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Abstract. We present a new approach to reasoning in propositional
linear-time temporal logic (PLTL). The method is based on the simpli-
fied temporal resolution calculus. We prove that the search for premises
to apply the rules of simplified temporal resolution can be re-formulated
as a search for minimal unsatisfiable subsets (MUS) in a set of classi-
cal propositional clauses. This reformulation reduces a large proportion
of PLTL reasoning to classical propositional logic facilitating the use of
modern tools. We describe an implementation of the method using the
CAMUS system for MUS computation and present an in-depth com-
parison of the performance of the new solver against a clausal temporal
resolution prover.

1 Introduction

Propositional Linear-time Temporal Logic (PLTL) is an extension of classical
propositional logic with operators that deal with time. PLTL, and its extensions,
have been used in various areas of computer science, for example, for the specifi-
cation of distributed and concurrent systems and verification of their properties
through temporal reasoning [20], for synthesis of programs from temporal spec-
ifications [23], in temporal databases [27] and for knowledge representation and
reasoning [15]. PLTL is notable for its widespread use as a specification language
in software and hardware verification via model checking [6].

In recent years, we witness a renewed interest in PLTL theorem proving.
Among other reasons, it can be explained by the fact that PLTL specifications,
used in verification of software and hardware systems, often go far beyond simple
safety and liveness conditions. In fact, temporal specifications became so com-
plicated that a need arises for an automated check if they are (un)satisfiable.
Indeed, it does not make sense to check whether a PLTL formula is true in a
model if the formula is unsatisfiable or valid [12, 25, 24].

Satisfiability of PLTL formulae can be established with a number of tech-
niques including automata-based approaches [28], tableau methods [30] and
clausal temporal resolution [11]. Clausal temporal resolution has been success-
fully implemented [18,17] and shown to perform well in practice [17, 25].

Clausal temporal resolution is a machine-oriented calculus that operates on
temporal formulae in a clausal form called SNF and uses a small number of
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resolution rules. In a nutshell, clausal temporal resolution propagates conflicts
‘backward in time’ until a contradiction is derived in the initial state [11]. For
example, consider a conjunction of the following three temporal clauses

lLla=0O@xVy) 2:b=0-z 3:c= Oy,

where O denotes ‘at the next moment of time’. Similar to classical resolution,
clausal temporal resolution derives a new clause 4: a Ab=- Oy [from 1 and 2].
Then the derived clause 4 can be combined with clause 3 to derive 5: a AbAc =
Ofalse [from 4 and 3]. This latter clause can be rewritten as 6: —a V —b V
—¢ [from 5]. Indeed, if it is not the case that at least one of a, b or ¢ is false, we
inevitably get a contradiction at the next moment of time.

Simplified temporal resolution introduced in [7] derives clause 6 in one go
by noticing that the (pure classical, that is, containing no temporal operators)
conjunction of the right-hand sides of the given clauses, (z V y) A = A —y is
unsatisfiable. Thus, an application of the temporal resolution rule can be char-
acterised in an abstract way as a multi-premise rule with a purely classical side
condition.

The biggest challenge in implementing the simplified calculus is that the
abstract characterisation of the inference rules gives no hint on which temporal
clauses need to be combined. A straightforward implementation of simplified
temporal resolution enumerates all combinations of temporal clauses in order to
find those satisfying the classical side conditions. The resulting procedure is best-
case exponential. In fact, simplified temporal resolution was never intended to be
implemented. The calculus has primarily been introduced to provide a cleaner
separation between temporal and classical reasoning, to simplify the proof of
completeness and to explore variations of the clausal normal form [7].

In this paper we present a new approach to PLTL reasoning based on sim-
plified temporal resolution, which tackles the challenge of determining which
clauses need to be combined by reducing it to the propositional Minimal Un-
satisfiable Subset (MUS) problem. A set of propositional clauses is an MUS if
it is both usatisfiable and any proper subset is satisfiable. We prove that when
searching for temporal clauses to combine for simplified temporal reasoning, it
suffices to consider those whose right-hand side (together with some universal
clauses) forms an MUS. This reduces a large proportion of PLTL reasoning to
classical propositional logic. We report on a rigorous experimental evaluation of
our prototype implementation of the calculus, which shows that this simple and
elegant idea works well in practice.

