Trace Inclusion for One-Counter Nets Revisited

Patrick Totzke Piotr Hofman

LaBRI, CNRS & Université de Bordeaux

Universität Bayreuth

September 23, 2014

One-Counter Automata

$$(Q,\mathsf{Act},\delta) \qquad \delta \subseteq (Q \times \mathsf{Act} \times \{-1,0,+1,=0\} \times Q)$$

One-Counter Automata (Q, Act, δ) $\delta \subseteq (Q \times Act \times \{-1, 0, +1, =0\} \times Q)$

One-Counter Automata (Q, Act, δ) $\delta \subseteq (Q \times Act \times \{-1, 0, +1, =0\} \times Q)$

One-Counter Automata

$$(Q,\mathsf{Act},\delta)$$
 $\delta\subseteq (Q\times\mathsf{Act}\times\{-1,0,+1,=0\}\times Q)$

One-Counter Automata (Q, Act, δ) $\delta \subseteq (Q \times Act \times \{-1, 0, +1, =0\} \times Q)$

One-Counter Nets (Q, Act, δ) $\delta \subseteq (Q \times Act \times \{-1, 0, +1, = 0\} \times Q)$

One-Counter Nets

$$(Q,\mathsf{Act},\delta)$$
 $\delta\subseteq (Q\times\mathsf{Act}\times\{-1,0,+1\}\times Q)$

OCN and Related Models

$OCA \subseteq OCA$

INPUT:

- \blacksquare OCA \mathcal{A} and configuration pm
- OCA A' and configuration p'm'

OUTPUT:

yes iff $pm \subseteq p'm'$

$OCA \subseteq OCA$

INPUT:

- \blacksquare OCA \mathcal{A} and configuration pm
- OCA A' and configuration p'm'

OUTPUT:

yes iff $\{w \in \Sigma^* \mid pm \xrightarrow{w}\} \subseteq \{w \in \Sigma^* \mid p'm' \xrightarrow{w}\}$

$OCA \subseteq OCA$

INPUT:

- \blacksquare OCA \mathcal{A} and configuration pm
- OCA A' and configuration p'm'

OUTPUT:

yes iff $\{w \in \Sigma^* \mid pm \xrightarrow{w}\} \subseteq \{w \in \Sigma^* \mid p'm' \xrightarrow{w}\}$

■ undecidable for DOCA [Valiant '73] or OCN [HMT '13]

$OCA \subseteq OCA$

INPUT:

- \blacksquare OCA \mathcal{A} and configuration pm
- OCA A' and configuration p'm'

OUTPUT:

```
yes iff \{w \in \Sigma^* \mid pm \xrightarrow{w}\} \subseteq \{w \in \Sigma^* \mid p'm' \xrightarrow{w}\}
```

- undecidable for DOCA [Valiant '73] or OCN [HMT '13]
- NL-complete for DOCN
- Ackermannian if A is a NFA and A' a OCN

lacksquare $\mathcal A$ is deterministic and cannot deadlock

- A is deterministic and cannot deadlock
- lacksquare all states in \mathcal{A}' have transitions for all actions (potentially with effect -1)

- A is deterministic and cannot deadlock
- lacksquare all states in \mathcal{A}' have transitions for all actions (potentially with effect -1)
- reduction works in logspace and preserves determinisim

$OCA \subseteq OCA$

INPUT:

- \blacksquare OCA \mathcal{A} and configuration pm
- OCA A' and configuration p'm'

OUTPUT:

yes iff $pm \subseteq p'm'$

- undecidable for DOCA [Valiant '73] or OCN [HMT '13]
- NL-complete for DOCN
- Ackermannian if A is a NFA and A' a OCN

$OCA \subseteq OCA$

INPUT:

- \blacksquare OCA \mathcal{A} and configuration pm
- OCA A' and configuration p'm'

OUTPUT:

yes iff $pm \subseteq p'm'$

- undecidable for DOCA [Valiant '73] or OCN [HMT '13]
- NL-complete for DOCN
- Ackermannian if A is a NFA and A' a OCN

Characterizing Witnesses

Idea

Stepwise rewrite witnesses to "better" ones such that

- 1 the *loop-structure* is the same.
- 2 the effect on A' is the same,
- ${f 3}$ the effect on ${\cal A}$ does not decrease,
- 4 the length is minimal.

