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Abstract
The Transience objective is not to visit any state infinitely often. While this is not possible in any
finite Markov Decision Process (MDP), it can be satisfied in countably infinite ones, e.g., if the
transition graph is acyclic.

We prove the following fundamental properties of Transience in countably infinite MDPs.
1. There exist uniformly ε-optimal MD strategies (memoryless deterministic) for Transience, even

in infinitely branching MDPs.
2. Optimal strategies for Transience need not exist, even if the MDP is finitely branching. However,

if an optimal strategy exists then there is also an optimal MD strategy.
3. If an MDP is universally transient (i.e., almost surely transient under all strategies) then

many other objectives have a lower strategy complexity than in general MDPs. E.g., ε-optimal
strategies for Safety and co-Büchi and optimal strategies for {0, 1, 2}-Parity (where they exist)
can be chosen MD, even if the MDP is infinitely branching.
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1 Introduction

Those who cannot remember the past
are condemned to repeat it.

George Santayana (1905) [22]

The famous aphorism above has often been cited (with small variations), e.g., by Winston
Churchill in a 1948 speech to the House of Commons, and carved into several monuments all
over the world [22].

We prove that the aphorism is false. In fact, even those who cannot remember anything
at all are not condemned to repeat the past. With the right strategy they can avoid repeating
the past equally well as everyone else. More formally, playing for Transience does not require
any memory. We show that there always exist ε-optimal memoryless deterministic strategies
for Transience, and if optimal strategies exist then there also exist optimal memoryless
deterministic strategies.1

1 Our result applies to MDPs (also called games against nature). It is an open question whether it
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1:2 Transience in Countable MDPs

Background. We study Markov decision processes (MDPs), a standard model for dynamic
systems that exhibit both stochastic and controlled behavior [21]. MDPs play a prominent role
in many domains, e.g., artificial intelligence and machine learning [26, 24], control theory [5, 1],
operations research and finance [25, 12, 6, 23], and formal verification [2, 25, 11, 8, 3, 7].

An MDP is a directed graph where states are either random or controlled. Its observed
behavior is described by runs, which are infinite paths that are, in part, determined by the
choices of a controller. If the current state is random then the next state is chosen according
to a fixed probability distribution. Otherwise, if the current state is controlled, the controller
can choose a distribution over all possible successor states. By fixing a strategy for the
controller (and initial state), one obtains a probability space of runs of the MDP. The goal
of the controller is to optimize the expected value of some objective function on the runs.

The strategy complexity of a given objective characterizes the type of strategy necessary
to achieve an optimal (resp. ε-optimal) value for the objective. General strategies can take
the whole history of the run into account (history-dependent; (H)), while others use only
bounded information about it (finite memory; (F)) or base decisions only on the current
state (memoryless; (M)). Moreover, the strategy type depends on whether the controller can
randomize (R) or is limited to deterministic choices (D). The simplest type, MD, refers to
memoryless deterministic strategies.
Acyclicity and Transience. An MDP is called acyclic iff its transition graph is acyclic.
While finite MDPs cannot be acyclic (unless they have deadlocks), countable MDPs can. In
acyclic countable MDPs, the strategy complexity of Büchi/Parity objectives is lower than
in the general case: ε-optimal strategies for Büchi/Parity objectives require only one bit of
memory in acyclic MDPs, while they require infinite memory (an unbounded step-counter,
plus one bit) in general countable MDPs [14, 15].

The concept of transience can be seen as a generalization of acyclicity. In a Markov chain,
a state s is called transient iff the probability of returning from s to s is < 1 (otherwise the
state is called recurrent). This means that a transient state is almost surely visited only
finitely often. The concept of transient/recurrent is naturally lifted from Markov chains to
MDPs, where they depend on the chosen strategy.

We define the Transience objective as the set of runs that do not visit any state infinitely
often. We call an MDP universally transient iff it almost-surely satisfies Transience
under every strategy. Thus every acyclic MDP is universally transient, but not vice-versa;
cf. Figure 1. In particular, universal transience does not just depend on the structure of the
transition graph, but also on the transition probabilities. Universally transient MDPs have
interesting properties. Many objectives (e.g., Safety, Büchi, co-Büchi) have a lower strategy
complexity than in general MDPs; see below.

We also study the strategy complexity of the Transience objective itself, and how it
interacts with other objectives, e.g., how to attain a Büchi objective in a transient way.
Our contributions.
1. We show that there exist uniformly ε-optimal MD strategies (memoryless deterministic)

for Transience, even in infinitely branching MDPs. This is unusual, since (apart from
reachability objectives) most other objectives require infinite memory if the MDP is
infinitely branching, e.g., all objectives generalizing Safety [17].
Our result is shown in several steps. First we show that there exist ε-optimal deterministic
1-bit strategies for Transience. Then we show how to dispense with the 1-bit memory and

generalizes to countable stochastic 2-player games. (However, it is easy to see that the adversary needs
infinite memory in general, even if the player is passive [14, 16].)
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obtain ε-optimal MD strategies for Transience. Finally, we make these MD strategies
uniform, i.e., independent of the start state.

2. We show that optimal strategies for Transience need not exist, even if the MDP is
finitely branching. If they do exist then there are also MD optimal strategies. More
generally, there exists a single MD strategy that is optimal from every state that allows
optimal strategies for Transience.

3. If an MDP is universally transient (i.e., almost surely transient under all strategies) then
many other objectives have a lower strategy complexity than in general MDPs, e.g.,
ε-optimal strategies for Safety and co-Büchi and optimal strategies for {0, 1, 2}-Parity
(where they exist) can be chosen MD, even if the MDP is infinitely branching.