2 Preliminaries

The set of PLTL formulae is the smallest set containing the set of (atomic)
propositions Prop and such that if ¢ and 1 are in PLTL formulae, then so are
true, —¢, ¢ V1, O¢ (‘¢ is true in the next moment’), and ¢ U ¢ (‘¢ is true
until ¢ becomes true’). As usual, we introduce other Boolean and temporal
operators (O ‘always in the future’, < ‘sometime in the future’ and W ‘unless’)
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as abbreviations: false = —true, A = ~(mpV ), ¢ = P = "pVY, ¢ < ) =
(6= ) A (1) = 6), 06 = true U ¢, Og = ~O—¢ and ¢ W ¢ = (¢ U ) V (Tg).

A PLTL formula that does not contain any temporal operators is called a
(classical) propositional formula. A literal is a proposition or a negation of a
proposition. A clause is disjunction of literals. A propositional CNF formula is
a conjunction of clauses. We do not make a distinction between a propositional
CNF formula ¢ and the set of clauses S such that ¢ = AncgC.

A model for a PLTL formula ¢ can be characterised as a sequence of states
of the form o = s¢, s1, S2,..., where each state s; is a set of propositions that
are satisfied at the i*® moment in time. We call every such sequence of states an
interpretation. We define the relation (o,i) = ¢ (at time instance 4, interpreta-
tion o satisfies PLTL formula ¢) by induction on the structure of the formula as
follows:

(0,i) Ep iff pes; [for p € Prop and o = sg, s1, .. .|

(0,i) E O it (o,i4+1) =9

(o,i) EoUy iff iff 3keN. k>iand (0,k) = and
VjeN,if i <j<kthen (0,5) E¢

We say that a formula ¢ is satisfiable if, and only if, there exists an interpretation
o such that (0,0) = ¢. We also say that o is a model of ¢ in this case. A formula
¢ is walid if, and only if; it is satisfied in every possible interpretation, i.e. for
each o, (0,0) = ¢. A formula ¢ is unsatisfiable if, and only if, it is not satisfiable.

Simplified temporal resolution introduced in [7] operates on temporal problems
in divided separated normal form (DSNF). A DSNF problem is a quadruple
(Z,U,S,E), where

— T (the initial part) and U (the universal part) are sets of propositional
clauses;
— S (the step part) is a set of step clauses of the form

P = 0Q,

where P is a conjunction of literals and @ is a disjunction of literals;
— and & (the eventuality part) is a set of eventualities of the form &l where [
is a literal.

The intended meaning of a DSNF problem is given by
IANOUANDOSADE.

When we talk about particular properties of temporal problems (e.g., satisfi-
ability, validity, logical consequences etc) we mean properties of the associated
formula. (As above, we do not make a distinction between a finite set of formulae
and a conjunction of formulae in this set.)

Arbitrary PLTL-formulae can be transformed into satisfiability equivalent
DSNF problems using a renaming technique replacing non-atomic subformulae
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with new propositions and replacing all occurrences of the U (‘until’), O (‘al-
ways’) and W (‘unless’) operators with their fixpoint definitions. The size of the
resulting temporal problem in DSNF is at most linear in the size of the given
formula [11,7, 8]. We illustrate DSNF' transformation with an example.

Example 1. Consider temporal formula ¢ = COaAOO—a. First, we satisfiability
equivalently rewrite it as 21 A O(z1 = ¢0a) AO(z1 = OO-a), where z; a fresh
proposition. Then we rename the occurrences of the always operator and then
‘unwind’ the always operator using its fixpoint definition to give

TN\ D(.’L‘l = <>3?2) A\ D(xl = <>$3)/\
O(ze = Ox2) AD(z2 = a)A
O(x3 = Ox3) A O(x3 = —a),

where x5 and x3 are fresh propositions. Then we replace conditional eventualities
O(z1 = Oxg) and O(z1 = Oxz) with unconditional ones. Formula O(z; = Oxa)
is satisfiability equivalent to O(z; = (z2Vwi)) AO(wy = O(wy Vag)) AOC—wy,
where w; is a fresh proposition, which, intuitively, is true ‘while we are waiting
for zo to become true’; the other eventuality is treated similarly. All in all, ¢ is
satisfiability equivalent to the following temporal DSNF problem.

