x and terminology 7 we generated 100 signatures >
by randomly choosing z concept names from sig(7") and by
adding all the role names from sig(7") to 3. The results that
we obtained are shown in Table 1.

In the left half of Table 1 one can see that the number of
successful computations decreased with increasing size of
3> N N¢, which seems to be due to the fact that the T L*
>.-modules then contain more symbols that lead to a large
number of inferences. Most uniform interpolants that we ob-
tained are relatively small and contain a lot of expressions
of the form 3r; ... 3r,.T. In some cases the process of for-
getting certain intermediate concept names generated a few
hundred clauses that were simplified or deleted in the re-
maining computation steps. The success rate, however, var-

! All ontologies used for the experiments reported on in this sec-
tion can be accessed from the BioPortal repository,
http://bioportal.biocontology.org/ontologies

ied significantly from one ontology to another. To further
investigate this phenomenon, we computed uniform inter-
polants for a fragment of version 08.10e of NCI and for
a fragment of version 1.4 of the Drug Interaction Know-
ledge Base (DIKB) that are of expansion depth 3 (that is,
we removed all the axioms from both ontologies that led
to an expansion depth greater than 3). The resulting DIKB
fragment is a small acyclic terminology that contains 120
concept names, 27 roles names, and 127 axioms. The NCI
fragment is also an acyclic terminology with 53571 concept
names, 78 role names and 62494 axioms (of which 2362
are of the form A = C). The results obtained are shown in
Table 2. Limiting the expansion depth drastically improved
the performance of our prototype implementation with the
success rate for signatures containing 5 randomly selected
concept names rising from 2% to 85% in the case of DIKB
and from 23% to 82% in the case of NCI. For NCI our tool
is capable of handling signatures containing up to 150 ran-
domly selected concept names.

As proof of concept for ontology obfuscation, we applied
our uniform interpolation tool on (a fragment of) the Lipid
Ontology (LIPRO) to forget 45 concept names which are in-
termediate concept names in the ontology’s induced concept
hierarchy, i.e. those concept names group certain subcon-
cepts together to give structure to the ontology. LIPRO is an
acyclic terminology with 593 axioms, 574 concept names
and one role name. The maximal size of an axiom is 50.
It then took 192 CPU seconds to compute the uniform in-
terpolant, which contains 3415 axioms that have a maximal
size of 283. The uniform interpolant that we computed thus
approximately contains 6 times more axioms than the ori-
ginal ontology and the maximal axiom size has increased by
a factor of 6 as well. Notice that most of the original struc-
ture of the ontology has been destroyed while preserving all
the consequences entailed by the retained concept names.

Finally, in the right half of Table 1 we report on our suc-
cess rate for forgetting a small number of concept names.
Notice that our prototype implementation performs signific-
antly better in this scenario. This observation suggests that
our tool is suitable for checking whether a change made to

50000

45000

40000

35000

30000

25000

20000

Number of difference witnesses

15000

o> o;q,w@w% S*
NBQ bee
&I “’o"m"o"e“’é’&&“’*’b

14000

12000

10000

8000

6000

Number of difference witnesses

4000

2000

D||||I

0

Sl

10000
5000
P I I e e
»‘

o~ Y N SR SR S S R R 3 A of D D P T S N S T SR SN
00"6\9"’0&&""\0‘3’@@'&6’@@@"&6”0"’@0"’”&%"‘0“’@“W&Q’é’e“’@"e’”&é"@
90 P TS S SEEE

S o (SR SUAN N RN SR R S R S N R S S S RS RTER N S ST S S TIC TR SO S SR S S IR
0“06@0%%56’6\%&%06‘&6’6\@ e\s“’o‘“"@’”e\s“’e"é\c_?’9?’9”6”6”_@Q@Q&Q.&é’g,@&”_&&g‘“6"\90&&&’@'¢'
NNy & [NERNIRN NN & IR RN RN RN AN S R g

¥ T o708 98 0 0% o

Figure 2: Logical Difference between NCI Versions ¢ and ¢ + 1 (Top) and Versions ¢ + 1 and 7 (Bottom).

an ontology interferes with the meaning of the terms out-
side the (typically small) fragment under consideration in
the context of computing the logical difference between two
versions of an ontology.

Applications to Computing the Logical Difference. We
selected 10 ontologies that have at least 5 submissions and
whose expressivity is at least ALC, including 109 versions
of the NCI Thesaurus, from the BioPortal repository.

For every pair of consecutive versions 7; and 71,
where version ¢ + 1 represents the more recent version,
and every considered signature >, we computed both
Diffs;(7;, Ti+1) and Diffs;(7;41,7;). We used the reasoner
FaCT++ v1.6.2 (Tsarkov and Horrocks 2006) to determ-

ine whether any axiom C C D € 7;(2) is a witness of
Diffs:(7;, Ti+1), where 7;(2) is the Y-uniform interpolant
of 7; computed with our tool (similarly for Diffs(7; 41, 77)).
Note that the results we obtained are not directly compar-

able with the logical difference computed for description lo-
gics of the £L family (Konev, Walther, and Wolter 2008;
Konev et al. 2012) as illustrated by Example 13.

In our first experiment we used X = (sig(7;) N
sig(7i+1)) U Ng. This test captures any change to the mean-
ing of the terms common to both versions. The results of
computing the logical difference are given in Table 3. No-
tice that the success rate of computing Diffx:(7;, T;+1) was
slightly higher than the one of the converse direction. This
observation can probably be attributed to the fact that these
cases correspond to knowledge contained in an older ver-
sion being removed from a newer one, which does not seem
to happen often.

Interestingly, we could observe one of the highest success
rates among all our experiments whilst computing logical
differences for distinct versions of NCI. This can possibly
be explained by the fact that versions of NCI are released
frequently and changes to the ontology are hence introduced

Diff s (NClyog.094, NClps. 10c)

Diff s (NClyos.034, NClos.054)

Diffs (NClyos.121, NClog.o1c)

|(sig(T)\X) Success Avrg # Success Avrg # Success Avrg #
NN¢| rate (%) Witnesses rate (%) Witnesses rate (%) Witnesses

5 100 446.01 100 47458.14 100 11564.71

10 99 446.05 100 47456.66 97 11 595.85

20 100 445.95 100 47453.26 94 11671.79

50 88 445.73 100 47436.72 84 11 849.16

100 88 445.67 100 47403.76 70 12 468.64

Diffs; (NClos.10e, NClyos.094) Diffs; (NClos 054, NCly05.034) Diff 3 (NClog.01¢, NClyos.12r)

|(sig(T)\X) Success Avrg # Success Avrg # Success Avrg #
NNc| rate (%) Witnesses rate (%) Witnesses rate (%) Witnesses

5 98 2338.89 96 1347.92 99 13704.29

10 98 2338.45 98 1348.47 100 13788.15

20 97 2347.08 95 1348.66 95 13 841.52

50 92 2340.72 86 1351.56 87 14062.52

100 86 2385.88 74 1354.04 80 14 504.40

Table 4: Computing the Logical Difference between Versions of NCI.

gradually. Figure 2 depicts the number of witnesses that cor-
respond to the logical difference between consecutive ver-
sions of NCI on their common signature. Gongalves, Parsia,
and Sattler (2012b; 2012a) provide a comprehensive ana-
lysis of the changes between 14 consecutive versions of NCI
using various techniques, ranging from a manual inspection
of the log files to approximations of the logical difference.
Versions 06.01c, 06.08d and 05.12f were identified as hav-
ing the highest number of differences. In our experiments,
the highest number of logical difference witnesses were also
present in NCI version 06.01c; the computations for versions
06.08d and 05.12f did not finish in time.

Furthermore, to make the experiments more challenging
for the reasoner, we focused on comparing version 7 with
version ¢ + 1, and vice versa, on the 2 pairs of NCI versions
for which the highest number of difference witnesses was
identified in the first experiment. We also included version
08.10e as this is the last acyclic ALC TBox in the corpus. We
performed tests on randomly generated large signatures X
with £ N Ngr = sig(7) N Ng. In that way the computed
uniform interpolants remained rather large as well.

For each sample size x € {5, 10, 20, 50,100} we gener-
ated 100 signatures by randomly choosing |sig(7) N¢|—z
concept names from sig(7) and by including all the role
names from sig(7). The results that we obtained are now
shown in Table 4.

One can observe that as size of sig(7) \ X increased,
i.e. more symbols had to be forgotten from the T 1* -
modules, the success rate dropped slightly. Overall, the av-
erage number of witnesses and the average maximal size of
the witnesses remained comparable throughout the different
sample sizes. Also, the axioms generated by the computa-
tion of the uniform interpolant did not pose a problem for
FaCT++ as computing the logical difference for a given sig-
nature never took more than 20 seconds in our experiments.

Conclusion

In this paper we presented an approach based on clausal
resolution for computing uniform interpolants of ALC-
TBoxes T w.r.t. signatures ¥ C sig(7) that contain all
the role names present in 7. We proved that whenever the
saturation process under A4 LC-resolution terminates, the al-
gorithm computes a uniform interpolant. To guarantee ter-
mination on all inputs, we introduced a depth-bounded ver-
sion of our algorithm. We showed that by choosing an ap-
propriate bound on the depth of clauses, one can axiomatise
all X-inclusions implied by the given TBox up to a specified
depth. Combined with a known bound on the size of uniform
interpolants, our depth-bounded procedure always computes
a uniform interpolant if it exists.

In the second part of this paper we investigated how of-
ten our unrestricted resolution-based algorithm terminates
with a uniform interpolant by applying our prototype imple-
mentation on a number of case studies. Our findings suggest
that despite a high computational complexity uniform inter-
polants can be computed in many practical cases. The com-
putation procedure could further benefit from better redund-
ancy elimination techniques, which, together with extend-
ing our approach to forgetting role names, constitutes future
work. It would also be interesting to explore proof strategies
for our resolution calculi that guarantee termination when
uniform interpolants exist.

Acknowledgements. Michel Ludwig is supported by the
German Research Foundation (DFG) within the Cluster
of Excellence ‘Center for Advancing Electronics Dresden’
(cfAED). Boris Konev is supported by the EPSRC project
EP/H043594/1.

References

Auffray, Y.; Enjalbert, P.; and Hébrard, J.-J. 1990. Strategies
for modal resolution: Results and problems. Journal of Auto-

mated Reasoning 6(1):1-38.

Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2007. The Description Logic
Handbook. Cambridge University Press, 2nd edition edition.

Baaz, M.; Egly, U.; and Leitsch, A. 2001. Normal form
transformations. In Handbook of Automated Reasoning. El-
sevier and MIT Press. 273-333.

Bachmair, L., and Ganzinger, H. 2001. Resolution theorem
proving. In Handbook of automated reasoning, volume 1.
Elsevier. chapter 2, 19-99.

Collberg, C. S.; Thomborson, C. D.; and Low, D. 1998.
Manufacturing cheap, resilient, and stealthy opaque con-
structs. In Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL ’98), 184-196. ACM.

Conradi, R., and Westfechtel, B. 1998. Version models for
software configuration management. ACM Computing Sur-
veys (CSUR) 30(2):232-282.

Cuenca Grau, B.; Horrocks, 1.; Kazakov, Y.; and Sattler, U.
2008. Modular reuse of ontologies: theory and practice.
Journal of Artificial Intelligence Research (JAIR) 31:273—
318.

Eiter, T.; Ianni, G.; Schindlauer, R.; Tompits, H.; and Wang,
K. 2006. Forgetting in managing rules and ontologies. In
Proceedings of the 2006 IEEE / WIC / ACM International
Conference on Web Intelligence (WI 2006), 411-419. IEEE
Computer Society.

Enjalbert, P., and del Cerro, L. F. 1989. Modal resolution in
clausal form. Theoretical Computer Science 65(1):1-33.

Gongalves, R. S.; Parsia, B.; and Sattler, U. 2012a. Concept-
based semantic difference in expressive description logics.
In Description Logics, volume 846 of CEUR Workshop Pro-
ceedings. CEUR-WS.org.

Gongalves, R. S.; Parsia, B.; and Sattler, U. 2012b. Concept-
based semantic difference in expressive description logics.
In International Semantic Web Conference (1), volume 7649
of Lecture Notes in Computer Science, 99—115. Springer.

Herzig, A., and Mengin, J. 2008. Uniform interpolation
by resolution in modal logic. In Proceedings of the 11th
European Conference on Logics in Artificial Intelligence
(JELIA 2008), volume 5293 of Lecture Notes in Computer
Science, 219-231. Springer.

Jiménez-Ruiz, E.; Grau, B. C.; Horrocks, I.; and Llavori,
R. B. 2009. Contentcvs: A CVS-based collaborative on-
tology engineering tool. In Proceedings of the Workshop
on Semantic Web Applications and Tools for Life Sciences,
volume 559 of CEUR Workshop Proceedings. CEUR-
WS.org.

Jiménez-Ruiz, E.; Cuenca Grau, B.; Horrocks, I.; and Lla-
vori, R. B. 2011. Supporting concurrent ontology develop-
ment: Framework, algorithms and tool. Data & Knowledge
Engineering 70(1):146-164.

Klein, M. C. A.; Fensel, D.; Kiryakov, A.; and Ognyanov,
D. 2002. Ontology versioning and change detection on the
web. In Knowledge Engineering and Knowledge Manage-
ment: Ontologies and the Semantic Web, volume 2473 of

Lecture Notes in Computer Science. Berlin/Heidelberg, Ger-
many: Springer Verlag. 247-259.

Konev, B.; Ludwig, M.; Walther, D.; and Wolter, F. 2012.
The logical difference for the lightweight description lo-
gic EL. Journal of Artificial Intelligence Research (JAIR)
44:633-708.