For our proofs we develop some technical results that are of independent interest. We
generalize Ornstein’s plastering construction [20] from reachability to tail objectives and
thus obtain a general tool to infer uniformly ε-optimal MD strategies from non-uniform
ones (cf. Theorem 7). Secondly, in Section 6 we develop the notion of the conditioned MDP
(cf. [17]). For tail objectives, this allows to obtain uniformly ε-optimal MD strategies wrt.
multiplicative errors from those with merely additive errors.

2 Preliminaries

A probability distribution over a countable set S is a function f : S → [0, 1] with
∑

s∈S f(s) = 1.
We write D(S) for the set of all probability distributions over S.

Markov Decision Processes. We define Markov decision processes (MDPs for short) over
countably infinite state spaces as tuples M = (S, S2, S#, −→, P ) where S is the countable
set of states partitioned into a set S2 of controlled states and a set S# of random states.
The transition relation is −→ ⊆ S × S, and P : S# → D(S) is a probability function. We
write s−→s′ if (s, s′) ∈ −→, and refer to s′ as a successor of s. We assume that every state
has at least one successor. The probability function P assigns to each random state s ∈ S#

a probability distribution P (s) over its set of successors. A sink is a subset T ⊆ S closed
under the −→ relation.

An MDP is acyclic if the underlying graph (S, −→) is acyclic. It is finitely branching if
every state has finitely many successors and infinitely branching otherwise. An MDP without
controlled states (S2 = ∅) is a Markov chain.

Strategies and Probability Measures. A run ρ is an infinite sequence s0s1 · · · of states
such that si−→si+1 for all i ∈ N; a partial run is a finite prefix of a run. We write ρ(i) = si

and say that (partial) run s0s1 · · · visits s if s = si for some i. It starts in s if s = s0.
A strategy is a function σ : S∗S2 → D(S) that assigns to partial runs ρs ∈ S∗S2 a

distribution over the successors of s. We write ΣM for the set of all strategies in M. A
strategy σ and an initial state s0 ∈ S induce a standard probability measure on sets of infinite
runs. We write PM,s0,σ(R) for the probability of a measurable set R ⊆ s0Sω of runs starting
from s0. It is defined for the cylinders s0s1 . . . snSω ∈ Sω as PM,s0,σ(s0s1 . . . snSω) def=∏n−1

i=0 σ̄(s0s1 . . . si)(si+1), where σ̄ is the map that extends σ by σ̄(ws) = P (s) for all
ws ∈ S∗S#. By Carathéodory’s theorem [4], the measure for cylinders extends uniquely to a
probability measure PM,s0,σ on all measurable subsets of s0Sω. We will write EM,s0,σ for
the expectation w.r.t. PM,s0,σ.

Strategy Classes. Strategies σ : S∗S2 → D(S) are in general randomized (R) in the sense
that they take values in D(S). A strategy σ is deterministic (D) if σ(ρ) is a Dirac distribution
for all partial runs ρ ∈ S∗S2.

CONCUR 2021



1:4 Transience in Countable MDPs

A formal definition of the amount of memory needed to implement strategies can be found
in the full version [13]. The two classes of memoryless and 1-bit strategies are central to this
paper. A strategy σ is memoryless (M) if σ bases its decision only on the last state of the
run: σ(ρs) = σ(ρ′s) for all ρ, ρ′ ∈ S∗. We may view M-strategies as functions σ : S2 → D(S).
A 1-bit strategy σ may base its decision also on a memory mode m ∈ {0, 1}. Formally, a
1-bit strategy σ is given as a tuple (u, m0) where m0 ∈ {0, 1} is the initial memory mode and
u : {0, 1} × S → D({0, 1} × S) is an update function such that

for all controlled states s ∈ S2, the distribution u((m, s)) is over {0, 1} × {s′ | s−→s′}.
for all random states s ∈ S#, we have that

∑
m′∈{0,1} u((m, s))(m′, s′) = P (s)(s′).

Note that this definition allows for updating the memory mode upon visiting random states.
We write σ[m0] for the strategy obtained from σ by setting the initial memory mode to m0.

MD strategies are both memoryless and deterministic; and deterministic 1-bit strategies
are both deterministic and 1-bit.

Objectives. The objective of the controller is determined by a predicate on infinite runs. We
assume familiarity with the syntax and semantics of the temporal logic LTL [9]. Formulas are
interpreted on the underlying structure (S, −→) of the MDP M. We use JφKM,s ⊆ sSω to
denote the set of runs starting from s that satisfy the LTL formula φ, which is a measurable
set [27]. We also write JφKM for

⋃
s∈SJφKM,s. Where it does not cause confusion we will

identify φ and JφK and just write PM,s,σ(φ) instead of PM,s,σ(JφKM,s).
Given a set T ⊆ S of states, the reachability objective Reach(T ) def= FT is the set of runs

that visit T at least once. The safety objective Safety(T ) def= G¬T is the set of runs that
never visit T .

Let C ⊆ N be a finite set of colors. A color function Col : S → C assigns to each state s

its color Col(s). The parity objective, written as Parity(Col), is the set of infinite runs
such that the largest color that occurs infinitely often along the run is even. To define this
formally, let even(C) = {i ∈ C | i ≡ 0 mod 2}. For � ∈ {<, ≤, =, ≥, >}, n ∈ N, and Q ⊆ S,
let [Q]Col�n def= {s ∈ Q| Col(s) � n} be the set of states in Q with color �n. Then

Parity(Col) def=
∨

i∈even(C)

(
GF[S]Col=i ∧ FG[S]Col≤i

)
.

We write C-Parity for the parity objectives with the set of colors C ⊆ N. The classical
Büchi and co-Büchi objectives correspond to {1, 2}-Parity and {0, 1}-Parity, respectively.