ul: x5 Va,

u2: ~x3 V —a,

u3: —x1 VIV w1,
ud: -z Vs Vws

Z={ilz}; U=

sl:xo = Oxo,
) s2:z3 = Ous, e ] )
S= $3:w; = O(wi1 V 22), ; € = {el: O—wy, e2: O—wo}.
sd:wy = O(wa V x3)
The added labels i1, ul,...have no special meaning and are not part of DSNF;
we use them for reference when we return to this example. a
Simplified temporal resolution consists of an (implicit) merging operation

P = 0Qq,...,P, = 0Q,

AN Pi=0NAQ;
j=1 =1

)

and resolution and termination rules defined below. To simplify the presentation,
we denote the result of merging of step clauses as A = OB (or A; = OB; if a
rule operates several merged step clauses). Thus, in what follows A, B, A; and B;
are conjunctions of propositional literals. As U contains no temporal operators,
all side conditions in the rules are purely propositional.

— Step resolution rule:
A= OB

-A
where U U {B} is unsatisfiable.
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function SREs(U, S)
New =10
for each mus € ALLMus ({B | A= OB € S} UlU) do
A= /\B'Emus, A=0OBes A
New = New U {—A}
end for
return New

end function

Fig. 1: Step resolution

— Fventuality resolution rule:

A= 0By, ..., A, =0B, Ol
(A ~Ai)

i=1

)

where U U {B;,1} and U U {B;, /\ -A;}, for all 4, are unsatisfiable.

— Termination rule: false is derlved if UUZ, or UU{l} are unsatisfiable, where
[ is an eventuality literal.

A derivation is a sequence of universal parts, U = Uy C Uy C Uy C ...,
extended little by little by the conclusions of the inference rules. Notice that, as
the left-hand sides of (merged) step clauses are conjunctions of literals, the step
resolution rule generates clauses and the eventuality resolution rule generates
sets of clauses. The Z, S and £ parts of the temporal problem are not changed
during a derivation. A derivation terminates if, and only if, either false is derived,
in which case we say that the derivation successfully terminates, or if no new
formulae can be derived by further inference steps. A derivation U = Uy C Uy C
Uy C -+ C U, is called fair if for any ¢ > 0 and formula ¢ derivable from
(U;,Z,S,E) by the rules above, there exists j > i such that ¢ € U;.

Theorem 1 ([7]). If a DSNF problem (Z,U,S,E) is unsatisfiable then any fair
derivation by temporal resolution successfully terminates.

3 Temporal Reasoning with Reductions to MUS

As the side conditions of the inference rules are purely propositional problems,
they can be tested with an external SAT Solver. All that remains is to find the
appropriate merged step clause, or clauses, which satisfy the side conditions. This
straightforward approach has been implemented in [29]; however, in practice,
the necessity to try all possibilities to merge clauses led to inability to handle
problems with a sizeable step part. In this paper we investigate a possibility to
delegate the search for step clauses to merge to an MUS solver.

For an unsatisfiable set of propositional clauses S, its subset S’ C S is called
a minimal unsatisfiable subset (MUS) if S’ is unsatisfiable and every proper
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function ERES(U, S, Ol)
H =SRes(UU{i}, S)
repeat
H =H; H=SRes@UU{(lv-A)|-A €HY}S)
if H = then
return ()
end if
until (A cpqg A= A en ~A) is valid
return H
end function

Fig. 2: Eventuality resolution

subset of S’ is satisfiable. The number of MUSes for a set of clauses S can
be exponential in the size of S. Propositional minimal unsatisfiability has been
extensively studied (often under different names) in the literature, and a number
of empirically efficient implementations of algorithms enumerating all MUSes for
a given set of propositional clauses is available (see the survey [21] and references
within).

The step resolution procedure is given in Figure 1. The ALLMUS procedure
called returns all MUSes for a set of propositional clauses. By definition, every
-A € SRES(S,U) is obtained from (Z,U,S,E) by an application of the step
resolution rule; conversely we have the following.

Lemma 1. For any DNSF problem P = (Z,U,S,E) such that U is satisfiable,
if 2 A can be obtained by an application of the step resolution rule from P, then
there exists A" € SRes(S,U) such that (- A" = —A) is a valid formula.

Proof. Let B = \;c; B;. As U is satisfiable and B AU is not, there exists J C I
such that for some MUS mus we have B; € mus, for every j € J, so _'(/\jeJ Aj)
will be returned by SREs(U,S). Clearly, (=(/\;c; 4;) = —A) is valid. O

It has been noticed already in [9] that the search for premises of the even-
tuality resolution rule can be performed with the help of step resolution. Our
algorithm for eventuality resolution given in Figure 2 is based on the BFS algo-
rithm as described in [8]. Notice that every element of the set H in the ERES(U,
S, ©l) procedure is of the form —.A, where A is the left-hand side of some merged
step clause A = OB.