Konev, B.; Walther, D.; and Wolter, F. 2008. The logical
difference problem for description logic terminologies. In
Proceedings of the 4th International Joint Conference on
Automated Reasoning (IJCAR 2008), volume 5195 of Lec-
ture Notes in Computer Science, 259-274. Springer.

Konev, B.; Walther, D.; and Wolter, F. 2009. Forgetting
and uniform interpolation in large-scale description logic
terminologies. In Proceedings of the 2 1st International Joint
Conference on Artificial Intelligence (IJCAI 2009), 830-
835.

Koopmann, P., and Schmidt, R. A. 2013. Uniform interpol-
ation of ALC-ontologies using fixpoints. In Proceedings of
the 9th International Symposium on Frontiers of Combining
Systems (FroCoS), volume 8152 of Lecture Notes in Com-
puter Science. Springer.

Ludwig, M., and Konev, B. 2013. Towards practical uniform
interpolation and forgetting for ALC TBoxes. In Informal
Proceedings of the 26th International Workshop on Descrip-
tion Logics, volume 1014 of CEUR Workshop Proceedings,
377-389. CEUR-WS.org.

Lutz, C., and Wolter, F. 2011. Foundations for uniform inter-
polation and forgetting in expressive description logics. In
Walsh, T., ed., Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), 989—
99s.

Lutz, C.; Seylan, I.; and Wolter, F. 2012. An automata-
theoretic approach to uniform interpolation and approxima-
tion in the description logic £L. In Proceedings of the Thir-
teenth International Conference on Principles of Knowledge
Representation and Reasoning (KR 2012). AAAI Press.

Noy, N. F,, and Musen, M. A. 2002. PromptDiff: A fixed-
point algorithm for comparing ontology versions. In Pro-
ceedings of the 18th national conference on Artificial intel-
ligence, 744-750. Menlo Park, CA, USA: AAAI Press.

Reiter, R., and Lin, F. 1994. Forget it! In Proceedings of
AAAI Fall Symposium on Relevance, 154-159.

Sattler, U.; Schneider, T.; and Zakharyaschev, M. 2009.
Which kind of module should I extract? In Proceedings
of the 22nd International Workshop on Description Logics
(DL 2009), volume 477 of CEUR Workshop Proceedings.
CEUR-WS.org.

ten Cate, B.; Conradie, W.; Marx, M.; and Venema, Y. 2006.
Definitorially complete description logics. In Proceedings of
the Tenth International Conference on Principles of Know-
ledge Representation and Reasoning (KR 2006), 79-89.
AAAI Press.

Tsarkov, D., and Horrocks, I. 2006. FaCT++ Description
Logic reasoner: System description. In Proceedings of the
Third International Joint Conference on Automated Reason-

ing (IJCAR 2006), volume 4130 of Lecture Notes in Com-
puter Science, 292-297. Springer.

Wang, Z.; Wang, K.; Topor, R.; and Pan, J. Z. 2008. For-
getting Concepts in DL-Lite. In Proceedings of the 5th
European Semantic Web Conference (ESWC2008), volume
5021 of Lecture Notes in Computer Science, 245-257.
Springer.

Wang, Z.; Wang, K.; Topor, R. W.; and Zhang, X. 2010.
Tableau-based forgetting in ALC ontologies. In Proceed-
ings of the 19th European Conference on Artificial Intelli-
gence (ECAI 2010), volume 215 of Frontiers in Artificial
Intelligence and Applications, 47-52.

Wang, K.; Wang, Z.; Topor, R.; Pan, J. Z.; and Antoniou,
G. 2012. Eliminating concepts and roles from ontologies in

expressive descriptive logics. Computational Intelligence.
DOI: 10.1111/j.1467-8640.2012.00442..x.

Zhou, Y., and Zhang, Y. 2011. Bounded forgetting. In Pro-
ceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence (AAAI 2011). AAAI Press.

The appendix is organised as follows. In Section B we give a proof of the refutational completeness with ordering constraints
for the calculus ¥. We continue in Section C with establishing an important connection between the calculi ¥ and %, which
leads to a proof of the refutational completeness for T*. The aim of Section D is to establish the correctness of Algorithm 1,
which includes a proof the subsumption lemma for T/ as well as some results regarding the application of the Supp-operator.
The correctness of the depth-bounded uniform interpolation algorithm is established in the sections E and F for the two cases of
regular and ac]?/clic ALC-TBoxes. In Section G we address the correctness of the implementation by extending the subsumption
lemma to T*7.

A Extended Definitions

In the following let R denote the set of all sequences r = (ry,...,7,) with r; € Ng for every 1 < i < n. The empty sequence
will be denoted by e.
Forr = (ry,...,7m,) € R, the expression Vr.C, where C is a clause, denotes the clause Vry....Vr,.C.

The proof of the following lemma is a simple adaptation of CNF transformation for first-order formulae (Baaz, Egly, and
Leitsch 2001).

Lemma 14 (Clausification). Let C be an ALC-concept.
Then one can construct a set of clauses Cls(C') from C such that

* sig(Cls(0)) < sig(C),
» max{ Depth(C) | C € Cls(C) } < Depth(C), and
* F O =Tleecisio) &

The set of all clauses over Nc U Ng will be denoted by Clauses, whereas Clauses,, () denotes the set of all clauses over the
signature Y which are of depth at most n. For a TBox 7 we define that
Cls(T)={Cls(-CUD)|CCDeT}U{Cls(-CUD)|C=DeT}
U{Cls(-DUC)|C=DeT}.
For a clause C and r € sig(C), we define C|3, (C|v,) to be the set of all the literals of the form 3r.F (Vr.D) contained in C.
Furthermore, for a clause C let C|3 = |, ggg(c) Clar and Cly = U, eqg(c) Clvr-
We define the set of subconcepts of a clause C, sub(C), (or of a set of clauses F) inductively as follows:
« for a clause C, let
sub(C) = {Ctucu [J sub(F)u |J sub(D)
Ir.FeC Vr.DeC
» for a set of clauses F, let sub(F) = [Jpc £ sub(C).

In order to be able to prove completeness and reordering theorems, we need to be able to refer to individual inference rules
of ¥ and T* by their name. We re-state the rules of the calculus ¥ and T*. Then, ¥ consists of two rules

C ;. C D,
a(ll) 5 (i2)

where C, D are initial clauses, C =, &1, and C,D =, &. &1 and &, are initial clauses.
The calculus T consists of two rules (i) and (i2), and the following three inference rules:

¢ D
6‘/

C () € D (u)

& g (mix)

where C, D are universal clauses, C’ is an initial clause or a universal clause, C =, £1,C, D =, &, and there existsr € R\ {e}
such that C',Vr.D =, £'. £; and &, are universal clauses, whereas £’ is a universal clause if C’ is a universal clause and £’ is
an initial clause otherwise. We also assume that every clause £ that results from a T- or T%-inference is implicitly simplified
by exhaustively removing all occurrences of literals of the form 3r.(F, L).

In the following we also make use of two additional calculi ¥ and T*7, which are defined analogously to the calculi ¥
and T, respectively, except that they are based on the inference relation =7 .

For z € {T,%/, T4, T/} and @ € Nc U {L,3;}, we write C(,D) F& £ if, and only if, the clause & results from an
z-inference on « from C (and D).

Definition 15. Let Y be a signature and let N be a set of ALC clauses. For v € {%, %"}, we define that
Resz r m(N) =N U{C"|C1,Ca € N,C1,C2 FS C',ae € T and Depth(C') < m }
U{C"|C e N,Ci F¢ C',a € Y and Depth(C’') < m }.

Additionally, for n € N\ {0}, we define that Res) v ,,,(N') = N, and Res}} x ,,,(N') = Resy 1 m(Resi 7' (V).
Finally, we set
Resr ,,(N) = [Resi3', (V).
neN\{0}

Definition 16 (Derivation Tree). Let x € {%,T"}. A x-derivation tree A built from a set of clauses N is a finite binary tree
A = (V,E, L) where L is a labelling function which assigns to every node n an ALC clause L(n) such that

(i) the leaves of A are only assigned clauses from N'; and

(ii) for every node n € V with immediate predecessors ny (and potentially ns) it holds that L(n) is the result of an inference
rule from x applied on L(ny) and potentially L(ns).

An inference path of A is a sequence (aa, . .., amy) where (ny, ...,y) is a path from a leaf ny of A to the root n.,, and for
every 2 < i < m, the clause L(n;) has been obtained through an =, inference. The set of all inferences paths of A is denoted
by InferencePath(A). The set of all inferences that occur in A\, which is denoted by Inferences(A), is defined as follows:

Inferences(A) = U {a;|2<i<m}

p=asz,...,a, EInferencePath(A)

We will denote the set which contains all the leaves of A by Leaves(A), and we set Nodes(A) =V, Clauses(A) = { L(n) |
n € Nodes(A) }.

Definition 17 ((Y, -)-Path). A sequence (o, ...,) over (Nc U{L}) is a (Y, >=)-path if, and only if,
* there exists 0 < i < m such that oij € Y for every 1 < j <iand a; = a1 foreveryl < j < i; and
s a; €Y foreveryi+1<j<m.

Definition 18 (Y-Derivation Tree). Let T C N¢ be a set of concept names, let N be a set of ALC clauses, and let x € {T,T"}.
A (z, T, >)-derivation tree A built from the set N is a z-derivation tree A = (V, E) such that every path (a1, ...,qm) €
InferencePath(A) is a (Y, >)-path.

B Proof of Refutational Completeness for T with Ordering Constraints on Inferences

In this section we prove refutational completeness of ¥ with ordering constraints. A weaker formulation of this result has
already been announced in (Herzig and Mengin 2008); however, the proof given in (Herzig and Mengin 2008) does not seem
to be correct. A pivotal for the method of (Herzig and Mengin 2008) is the following statement.

CLAIM. [Lemma 1 of (Herzig and Mengin 2008)] Given clauses A, 3, C, Z and F, if there is an a-resolution from A, possibly
using side clause B3, giving clause Z and a [-resolution from Z, possibly using side clause C, giving clause F, then there exist
clauses Z*, Fy,..., F} (for some n > 0) and F* such that 7* subsumes F and there is a S-resolution from .4, possibly using
side clause C, giving clause Z*, and a sequence of a-resolutions from Z*, possibly using side clause B, giving successively
Filoos Far FX.

To observe where the claim falls short consider a clause set S = {Vr.A,Vr.—A, 3r.C'}. Then from Vr.A and Vr.—A we can
derive Vr. L, and then | using 3r.C, i.e. we first resolved on A and then on L. However, contrary to the claim above, it’s not
possible to first resolve on L using clauses from .S only. As the following (more involved) example demonstrates, the problem
is not limited to 3 being L.

Example 19. Consider a set of clauses S = {C; = AU B,C2 = AU B,C3 = —B}. By first resolving on A between Cy
and Cy, one obtains the unit clause B, from which one can derive the empty clause by resolving on B with Cs. But by first
resolving on B between Cy and Cs3 one obtains the unit clause —A, which can be resolved with Cy on A to derive B. But no
further inferences on A are possible and B <, 1 does not hold. (This problem is caused by the implicit positive factorisation
built into the calculus of (Enjalbert and del Cerro 1989) and (Herzig and Mengin 2008).)

Additionally, for the proof of Proposition 1 in (Herzig and Mengin 2008) to work, it would be necessary to have proved the
subsumption lemma already.

In our approach rather than restructuring a given proof we impose ordering constraints on derivations directly in the proof
of completeness. Following (Enjalbert and del Cerro 1989), we start by introducing a variation of tableau for ALC clauses and
then show that an ordered derivation can be effectively constructed from the tableau.

Definition 20 (Model Tree). Let T be a TBox and let N be a finite set of ALC clauses.
A model tree M = (V, E, L) for the TBox T and the set of clauses N is a directed and labelled tree (V, E) with a node
labelling function L: V' — p(Clauses) that is constructed iteratively as follows fromV = E = {):

* Add a root node ng to V with L(ng) = N U Cls(T)

¢ Additional children are constructed by alternating between the following two operations on leaf nodes n.:
Operation 1: Repeat as long as possible
(i) choose a leaf n and a clause C in L(n) of the form C1 U Co with C1 # () and C # ()
(ii) append two children n1, ny to n such that:
L(n1) =n\{C}U{C1} and L(ng) =n\ {C}U{C2}
Operation 2: For each leaf node n of M,

o if {A, A} C L(n) for some concept name A, or L € L(n), or if there exists an ancestor n’ with L(n') = L(n), then do
nothing;

o otherwise, as L(n) is a set of unit clauses, we can write

l P
L(n) ={Ly,....L} U J {3 F}u | {¥s;C5},
i=1 j=1

where every L;, 1 < i < m is either a concept names of the negation of a concept names.
Define children ny, (1 < k <) of n such that:

L(ng) =FrU{C; |1 <j<pandry=s;}UCIs(T)
The node ny, is said to be an rj-successor of n.

Remark 21. As L(n) C sub(N U Cls(T")) holds for n = ng and for every node n € V that results from Operation 2, and as
sub(N U Cls(T)) is finite, one can see that every model tree for N' w.r.t. T only contains finitely many nodes.

Lemma 22. In a model tree M for N w.r.t. T a node that contains A, —A for some concept name A cannot have a type 2
descendant.

Proof. Follows immediately from the construction principles of model trees. O

Definition 23. In a model tree M for N w.r.t. T
* aleaf node n is said to be closed if and only if { A,~A} C L(n) for some concept name A, or 1. € L(n);
* for a node n of type 1 with successors, n is said to be closed if and only if all of its children are closed;
e for a node n of type 2 with successors, 1 is said to be closed if and only if one of its children 1’ is closed.
A node n which is not closed is said to be open.