An objective φ is called a tail objective (in M) iff for every run ρ′ρ with some finite prefix
ρ′ we have ρ′ρ ∈ φ ⇔ ρ ∈ φ. For every coloring Col, Parity(Col) is tail. Reachability
objectives are not always tail but in MDPs where the target set T is a sink Reach(T ) is tail.

Optimal and ε-optimal Strategies. Given an objective φ, the value of state s in an
MDP M, denoted by valM,φ(s), is the supremum probability of achieving φ. Formally,
we have valM,φ(s) def= supσ∈Σ PM,s,σ(φ) where Σ is the set of all strategies. For ε ≥ 0
and state s ∈ S, we say that a strategy is ε-optimal from s iff PM,s,σ(φ) ≥ valM,φ(s) − ε.
A 0-optimal strategy is called optimal. An optimal strategy is almost-surely winning iff
valM,φ(s) = 1.

Considering an MD strategy as a function σ : S2 → S and ε ≥ 0, σ is uniformly ε-optimal
(resp. uniformly optimal) if it is ε-optimal (resp. optimal) from every s ∈ S.

Throughout the paper, we may drop the subscripts and superscripts from notations, if it
is understood from the context. The missing proofs can be found in the full version [13].
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w0 w1 w2 w3 w4 · · ·1 p p p p

1 − p1 − p1 − p1 − p1 − p

Figure 1 Gambler’s Ruin with restart: The state wi illustrates that the controller’s wealth is i,
and the coin tosses are in the controller’s favor with probability p. For all i, Pwi (Transience) = 0 if
p ≤ 1

2 ; and Pwi (Transience) = 1 otherwise.

3 Transience and Universally Transient MDPs

In this section we define the transience property for MDPs, a natural generalization of the
well-understood concept of transient Markov chains. We enumerate crucial characteristics of
this objective and define the notion of universally transient MDPs.

Fix a countable MDP M = (S, S2, S#, −→, P ). Define the transience objective, denoted
by Transience, to be the set of runs that do not visit any state of M infinitely often, i.e.,

Transience def=
∧
s∈S

FG ¬s.

The Transience objective is tail, as it is closed under removing finite prefixes of runs. Also
note that Transience cannot be encoded in a parity objective.

We call M universally transient iff for all states s0, for all strategies σ, the Transience
property holds almost-surely from s0, i.e.,

∀s0 ∈ S ∀σ ∈ Σ PM,s0,σ(Transience) = 1.

The MDP in Figure 1 models the classical Gambler’s Ruin Problem with restart; see [10,
Chapter 14]. It is well-known that if the controller starts with wealth i and if p ≤ 1

2 , the
probability of ruin (visiting the state w0) is Pwi

(F w0) = 1. Consequently, the probability of
re-visiting w0 infinitely often is 1, implying that Pwi(Transience) = 0. In contrast, for the
case with p > 1

2 , for all states wi, the probability of re-visiting wi is strictly below 1. Hence,
the Transience property holds almost-surely. This example indicates that the transience
property depends on the probability values of the transitions and not just on the underlying
transition graph, and thus may require arithmetic reasoning. In particular, the MDP in
Figure 1 is universally transient iff p > 1

2 .
In general, optimal strategies for Transience need not exist:

▶ Lemma 1. There exists a finitely branching countable MDP with initial state s0 such that
valTransience(s) = 1 for all controlled states s,
there does not exist any optimal strategy σ such that Ps0,σ(Transience) = 1.

Proof. Consider a countable MDP M with set S = {ℓi, ℓ′
i, ri, xi | i ≥ 1} ∪ {ℓ0, ⊥} of states;

see Figure 2. For all i ≥ 1 the state xi+1 is the unique successor of xi so that (xi)i≥1 form
an acyclic ladder; the value of Transience is 1 for all xi. The state ⊥ is sink, and its value
is 0. The states (ri)i≥1 are all random, and ri

1−2−i

−−−−→ xi and ri
2−i

−−→ ⊥. Observe that the
value of Transience is 1 − 2−i for the ri.

The states (ℓi)i∈N are controlled whereas the states (ℓ′
i)i≥1 are random. By interleaving

of these states, we construct a “recurrent ladder” of decisions: ℓ0 → ℓ1 and for all i ≥ 1,
state ℓi has two successors ℓ′

i and ri. In random states ℓ′
i, as in Gambler’s Ruin with a fair

coin, the successors are ℓi−1 or ℓi+1, each with equal probability. In each state (ℓi)i≥1, the
controller decides to either stay on the ladder by going to ℓ′

i or leaves the ladder to ri. As in
Figure 1, if the controller stays on the ladder forever, the probability of Transience is 0.

CONCUR 2021



1:6 Transience in Countable MDPs

ℓ0 ℓ1 ℓ′
1 · · · ℓi−1 ℓ′

i−1 ℓi ℓ′
i · · ·

r1 ⊥ · · · ri−1 ⊥ ri ⊥ · · ·
x1 · · · xi−1 xi · · ·

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 − 1
2

1
2

1 − 1
2i−1

1
2i−1

1 − 1
2i

1
2i

Figure 2 A partial illustration of the MDP in Lemma 1, in which there is no optimal strategy
for Transience, starting from states ℓi. For readability, we have three copies of the state ⊥. We
call the ladder consisting of the interleaved controlled states ℓi and random states ℓ′

i a “recurrent
ladder”: if the controller stays on this ladder forever, it faithfully simulates a Gambler’s Ruin with a
fair coin, and the probability of Transience will be 0.

Starting in ℓ0, for all i > 0, strategy σi that stays on the ladder until visiting ℓi (which
happens eventually almost surely) and then leaves the ladder to ri achieves Transience with
probability 1 − 2i. Hence, valTransience(ℓ0) = 1.