Characterizing Witnesses

Idea

Stepwise rewrite witnesses to "better" ones such that

- 1 the *loop-structure* is the same.
- \blacksquare the effect on $\mathcal A$ does not decrease,
- 4 the length is minimal.

unique normal form for each witness

Characterizing Witnesses

Theorem

If $pm \not\subseteq p'm'$ then there is a short witness, or one of forms

Here, \smile are short paths and \rightarrow , \rightarrow are loops that may occur often.

Characterizing Witnesses

Theorem

If $pm \not\subseteq p'm'$ then there is a short witness, or one of forms

Here, \searrow are short paths and \longrightarrow , \rightarrow are loops that may occur often.

Solving $DOCN \not\subseteq DOCN$ in NL

- lacksquare guess short components of a witness $\pi=\pi_0 L_0^{l_0} \pi_1 L_1^{l_1} \pi_2$
- compute and memorize their effects
- check existence of coefficients $l_0, l_1 \in \mathbb{N}$ such that both $m+\Delta(\pi) \geq 0$ and $m'+\Delta'(\pi)=-1$

$OCA \subseteq OCA$

INPUT:

- \blacksquare OCA \mathcal{A} and configuration pm
- OCA A' and configuration p'm'

OUTPUT:

yes iff $pm \subseteq p'm'$

- undecidable for DOCA [Valiant '73] or OCN [HMT '13]
 - NL-complete for DOCN
- Ackermannian if A is a NFA and A' a OCN

$OCA \subseteq OCA$

INPUT:

- \blacksquare OCA \mathcal{A} and configuration pm
- OCA A' and configuration p'm'

OUTPUT:

yes iff $pm \subseteq p'm'$

- undecidable for DOCA [Valiant '73] or OCN [HMT '13]
- NL-complete tes DUCN

Ackermannian if ${\mathcal A}$ is a NFA and ${\mathcal A}'$ a OCN

$NFA \subseteq OCN$

Intuition: witnessing non-Universality in a NFA

$$\begin{pmatrix} \top \\ \bot \\ \bot \end{pmatrix} \xrightarrow{a} \begin{pmatrix} \bot \\ \top \\ \top \end{pmatrix} \xrightarrow{b} \begin{pmatrix} \top \\ \bot \\ \bot \end{pmatrix} \xrightarrow{?} * \begin{pmatrix} \bot \\ \bot \\ \bot \end{pmatrix}$$

Intuition: witnessing non-Universality in a NFA

$$\begin{pmatrix} \top \\ \bot \\ \bot \end{pmatrix} \stackrel{a}{\longrightarrow} \begin{pmatrix} \bot \\ \top \\ \top \end{pmatrix} \stackrel{b}{\longrightarrow} \begin{pmatrix} \top \\ \bot \\ \bot \end{pmatrix} \stackrel{?}{\longrightarrow}^* \begin{pmatrix} \bot \\ \bot \\ \bot \end{pmatrix}$$

Observation due to $pm \subseteq p(m+1)$:

Combined traces of *sets* of configurations are representable by maximal elements.

Intuition: witnessing non-Universality in a NFA

$$\begin{pmatrix} \top \\ \bot \\ \bot \end{pmatrix} \stackrel{a}{\longrightarrow} \begin{pmatrix} \bot \\ \top \\ \top \end{pmatrix} \stackrel{b}{\longrightarrow} \begin{pmatrix} \top \\ \bot \\ \bot \end{pmatrix} \stackrel{?}{\longrightarrow}^* \begin{pmatrix} \bot \\ \bot \\ \bot \end{pmatrix}$$

Observation due to $pm \subseteq p(m+1)$:

Combined traces of *sets* of configurations are representable by maximal elements.