The following lemma can easily be proved by induction on the size of a model tree.

Lemma 24. Let n be an open node in a model tree M for N w.r.t. T.
Then there exists a sub-tree S of M with root n such that

* every node of S is open, and
e every node of type 1 has exactly one child, and
e the children of every node n' of type 2 in S are exactly the children of n' in M of N w.r.t T.
The following proofs are variations/extensions of the proofs found in (Enjalbert and del Cerro 1989).

Lemma 25. Let T be a TBox and let N be a finite set of clauses.
Then for every open model tree M for N w.r.t. T there exists a model I of T such that (g s ctg 1t

Proof. LetS = (V, E, L) be the sub-tree of M for N w.r.t T, with root ng that is obtained from Lemma 24. Additionally, let R
be the smallest equivalence relation containing (n, n’) for every node n of S such that n’ is a type 1-child of n. The equivalence
class of anode n € S w.r.t. 2} will be denoted by |n|.

We define the interpretation Z as follows:

*A={nl|neE}
* for every atomic concept name A:
AT ={|n||3n’ € |n|suchthat A € L(n') },
* for every role name r:
T ={(|n1|,|n2|) | (n1,n2) € S and ny is an r-successor of n; }

U { (|n1],|n2]) | 371 such that 721 is an ancestor of n,
L(ny) = L(ny) and ng is an r-successor of 711 }

We now prove for every clause C and for every node n of S with C € L(n) that |n| € C* holds by induction on the structure
of C.

If C = A, then |n| € AT holds for every node n of S with C € L(n) by definition of the interpretation Z.

For C = —A, let n be a node of S with C € L(n). It follows for every node n’ € |n| that A & n’ as every such node n’ is
open and as the presence of A in a node n’ of type 1 would imply that A is also present in all of its type 1-children. Hence, we
can infer that |n| ¢ AZ, i.e. |n| € (-A)Z holds.

In the case where C = C; UCo, let n be a node of S with C € L(n). We can infer that the node n is of type 1, i.e. there exists a
type 1 descendant n’ of C such that either C; € L(n') or Cy € L(n’). It follows from the induction hypothesis that |n’| € (C1)Z,
or |n'| € (C2)*. We can conclude that |n| = |n/| € CZ.

For C = 3r.F, let n be anode of S with C € L(n). By construction of S there exists a node n’ € |n| such that Ir.F € L(n')
and such that all the clauses in L(n’) are unit clauses. As n' is open, there hence exist nodes 72/, 7" € S such that L(n’) C L(7)
and 7"’ is an r-successor of 7’ with 7 C L(n”), i.e. either n’ = 7/ or 7’ is an ancestor of n’ with L(n) = L(n/). It then follows
from the induction hypothesis that || € ([D). As (|n/],|7”]) € rZ, it follows that |n| = |n'| € CZ.

Finally, if C = V¥r.D, let n be a node of S with C € L(n) and let |n’| € A such that (|n|,|n’|) € rZ. By construction of S
there exists a node n,, € |n| such that ¥r.D € L(n,) and such that all the clauses in L(n,,) are unit clauses. By definition of 7%
there hence exists a node 7 in S such that L(n,) = L(7) and such that there exists a node 7 which is a r-successor of 7 with
|7i'| = |n'|, i.e. we have D € 7’ by construction of S. Thus, |n’| = |7/| € DT by the induction hypothesis. We can hence infer
that [n| € CZ holds.

We can conclude now that Z is a model of T as for every |n| € AZ there exists 7 € |n| with Cls(7") C L(#), which implies
that [n| = || € Npecis(r) DZ. Finally, it remains to observe that as V" C L(ng), we have [ng| € (\ocpr C* and therefore,

z z
Neen € € L7, O
We summarise the properties of the model trees in the following two lemmas, which can easily be proved by induction on
the construction of the model tree.

Lemma 26. Let T be a TBox, let N be a finite set of clauses and let T be a model of T such that (¢ s ctg 1t
Then there exists an open model tree M for N w.r.t. T.

Lemma 27. Let n be a closed node in a model tree M for N w.r.t. T.
Then there exists a finite tree T with root n which is a sub-tree of M and which only contains closed nodes.

Our next aim is to show that one can construct a (T, T, >)-derivation out of the clauses contained in an arbitrary closed
node in a model tree. We proceed by induction on the depth of a closed node. In order to do that we distinguish between
whether the considered close node results from type 1 or type 2 expansion of the model tree, and we begin with showing
that refutations can be constructed for closed type 1 nodes. The main result will be established in Lemma 41 by using the
property that inferences can be reordered (Lemma 33). However, to avoid complications that can arise from implicit factoring
as illustrated in Example 19 above we ‘split’ clauses using the following notion of a bipartite derivation. Then, when dealing
with closed type 1 nodes and the associated unsatisfiable disjunction of the form D; LI D5, refutations for D;, for i = 1, 2 belong
to different partitions and can, therefore, be treated independently.

Definition 28. For a clause C and for x € {l,r} we denote by [C],. the clause that results from C by consistently replacing every
concept name A which occurs in C with the concept name A, and every role name r which occurs in C with r,.. We assume that
A clause C is said to be bipartite if, and only if, there exist clauses D and & such that C = [D]; U [€],. A bipartite clause C is
also denoted by [C].

For a bipartite clause C = [D]; U [€], [C]; denotes the clause D and [C], denotes the clause E.

Definition 29. A T-derivation A from premises N is said to be bipartite if, and only if, the clauses in N are bipartite.

We establish properties of bipartite derivations. The following statement is a direct consequence of the bipartite derivation
definition.

Lemma 30. Let A be a bipartite derivation. Then it holds that every clause that occurs in A is bipartite and for every derivation
step [C](, [D]) =4 |E] in A it holds that either

* [CLi(, [D]) =a [€]: and [€], = [C]; U [D]y, or

* €] = [C]1 U [D); and [C]-(, [D]+) =a [E]r-

Lemma 31. If[C1];U[Ca],(, [D1):U[D2],) = o), [E1]iU[E2]r, where z € {1, 7}, and [C1];U[Cs], € [C1];U[Caly, [D]]1U[DY)], €
[D1]; U [Ds), then either

(Gl VGl S [E1]1 U [Er, or

* [PV Dyl € [E1]1 U (&), or

* [Cll U [Cole(, D11 U [Dalr) =y, [€1]1 U [E5]r such that [E1); U [E5], S [€1]: U [E2]

Proof. We distinguish between the following two cases.

IfC1(,D1) =a &1, let Le, and Lp, be the respective literals of C; and D; that are resolved upon, i.e. L¢, € C1, Lp, € Dy,
and & = C1 \ {Le, } UD1 \ {Lp,} U L with L¢, (, Lp,) = L (L may be L). It also holds that & = C3 Ll Da. Now, if
Le, & Cy, then Ci C Ci\{Lec, } and [C]]; U[Ch], C [E1]1 U[E2), holds. Similarly, if Lp, & D}, we have D} C D1\ {Lp, } and
[D J1U[D4] C [€1]1 U[E2)r. We can now assume that L, € C) and Lp, € D Itis then easy to see that C{ (, D}) =, &1 with

&=\ {Le,YUD)\ {Lp,} UL and & C &,. We can conclude that [€]]; U [€}], C [€1]; U [E2], holds as £, = C}, U D} C
CoUDy = &s.

The case for Ca(, D) =, €2 can be proved analogously. O
Lemma 32. [f[clh U [CQ]T, [Dl]l U [DQ]T =las [51}1 U [gg]r and C* C Cy UCs, D* C Dy U Do, then either
e C* C & UE,, or
o D* g51U52, or
o C*,(D*) =4 E* such that £ C & U &

Proof. We distinguish between the following two cases.

IfCi(,D1) = &1, let L, and Lp, be the respective literals of C; and D; that are resolved upon, i.e. &, = C1 \{L¢, }UD1\
{Lp, UL with L¢,(, Lp,) =4 L (L may be L). It also holds that E2 = Co LID4. Now, if L¢, & C*, then C* C C1\{L¢, }UCs
and C* C &; U &, holds. Similarly, if Lp, & D*, we have D* C Dy \ {Lp, } UD3 and D* C & U E,. We can now assume that
L, € C*and Lp, € D*. It is then easy to see that C*(, D*) =, £* with

E=C"\{Le, }UD\{Lp,} UL
gcl\{ﬁcl} UDl\{EDI}U£UCQHD2
=& U&,.

The case for Co(, D2) = &2 and & = C; U D; can be proved analogously.]

We now show that inferences acting on different partitions of a bipartite derivation can be reordered. In what follows, for
x € {l,r}, weset T = r, whenever z = [, and T = [, whenever = = r.

Lemma 33. [f [C](, [D]) =(a), |Z] and [Z](,[£]) =15, [F), then it holds that there exists a clause F* such that [F*] C [F]
and either

* [CIGED) = s [27] and [Z7](, [D]) =(a), [F7; or

* [DIG[E]) =81 [Z7] and ([C],)[Z7] = (o), [F7]; or

* [C, [€] = g1z [Z1] and [D), [€] = (g} [Z3] and [I7], [13] = (o), [F7]-
Proof. Let L¢ € [C]; and Lp € [D], suchthat Leo(, Lp) =4 L1,

2] = [Cla \ {£Lc} U [Pl \ {£Lp} U Ly
and [Z)z = [C]z U [D]z. Furthermore, let £ € [Z]z, L¢ € [E]z such that L(, Lg) =5 Lo and
[]:]ar = [I]ar U [g]x
= [Cla \ {£Lc} U Dl \ {Lp} U{L1} U [EL
and
[Fle = [ZIz \ {L} U [€]z \ {Le} U{L:}
= ([Clz U [Pl) \ {£L} U [€]z \ {Le} U{La}.

Now we distinguish between the following cases for £ € [Z]z = [C]z U [D]z to hold.
If £ € [C]z N [D]z, then there exist clauses [Z7] and [Z;] such that

Cla(, [€]z) =181, L1z = [Cla \{L} U [€]z \ {Le} U {L2},
[If]m = [C]x U [E]x and
[Dlz(; [€]z) = (g1 [La]z = [Pl \{L} U [€]z \ {Le} U {La},
and [Z5], = [D]. U [€].. Additionally, we can infer that there exists a clause [F*] such that
211 [Z3]e) = (a1, F']e = ([Cle U [€la) \ {Lc} U ([Dle U[El) \ {Lp} U{L1}
and
[F*lz = L]z U [I3]z = [Cle \{L} U [Dlz \ {L} U [€]z \ {Le} U{L2}.
We can conclude that [F*] C [F] holds.

If £ € [C]z \ [D]z, there exists a clause [Z*] such that
[Clz(, [€lz) =15 [T7]z = [Clz \ {L} U [€]z \ {Le} U{L2}
and [Z*], = [C]z U [€],. Additionally, we can infer that there exists a clause [F*] such that
[Z%]a(, [Ple) = a1, [F'la = ([Cla U[E]e) \ {Le} U Dl \ {Lp} U {L1}
" [Pl = (21U (Pl = (€l \ (£} U [E)2\ (L6} U (£} U [P
It is easy to see that [F*] C [F] holds.

The case £ € [D]z \ [C]z is symmetric to the case considered above. O

The following example shows that the reordering of a proof can lead to the derivation of clauses that are smaller w.r.t. C.

Example 34. Let C; = AU B,Co = “Aand C3 = AU —B. Then, AUB,-A =4 Band B,~BU A =g A. But
AUB,-BUA=pAand A,-A =, |.

Definition 35. Let A be a bipartite derivation. For x € {l,r} and an inference path P = [a1]y,, ..., [0m]s,, in A and
resulting clauses we denote by [P|,, the restriction of P on inferences performed on x only.
For x € {l,r} we denote by [A], the following set of paths

[Alz = {[P]s | P € InferencePath(A) }
Definition 36. We write A &€ A’ if, and only if, Inferences([A];) C Inferences([A’];) and Inferences([A],) C
Inferences([A'],.).
Definition 37 (Partial (T, T, >)-Derivation). Let N be a set of bipartite clauses, and let A be a bipartite derivation from N
We say that A is a partial (T, Y, >)-derivation if, and only if,
* the last inference of A is C1(,C2) =), C and the clauses Cy(,Cz) have been obtained through (T, Y, -)-derivations
from N; and
e all paths in [A]; and [A], are (%, T, =)-paths.
Essentially, partial (¥, T,) derivations are (T, Y,) derivations potentially ‘broken’ in the last derivation step. We address
restructuring partial (¥, YT, =) derivations by the following lemma.

Lemma 38. Let [N] be a set of bipartite clauses and let A be a partial (%, Y, >)-derivation of a clause [F] from [N].
Then there exists a (T, Y, =)-derivation A’ of a clause [F'] such that

o [F'] C[F), and

« Ae A

x

Proof. By induction on the number of inferences in A.

Let the last inference of A be [£1](, [E2]) =g, [F]- If Aisa (T, T, ~)-derivation, there remains nothing to be shown. We
can now assume that A is not an (T, Y, >)-derivation, which implies that [is a T-inference.

Let Ajg,) and Afg,) be the (T, T, ~)-derivations of [£1] and [E>], respectively. It must hold that Depth(Ag,;) > 0 or
Depth(Ag,)) > 0 as otherwise A would be a (T, ~)-derivation. We assume w.l.0.g. that Depth(Ag,;) > 0.

Now, if the derivations exist, let [C1](;, [C2]) =(a,],, [€1] and [D1](; [D2]) =(a,),, [€2]- We obtain the following graphical

representation:

2

As (3 is an Y-inference and as every path from [A], is an (T, Y, >)-path, it follows that every inference i € [A], is an
T-inference.