Recall that transience cannot be achieved with a positive probability by staying on the
acyclic ladder forever. But any strategy that leaves the ladder with a positive probability
comes with a positive probability of falling into ⊥, thus is not optimal either. Thus there is
no optimal strategy for Transience. ◀

Reduction to Finitely Branching MDPs. In our main results, we will prove that for
the Transience property there always exist ε-optimal MD strategies in finitely branching
countable MDPs; and if an optimal strategy exists, there will exist an optimal MD strategy.
We generalize these results to infinitely branching countable MDPs by the following reduction:

▶ Lemma 2. Given an infinitely branching countable MDP M with an initial state s0, there
exists a finitely branching countable M′ with a set S′ of states such that s0 ∈ S′ and
1. each strategy α1 in M is mapped to a unique strategy β1 in M′ where

Ps0,α1(Transience) = Ps0,β1(Transience),

2. and conversely, every MD strategy β2 in M′ is mapped to an MD strategy α2 in M where

Ps0,α2(Transience) ≥ Ps0,β2(Transience).

Properties of Universally Transient MDPs.
Notice that acyclicity implies universal transience, but not vice-versa.

▶ Lemma 3. For every countable MDP M = (S, S2, S#, −→, P ), the following conditions
are equivalent.
1. M is universally transient, i.e., ∀s0, ∀σ. PM,s0,σ(Transience) = 1.
2. For every initial state s0 and state s, the objective of re-visiting s infinitely often has

value zero, i.e., ∀s0, s supσ PM,s0,σ(GF(s)) = 0.
3. For every state s the value of the objective to re-visit s is strictly below 1, i.e.,

Re(s) def= supσ PM,s,σ(XF(s)) < 1.
4. For every state s there exists a finite bound B(s) such that for every state s0 and strategy

σ from s0 the expected number of visits to s is ≤ B(s).
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5. For all states s0, s, under every strategy σ from s0 the expected number of visits to s is
finite.

Proof. Towards (1) ⇒ (2), consider an arbitrary strategy σ from the initial state s0 and some
state s. By (1) we have ∀σ.PM,s0,σ(Transience) = 1 and thus 0 = PM,s0,σ(¬Transience) =
PM,s0,σ(

⋃
s′∈S GF(s′)) ≥ PM,s0,σ(GF(s)) which implies (2).

Towards (2) ⇒ (1), consider an arbitrary strategy σ from the initial state s0. By (2) we
have 0 =

∑
s∈S PM,s0,σ(GF(s)) ≥ PM,s0,σ(

⋃
s∈S GF(s)) = PM,s0,σ(¬Transience) and thus

PM,s0,σ(Transience) = 1.
We now show the implications (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (2).
Towards ¬(3) ⇒ ¬(2), ¬(3) implies ∃s.Re(s) = 1 and thus ∀ε > 0.∃σε PM,s,σε

(XF(s)) ≥
1 − ε. Let εi

def= 2−(i+1). We define the strategy σ to play like σεi
between the i-th

and (i + 1)th visit to s. Since
∑∞

i=1 εi < ∞, we have
∏∞

i=1(1 − εi) > 0. Therefore
PM,s,σ(GF(s)) ≥

∏∞
i=1(1 − εi) > 0, which implies ¬(2), where s0 = s.

Towards (3) ⇒ (4), regardless of s0 and the chosen strategy, the expected number of
visits to s is upper-bounded by B(s) def=

∑∞
n=0(n + 1) · (Re(s))n < ∞.

The implication (4) ⇒ (5) holds trivially.
Towards ¬(2) ⇒ ¬(5), by ¬(2) there exist states s0, s and a strategy σ such that

PM,s0,σ(GF(s)) > 0. Thus the expected number of visits to s is infinite, which implies ¬(5).
◀

We remark that if an MDP is not universally transient (unlike in Lemma 3(5)), for a
strategy σ, the expected number of visits to some state can be infinite, even if σ attains
Transience almost surely.

Consider the MDP M with controlled states {s0, s1, . . . }, initial state s0 and transitions
s0 → s0 and sk → sk+1 for every k ≥ 0. We define a strategy σ that, while in state s0,
proceeds in rounds i = 1, 2, . . . . In the i-th round it tosses a fair coin. If Heads then it goes
to s1. If Tails then it loops around s0 exactly 2i times and then goes to round i + 1. In
every round the probability of going to s1 is 1/2 and therefore the probability of staying in
s0 forever is (1/2)∞ = 0. Thus PM,s0,σ(Transience) = 1. However, the expected number of
visits to s0 is ≥

∑∞
i=1
( 1

2
)i · 2i = ∞.

4 MD Strategies for Transience

We show that there exist uniformly ε-optimal MD strategies for Transience and that optimal
strategies, where they exist, can also be chosen MD.

First we show that there exist ε-optimal deterministic 1-bit strategies for Transience (in
Corollary 5) and then we show how to dispense with the 1-bit memory (in Lemma 6).

It was shown in [14] that there exist ε-optimal deterministic 1-bit strategies for Büchi
objectives in acyclic countable MDPs (though not in general MDPs). These 1-bit strategies
will be similar to the 1-bit strategies for Transience that we aim for in (not necessarily
acyclic) countable MDPs. In Lemma 4 below we first strengthen the result from [14] and
construct ε-optimal deterministic 1-bit strategies for objectives Büchi(F ) ∩ Transience.
From this we obtain deterministic 1-bit strategies for Transience (Corollary 5).

▶ Lemma 4. Let M be a countable MDP, I a finite set of initial states, F a set of states
and ε > 0. Then there exists a deterministic 1-bit strategy for Büchi(F ) ∩ Transience that
is ε-optimal from every s ∈ I.