We demonstrate the working of the ERES procedure by proving its cor-
rectness; the proof of completeness of simplified temporal resolution with the
eventuality rule applications restricted to the outputs of ERES can be obtained
by adapting the proof of completeness in [8] using arguments similar to those
used in the proof of Lemma 1.

Lemma 2. For any DNSF problem P = (Z,U,S,E) let H be returned by
EREs(U,S,<l). Then H can be obtained from (Z,U,S,E) by an application
of the eventuality resolution rule.
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function PLTL(Z,U, S,€)
repeat
if (U =U USRES(U,S) changes U) then
check for termination
else if (U =UUERES(U, S, Ol), for some Ol € £, changes U) then
check for termination
end if
until There is no change in
check for termination
return ‘satisfiable’
end function

Fig. 3: Reasoning procedure

Proof. Suppose that ERES(U, S, Ol) returns a non-empty set of clauses H and
let H' be from the last iteration of the loop. Let a set of indices I be such that
H = {-A,; | i € I} and let B; be such that A; = OB; is a merged step clause,
for ¢ € I. Then, by properties of SRES(U,S), for every ¢ € I the set {B;} U
{(v-A")|-A" € H'} UU is unsatisfiable. As (A\_ ey A= N pep ~A) is
valid, the set {B;} U{(IV—-A) | ~A € H} UU is also unsatisfiable. Equivalently,
UU{B;, 1} and U U{B;, \;c; ~A;}, for all i € I, are unsatisfiable. But then H
can be obtained by an application of the eventuality resolution rule. a

Finally, the overall proof procedure is given in Figure 3. Note in the procedure
check for termination stands for checking if 4 UZ or U U {I} (for some Ol € &)
are unsatisfiable, in which case proof search terminates returning "unsatisfiable’.
Combining Lemmata 1 and 2 with results from [8] we obtain the following result.

Theorem 2. PLTL(Z,U,S,E) always terminates. DSNF problem (Z,U,S,E)
is satisfiable if, and only if, PLTL(Z,U,S,E) returns ‘satisfiable’.

Ezample 2 (Example 1 continued). We apply our algorithm to the DSNF prob-
lem from Example 1. To simplify the notation, we refer to clauses just by their
label. Additionally, we refer to the propositional clause in the right-hand side of
a step clause by adding the suffix ‘r’ to the label of the step clause. For example,
s3r denotes w; V x2, the right-hand side of step clause s3.

When the algorithms starts & = {ul, u2,u3,ud}. We apply PLTL step by step.

SRes(U, §). ALLMus({ul,u2,u3,ud,slr,s2r,s3r,s4r}), returns just one MUS
{ul,u2,slr,s2r}. As {slr,s2r} UU is unsatisfiable, the step resolution rule
applies to the result of merging of sl and s2 generating new universal clause:
u5: =g V -z, which is returned by the procedure and added to U. As U
is changed, the check for termination is employed, but it does not succeed.
Then SRES(U, S) is called again, but one can see that the second call leads
to no change in U.
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ERes(U,S,O—wy). In order to compute H, SRES(U U {tl: ~w;},S) is called,
where tl is a label used to denoted the temporary universal clause.
ArLLMus({ul, u2,u3, u4, u5,tl,slr,s2r,s3r,s4r}) returns a set containing 4
MUSes, {{slr,s2r,ul,u2},{slr,s2r,u5},{s2r,s3r,tl,ul,u2}, {s2r,s3r,t1,u5}}
however H only contains 2 clauses {—-xo V —x3,-x3 V —w;} as the
two first and the two last MUSes contain the same right-hand
sides of step clauses. We set H' = H and run the loop body.
The call of SRES(U U {t2: -w; V —z3 V —a3,t3:~w; V —z3},S)
passes {ul,u2,u3,ud,u5,t2,t3,slr,s2r,s3r,s4r} to ALLMUS which returns
{{slr,s2r,ul, u2}, {slr,s2r,u5}, {s2r,s3r,t3,ul, u2}, {s2r,s3r,t3,u5}}, so H =
{—-x9 V —x3,~x3 V ~w1}. As H = H', ERES terminates and returns two
universal clauses ub: —xs V -3 and u7: —x3 V —w;. Only u7 is new and is
added to U; ub is discarded as redundant. As U/ is changed, the check for
termination is employed, but it does not succeed.