If x1 = xo = y, it would follow that z1 = y, 2 > y,i.e. Alisa (%, T, >)-derivation. Hence, either 21 # y or 22 # y holds.

We can assume w.l.0.g. that 1 # y and x9 = y, which implies that (s is a T-inference and a > (. Furthermore, we can
conclude that either «; is not an Y-inference, or 7 is an Y-inference and a; % (3, i.e. B > g, as otherwise A would be a
(%, Y, >)-derivation.

We can apply Lemma 33 and we obtain that there exists a clause [F*] such that [F*] C [F] and either

() [C1](, [€2]) =g, [€11] and [E€7,1](, [Ca]) = (o, [F7]5 0r
(i) [Co](; [E2]) =g, (€7 2] and ([C1],)[ET 2] = (., [F7]5 01

(i) [C1], [E2] =(g), [E71] and [Co], [Eo] = 4], [€7 o] and [€7 1], [€7 o] =(al., [F7].

T

In the cases (i) and (ii) it is easy to see (due to z1 # y and 8 > «) that the obtained derivation A’ is (¥, Y, >)-derivation A’
of a clause [F*] from A such that [F*] C [F] and A’ € A holds.
In case (iii) we obtain the following graphical representation:

[D1] [D2] [D1] [D7]

NS NS
[Cl] [52] [o2]y [CQ] [52] [a2]zy
N N
[Bly [gil] (Bly [5{2]

[]:*] [0‘1]1'1

Let Afer], Ale;) be the derivations of [£] ;] and [€7 5] as defined above.

We can infer that every y-path in A}, Are,) and Afg, is an (T, T, -)-path as every path in [A], is a (T, T, >~)-path and
x1 # y. Hence, we can conclude that every y-path in A[gil] and A[gh] isa (%, 7T, >)-path.

Moreover, as the derivations for the clauses [C1], [C2], and [E2] are (%, Y, >)-derivations, we can infer that every g-path
in A[Sf,l] and A[Sf,z] isa (‘I, T, >)—path.

As the derivations A[gil], A &1) contain less inferences than A, we can apply the induction hypothesis. We obtain (¥, Y, >)-
derivations Ag:+), Afess) of clauses [€77], [€775] such that [£71] C [E7 1], [E13] C [€] and Ajgrs) € Aper), Agpy) €
Aleg)

It follows from Lemma 31 that either

* & [For
* [Erp] € [For
* [ENAIGER]) = an,, 7] with [F7] C [F7].

As « is either not a Y-inference, or 7 is a Y-inference and 5 > «j, which implies that v > «; for every v €
Inferences(Ajg;+),) U Inferences(Aess),), we can infer in all the cases above that there exists a (T, T, >)-derivation A’ of
a clause [F'] from N such that [F'] C [F] and A’ € A holds.

O

Next we extend the previous results by dropping the requirement that the subderivations are (¥, T, >)-derivations.
Lemma 39. Let A be a bipartite T-derivation of a clause [F] from clauses in [N| such that all the paths in [A]; and [A)], are
(%,Y, >)-paths.
Then there exists a (T, Y, =)-derivation A* of a clause [F*| from clauses in |N'| such that
o [F*] C[F), and
+ AT e A

Proof. By induction on the depth of A.

If Depth(A) < 1, nothing remains to be shown.

Otherwise, let the last inference of A be [£1](, [€2]) ==5), [F], where A} and A[¢,) are the T-derivations of [£;] and
[£2], respectively.

As all the paths in [Ag,]; and [Ag,], for i € {1,2} are (T, T, >)-paths, it follows from the induction hypothesis that there
exist (T, T, >)-derivations Ag: of clauses [£;] such that [€7] C [£;] and Aex) € A, fori € {1,2}.

It then follows from Lemma 31 that either

« & [Flor
* [E] S [Flor
* [ENGIE]) =g, [F7] with [F7] € [F].

N % H—x

oy
=%

In the first two cases or if 3 is not a Y-inference, nothing remains to be shown.

We now assume that [£7](, [£5]) ==, [F*] with [F*] C [F] and that /3 is a T-inference. Let Az be the derivation of the
clause Az

If Ag+yisa (%, T, ~)-derivation or 3 is not a Y-inference, there remains nothing to be shown. We can now assume that
Apr+yisnota (T, T,)-derivation and that 3 is a T-inference.

As every y-path in Aisa (T, T, =)-path and as Ag-] € Ajg,) for i € {1,2}, we can conclude that every y-path in Az is
a (%, 7, >)-path.

Moreover, as the derivations for the clauses [€7] and [£5] are (T, Y, ~)-derivations, we can infer that every y-path in Agx
and Ag; jisa (T, T, -)-path. We thus obtain that Az is a partial (T, T)-derivation. 1

We can thus conclude that the statement of the Lemma holds by applying Lemma 38. O

Finally, we get rid of partitioning.

Lemma 40. Letr [N] = {[C1]; U [D1]+, .-, [Cr]i U [Dyn]+} be a set of bipartite clauses and let A be a (T, Y, »)-derivation of
a clause [£] from [N].

Then there exists a (T, Y, >)-derivation A* of a clause £* from N = {C; U Dy,...,C, U Dy} such that E* C & and
Inferences(A*) C Inferences(A).

Proof. By induction on the depth d of A.

If d = 0, then A simply consists of a clause [C;]; U [D;],- in [N]. The derivation A* is now composed of the clause C; U D;.

For d > 0, let [C1]; U [C2],-(, [D1]i U [D2]r) =a [E] = [E1]i U [E2], be the last inference of A, and let A¢, Ap be the
subderivations of [C1]; U [C3], and [D1]; U [Ds],, respectively. As Ac and Ap are (T, T, >)-derivations, it follows from the
induction hypothesis that there exist (¥, T, >)-derivations A%. and A},. of clauses C* and D* from N such that C* C C; UCs,
D* C Dy U Dy, and Inferences(A}) C Inferences(Ac), Inferences(A%,) C Inferences(Ap).

Thus, we obtain from Lemma 32 that either

(1) Cc* Q 51 U 82, or
(i) D* C & U&E,y, or
(iii) C*,(D*) =, £* such that £* C & U &,.

In all three cases it is now easy to see that one can obtain the required derivation A* of a clause £* with £* C & and
Inferences(A*) C Inferences(A). O

We now use bipartite derivations and Lemma 40 to prove the following result on reordering of derivation steps.
Lemma 41. Let A¢ be a (T, Y, >)-refutation from clauses M U {C} and let Ap be a (Y, T,)-refutation from clauses N' U

{D}.
Then there exists a (T, Y, >=)-refutation A from M UN U {C L D}.

Proof. If C ¢ Leaves(Ac), then we can define A = A¢. Similarly, if D ¢ Leaves(Ap), we set A = Ap. We can now assume
that C € Leaves(A¢) and D € Leaves(A¢).

Let [M] = {[EJiU[L], | £ € M} and [N] = {[L]; U[E], | £ € N }. It is then easy to see that there exists a (T, T, >)-
derivation [Ac] of the clause [L]; U [L], from [M] U {[C]; U [L],}, and that there exists a (T, T, >)-derivation [Ap] of the
clause [L]; U [L], from [N]U{[.L]; U [D],}. In particular, all the paths in [Ap], are (¥, T, >)-paths.

Additionally, by modifying the derivation [A¢] it is easy to see that there exists a derivation [A'] of the clause [L]; U [D],
from [M] U {[C]; U [D],} such that all the paths in [A’]; are (T, T, >)-paths. Then, by extending the derivation [A’] with the
derivation [Ap], there exists a derivation A” of the clause [L]; U[L], from [M]U[N]U{[C]; U[D],} such that all the paths in
[A”]; and [A”], are (T, T, =)-paths. We can hence apply Lemma 39 and we obtain that there exists a (T, Y, >)-derivation A"*
of the clause [L]; U [L], from [M]U[N]U{[C], U [D].}.

Finally, we obtain the required (¥, T, >)-refutation A by applying Lemma 40. O

Next we focus on showing that refutations can be constructed out of closed nodes that result from type 2 expansions in a
model tree. The proof proceeds by induction on the structure of clauses in the closed node. The main technical difficulty for
establishing the result lies in the fact that (T, T, >)-derivations might have to be ‘linearised’.

Example 42. Consider the following unsatisfiable clause set {3r.(AU B, —A, -~ B)}. Its refutation can be constructed induct-
ively as follows.
For the clause set under the existential restriction, {A U B, —A, -~ B}, a contradiction can be derived as follows:

AUB -A

N

4B -B
AN
1l B

In the induction step, the ‘corresponding’ derivation from Ar.(A U B, —A, = B) becomes
HT(A U B,—A, ﬁB)

A Ir.(AUB,-A,~B,B)

B 1

which clearly has a different shape.

We address the necessity to linearise the proof steps by introducing a notion of an inference-preserving isomorphism as
follows.

Definition 43. For z,y € {T, %%, T/, 3%/} let A and A’ be - and y-derivation trees (with labelling functions L, L') from
sets of clauses N, N, respectively. Let M be a set of initial clauses and let N be a set of universal clauses.
A bijective function f: Nodes(A) — Nodes(A') is an inference-preserving isomorphism if, and only if,

* for every m € Nodes(A) it holds that
m € Leaves(A) iff f(m) € Leaves(A'),

and

o for every m,n,l € Nodes(A) it holds that the clause L(l) is obtained through a x-inference on « from the clause L(m)
(and potentially L(n)) if, and only if, the clause L'(f (1)) is obtained through a y-inference on o from the clause L'(f(m))
(and potentially L' (f(n))).

We write A = A’ if, and only if, there exists an inference-preserving isomorphism f: Nodes(A) — Nodes(A’).

Then we establish relationships between derivations from clauses contained under the universal or existential restriction and
derivations at the ‘higher level’ required for the inductive step.

Lemma 44. Let x € {T,T* T/ %/} and let A be a S-derivation A of a clause D from {Cy, . ..,Cp }.
Then there exists a x-derivation A* of a clause Vr.D from {Vr.Cy,...,¥r.Cp} such that A = A*

Proof. The proof proceeds by induction on the depth d of A.

If d = 0, it follows that D € {Cy,...,Cp,}. Obviously, it holds that Vr.D € {Vr.Cy,...,Vr.Cy,}, and the required deriva-
tion A* just consists of the clause Vr.D.

For d > 0, let C1, Cy be clauses such that C} (,C3) ¢ D, and let A¢s and Ay be the corresponding derivations of C and Cs.
We can also assume that C1 (, C}) =, D holds. It then follows from the induction hypothesis that there exists z-derivations Aa,
AZ; of clauses Vr.Cy, Vr.Cy, respectively, from {Vr.Cy,...,¥r.Cy, } such that Aer = Aa and A¢; = AZ;'

We can conclude that Vr.C{ ¢ Vr.D or Vr.Ci,Vr.Ch F& Vr.D respectively holds by the V and WV rules. We have thus
obtained the required derivation A* with Ac, = Aéé. O

Corollary 45. Let A be a (T, Y, >)-derivation A of a clause D from {Cy,...,Cp}.
Then there exists a (T, T, =)-derivation A* of the clause ¥r.D from {¥r.Cy,...,¥r.Cx,}.

Proof. By Lemma 44 there exists a T-derivation A* of the clause Vr.D from {Vr.Cy,...,Vr.Cp,} such that A = A*. It is then
easy to see that A* is a (T, T, >)-derivation. O

Lemma 46. Let v € {T, %% I/ T/} and let A be a x-derivation of a clause € from {Cy,...,Cpm,D1,..., Dy} such that
Leaves(A) N {D1,..., Dy} # 0, L & {D1,..., Dy}, and for no sub-derivation A" of A with Depth(A’) > 0 it holds that
Leaves(A") C {Cy,...,Cpn}. Additionally, let > C Nodes(A) x Nodes(A) be a total order on Nodes(A) such that if no is a
descendant of ny, then ny > ng for every n1, ny € Nodes(A).

Then there exists an x-derivation A* of a clause 3Ir.(€, D1, ..., Dy, F) from

{vr.Cy,...,Vr.Cp,3r.(Dy,...,Dp)}.

such that

{(Inference(Ny), ..., Inference(N;))}
C InferencePath(A*)
C { (Inference(Nj), ..., Inference(N;)) | 1 < j <1}.

where > N (Nodes(A) \ Leaves(A)) is represented by the chain Ny > ... > Nj.

Proof. Let >N (Nodes(A) \ Leaves(A)) be represented by the chain Ny > ... > N;.
If | = 0, nothing remains to be shown as the derivation A* then just consists of the clause 3r.(Dy, ..., D).
We can now assume that [> 1 and we prove for every 1 < ¢ <[that there exists a derivation A of the clause

Ir.(Dy,...,Dp,Clause(Ny),. .., Clause(N;), F;),
for some F;, from {Vr.Cy,...,Vr.Cp,,3r.(D1,...,D,)} such that

{(Inference(Ny), ..., Inference(N;))}
C InferencePath(A*)
C { (Inference(Nj), ..., Inference(N;) |1 < j <i}.

As Clause(V;) = £, we can then define A* = A,

For i = 1, let &(,&) = Clause(Ny) with {&£1,E2} C Leaves(A). It follows from the assumptions that
{&1,8 € {Ci,....Cp}. If & € {Ci,...,Cp} (Ge. & € {D4,...,D,}), we have Vr.&1,3r.(D1,...,Dy) =
Ir.(D1,..., Dy, Clause(Ny)) by the V3-rule. The case for &; € {C1,...,Cy,} is similar. Finally, if {€1, 2} C {Ds,..., D2},
we obtain 3r.(Dy,...,Dy) =4 Ir.(Dy, ..., Dy, Clause(N7)) by either the 31 - or Jo-rule.