CONCUR 2021



1:8 Transience in Countable MDPs

Proof sketch. It follows the proof of [14, Theorem 5], which considers Büchi(F ) conditions
for acyclic (and hence universally transient) MDPs. The only part of that proof that requires
modification is [14, Lemma 10], which is replaced here by [13, Lemma 18] to deal with general
MDPs.

In short, from every s ∈ I there exists an ε-optimal strategy σs for φ
def= Büchi(F ) ∩

Transience. We observe the behavior of the finitely many σs for s ∈ I on an infinite,
increasing sequence of finite subsets of S. Based on [13, Lemma 18], we can define a second
stronger objective φ′ ⊆ φ and show ∀s∈I PM,s,σs

(φ′) ≥ valM,φ(s) − 2ε. We then construct
a deterministic 1-bit strategy σ′ that is optimal for φ′ from all s ∈ I and thus 2ε-optimal for
φ. Since ε can be chosen arbitrarily small, the result follows. ◀

Unlike for the Transience objective alone (see below), the 1-bit memory is strictly
necessary for the Büchi(F ) ∩ Transience objective in Lemma 4. The 1-bit lower bound for
Büchi(F ) objectives in [14] holds even for acyclic MDPs where Transience is trivially true.

▶ Corollary 5. Let M be a countable MDP, I a finite set of initial states, F a set of states
and ε > 0.
1. If ∀s ∈ I valM,Büchi(F )(s) = valM,Büchi(F )∩Transience(s) then there exists a determin-

istic 1-bit strategy for Büchi(F ) that is ε-optimal from every s ∈ I.
2. If M is universally transient then there exists a deterministic 1-bit strategy for Büchi(F )

that is ε-optimal from every s ∈ I.
3. There exists a deterministic 1-bit strategy for Transience that is ε-optimal from every

s ∈ I.

Proof. Towards (1), since ∀s ∈ I valM,Büchi(F )(s) = valM,Büchi(F )∩Transience(s), strategies
that are ε-optimal for Büchi(F ) ∩ Transience are also ε-optimal for Büchi(F ). Thus the
result follows from Lemma 4.

Item (2) follows directly from (1), since the precondition always holds in universally
transient MDPs.

Towards (3), let F
def= S. Then we have Büchi(F ) ∩ Transience = Transience and we

obtain from Lemma 4 that there exists a deterministic 1-bit strategy for Transience that is
ε-optimal from every s ∈ I. ◀

Note that every acyclic MDP is universally transient and thus Corollary 5(2) implies the
upper bound on the strategy complexity of Büchi(F ) from [14] (but not vice-versa).

In the next step we show how to dispense with the 1-bit memory and obtain non-uniform
ε-optimal MD strategies for Transience.

▶ Lemma 6. Let M = (S, S2, S#, −→, P ) be a countable MDP with initial state s0, and
ε > 0. There exists an MD strategy σ that is ε-optimal for Transience from s0, i.e.,
PM,s0,σ(Transience) ≥ valM,Transience(s0) − ε.

Proof. By Lemma 2 it suffices to prove the property for finitely branching MDPs. Thus
without restriction in the rest of the proof we assume that M is finitely branching.

Let ε′ def= ε/2. We instantiate Corollary 5(3) with I
def= {s0} and obtain that there exists

an ε′-optimal deterministic 1-bit strategy σ̂ for Transience from s0.
We now construct a slightly modified MDP M′ as follows. Let Sbad ⊆ S be the subset

of states where σ̂ attains zero for Transience in both memory modes, i.e., Sbad
def= {s ∈ S |

PM,s,σ[0](Transience) = PM,s,σ[1](Transience) = 0}. Let Sgood
def= S \ Sbad . We obtain M′
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from M by making all states in Sbad losing sinks (for Transience), by deleting all outgoing
edges and adding a self-loop instead. It follows that

PM,s0,σ̂(Transience) = PM′,s0,σ̂(Transience) (1)

∀σ. PM,s0,σ(Transience) ≥ PM′,s0,σ(Transience) (2)

In the following we show that it is possible to play in such a way that, for every s ∈ Sgood ,
the expected number of visits to s is finite. We obtain the deterministic 1-bit strategy σ′

in M′ by modifying σ̂ as follows. In every state s and memory mode x ∈ {0, 1} where σ̂[x]
attains 0 for Transience and σ̂[1 − x] attains > 0 the strategy σ′ sets the memory bit to
1 − x. (Note that only states s ∈ Sgood can be affected by this change.) It follows that

∀s ∈ S. PM′,s,σ′(Transience) ≥ PM′,s,σ̂(Transience) (3)

Moreover, from all states in Sgood in M′ the strategy σ′ attains a strictly positive
probability of Transience in both memory modes, i.e., for all s ∈ Sgood we have

t(s, σ′) def= min
x∈{0,1}

PM′,s,σ′[i](Transience) > 0.

Let r(s, σ′, x) be the probability, when playing σ′[x] from state s, of reaching s again in the
same memory mode x. For every s ∈ Sgood we have r(s, σ′, x) < 1, since t(s, σ′) > 0.

Let R(s) be the expected number of visits to state s when playing σ′ from s0 in M′, and
Rx(s) the expected number of visits to s in memory mode x ∈ {0, 1}. For all s ∈ Sgood we
have that

R(s) = R0(s) + R1(s) ≤
∞∑

n=1
n · r(s, σ′, 0)n−1 +

∞∑
n=1

n · r(s, σ′, 1)n−1 < ∞ (4)

where the first equality holds by linearity of expectations. Thus the expected number of
visits to s is finite.