ERes(U,S,O—wy). H is computed. SRES(UUY U {t5:  —wq},S) is
called and  ArcMus({ul,u2,u3,u4,u5,t5,slr,s2r,s3r,s4r})  returns
{{s3r,sbr,ul,u2,u7,t5}, {s3r,sdr,u7,t5,u5}, {s2r,s3r,ul,u2,u7},
{s2r,s3r,u7,u5}, {slr,sdr,ul,u2,t5}, {slr,sdr,t5u5}, {slr,s2r,ul,u2},
{slr,s2r,u5}} so H = {—xy V —x3, ~x3 V ~wy, 2o V ~we, 7wy V —ws }. The
run of the loop body is omitted to save space, however it computes H
being same as H’, so ERES terminates and returns four universal clauses
{u8: g V —x3,u9: ~xg V —wy,ull: ~xy V —wse, ull: —wy V —ws}. Only ul0
and ull are new, which are added to U.

Finally as U U Z is unsatisfiable we can apply the termination rule and so
PLTL(Z,U, S, &) returns ‘unsatisfiable’. O

Optimisations. As Example 2 demonstrates, different MUSes can contain the
same right-hand sides of step clauses, which is not optimal. The search for merged
clauses can be significantly sped up by grouping universal clauses together so that
instead of looking for all minimal unsatisfiable subsets of {B | A = OB € S}UU,
we look for all subsets S C {B | A = OB € S} such that (SUU) is unsatisfiable
and for every proper subset S” of S, (S’ UU) is satisfiable. In other words, all
universal clauses are considered as one item. Not only is the number of MUSes
with grouped universal clauses smaller than the number of all MUSes but also,
crucially, MUS enumeration tools can efficiently take grouping into account [19].

We further exploit the disparity between the treatment of right-hand sides
of step clauses and universal clauses by rewriting a given DNSF problem into
a satisfiability equivalent problem having a smaller number of step clauses. If
S contains two step clauses A = OB; and A = OBy with the same left-hand
side, we first equivalently rewrite them into A = O(B; A Bs) and then rename
the conjunction By A Bs, to preserve the clausal form, to give a new step clause
A = OX and two new universal clauses =X V By and —X V By, where X is
a fresh proposition. Similarly, if S contains two step clauses A; = OB and
Ay = OB with the same right-hand side, we equivalently rewrite them into
(A1 V A2) = OB and then rename the disjunction in the left-hand side.
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4 Experimental Evaluation

We have implemented the described approach in the STRP prover!, which uses
the CAMUS system [19] as the MUS enumeration tool. CAMUS works in two
stages, the first extracts all minimal correction subsets (MCSes) from the input
propositional clauses and the second extracts MUSes from the set of MCSes by
extracting all minimal hitting sets (also know as minimal hypergraph transver-
sals) from the set of all MCSes. Although both stages are not tractable [19], in
our preliminary experiments, the second stage of CAMUS took much more time
than the first stage. We put this down to the nature of our problems: SAT bench-
marks typically are larger problems with a smaller number of MUSes [1], whereas
our MUS problems are much smaller but typically contain a larger number of
MUSes. From a small, randomly selected, sample of the benchmarks used in this
work we have established a typical CNF problem size of 800-900 variables and
3500-4500 clauses (of which 120-130 were the right-hand sides of step clauses),
from which about 1400 MUSes are typically extracted. We therefore replaced the
second stage of CAMUS with other hypergraph transversal computation tools,
MTminer [16] and shd [22]. Both tools proved to be two orders of magnitude
faster on our problems; MTminer is slightly faster but it uses significantly more
memory than shd.

Our experimental evaluation is focused purely on a comparison of the clausal-
resolution based prover TRP++ [17], which has previously been shown to perform
well in a number of studies [17,25], and our new simplified resolution-based
prover STRP. While a more comprehensive comparison featuring other proof
methods similar to [25,24] would provide interesting results it is beyond the
scope of this current work. Notice however that we re-use some benchmark prob-
lems from previous studies [17,25], which evaluated the performance of TRP++

! Available at http://www.csc.1liv.ac.uk/~rmw/STRP.html
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against other systems, thus the performance of STRP compared with other sys-
tems can be derived from published results and our comparison. All experiments
were conducted on PC with an Intel Core i5-2500K 3.30GHz CPU, with 16GB of
RAM running Scientific Linux 6.3. As TRP++ and STRP both operate on inputs
in DSNF, time taken to translate input formulae to DSNF has not been taken
into account.