For i > 1, it follows first from the induction hypothesis that there exists a derivation A}_; of the clause

3r.(Ds,...,D,, Clause(Ny),. .., Clause(N;—1), Fi—1)
from {Vr.Cy,...,Vr.Cyp,3r.(D1,...,Dy,)} such that

{(Inference(Ny), ..., Inference(N;_1))}

C InferencePath(A*)

C { (Inference(Nj), ..., Inference(N;_1) |1 < j <i—1}.
Let & (,&) =4 Clause(V;) with Ng,,Ng, € Nodes(A) such that Clause(Ng,) = &; and Clause(Ng,) = &,
i.e. N; is a descendant of Ng, (and Ng,) in A. It then follows from the assumptions that {£1,&2} C Leaves(A) U

{Clause(Ny), ..., Clause(V;_1)}. Moreover, it follows from the assumptions that {€1,&2} € {C1,...,Cm}.
If& € {Ci,...,Cnn} (. & € {Dy,..., Dy} U{Clause(Ny),. .., Clause(N;_1)}), we have

V’I‘.gl, E|’I“.(D1, “e ,D”, Clause(Nl), ey Clause(Ni_l),]:1'_1)
=4 Ir.(D1,..., Dy, Clause(Ny),. .., Clause(N;), Fi—1)

by the V3-rule. The case for & € {Cy,...,Cp} is similar.
Finally, if {£1, &} N {Cy,...,C,} = (), we obtain

Ir.(Dy, ..., Dy, Clause(Ny),. .., Clause(N;_1), Fi—1)
=, Ir.(D1,..., Dy, Clause(Ny), ..., Clause(N;), Fi—1)

by either the 3; - or J9-rule. We have thus constructed the derivation A} with the required properties. O

Corollary 47. Let A be a (T,7T,>)-derivation of a clause &€ from {C1,...,Cp,D1,...,Dp} such that Leaves(A) N
{Dl,...,Dn} 7& @andJ_ g {Dl,...7Dn}.
Then there exists a (%, Y, >)-derivation A* of a clause Ir.(€, Dy, ..., Dy, F) from

{vr.Ci,...,Vr.Cp,Ir.(D1,...,Dn)}.

Proof. Let AY, ..., AZ be all the maximal subderivations of A such that Leaves(AY) C {Cy,...,Cp,} forevery 1 <i < m,
and let Cy be the clause derived in each derivation AY for 1 <4 < p. Additionally, let A’ be the subderivation of A that consists
of all the inferences that are contained in A but not in AY for 1 < i < p. Hence, we have Leaves(A’) N {Dy,...,D,} #
0, Leaves(A') C {Dy,...,Dn} U{CY,...,C}} and for no sub-derivation A” of A" with Depth(A”) > 0 it holds that
Leaves(A”) C {CY, ... ,CZ}.

As all the inference paths in A" are (T, T, >)-paths, it is easy to see that one can construct a relation > C Nodes(A’) x
Nodes(A') such that Inference(Ny) > ... = Inference(IN,) for { N € Nodes(A’) \ Leaves(A’) | Inference(N) C T} =
{N1,..., Ny} and if ny is a descendant of ny, then ny > ng for every ni, no € Nodes(A').

Then, by applying Lemma 44 we obtain derivations AY* such that AY = A?’* for every 1 < ¢ < p. Moreover, by

K3
combining the derivations A;ﬁ* (1 < i < p) with the derivation A™* obtained from Lemma 46 applied on the derivation A’
using the relation >, we can construct the required (¥, T, >)-derivation A*. [

Corollary 48. Let A be a (T, Y, >)-refutation from {Cy,...,Cp,, D1,..., Dy} withn > 1.
Then there exists a (T, Y, =)-refutation A* from {¥r.Cy,...,¥r.Cp,Ir.(D1,...,Dy)}.

Proof. If Leaves(A) C {Cy,...,Cpn}, it follows from Lemma 45 that there exists a (T, T, >-)-derivation A’ of the clause Vr. L
from {Vr.Cy,...,Vr.Cp, }. Consequently, we can the extend the derivation A’ by applying the L rule

Vr.L,3r.(Dy,...,Dp) =, L

We have thus constructed the required (T, Y, >=)-derivation A*.

Otherwise, we have Leaves(A) N {Dy, ..., D, } # 0. It then follows from Corollary 47 that there exists a (T, T)-derivation
of the clause 3r.(L, Dy, ..., Dy, F) from {¥Vr.Cy,...,Vr.Cpp, Ir.(D1,...,Dy)}.

Finally, it suffices to observe that 3r.(L, Dy,..., D,, F) simplifies to L. O

Lemma 49. Let G = M be a model tree for N w.r.t. T and let n be a closed node in G.
Then there exists a (%, T, >)-derivation of the empty clause from clauses in n.

Proof. Let T be the closed tree with root n that is obtained from Lemma 27. The proof now proceeds by induction on the
depth d of T'.

For d = 0, it follows that n’ contains a pair A, —A for a concept name A. Hence, there exists a derivation of the empty clause
from n/, namely A, —-A =4 L.

If d > 0 and n is of type 2, let

l P
L(n)={Ly,..., L} U U {3r,. FiyuU U {Vs;.C;}

Additionally, let n’ be its closed 7-child node in T" and let T” be the subtree of T" with root n’. Then, there exists 1 < k < [such
that

Lin)y=F,U{C;j|1<j<pandr, =s;}.
It follows from the induction hypothesis that there exists a (¥, T, >)-refutation of n’. We can thus conclude from Corollary 48
that there exists a (T, T, >)-refutation of n.

Finally, in the case where d > 0 such that n is of type 1, let C = C; U Cs be the clause that is split. Then, the children of
the node n’ are nf = n \ {C} U {C1}, and n§, = n \ {C} U {C2}. It follows from the induction hypothesis that there exists a
(%, T, >)-refutation A; of nj and a (T, T, >=)-refutation Ay of n,,. We can then apply Lemma 41 and we obtain the required
(%, 7, >)-refutation A of n. O

The following lemma follows from the definition of the rules of =, in a straightforward way.

Lemma 50. Let T be an interpretation with domain A. Additionally, let C and D be two clauses and let a € AT such that
a€CtNDrandC(,D) =, E.

Then it holds that a € E*.

We are now in the position to prove Theorem 6.
Theorem 6 (T-Completeness). Let T C Nc, let = C Y x Y be a strict total order on Y and let C and D be ALC concepts.
Then it holds that = C' T D iff there exists a (T, Y, =)-derivation of the empty clause from the initial clauses Cls(C' M —D).

Proof. First we assume that = C' C D, which is equivalent to = C' =D C L. If we now assume towards a contradiction
that the model tree M for Cls(C M —D) is open, it would follow from Lemma 25 that there exists an interpretation Z with
Necciscn-p) € € L, which is equivalent to

A
TI Z - |_| (‘: = (“(C l ‘!D))I
£eCls(CN-D)
= (-C U D)%,

which contradicts our assumptions. Thus, the model tree M with root ng is closed and by Lemma 49 there hence exists a
(%,7, >)-refutation A from Cls(C' M —D).

For the inverse direction, we assume that there exists a (¥, Y, >)-derivation A of the empty clause from the set of initial
clauses Cls(C' M D). Let Z be an interpretation with domain AZ. If we assume towards a contradiction that (C 11 —D)% # 0,
then as (C'M =D)* = Necais(crn-p) €7 let a € AT such that a € £ for every € € Cls(C M —D). By induction on the

structure of A and by using Lemma 50 one can show that a € 17 = () would hold, which is obviously a contradiction. Thus,
we can infer that (C' 1 —D)% = (), which implies that TZ C (=C U D)Z. O

C Correspondence Between ¥ and T*

In this section we prove refutational completeness of T* with ordering constraints by reduction to the results of the previous
section.

Definition 51. Letry,ro € R. We write r1 < ra if, and only if, there exists ¢ # r € R such that ro = ry.r, where . denotes
concatenation. The reflexive closure of the relation < on R is denoted by <.

Definition 52. Let S C R. We say that

* r € R is a common subsequence of S if, and only if, v < s for everys € S, and

* r € R is a greatest common subsequence of S if, and only if, r is a common subsequence of S and for every common
subsequence s of S it holds that s < r.

It is easy to see that the greatest common subsequence of a set S C R always exists and it is unique. In the following it will be
denoted by gcs(S).

Lemma 53. Let S1,S2 € R and let vr1 = ges(S1), ra = ges(Sq). Then
ges(S1 USy) = ges{ry,ra}

Proof. Letr = ges(S; USy). Hence, we have r < s forevery s € Sy and r < s for every s € Sy, which implies that r < ry
and r < ra, i.e. r is a common subsequence of {ry,ra}.

Let now s be a common subsequence of {ry,ra},i.e. s < ry and s < ry. Thus, for any t € S it holds that s < t and
similarly, for any t € S; we have s < t. We can infer that s < t holds for every t € S; U Sy, which implies that s < r.

We have thus established that r is a greatest common subsequence of {r1,r2}, i.e. gcs(S1 U Sa) = ges{ry,ra}. O

Lemma 54. Let v € {T, %/} and let C,¥r.D - € where C is an initial clause and D is a universal clause. Then there exists
an inference C,D 2., E.

T

Proof. Follows from an application of the (mix) rule. O

Lemma 55. Let x € {%,%/} and let Vr.C =% € where C is a universal clause. Then, there exists an inference C =%, F such
that F is a universal clause and € = Vr.F.

Proof. 1t follows from the definition of the relation :>£f) that C :>§f) F with £ = Vr.F. We can thus conclude that C +,u F
holds by applying the (u)-rule. O

Lemma 56. Let v € {T, %/} and let Vr1.C,Vr2.D -2 € where C, D are universal clauses.
Then, for r = ges{ry,r2}, there exists an inference C, D 3. F such that F is a universal clause and € = Vr.F.

Proof. If we assume towards a contradiction that r ¢ {rq,r2}, it would hold that r < ry andr < rp. Letr; = r.s; and
ro = r.sp with s1, s2 # €. We could infer that (s1)o # (s2)o, Where (s;)o denotes s; o if s; = (84,05 ..., 8i,n) fori € {1,2}. It
is then easy to see that Vry.C,Vra.D /2 £.

Hence, we haver = rqy orr = ro. If r = rq, let ro = r.s with s € R. It follows from the definition of the relation :>£1f)
that C,Vs.D =) F and & = Vr.F. It remains to observe that by applying the (uz)- (if s = ¢€) or the (mix)-rule we obtain
C,DFo. F.

The case for r = rp can be proved similarly. O

Definition 57. For z,y € {T, %/, 3T, T/} let A and A’ be x- and y-derivation trees (with labelling functions L, L') from
sets of clauses N, N, respectively. Let M be a set of initial clauses and let N be a set of universal clauses.

A bijective function f: Nodes(A) — Nodes(A’) is an inference- & depth-preserving isomorphism if, and only if, f is an
inference-preserving isomorphism and for every n € Nodes(A) it holds that Depth(n) > Depth(f(n)).

We write A =9 A" if. and only if, there exists an inference & depth-preserving isomorphism f: Nodes(A) — Nodes(A™).

Lemma 58. Let M, M’ be sets of initial clauses and let N be a set of universal clauses. Additionally, let A be a (%, ~,Y)-
derivation of a clause C from M such that there exists n € N with Depth(D) < n for every D € Clauses(A). Finally, let A"
be a T*-derivation of a clause D" from M’ U N such that A =% A",

Then it holds that A" is a (T*, >, Y)-derivation and Depth(D") < n for every D" € Clauses(A).

Proof. By induction on the depth d of A using the properties of =¢. O

Lemma 59. Let x € {T, T/}, let N be a set of universal clauses, and let A be a x-derivation of a clause C from Univ(N).
Then there exists a x-derivation A% of a universal clause C' from N such that

e C=Vr.C’' wherer = ges{s | Vs.D € Leaves(A), D € N }; and
o A =4 AY,

Proof. By induction on the depth d of A.

If d = 0, we have Clauses(A) C Leaves(A) = {C} = {Vr.D} with D € N. Thus, by setting C’ = D and by defining the
derivation A" to simply consist of the clause C’, we obtain A = A",

In the case where d > 0, we distinguish between the following cases. If C was obtained through an application of the (i2)-
rule, let C; and C, be the premises used in the rule application and let A¢,, Ac, be the respective (sub)derivations of Cy, Co.
It follows from the induction hypothesis that there exist 2*-derivations Ag and Ag of universal clauses C; and C; from N,
respectively, such that

e C1 = Vry.C] where vy = ges{s | Vs.D € Leaves(A¢,),D € N }, and
« A, =7 AY , and

* Cy = Vry.Ch where ra = ges{s | Vs.D € Leaves(Ac,),D € N }, and
b Acz \:‘d Ag‘z

By Lemma 56, for r = ges{ry, ra} there exists an inference C1,Cs F5. C’ such that C = Vr.C’. It follows from Lemma 53 that
r = ges{s | Vs.D € Leaves(A),D € N }.

And by using the inference above to obtain the required derivation A%, it is easy to see that A = A" holds.
Finally, the case where the clause C was obtained through an application of the (i1)-rule can be handled similarly by applying
Lemma 55. =

Lemma 60. Let x € {T, T/}, let M be a set of initial clauses, and let N be a set of universal clauses. Additionally, let A be
a z-derivation of a clause C from M U Univ(N) such that Leaves(A) N M # (.
Then there exists a x*-derivation A" of the initial clause C from M UN such that A = A",

Proof. By induction on the depth d of A.

If d = 0, we have Clauses(A) C Leaves(A) = {C} C M. Thus, by defining the derivation A" to simply consist of the
clause C, we obtain A =% A,

In the case where d > 0, we distinguish between the following cases. If C was obtained through an application of the
(i2)-rule, let C; and Cy be the premises used in the rule application and let A¢,, Ac, be the respective (sub)derivations of C;
and Cs.