Now we upper-bound the probability of visiting Sbad . We have PM′,s0,σ′(Transience) ≥
PM′,s0,σ̂(Transience) = PM,s0,σ̂(Transience) ≥ valM,Transience(s0) − ε′ by (3), (1) and
the ε′-optimality of σ̂. Since states in Sbad are losing sinks in M′, it follows that

PM′,s0,σ′(FSbad) ≤ 1 − PM′,s0,σ′(Transience) ≤ 1 − valM,Transience(s0) + ε′ (5)

We now augment the MDP M′ by assigning costs to transitions as follows. Let i : S → N
be an enumeration of the state space, i.e., a bijection. Let S′

good
def= {s ∈ Sgood | R(s) > 0} be

the subset of states in Sgood that are visited with non-zero probability when playing σ′ from
s0. Each transition s′ → s is assigned a cost:

If s′ ∈ Sbad then s ∈ Sbad by def. of M′. We assign cost 0.
If s′ ∈ Sgood and s ∈ Sbad we assign cost K/(1 − valM,Transience(s0) + ε′) for K

def=
(1 + ε′)/ε′.
If s′ ∈ Sgood and s ∈ S′

good we assign cost 2−i(s)/R(s). This is well defined, since R(s) > 0.
s′ ∈ Sgood and s ∈ Sgood \ S′

good we assign cost 1.
Note that all transitions leading to states in Sgood are assigned a non-zero cost, since R(s) is
finite by (4).

When playing σ′ from s0 in M′, the expected total cost is upper-bounded by

PM′,s0,σ′(FSbad) · K/(1 − valM,Transience(s0) + ε′) +
∑

s∈S′
good

R(s) · 2−i(s)/R(s)
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The first part is ≤ K by (5) and the second part is ≤ 1, since R(s) < ∞ by (4). Therefore
the expected total cost is ≤ K + 1, i.e., σ′ witnesses that it is possible to attain a finite
expected cost that is upper-bounded by K + 1.

Now we define our MD strategy σ. Let σ be an optimal MD strategy on M′ (from s0)
that minimizes the expected cost. It exists, as a finite expected cost is attainable and M′ is
finitely branching; see [21, Theorem 7.3.6].

We now show that σ attains Transience with high probability in M′ (and in M).
Since σ is cost-optimal, its attained cost from s0 is upper-bounded by that of σ′, i.e.,
≤ K + 1. Since the cost of entering Sbad is K/(1 − valM,Transience(s0) + ε′), we have
PM′,s0,σ(FSbad) · K/(1 − valM,Transience(s0) + ε′) ≤ K + 1 and thus

PM′,s0,σ(FSbad) ≤ K + 1
K

(1 − valM,Transience(s0) + ε′) (6)

For every state s ∈ Sgood , all transitions into s have the same fixed non-zero cost. Thus every
run that visits some state s ∈ Sgood infinitely often has infinite cost. Since the expected cost
of playing σ from s0 is ≤ K + 1, such runs must be a null-set, i.e.,

PM′,s0,σ(¬Transience ∧ GSgood) = 0 (7)

Thus

PM,s0,σ(Transience)
≥ PM′,s0,σ(Transience) by (2)
= 1 − PM′,s0,σ(FSbad) by (7)

≥ 1 − K + 1
K

(1 − valM,Transience(s0) + ε′) by (6)

= valM,Transience(s0) − ε′ − (1/K)(1 − valM,Transience(s0) + ε′)
≥ valM,Transience(s0) − ε′ − (1/K)(1 + ε′)
= valM,Transience(s0) − 2ε′ def. of K

= valM,Transience(s0) − ε def. of ε′

◀

Now we lift the result of Lemma 6 from non-uniform to uniform strategies (and to optimal
strategies) and obtain the following theorem. The proof is a generalization of a “plastering”
construction by Ornstein [20] (see also [16]) from reachability to tail objectives, which works
by fixing MD strategies on ever expanding subsets of the state space.

▶ Theorem 7. Let M = (S, S2, S#, −→, P ) be a countable MDP, and let φ be an objective
that is tail in M. Suppose for every s ∈ S there exist ε-optimal MD strategies for φ. Then:
1. There exist uniform ε-optimal MD strategies for φ.
2. There exists a single MD strategy that is optimal from every state that has an optimal

strategy.

▶ Theorem 8. In every countable MDP there exist uniform ε-optimal MD strategies for
Transience. Moreover, there exists a single MD strategy that is optimal for Transience
from every state that has an optimal strategy.

Proof. Immediate from Lemma 6 and Theorem 7, since Transience is a tail objective. ◀
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5 Strategy Complexity in Universally Transient MDPs

The strategy complexity of parity objectives in general MDPs is known [15]. Here we show
that some parity objectives have a lower strategy complexity in universally transient MDPs.
It is known [14] that there are acyclic (and hence universally transient) MDPs where ε-optimal
strategies for {1, 2}-Parity (and optimal strategies for {1, 2, 3}-Parity, resp.) require 1 bit.

We show that, for all simpler parity objectives in the Mostowski hierarchy [19], universally
transient MDPs admit uniformly (ε-)optimal MD strategies (unlike general MDPs [15]).
These results (Theorems 10 and 11) ultimately rely on the existence of uniformly ε-optimal
strategies for safety objectives. While such strategies always exist for finitely branching
MDPs – simply pick a value-maximal successor – this is not the case for infinitely branching
MDPs [17]. However, we show that universal transience implies the existence of uniformly
ε-optimal strategies for safety objectives even for infinitely branching MDPs.

▶ Theorem 9. For every universally transient countable MDP, safety objective and ε > 0
there exists a uniformly ϵ-optimal MD strategy.

Proof. Let M = (S, S2, S#, −→, P ) be a universally transient MDP and ε > 0. Assume
w.l.o.g. that the target T ⊆ S of the objective φ = Safety(T ) is a (losing) sink and let
ι : S → N be an enumeration of the state space S.