 \rightarrow Reachability of $(\perp)^k$ in a "maximizing" k-counter automaton

Intuition: witnessing non-Universality in a OCN

$$\begin{array}{cccc}
a, + & & \\
b, 0 & & \\
b, + & \\
a, + & C
\end{array}$$

$$\begin{array}{cccc}
\begin{pmatrix} 0 \\ \bot \\ \bot \end{pmatrix} \xrightarrow{a} \begin{pmatrix} \bot \\ 1 \\ 1 \end{pmatrix} \xrightarrow{b} \begin{pmatrix} 2 \\ \bot \\ \bot \end{pmatrix} \xrightarrow{?} * \begin{pmatrix} \bot \\ \bot \\ \bot \end{pmatrix}$$

Observation due to $pm \subseteq p(m+1)$:

Combined traces of *sets* of configurations are representable by maximal elements.

 \rightarrow Reachability of $(\bot)^k$ in a "maximizing" k-counter automaton

Fast-Growing Functions $F_n: \mathbb{N} \to \mathbb{N}$

$$F_0(x) = x + 1$$
 $F_{k+1}(x) = F_k^{x+1}(x)$ $F_{\omega}(x) = F_x(x)$.

The Fast-Growing Hierarchy at level k is the class \mathfrak{F}_k that contains all constants and is closed under substitution, sum, projections, limited recursion and applications of functions F_n for $n \leq k$.

- $\mathfrak{F}_k \approx NSPACE(F_k(1))$, for $k \geq 2$.
- A function is called *Ackermannian* if it is in $\mathfrak{F}_{\omega} \setminus \bigcup_{k \in \mathbb{N}} \mathfrak{F}_k$.

Theorem

OCN Trace Universality is Ackermannian

in \mathfrak{F}_{ω} :

naive search for witness as above...

(shortest witnesses are bad $\mathit{succ}\text{-}\mathsf{controlled}$ sequences in \mathbb{N}^k_\perp).

Theorem

OCN Trace Universality is Ackermannian

in \mathfrak{F}_{ω} :

naive search for witness as above...

(shortest witnesses are bad *succ*-controlled sequences in \mathbb{N}_{\perp}^{k}).

not in $\bigcup_{k\in\mathbb{N}} \mathfrak{F}_k$:

by reduction from the (Ackermannian) control-state reachability problem for lossy counter systems.

OCN Universality: Hardness

Example
$$\begin{array}{ccc}
a, + & & \\
b, 0 & \\
b, + & \\
a, + & \\
\end{array}$$

$$\begin{array}{ccc}
\begin{pmatrix} 0 \\ \bot \\ \bot \end{pmatrix} \xrightarrow{a} \begin{pmatrix} \bot \\ 1 \\ 1 \end{pmatrix} \xrightarrow{a} \begin{pmatrix} \bot \\ \bot \\ \bot \end{pmatrix}$$

OCN Universality: Hardness

OCN Universality: Hardness

State C is an obstacle for letter a:

If $w \in \mathsf{Act}^*$ leads to vector with $v(C) \neq \bot$, then no continuation of wa can be a witness!

Witnesses for non-Universality of length $F_3(0)$

start in $\{A0, F_31\}$

4	NFA	OCN	OCA
NFA	PSPACE	decidable	undecidable
OCN			undecidable
OCA			undecidable

4	NFA	OCN	OCA
NFA	PSPACE	decidable	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

4	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

4	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

4	DFA	DOCN	DOCA
DFA	NL		
DOCN			
DOCA			

4	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

4	DFA	DOCN	DOCA
DFA	NL		
DOCN			
DOCA			undecidable

4	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

4	DFA	DOCN	DOCA
DFA	NL	NL	NL
DOCN	NL		
DOCA	NL		undecidable

4	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

4	DFA	DOCN	DOCA
DFA	NL	NL	NL
DOCN	NL	NL	
DOCA	NL		undecidable

4	NFA	OCN	OCA
NFA	PSPACE	Ackermanian	undecidable
OCN	PSPACE	undecidable	undecidable
OCA	PSPACE	undecidable	undecidable

4	DFA	DOCN	DOCA
DFA	NL	NL	NL
DOCN	NL	NL	?
DOCA	NL	NL	undecidable

4	NFA	OCN	OCA	
NFA	PSPACE	Ackermanian	undecidable	
OCN	PSPACE	undecidable	undecidable	
OCA	SPACE	undecidable	_un ecidable	
Questions!				
4	DFA	DOCN	DOCA	
DFA	NL	NL	NL	
DOCN	NL	NL	?	
DOCA	NL	NL	undecidable	