It follows from the assumptions that either Leaves(A¢)NM # @) or Leaves(Ap)NM # () as otherwise Leaves(A)NM = ().

Now, if Leaves(A¢) N M #) but Leaves(Ap) N M = (), we first obtain from the induction hypothesis that there exists a
x"-derivation Ag of the initial clause C; from M U N such that A¢, =d Ag, . Additionally, it follows from Lemma 59 that
there exists a x*-derivation AZ;‘; of a universal clause C} from A/ such that

* Cy =Vr.Cj where r = ges{s | Vs.D € Leaves(A¢,), D € N }; and
° Acz \:‘d Agz

Hence, we can apply Lemma 54 and we obtain an inference Cy,Cy 2. C. By combining the derivations Ag and Né; together

with the inference above, it is hence easy to see that one obtains the required derivation A" of C such that A =% A",
The case of Leaves(A¢) N M = @ but Leaves(Ap) N M # () can be handled analogously. And if Leaves(A¢) N M #)
and Leaves(Ap) N M # (), the required derivation A“ can be constructed by applying the induction hypothesis twice.
Finally, the case where C has been derived through an application of the (1) rule can be proved similarly. O

Theorem 7 now follows from Lemmata 58 and 60.

D Proofs for Establishing the Correctness of Algorithm 1

Before we can continue with establishing the correctness of the uniform interpolation algorithm, we have to prove a variant of
the subsumption lemma for the following so-called minimal subsumption relation <; on ALC-clauses (Auffray, Enjalbert, and

Hébrard 1990), which is defined below.

Definition 61. We define a relation <,C Clauses x Clauses on clauses inductively as follows:

e for every concept name A € N¢, A <; Aand ~A <; -4,

e for two literals ¥r.C, Vr.D, Vr.C <, Vr.D if, and only if, C <; D,

e for two/literals Ir.Ey, Ir.Ey, Ar.Ey < Ir.Es if, and only if, for every clause C' € E; there exists a clause C € &1 such that
C < (C,

e fortwo initial clauses or two universal clauses C, D, C <, D if, and only if, for every literal L € C there exists a literal L' €
D such that L <, L'

Minimal subsumption has the following natural properties.
Lemma 62. Let C,D be clauses. Then the following statements hold:
(i) IfC <4 L, thenC = L.
(ii) IfC <D, then = C C D.

As the following example shows, the subsumption lemma does not hold for ¥ and T“. (Also see (Auffray, Enjalbert, and
Hébrard 1990), page 16.)

Example 63. One can derive the clause 3r.(A, B) from 3r.(A),Vr.(mAUB), but from 3r.(A) and ¥r.(B) (for whichVr.(B) <

Vr.(=B U C) holds), one cannot derive any clause neither in T nor in T*. One can derive 3r.(A, B) from Ir.(A) and ¥r.(B),
however, in T7.

In the following we write C = D; L1 Dy if C = D; U Dy and D; N Dy = (.
Lemma 64 (Subsumption Lemma). Let C, D, £ be clauses such that C(, D) = &. Additionally, let C', D’ be clauses such that
C'<,Cand D <, D.

Then one of the following propositions hold
e ' <, €& or
e D' < &, or
s there exists a T/ -derivation A’ of a clause &' from {C', D'} such that

- & <6

— Inferences(A’) C {a, 3y},

- C' € Leaves(A’), and

— D’ € Leaves(A") if C,D =, £.

Proof. By induction on the depth of C(, D) =, £.
We now distinguish between the different rules that were used to obtain the last derivation step of C1(,Ca) =, .

e rule |:wehave C = C; UVr.1,D =Dy 3. (F),and £ = C; UD;.
IfC' <, Ci or D' <, D1, we immediately obtain that C’ <, £ or D’ <, & holds, respectively.
We can now assume that ¢’ = C; LUVr. L, D' = Dy U3r.(FO)Y ... (03r.(F™) such that m > 1, C; <, C1, Dy <, Dy
and (1) <s F,... ,]:' (m) <_ F. It is then easy to see that there exists a derivation A’ of the clause él (i 151 such that
Inferences(A’) = {L}, {C’, D'} C Leaves(A’) and C; LDy <, C, UD; =€&.

* rule A: can be proved similarly to L

e rule V3
we have C = Cl DVT.CQ, D = Dl |_| 3T.(D27f2), &= Cl (] Dl (] 3T.(D27f2752), and CQ,DQ =a 52.
If ¢’ <, Cy or D' <, D1, we immediately obtain that C' <, £ or D’ <, &£ holds, respectively. Otherwise, let

¢ =G uvrc .. uvrcm™
and ~ _ ~ ~ _
D' =D, U3 (DY, FO) (1. .03 (DY, F)
such that C; <, C1, D1 <. Dy, m > 1,n > 1, ééi) <s C forevery 1 < i < m, @éj) <s Dy forevery 1 < j < n, and
{ﬁék),]}(’“)} <5 {Do, F} forevery 1 <k <n.
It then follows from the induction hypothesis for every 1 < ¢ < m and for every 1 < j < n that either
- (:’éi) <g &y, 0Or

- @éj) Ss 52’ or
— there exists a T/-derivation T3 of a clause (9 from {C5”, D'} such that

* g(l’]) SS 52’

* Inferences(I‘(i’j)) C {a,3s}, and

* C() e Leaves(I'(#)),
Thus, if Déj) <, & holds for every 1 < j < m, we can immediately conclude that D’ <, & holds. Now, let (} #
(it =1{j11<j<nand DS £, &} and D? = D; LI Wigtnoit (DY, FU)). Then, if CS <, &, we can
derive the clause

X (j1,1) Cl [DH
] ElT-(Déh)’]:'(jl),éél)) |_E|7“((42)]_‘(Jz)) e 37“((Jz)]_-(jl))
uvrCs UL uvrei™

from {C’, D'} by using the (3;) inference rule and such that {C’, D'} C Leaves(A:D).
Otherwise, by Lemmata 44 and 46 there exists a T-derivation §(1:1) of the clause

= (f)(jl) j‘(jl) g(jlal) Q(jl,l))
from {Vr. Cél), Ir.(Ds I , FU)} such that Inferences(6U1D) C {a,3;} and {Vvr. C(l) Ir.(Ds Py JFUY - C
Leaves(6U1:D). Tt it thus easy to see that there exists a derivation A1) of the clause
X(,.n=C1 UD]
L EIT.(ﬁéjl),ﬁ(jl), géjl’l), g~(j1,1)) UHT.(ﬁéj2),ﬁ(j2)) UL HT.(ﬁéjl),]:-(jl))
uvrC? U, .. uvrci™

from {C’, D'} such that Inferences(AU1)) C {a, 35} and {C’, D’} C Leaves(AU:1).
By using similar arguments iteratively on the pairs of literals

(vrCSY, 3 (DY?, F@), ..., (vrCSM 3. (DLY, F),
one can show that there exists a T-derivation AUD) of the clause
X(ji,n=C1 UD}
U 3r (DY, FOO EGHD GULDY L 3 (DYY, FUD EPHD GULD)
uvrCP u. .. uvr.ci™

from {C’, X(;, 1)} such that Inferences(A 1)) C {a, 3;}. Note that for some j € {ji, ..., } it can hold that ééj’l) = C~§1)

and GU-1) = (). We can continue with the pair of literals (Vr.C$>, 3r.(DY*), (1)) and we obtain a T-derivation A(1:2) of
the clause

X(j,.2=Ci UD]
U 3r.(D§ DYy, Fl, g(jlvl) ,GURDY UL U (0 Fan &S (is1) g(Jul))
L Jr. ((]1) _7:(J1 5(]172) g(]l 2)) L Jr. (D(Jz]2)) ES ((JL) j’_’(]L))
uvrC® U uvr.eim™
from {D’, X(,,.1)} such that Inferences(AU*:?)) C {a,3;}. Applying similar arguments on the pairs of literals
(Vr.C, 3r (DY, FU)), . (vr.CS) 3r (DY,),
allows us to obtain a T-derivation AU:2) of the clause
X(jl,2):C~1 L 753
L Elr((.71)]:(gl 5(]1,1) g gl,l)) e 37"((Jz)]:jz 5(]171) g (j1,1))
U 3r.(DYY, FOV ,55]1*2>,g<31’2>) U...U3r (DY), FUD, G2 GU12)
LJ VT.CgS) U...u Vr.éém)

from {Xj, 1, Xj, 2} such that Inferences(AU1:?)) C {a,3;}. Finally, one can show analogously that there exists a T-
derivation AU1™) of the clause
X(jl,m):él L ﬁ?
L3r(DY), B, E61 D GUnDY L L3 (BYY, FOO, £6D GG
U 3 (DY, F EG0D G2y L3 (DY, U E9H GUn2)
...
U 3r (DY, F ggrm) GUrmy 1y 13, (DYY, FU EPem™) Gltmy

from {D’, X(;, 2)} such that Inferences(A ™)) C {a, 3 }. For & = X(j,) it is easy to see that £ < & holds.
* rule Jy: can be proved similarly to V3
* rule VV: can be proved similarly to V3
* rule d5: we have C = C; Ll 3T.(CQ,D2,F), E=Ciu 37‘.((}271)27]:, 52) and Cy, Dy =, &9

If C’ <, Cy, we immediately obtain that C’ < & holds. Otherwise, let

¢ =€, 0130, DY, FOY 3@, DY, Fim)
suchthatC; <, C1, Dy <; D1, m > 1,C~§i) <, Ca, D~£i) <, Ds, and {Céi),@éi),]}(i)} <5 {C3, Dy, F} forevery 1 <i < m.
It then follows from the induction hypothesis for every 1 < ¢ < m that either
- Cgi) <4 &g, 01
- @éi) <5 &, o1
— there exists a T/ -derivation I'¥) of a clause £(%) from {ééi), ﬁéi)} such that
x £ <, &,
Inferences(T'¥) C {a,3;}, and
« CS D € Leaves(T'™).
Thus, if CNS) <s &y orif @g) <s &5 holds for every 1 < 7 < m, we can immediately conclude that D’ <, &£ holds. Now, let
0#{ir,...,ut={i]1<i< m,(féi) £ Eo and ﬁéi) Zs & YandC7 =C U Uiggin,. iy Hr.(@éi),]}(i)). By applying
Lemma 46 iteratively, one can show that there exists a T-derivation A(*) of the clause
X(in=Ci
L3 (6, DY, 0, 800, G)
...
U 3 (€50, DY, @ g0 GG

from {C’} such that E:'Q(i) <, and Inferences(A(")) C {a,3}. For £ = X;,) itis easy to see that &’ <, € holds.
* rule 35: can be proved similarly to 3o
* rule V: can be proved similarly to 3;

O

The operation Supp(Y, C), which is used to remove/simplify clauses C that contain unwanted concept names from a signa-
ture T, is defined as follows. (The following definition is equivalent to the definition given in (Herzig and Mengin 2008).)

Definition 65. For a clause C (a set of clauses N') and signature Y C N¢ let Supp(T,C) (Supp(Y,N')) denote the (set of)
clause(s) or T that results from C (from N') by exhaustively applying the following rewrite rules:

e DUA—->TandDU-A— TforAeT

e Vr. T — T

s DUT — T foraclause D

s FU{T} — F for a set of clauses F

Lemma 66. Let Y C Nc be a signature and let C, D, € be clauses such that C(,D) = € and o= 1 ora & Y.
Then one of the following holds:

(a) Supp(Y,C) =T and Supp(Y,E) =T, or

(b) Supp(Y,C) = T and Supp(Y, D) <; Supp(Y, &), or

(¢) Supp(Y,D) =T and Supp(Y,E) =T, or

(d) Supp(Y,D) =T and Supp(Y,C) <5 Supp(T, &), or

(e) Supp(T,)C) # T, Supp(Y,D) # T and Supp(Y,C),Supp(Y,D) =L & with & <, Supp(Y, &) and Depth(£’) <
Depth(€).

Proof. By induction on the structure of C, D =, £.
We now distinguish between the different rules that were used to obtain the last derivation step of C1(,C2) =4 €.

e rule A:wehave C=C\{A}UA,D=D\{-A}U-A,andE =C\ {A}uUD\ {-4}.
If Supp(Y,C\{A}) = T or Supp(Y, D\ {—~A}) = T, we immediately obtain that Supp(Y,£) = T, and Supp(Y,C) =T
or Supp(Y,D) =T.
We can now assume that Supp(Y,C \ {4}) # T and Supp(Y,D \ {—-A4}) # T. As A ¢ T, we have Supp(Y,C) # T,
Supp(Y,D) # T, and

Supp(Y,C), Supp(Y, D) = aSupp(T,C \ {A}) USupp(Y,D\ {-A4})
= Supp(7Y,).

e rule L:wehave C =C\ {Ir.(F)}UIr(F), D=D\{Vr.L}uVr.L,andE =C\ {Fr.(F)}UD\ {Vr.L}.
If Supp(Y,C \ {3r.(F)}) = T or Supp(Y,D \ {Vr.L}) = T, we immediately obtain that Supp(Y,€) = T, and
Supp(Y,C) = T or Supp(Y,D) =T.
We can now assume that Supp(Y,C \ {3r.(F)}) # T and Supp(Y,D \ {Vr.L}) # T. As Supp(Y,Ir.(F)) # T and
Supp(Y,Vr.L) # T, we have Supp(Y,C) # T, Supp(Y,D) # T, and

Supp(Y,C), Supp(Y, D) = 1 Supp(Y,C\ {3r.(F)}) USupp(Y, D\ {Vr.L})
= Supp(T,).

e rule 37: we have C = C\{3r.(F2)}U3r.(F2), D = D\{Vr.Do }UVr.Dy, and £ = C\{Ir.(F2) }UD\{Vr. Do }U3r.(F, Ds).
If Supp(Y,C \ {3r.(F2)}) = T or Supp(Y,D \ {Vr.Dy}) = T, we immediately obtain that Supp(Y,£) = T, and
Supp(Y,C) = T or Supp(Y,D) =T.