By Lemma 3(3), for every state s we have Re(s) def= supσ PM,s,σ(XF(s)) < 1 and thus
R(s) def=

∑∞
i=0 Re(s)i < ∞. This means that, independent of the chosen strategy, Re(s)

upper-bounds the chance to return to s, and R(s) bounds the expected number of visits to s.
Suppose that σ is an MD strategy which, at any state s ∈ S2, picks a successor s′ with

val(s′) ≥ val(s) − ε

2ι(s)+1 · R(s)
.

This is possible even if M is infinitely branching, by the definition of value and the fact that
R(s) < ∞. We show that PM,s0,σ(Safety(T )) ≥ val(s0) − ε holds for every initial state s0,
which implies the claim of the theorem.

Towards this, we define a function cost that labels each transition in the MDP with a real-
valued cost: For every controlled transition s−→s′ let cost((s, s′)) def= val(s) − val(s′) ≥ 0.
Random transitions have cost zero. We will argue that when playing σ from any start state
s0, its attainment w.r.t. the objective Safety(T ) equals the value of s0 minus the expected
total cost, and that this cost is bounded by ε.

For any i ∈ N let us write si for the random variable denoting the state just after step i,
and Cost(i) def= cost(si, si+1) for the cost of step i in a random run. We observe that under
σ the expected total cost is bounded in the limit, i.e.,

lim
n→∞

E

(
n−1∑
i=0

Cost(i)
)

≤ ε. (8)

We moreover note that for every n,

E(val(sn)) = E(val(s0)) − E

(
n−1∑
i=0

Cost(i)
)

. (9)

Full proofs of the above two equations can be found in [13]. Together they imply

lim inf
n→∞

E(val(sn)) = val(s0) − lim
n→∞

E

(
n−1∑
i=0

cost(i)
)

≥ val(s0) − ε. (10)
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Finally, to show the claim let [sn /∈ T ] : Sω → {0, 1} be the random variable that indicates
that the n-th state is not in the target set T . Note that [sn /∈ T ] ≥ val(sn) because target
states have value 0. We have:

PM,s0,σ(Safety(T )) = PM,s0,σ

( ∞∧
i=0

Xi¬T

)
semantics of Safety(T ) = G¬T

= lim
n→∞

PM,s0,σ

(
n∧

i=0
Xi¬T

)
continuity of measures

= lim
n→∞

PM,s0,σ(Xn¬T ) T is a sink

= lim
n→∞

E([sn /∈ T ]) definition of [sn /∈ T ]

≥ lim inf
n→∞

E(val(sn)) as [sn /∈ T ] ≥ val(sn)

≥ val(s0) − ε Equation (10). ◀

We can now combine Theorem 9 with the results from [15] to show the existence of MD
strategies assuming universal transience.

▶ Theorem 10. For universally transient MDPs optimal strategies for {0, 1, 2}-Parity,
where they exist, can be chosen uniformly MD.

Formally, let M be a universally transient MDP with states S, Col : S → {0, 1, 2}, and
φ = Parity(Col). There exists an MD strategy σ′ that is optimal for all states s that have
an optimal strategy:

(
∃σ ∈ Σ. PM,s,σ(φ) = valM(s)

)
=⇒ PM,s,σ′(φ) = valM(s).

Proof. Let M+ be the conditioned version of M w.r.t. φ (see [15, Def. 19] for a precise
definition). By Lemma 17, M+ is still a universally transient MDP and therefore by
Theorem 9, there exist uniformly ε-optimal MD strategies for every safety objective and
every ε > 0. The claim now follows from [15, Theorem 22]. ◀

▶ Theorem 11. For every universally transient countable MDP M, co-Büchi objective and
ε > 0 there exists a uniformly ε-optimal MD strategy.

Formally, let M be a universally transient countable MDP with states S, Col : S → {0, 1}
be a coloring, φ = Parity(Col) and ε > 0.

There exists an MD strategy σ′ s.t. for every state s, PM,s,σ′(φ) ≥ valM(s) − ε.

Proof. This directly follows from Theorem 9 and [15, Theorem 25]. ◀

6 The Conditioned MDP

Given an MDP M and an objective φ that is tail in M, a construction of a conditioned
MDP M+ was provided in [17, Lemma 6] that, very loosely speaking, “scales up” the
probability of φ so that any strategy σ is optimal in M if it is almost surely winning in M+.
For certain tail objectives, this construction was used in [17] to reduce the sufficiency of MD
strategies for optimal strategies to the sufficiency of MD strategies for almost surely winning
strategies, which is a special case that may be easier to handle.

However, the construction was restricted to states that have an optimal strategy. In fact,
states in M that do not have an optimal strategy do not appear in M+. In the following, we
lift this restriction by constructing a more general version of the conditioned MDP, called M∗.
The MDP M∗ will contain all states from M that have a positive value w.r.t. φ in M.
Moreover, all these states will have value 1 in M∗. It will then follow from Lemma 13(3)
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below that an ε-optimal strategy in M∗ is εvalM(s0)-optimal in M. This allows us to
reduce the sufficiency of MD strategies for ε-optimal strategies to the sufficiency of MD
strategies for ε-optimal strategies for states with value 1. In fact, it also follows that if an
MD strategy σ is uniform ε-optimal in M∗, it is multiplicatively uniform ε-optimal in M,
i.e., PM,s,σ(φ) ≥ (1 − ε) · valM(s) holds for all states s.