Random benchmarks. The first experiment involved two classes of semi-random
benchmark formulae, C},, and C?,, introduced in [18]. In previous experi-
ments [17] TRP++ performed extremely fast (less than 0.1 on most problems), so
we increased the size of the problems using the following parameters for the ran-
dom formulae: n = 48,k = 6 and p = 0.5 where n is the number of propositional
variables and k determines the number of distinct random variables chosen, with
the polarity of each literal determined by the probability p. The results (Fig. 4)
show STRP performing very consistently on both sets of problems irrespective of
their size. A remarkable STRP performance on C},,, can be explained by the fact
that all step clauses of C},,, problems are of the form true = O(L; V ... V Ly),
which are then all rewritten as a single step clause by the optimisation described
above. In case of C?,,,, the number of step clauses in the random formulae of
different size remains fairly constant while the initial and eventuality parts in-
crease in size and complexity. These results demonstrate the usefulness of the
optimisations described above as well as suggest that the STRP performance
mainly depends on the size of the step part of the input formula rather than on
the size of other parts.

Another set of random benchmarks is sourced from [24]. This set of bench-
marks has been first used to compare model checking approaches in [24] and as
part of a more complete comparison of PLTL provers [25]. We used benchmarks

with the following parameters n = 5,p = 0.95 and | = 10a ... 100, where n is the

100
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number of variables, p is the probability of choosing temporal operator and [ is
the length of the formula. The method used to generate the random formulae
does not allow one to directly link the length of the formula with the number of
step clauses. For example there are some problems of length n = 90 with well
over 200 step clauses whereas some problems of length n = 100 contain only 100
step clauses. This variation in the number of step clauses helps to account for
the variable performance, particularly for STRP, as shown in Fig. 5.

The results also demonstrate that, while both system exhibit a similar dy-
namics with the growth of the formula size, on more complex problems (I = 60
and more), STRP is 5 to 10 times faster than TRP++. The lines converge due to
timeouts. The plot of percentage of tests completed within the 1800s time limit
(Fig. 5 right) shows that the number of tests TRP++ is able to complete within
the time limit starts to drop after [ = 60 whereas STRP only shows a decline
only after [ = 90.

Crafted benchmarks. Crafted benchmarks [25] are sets of PLTL formulae
that have specifically been designed to trigger an exponential behaviour of
PLTL solvers. Both TRP++ and STRP perform well on the Ol family and on
the ‘pattern’ formulae [25] with TRP++ spending 37 seconds on the hardest
Rformulal000, which contains 1998 sometime clauses and 3996 step clauses, and
STRP spending 128 seconds. Problems of such large size can only be solved due
the the fact that they are all trivially satisfiable or trivially unsatisfiable. For
example, none of the ‘pattern’ formulae contain occurrences of negated propo-
sitions. Thus, simplified temporal resolution does not generate anything new
from the input problem and clausal resolution generates very few (1002 in case
of Rformulal000) new clauses. The extra time taken by STRP is due to I/0
overhead passing information to and from the MUS extractor.

The families of O2 and phltl formulae are more challenging for both systems.
STRP solves two more O2 problems within the 1,800 second time limit; both
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systems show a consistent behaviour on phltl benchmarks as shown in Fig. 6.
Both systems timeout on problems of size larger than given in the graphs.

TLC Cache Coherence benchmarks. Temporal Logic with Cardinality Con-
straints (TLC) is an extension of PLTL with global constraints on temporal
interpretations, which has been introduced in [10] to capture real-world prob-
lems. An example of a TLC constraint is {p, g, 7}~!, which requires that exactly
one proposition from the set of {p,q,r} is true at any moment of time. The
expressive power of TLC is the same as PLTL as the constraints can be captured
by temporal formulae. In our example, the constraint is captured by O(pV qVr),
O(=pV—q), O(-pV-r), O(-gV-r). It has been argued that specialised tools are
needed for practical reasoning in presence of cardinality constraints since PLTL
formulae that capture them are too large and complex for existing provers [10].