We can now assume that Supp(Y,C \ {Ir.(F2)}) # T and Supp(Y, D\ {Vr.D2}) # T.
If Supp(Y, D) = T, we can infer that Supp(Y,D) = T and

Supp(Y,C) = Supp(Y,C \ {Ir.(F2)}) U 3r.(Supp(F2))
<, Supp(Y,C \ {3r.(F2)} UD\ {Vr.Ds}) U 3r.(Supp(T, Dz), Supp(F2))
= Supp(7,)

We can now assume that Supp(Y,Ds) # T. Thus, as Supp(Y,3r.(F2)) # T and Supp(Y,Vr.Ds) # T, we have
Supp(Y,C) # T, Supp(Y,D) # T, and

Supp(Y,C), Supp(T, D) =3,Supp(Y,C\ {Ir.(F2)}) USupp(Y, D\ {Vr.Ds})
U 3r.(Supp(Y, Fa), Supp(Y, Ds))
= Supp(Y,).

* rule V3:
we have C = C\{V’I‘.CQ}HV’F.Cg, D= 'D\{HT (DQ, fg)}l_lﬂ’r.(pg,]:2), £ = C\{VT.CQ}UD\{HT.(DQ, IQ)}L'HT.(DQ, Fo, 52),
and Cg, Dy = Es.
If Supp(Y,C \ {Vr.C2}) = T or Supp(Y,D \ {Ir.(D2, F2)}) = T, we immediately obtain that Supp(Y,£) = T, and
Supp(Y,C) = T or Supp(Y,D) = T.
We can now assume that Supp(Y,C \ {Vr.C2}) # T and Supp(Y, D \ {3r.(Da, F2)}) # T. It follows from the induction
hypothesis that either

(a) Supp(Y,C2) = T and Supp(Y,&) =T, or

(b) Supp(Y,C2) = T and Supp(Y, D2) <5 Supp(Y, &), or

(¢) Supp(Y,D3) = T and Supp(Y, &) =T, or

(d) Supp(Y,D3) = T and Supp(Y,Cs) <, Supp(Y, &), or

(e) Supp(Y,Cz) # T, Supp(Y,Ds) # T and Supp(Y,Cs), Supp(Y, D) =L £” with £” <, Supp(T, &).

If Supp(Y,Cs) = T, we obtain Supp(Y,C) = T and Supp(Y,&2) = T or Supp(Y, D) <, Supp(7Y, &), i.e.

Supp(Y, D) = Supp(Y, D\ {3r.(Ds, F2)}) U 3r.(Supp(Y, D2), Supp(F2))
<s Supp(Y, D\ {Ir.(D2, F2)}) U Ir.(Supp(T, D2), Supp(Y, &), Supp(F2))
<s Supp(Y,C\ {Vr.C2} UD \ {3r.(Dz, F2)}) U Ir.(Supp (Y, Dz), Supp(Y, £2), Supp(F2))
= Supp(Y, &)
Now, we assume that Supp(Y,Cs) # T.
If Supp(Y, Ds) = T, it holds that Supp(Y, &) = T or Supp(Y,Ca) <5 Supp(Y,). Hence, we can derive

Supp(Y,C), Supp(Y, D) =2 Supp(Y,C\ {Vr.Co} UD\ {Ir.(D2, F2)})
U 3r.(Supp(Y, C2), Supp(Y, £2), Supp(F2))
< Supp(Y,C\ {Vr.C2} UD\ {IFr.(D2, F2)})
U 3r.(Supp(Y, D2), Supp(T, £2), Supp(F2))
= Supp(Y, &)

Now, we assume that Supp(Y,Ds) # T. Thus, we can derive

Supp(T,C), Supp(T, D) =L Supp(T,C \ {Vr.Co} UD\ {3r.(D2, F2)})
U 3r.(Supp(T, Ds), £, Supp(F2))
<s Supp(Y,C\ {Vr.Co} UD\ {Ir.(Ds, F2)})
U 3r.(Supp(Y, Dz), Supp(T, £2), Supp(F2))
= Supp(T, &)
. rCule W we gave C =C\{Vrl} UV¥rCs, D = D\ {Vr. Do} UVr.Dy, &€ = C\ {¥rCo} UD\ {Vr.Dy} U Vr.&,, and
2, Dy =4 Eo.

If Supp(Y,C \ {Vr.C2}) = T or Supp(Y,D \ {Vr.Dy}) = T, we immediately obtain that Supp(Y,&) = T, and
Supp(Y,C) = T or Supp(Y,D) = T.

We can now assume that Supp(Y,C \ {¥r.C2}) # T and Supp(Y,D \ {Vr.Dy}) # T. It follows from the induction
hypothesis that either

(a) Supp(Y,Cs) = T and Supp(Y, &) =T, or

(b) Supp(Y,C2) = T and Supp(Y, Dz) <, Supp(T, &2), or

(c¢) Supp(Y,Dy) = T and Supp(Y, &) =T, or

(d) Supp(Y,Dz) = T and Supp(Y,C2) <, Supp(T, &), or

(€) Supp(Y,C2) # T, Supp(T, D) # T and Supp(Y, Cz), Supp(T, Dz) =4, £ with £” <, Supp(T, E2).
If Supp(Y,C2) = T, we obtain Supp(Y,C) = T and Supp(Y, &) = T or Supp(Y,D2) <; Supp(Y,&s), i.e. either
Supp(Y, &) = T or Supp(T, D) <s Supp(7T, &) holds.
Similarly, if Supp(Y,Ds) = T, we obtain Supp(Y, D) = T and Supp(T, &) = T or Supp(Y,Cs) <s Supp(T, &), ie.
either Supp(Y, &) = T or Supp(T,C) <, Supp(Y, &) holds.
We can now assume that Supp(Y,Cs) # T and Supp(Y, D) # T, i.e. we can derive

Supp(Y,C), Supp(Y, D) =L Supp(Y,C \ {Vr.Co} LD\ {Vr.-Dy})
LU vr.E”
< Supp(Y,C\ {Vr.Co} UD\ {3r.(Ds, F2)})
U Vr.Supp(Y, &)
= Supp(Y,)

Lemma 67. Let Y C Nc be a signature and let C, € be clauses such that C =1 € and o = 1 or o & Y.
Then one of the following holds:

(a) Supp(Y,C) =T and Supp(Y,E) =T, or
(b) Supp(Y,C) # T and Supp(Y,C) <, Supp(Y,E), or
(c) Supp(Y,C) # T and Supp(Y,C) =L & with &' <, Supp(Y, &) and Depth(£’) < Depth(&).

Proof. By induction on the structure of C =, £.

e rule J5: we have C = C\{HT(CQ7 D,]:)}LB’I’.(CQ, D,]:), &= C\{EIT(CQ, DQ]:)}HHT.(CQ, Doy, F, 52) and Cy, Dy =, &s.
If Supp(Y,C \ {3r.(Ce, D2, F)}) = T, we immediately obtain that Supp(Y,€) = T and Supp(Y,C) =T
We can now assume that Supp(Y,C \ {3r.(C2, D2, F)}) # T. It follows from Lemma 66 that either

(a) Supp(Y,Cs) = T and Supp(Y, &) =T, or

(b) Supp(Y,C2) = T and Supp(Y, Ds) <, Supp(Y, &), or

(¢) Supp(Y,D3) = T and Supp(Y, &) =T, or

(d) Supp(Y,Dz) = T and Supp(Y,C2) <, Supp(T, &), or

(e) Supp(Y,Cs) # T, Supp(Y,D3) # T and Supp(Y, Cs), Supp(Y, Ds) =1 £ with £” <, Supp(T, &).
If Supp(Y,Cy) = T, we obtain Supp(Y,C) = T and Supp(Y, &) = T or Supp(Y, D3) <, Supp(Y, &), ie

Supp(Y,C) = Supp(Y,C\ {3r.(C2, D2, F2)}) U 3r.(Supp(Y, Ds), Supp(F2))
<s Supp(Y,C \ {3r.(C2, D2, F2)}) U Ir.(Supp(T, D2), Supp(Y, £2), Supp(F2))
= Supp(T, €)

The case for Supp(Y,D2) = T can be proved analogously. In the following we therefore assume that Supp(Y,Cs) # T
and Supp(Y,Ds) # T. Thus, we can derive

Supp(T,€) =L Supp(Y,C\ {3r.(C2, D2, F2)})
U 3r.(Supp(Y, Cz2), Supp(Y, Dy), £”, Supp(F2))
Ss SU»pp(T7C \ {Hr'(CQa DQ;]:2)})
U 3r.(Supp(Y, Cz2), Supp(Y, D2), Supp(Y, €2), Supp(F2))
= Supp(Y, €)
* rule 3;: we have C = C \ {3r.(C2, F)} U Ir.(Ca, F), € = C\ {3r.(Co, F)} U Ir.(Co, F, E) and Cy = Ea.
If Supp(Y,C \ {Ir.(Ce, F)}) = T, we immediately obtain that Supp(Y, &) = T and Supp(Y,C) =T
We can now assume that Supp(Y,C \ {Eir (Cg7 F)}) # T.1It follows from the induction hypothesis that either
(a) Supp(Y,Cs) = T and Supp(Y, &) =
(b) Supp(Y,Cz) # T and Supp(Y,Ca) < upp(T &), 0
(c) Supp(Y,Cs) # T and Supp(Y,C2) =7 £ with £ <, Supp(T &;) and Depth(&L) < Depth(&7).
If Supp(Y,Cy) = T, we obtain Supp(7Y, 6’2) T,ie.
C

) = Supp(Y,C\ {Ir.(Ca, F2)}) U Ir.(Supp(T, F2))
= Supp(7,€)
We now assume that Supp(Y,C2) # T, i.e. either Supp(Y,C2) <. Supp(Y,&:) or Supp(Y,Cs) =L &" with £ <,
Supp(Y, &) and Depth(€L) < Depth(&z) holds.
If Supp(Y, Ca) <, Supp(7Y, &), we can infer that
Supp(Y,C) = Supp(Y,C \ {Ir.(Ca, F2)}) U Ir.(Supp(Y,Cs), Supp(Y, F2))
<s Supp(Y,C\ {Fr.(Cz, F2)}) U 3r.(Supp(T, C2), Supp (Y, F2), Supp(T, £2))
= Supp(T,€)

If Supp(Y,Cq) =4 " with £” <, Supp(T, &) and Depth(&}) < Depth(&s), we can derive

Supp(Y,C) =L Supp(Y,C \ {Ir.(Ca, Fo)})
U 3r.(Supp(Y, Cs), E”, Supp(F2))
<s Supp(Y,C \ {Ir.(C2, F2)})
LI 3r.(Supp(Y, Ca), Supp(Y, £2), Supp(F2))
= Supp(T,E)
e rule Vy: we have C = C\ {Vr.Co} UVr.Ca, £ =C\ {Vr.Co} UVr.E and Cy =4 &s.
If Supp(Y,C \ {Vr.Co}) = T, we immediately obtain that Supp(Y,E) = T and Supp(Y,C) =
We can now assume that Supp(Y,C \ {Vr.C2}) # T. It follows from the induction hypothesis that either
(a) Supp(Y,C2) = T and Supp(Y,&) =T, or
(b) Supp(Y,C2) # T and Supp(Y,Cs) < Supp(7Y, &), or
() Supp(Y,Cy) # T and Supp(T,Cs) =7, £” with £” <, Supp(T, &) and Depth(&}) < Depth(&s).

Supp(7,

If Supp(Y,C2) = T, we obtain Supp(Y,C) = T and Supp(Y, &) = T.

We now assume that Supp(Y,Cz) # T, i.e. either Supp(Y,Cs) <y Supp(Y, &) or Supp(Y,Cs) =L &£ with £ <,
Supp(7T, &) and Depth(£S) < Depth(&2) holds.

If Supp(Y, Ca) <, Supp(T, &), we can infer that

Supp(Y,C) = Supp(Y,C \ {Vr.Ca}) UVr.Supp(T,Cs)
<s Supp(T,C \ {Vr.Ca}) U Vr.Supp(Y, &)
= Supp(Y, €)

If Supp(Y,Ca) =% £ with £ <, Supp(T, &) and Depth(&}) < Depth(&,), we can derive

Supp(T,C) =L Supp(T,C \ {Vr.Ca})
uvr.g”
<s Supp(Y,C \ {vr.Ca})
U Vr.Supp(T, &)
= Supp(T,E)

O

Lemma 68. Let C be a clause such that sig(C) N'Y # 0 and Supp(Y,C) = T. Additionally, let D, E be clauses such that
C(,D)=nEwitha € N\ TU{L}.

Thensig(E)NT # 0.
Lemma 69. Let T C Nc be a signature, let M be a set of initial clauses and let A be a T-derivation of a clause £ from M
such that Inferences(A) N Y = (.

Then either Supp (Y, E) = T or there exists a T -derivation A' of a clause E' with &' <, Supp(Y, £) and Inferences(A’) C
Inferences(A) U {3y} from Supp(Y, M).

Proof. By induction on the depth d of A.

If d = 0, we can define the derivation A’ to just consist of the clause £, which then has the required properties.

Otherwise, d > 0 and we distinguish between the different inference rules that were used to derive the clause £.

