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4 the length is minimal.

 unique normal form for each witness
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Reduction to Trace Universality of OCN
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Fast-Growing Functions Fn : N→ N

F0(x) = x + 1 Fk+1(x) = F x+1
k (x) Fω(x) = Fx(x).

The Fast-Growing Hierarchy at level k is the class Fk that contains
all constants and is closed under substitution, sum, projections,
limited recursion and applications of functions Fn for n ≤ k .

Fk ≈ NSPACE (Fk(1)), for k ≥ 2.

A function is called Ackermannian if it is in Fω \
⋃

k∈N Fk .



Theorem

OCN Trace Universality is Ackermannian

in Fω:
naive search for witness as above. . .
(shortest witnesses are bad succ-controlled sequences in Nk

⊥).

not in
⋃

k∈N Fk :

by reduction from the (Ackermannian) control-state reachability
problem for lossy counter systems.
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of wa can be a witness!
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Witnesses for non-Universality of length F3(0)

F0F1F2F3

A

U

0,+1, 2, 3

0,−1,−2,−3,−

123

1, 2, 3, e2, 3, e3, ee

Act∗

October 7, 2013 1start in {A0,F31}
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