PLTL representations of TLC formulae provide an interesting set of problems
for our comparison as, due to the global nature of constraints, temporal formu-
lae capturing such constraints contribute only the the universal part of DSNF.
We use two families of TLC formulae introduced in [10] capturing verification
conditions on a cache coherence protocol with n-processes, ‘m’: no two processes
can simultaneously be in state m; and ‘sm’: it is not possible for one process
to be in state s and another in state m. The problems feature an increasing
number of processes; the number of transitions between the states is small but
the set of constraints is large and complex. As a result, the PLTL representation
of the original problem has a comparatively small number of step clauses but a
very large number of universal clauses. As shown in Fig. 7, STRP outperforms
TRP++ completing several more problems within the 1800s time limit.

Verification benchmarks. The Anzu verification benchmarks used in [3,25] pro-
vide a good counter example to the Cache Coherence problems and are particu-
larly difficult for STRP. The smallest example from this dataset (genbuf/specl)
takes STRP 416.266s whereas TRP-++ only takes 0.236s. These problems feature
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Fig.8: TRP++ results (left) and STRP results (right)

a moderate number of step clauses (the smallest containing 36 step clauses); how-
ever, we did find an interesting characteristic on the small number of problems
we were able to run. The benchmarks produce a very large number of MCSes
(43738 on average) which are then reduced to a very small number of MUSes
(58 on average) this means both stages of the MUS enumeration process take
significantly longer than on other datasets explored in this work.

Performance Degradation To evaluate how the performance of each solver
changes over time, we let both systems run for 60000s on a difficult random
Rozier problem (P0.5N1L190). We captured for TRP++ the number of resolvents
and universal clauses generated (both total and non-redundant) and for STRP
the number of universal clauses generated (both total and non-redundant). For
TRP++ this data was captured at regular intervals and for STRP we recorded a
data point at each iteration of the main procedure.

The results (Fig. 8) show that TRP++ generates far fewer non-redundant
universal clauses (125973) within the first 5 seconds of computation than STRP
(1180608). Moreover, TRP++’s performance slows down noticeably at this point
whereas STRP continues generating new clauses before stabilising at well over 13
million universal clauses. These numbers are not directly comparable as the sys-
tems utilise different calculi. In particular, clause-level redundancy elimination
in TRP++ can be responsible for fewer non-redundant clauses being retained.
However, in both calculi only universal and initial clauses contribute to the refu-
tation of the given problem. STRP shows quite remarkable performance as it
generates significantly more non-redundant universal clauses in a much shorter
timeframe than TRP++.

Notice also that all formulae derived by STRP are added to the universal
part, thus the search space remains constant throughout the run, which is not
the case for TRP++.
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5 Conclusions and future work

In this paper we have investigated a new approach to PLTL reasoning based
on reductions to MUS enumeration. Despite the simplicity of the approach, our
prototype implementation proved to perform very well on a significant number
of benchmarks. Our new system performed especially well on problems having
a relatively small number of step clauses but larger number of universal clauses.

Closest to our approach is bounded model checking [2], which can also estab-
lish satisfiability of PLTL formulae. However, in bounded model checking propo-
sitional formulae represent bounded-depth traces of a system and SAT solvers
are used to check their realisability, while in our approach MUSes are used
to facilitate resolutional proof search. Recent developments in bounded model
checking include incremental inductive reasoning [4] and counting [5], which both
can handle unbounded problems. The extraction of labelled superposition proofs
from bounded system traces is explored in [26]. Reasoning procedures for modal
logics with reductions to SAT have also been investigated in [13, 14].

There are a number of possible ways to improve the performance of STRP,
which constitute future work. At the moment, we use an MUS enumerating pro-
cedure as a black box. Consecutive calls of ALLMUS can return already known
MUSes, which are then discarded as redundant. One can reuse information from
the previous runs of ALLMUS to avoid generation of redundant MUSes. This
will require modifying the MUS extractor. On larger CNF instances the MUS
enumeration procedure can take a significant amount of time to return the com-
plete set of all MUSes. It may be possible to return MUSes as and when they
are derived. This facility may be useful in the SRes on unsatisfiable problems
as successful application of the termination rules may be possible without the
need to generate all MUSes. Finally, it would be interesting to more thoroughly
investigate the impact of optimisations reducing the size of the step part on the
performance of our system.
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