If the rule (i2) was used to derive the clause &, let C, D be initial clauses such that C,D =, £, a € Nc \ TU {1}
and let A, Ap be the corresponding sub-derivations (of A) of the clauses C and D, respectively. It follows from the induction
hypothesis that for x € {C, D} either Supp(Y,) = T or there exists a T/-derivation A, of a clause 2’ with 2’ <, Supp(Y, z)
and Inferences(A,/) C Inferences(A;) U {3y} from Supp(Y, M). We obtain from Lemma 66 that either

(a) Supp(Y,C) = T and Supp(Y,&) =T, or

(b) Supp(Y,C) = T and Supp(Y, D) <, Supp(Y, &), or

(c¢) Supp(Y,D) =T and Supp(Y,£E) =T, or

(d) Supp(Y,D) = T and Supp(Y,C) < Supp(Y, &), or

(e) Supp(Y,C) # T, Supp(Y,D) # T and Supp(Y,C), Supp(Y,D) =7 £” with £ <, Supp(Y,E) and Depth(&’) <
Depth(€).

Hence, nothing remains to be shown in the cases (a) and (c). If (b) or (d) holds, we can define the derivation A’ to consist of
the derivation Aps or A/, respectively.

We can now assume that (e) holds. As ¢’ <, Supp(T,C) and D’ <, Supp(Y, D) holds, we obtain from Lemma 64 that
e ' <, &, or
* D' <, & or
* there exists a T/ -derivation A" of a clause £ from {C’, D’} such that
—gm<, g
- Inferences(A’) C {a, 3¢},
- C', D' € Leaves(A').
In the first two cases we can define the derivation A’ to consist of the derivation A¢s or Apr, respectively. If the third case

above holds, we extend the derivations A/ and Ap to become a derivation of the clause £"”.
Finally, the case where the rule (i1) was used to derive the clause £ can be proved analogously using Lemma 67. O

Theorem 70. Let T be an ALC TBox, let Y C N¢ be a signature, let = C Y x Y be a strict total order on Y and let m € N.
Then it holds that:

(i) T = Fem(T)
(ii) For all ALC-concepts C, D such that sig(C, D) C X and such that there exists a (T%, Y, >)-refutation A" from the
universal clauses Cls(T) and the initial clauses Cls(C M —D) in which every clause is of depth at most m, it holds that

fE,m,(T) ': C c D.
Proof. (7) Easily follows from the properties of inference rules.
(1) Let T =sig(T) \ &,
S =Reszu (4, 3.m (- Reszu (a,3,m(N)),
where > is given by Ay > ... = A,, and let Fx,,,(7) = Supp(Y,S). Additionally, let C, D be ALC-concepts such that
sig({C,D}) N YT = () and such that there exists a (T*, T)-refutation A“ from the universal clauses Cls(7) and the initial
clauses Cls(C M —D) in which every clause is of depth at most m.

Let A/ C Clauses(A*) be all the clauses contained in the derivation A* which have been obtained through Y-inferences
only. As sig({C, D}) C %, we can infer that A/ only contains universal clauses, i.e. N’ C S. It is then easy to see that there
exists a T-refutation A from the initial clauses Cls(C' M —=D) U {Vr.C |r € R and C € R } such that Inference(A) N T = {.
Then, as Supp(Y, L) = L, it follows from Lemma 69 that there exists a T/-refutation A/ from

Supp(Y, Cls(C' M =D)) U Supp(Y,{vr.C |[r € RandC € R})
= Cls(C M —-D)U{Vr.Supp(Y,C) |[re RandC € R}
=Cls(CnN-D)U{vVr.L|reRandC € Fsm, }

As T is sound and by the fact that Fx,, = T C D forevery D € {Vr.C | r € RandC € Fx ,, } we can conclude that
Fsm E |—|5e01s(0mﬁp) EC 1,ie Fsm = CM-D C L, which implies that Fx, ,, = C C D. O

E General ALC-TBoxes

We establish a bound on the length of the role sequence in the definition of an internalisation of a TBox based on the properties
of model trees.

The depth of a model tree M = (V, E, L) is the maximal number of nodes obtained by an application of Operation 2 in any
path in the tree M.

Lemma 71. Let T be an ALC-TBox and let E be an ALC-concept with Depth(E) = n. Then it holds that

TETCE < E [| wCCE
(rvc)GPT,n

where

Prn={Vr.L|CeCls(T),r € R,sig(r) C sig(T) Usig(E),
II‘| <n+ 2|sub(Cls(T))\+1 }

Proof. “<=" follows immediately from the fact 7 |= T C [], ¢)ep, . Vr.C.
For the “=" direction, we show that (¢) for any model tree M = (V, E, L) for Cls(=E) w.r.t. T of depth m it holds that
m < n 4 21(CIS(T)I+1 “and (i7) there exists a model tree M’ = (V/, E’, L') for T’ = () and

s([] vren-E)

(r,C)EPT n

such that there exists a bijective tree homomorphism f: M — M’ with L(z) = L'(f(z)) for every x € V.
Then, by the properties of homomorphism, the root node of M” is closed and 5o (['] . ¢yep,-, Vr-C M —E) is unsatisfiable

and thus =[], ¢)ep,, Vr-C E E.

To prove (7) it suffices to notice that the label of any node in M to which there is a path in M containing n nodes obtained by
an application of Operation 2, does not contain any clauses originating from Cls(E). From that moment, every node obtained
by an application of Operation 2 only contains clauses contained in sub(Cls(7")). As there are at most 2/5“>(C1s(T))I of different
sets of such subconcepts, in every path in M there can be at most n 4 2/sUP(CI(T)I+1 podes obtained by an application of
Operation 2.

(i1) is proved by induction on the depth m < n + 2/540(CIS(T)I+1 For m = 0 the model tree M’ coincides with the model tree
M. For m > 0 the induction step is proved by induction on the construction of M.
O

Proof of Theorem 11. 1t follows from Theorem 70 that 7 = Fx ,, holds.
Now, let C' and D be ALC-concepts such that sig(C) Usig(D) C X, Depth({C,D}) < nand 7T E C C D,ie. T =
T € [eecis(-cup) €- By Lemma 71 we have that = [], ¢)cp, Vr.C © —~C U D, and thus, by Theorem 6 there exists a

(%, T, >)-derivation A of the empty clause from { Vr.C | (r,C) € Pr,, } UCls(C 1 —D) as

Cls [1 wc|={wc|EC) ePr,}
(r,C)EPT n
Note that for every clause C € Clauses(A) it holds that Depth(C) < m. Consequently, by Theorem 7 there exists a (T%, T, >-)-

refutation A" from the universal clauses Cls(7) and the initial clauses Cls(C' M —D) such that Depth(C) < m for every
clause C € Clauses(A"). We can conclude that F; ,,, = C' T D holds by applying Theorem 70. O

F Acyclic ALC-Terminologies

Definition 72. Given an ALC-terminology T, we define a relation =7 over sig(T) N N¢ as follows: for A C € T, set
A > B for every B € sig(C) N Nc.

An ALC-terminology T is said to be acyclic if, and only if; the relation >7+- is irreflexive, where >;C denotes the transitive
closure of the relation .

Definition 73. Let T be an acyclic ALC-terminology. For A € N¢ we define the definitorial depth of A in T as follows:
DefinitorialDepth-(A) = max{n | (Ao,...,An) € Nc"suchthatA; =7 A, Vi © 0 < ¢ < n—1}
Definition 74 (Unfolding of a concept w.r.t. 7). Let T be an acyclic ALC-terminology, and let C be an ALC-concept. Ad-
ditionally, let T = {Ay > C1,..., A, > C)} such that DefinitorialDepth(A;) > DefinitorialDepth-(A;,1) for every

1 <% < n. Then we define:
CIT] = (.. (ClAr 5 C}J) ..)[An 5 CL)
Lemma 75. Let o = {A — H} be a substitution, let T be an interpretation and let s € AL.
Then it holds for every ALC-concept C' that

se([Cla)f = se(=([vr.G) U)t
Vr.GEPasHY,C
where

Piasuye = {vr((-A U H) N (-H U A)) | r € TRisarole-pathtoan occurrence of Ain C'}

Proof. By induction on the structure of C'.

If C = A’ € Nc, the statement is obvious.

If C = 3r.D, we have s € ([3r.D],)T = (Ir.[D]a)?, i.e. there exists t € AT with (s,t) € T and t € ([D]o)%. If we
assume that s € (l_lvr-GEP{AHH},C vr.G)t = rs.GEP A i) b Vrs.G)Z, we can infer that t € (HVSAGE’P(AHH},D vs.G)T
and hence, t € D? by applying the induction hypothesis. We can conclude that s € CZ holds.

The case for C' = Vr.D is analogous to the previous case.

O

Lemma 76. Ler T = {A; = C4,..., A, = Cy,} be an acyclic ALC-terminology such that A; =7 A;11 for1 < i < m
and let C be an ALC-concept. Additionally, let for a substitution o« = {A — H} and for an ALC-concept D, F,|D] be the
following concept

FolDl==([] W¥r.G)uD
Vr.GEPqa, D
Finally, let T be an interpretation and let s € AT, Then it holds that
se (€l = se(Famonl - Fla, iocn o Fan-c, [Cl)
Proof. By induction on m using Lemma 75. O

T

Lemma 77. Let T = {A; = C4,..., A, = Cp} be an acyclic ALC-terminology and let C be an ALC-concept with
Depth(C) = n. Then it holds that

FTCClr < E [] wGcce
Vr.GEPn, T
where
PorT={Vr((FAUF)N(-FUA)|A=FeT,reR,
|r| + Depth(F) < n + ExpansionDepth(7) }

Proof. “=" Assume = T LC [C]y. Let T be an interpretation with domain A% and let s € AZ such that s €
(Myr.cep, , Yr.G). It follows from the assumptions that s € ([C]7)*. Furthermore, for

F{Al'—>01}[' .. F{Am—l'_}cmfl}[F{Am'_}cm}[c}]] =-H; U (.. (—\Hm L C)),

it is easy to see that
= |_| Ve.GC HiN...MNH,py,.
Vr.GEPy, 1T

Hence, we can conclude that s € C7 by applying Lemma 76.
“<” Assume =[], o ep, » vr.G C C and let 7 be an interpretation. Now, let T’ be an interpretation such that

o« AT = AZ
o AT = AT forevery A € Nc \ {41,..., A},
« T =T for every r € Ng, and

« AT =7 forevery 1 <i <n.

Additionally, let s € AT = AZ'. Then, by definition of Z’ it is easy to see that Z’ is a model of 7 and that s €
(MNye.cep, TVI‘.G)I, holds, and thus, s € CT'. Moreover, as Z' is a model of T, we have CT' = ([C]7)%'. It remains to

observe that ([C]7)T = ([C]7)% as sig([C]7) N {4y, ..., A,} = 0, and we can conclude that s € ([C]7)%. O
Lemma 78. Let T be an acyclic ALC-terminology and let C' be an ALC-concept with Depth(C) = n. Then it holds that

TETCC < E []| wccCce
VT-CEPT,H

where
Prn={Vr.C|C e Cls(T),r € R,Depth(Vr.C) < n + ExpansionDepth(7) }

Proof LetT ={A=C|A=CeT}U{A=CnNA|ACC € T}, where A are fresh concept names. Then the
following equivalences hold:

TETCC <+« TETLCC (see (Baader et al. 2007))

= E vr.GCC (Lemma 77)
vr.GEP,

= kE ['] Vr.GC C
Vr.GeP, cis7)

= £ |_| vr.G CC
Vr.GEPy cis(T)

(Note that the last equivalence follows from similar arguments as the first equivalence.) O

Proof of Corollary 12. 1t follows from Theorem 70 that 7 |= Fs; ,,, holds.
Now, let C, D be ALC-concepts such that sig(C') Usig(D) C %, Depth(C,D) < n,and T |= C C D. One can show
analogously to the proof of Corollary 12 that Fx, ,,,(7T) = C' C D holds. O

G Correctness of the Implementation

In order to demonstrate the correctness of our implementation, we extend Lemma 64, which established the subsumption lemma
for T/, to TS . Notice that Algorithm 1 only operates with universal clauses.
First we extend the minimal subsumption relation to universal clauses as follow: for two universal clauses C, D we define

C<yD <& dreRsuchthatvr.C <, D.

Note that the relation <Y is transitive.

Lemma 79. Let C, D, E be universal clauses such that C,D +%, , &. Additionally, let C', D’ be universal clauses such that
C'<¥Cand D' <* D.
Then one of the following propositions hold

o 0/ <Y E, or

e D' <¥E or

o there exists a T/ -derivation A’ of a clause E' from {C', D'} such that
-&<ye
- Inferences(A’) C {«, 3¢}, and
- C', D' € Leaves(A').

Proof. If the rule (mix) was used to derive the clause &, let C, Vr.D :>£ E. Moreover, let e/, rps € R such that Vre .C' <, C
and Vrp, . D’ <, Vr.D. It then follows from Lemma 64 that either

o Vre.C' <, &, or
e Vrp. D' <, €, or
* there exists a T/ -derivation A’ of a clause £” from {Vrc:/.C’, Vrp,. D'} such that
- &M <€,
— Inferences(A’) C {a,3;}, and
- Vre .C') Vrp D' € Leaves(A').
In the first two cases nothing remains to be shown as C' <* C or D’ <¥ D holds, respectively. In the remaining case, it follows
from Lemma 59 that there exists a %/ -derivation A’ of a universal clause £ from N\ such that
o & =Vr.&" where r = ges{re/, rp }; and
* Inferences(A™) C {«, 3¢}, and
* C', D’ € Leaves(A™).

By definition of the relation <%, we can conclude that £ <% £ holds.
Finally, the cases where the rules (1) and (us) were used to derive the clause £ can be proved analogously. O