▶ Definition 12. For an MDP M = (S, S2, S#, −→, P ) and an objective φ that is tail in M,
define the conditioned version of M w.r.t. φ to be the MDP M∗ = (S∗, S∗2, S∗#, −→∗, P∗)
with

S∗2 = {s ∈ S2 | valM(s) > 0}
S∗# = {s ∈ S# | valM(s) > 0} ∪ {s⊥} ∪ {(s, t) ∈ −→ | s ∈ S2, valM(s) > 0}

−→∗ = {(s, (s, t)) ∈ (S2 × −→) | valM(s) > 0, s−→t} ∪
{(s, t) ∈ S# × S | valM(s) > 0, valM(t) > 0} ∪
{((s, t), t) ∈ (−→ × S) | valM(s) > 0, valM(t) > 0} ∪
{((s, t), s⊥) ∈ (−→ × {s⊥}) | valM(s) > valM(t)} ∪
{(s⊥, s⊥)}

P∗(s, t) = P (s, t) · valM(t)
valM(s) P∗((s, t), t) = valM(t)

valM(s)

P∗((s, t), s⊥) = 1 − valM(t)
valM(s) P∗(s⊥, s⊥) = 1

for a fresh state s⊥.

The conditioned MDP is well-defined. Indeed, as φ is tail in M, for any s ∈ S# we have
valM(s) =

∑
s−→t P (s, t)valM(t), and so if valM(s) > 0 then

∑
s−→t P∗(s, t) = 1.

▶ Lemma 13. Let M = (S, S2, S#, −→, P ) be an MDP, and let φ be an objective that is
tail in M. Let M∗ = (S∗, S∗2, S∗#, −→∗, P∗) be the conditioned version of M w.r.t. φ. Let
s0 ∈ S∗ ∩ S. Let σ ∈ ΣM∗ , and note that σ can be transformed to a strategy in M in a
natural way. Then:
1. For all n ≥ 0 and all partial runs s0s1 · · · sn ∈ s0S∗

∗ in M∗ with sn ∈ S:

valM(s0) · PM∗,s0,σ(s0s1 · · · snSω
∗ ) = PM,s0,σ(s0s1 · · · snSω) · valM(sn) ,

where w for a partial run w in M∗ refers to its natural contraction to a partial run in M;
i.e., w is obtained from w by deleting all states of the form (s, t).

2. For all measurable R ⊆ s0(S∗ \ {s⊥})ω we have

PM,s0,σ(R) ≥ valM(s0) · PM∗,s0,σ(R) ≥ PM,s0,σ(R ∩ JφKs0) ,

where R is obtained from R by deleting, in all runs, all states of the form (s, t).
3. We have valM(s0) · PM∗,s0,σ(φ) = PM,s0,σ(φ). In particular, valM∗(s0) = 1, and, for

any ε ≥ 0, strategy σ is ε-optimal in M∗ if and only if it is εvalM(s0)-optimal in M.
Lemma 13.3 provides a way of proving the existence of MD strategies that attain, for

each state s, a fixed fraction (arbitrarily close to 1) of the value of s:

▶ Theorem 14. Let M = (S, S2, S#, −→, P ) be an MDP, and let φ be an objective that is tail
in M. Let M∗ = (S∗, S∗2, S∗#, −→∗, P∗) be the conditioned version of M w.r.t. φ. Let ε ≥ 0.
Any MD strategy σ that is uniformly ε-optimal in M∗ (i.e., PM∗,s,σ(φ) ≥ valM∗(s) − ε

holds for all s ∈ S∗) is multiplicatively ε-optimal in M (i.e., PM,s,σ(φ) ≥ (1 − ε)valM(s)
holds for all s ∈ S).
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Proof. Immediate from Lemma 13.3. ◀

As an application of Theorem 14, we can strengthen the first statement of Theorem 8
towards multiplicatively (see Theorem 14) uniform ε-optimal MD strategies for Transience.

▶ Corollary 15. In every countable MDP there exist multiplicatively uniform ε-optimal MD
strategies for Transience.

Proof. Let M be a countable MDP, and M∗ its conditioned version w.r.t. Transience. Let
ε > 0. By Theorem 8, there is a uniform ε-optimal MD strategy σ for Transience in M∗.
By Theorem 14, strategy σ is multiplicatively uniform ε-optimal in M. ◀

The following lemma, stating that universal transience is closed under “conditioning”, is
needed for the proof of Lemma 17 below.

▶ Lemma 16. Let M = (S, S2, S#, −→, P ) be an MDP, and let φ be an objective that is tail
in M. Let M∗ = (S∗, S∗2, S∗#, −→∗, P∗) be the conditioned version of M w.r.t. φ, where
s⊥ is replaced by an infinite chain s1

⊥−→s2
⊥−→ · · · . If M is universally transient, then so

is M∗.

In [17, Lemma 6] a variant, say M+, of the conditioned MDP M∗ from Definition 12 was
proposed. This variant M+ differs from M∗ in that M+ has only those states s from M
that have an optimal strategy, i.e., a strategy σ with PM,s,σ(φ) = valM(s). Further, for any
transition s−→t in M+ where s is a controlled state, we have valM(s) = valM(t), i.e., M+
does not have value-decreasing transitions emanating from controlled states. The following
lemma was used in the proof of Theorem 10:

▶ Lemma 17. Let M be an MDP, and let φ be an objective that is tail in M. Let M+ be
the conditioned version w.r.t. φ in the sense of [17, Lemma 6]. If M is universally transient,
then so is M+.

7 Conclusion

The Transience objective admits ε-optimal (resp. optimal) MD strategies even in infinitely
branching MDPs. This is unusual, since ε-optimal strategies for most other objectives require
infinite memory if the MDP is infinitely branching (in particular all objectives generalizing
Safety [17]).

Transience encodes a notion of continuous progress, which can be used as a tool to
reason about the strategy complexity of other objectives in countable MDPs. E.g., our result
on Transience is used in [18] as a building block to show upper bounds on the strategy
complexity of certain threshold objectives w.r.t. mean payoff, total payoff and point payoff.
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