Principles of Computer Game
Design and Implementation

Lecture 20

Agents and Virtual Player

e Agents, no virtual player

— Shooters, racing, ...

* Virtual player, no agents

— Chess, ...

* Both
— Strategy games, team sport games, ...

Agents

* Act as
— enemies, allies, neutral characters

e Constantly go through a
— Sense — Think — Act cycle

e Sometimes can learn new behaviours

 Example: first-person shooter enemies, other
car drivers, units in strategies

Outline for today

* Sense-Think-Act Cycle:
— Thinking
— Acting

Sense-Think-Act Cycle: Thinking

* Sensed information gathered
* Must process sensed information
* Two primary methods

— Process using pre-coded expert knowledge
— Use search to find an optimal solution

Thinking: Expert Knowledge

 Many different systems
— Finite-state machines
— Production systems
— Decision trees
— Logical inference
* Encoding expert knowledge is appealing
because it s relatively easy
— Can ask just the right questions
— As simple as if-then statements

* Problems with expert knowledge
— Not very scalable

Thinking: Search

 Employs search algorithm to find an optimal
or near-optimal solution

* E.g.
— A* pathfinding
— Game search

Thinking: Machine Learning

If imparting expert knowledge and search are both
not reasonable/possible, then machine learning
might work

Examples:
— Reinforcement learning

— Neural networks
— Decision tree learning

Not often used by game developers
— complexity of learning techniques

— reproducibility and quality control
— impossible to test if it performs correctly and locate bugs.

Thinking: Flip-Flopping Decisions

* Must prevent flip-flopping of decisions

* Reaction times might help keep it from
happening every frame
* Must make a decision and stick with it

— Until situation changes enough
— Until enough time has passed

Sense-Think-Act Cycle: Acting

e Sensing and thinking steps invisible to player
* Acting is how player witnesses intelligence

 Numerous agent actions, for example:
— Change locations
— Pick up object
— Play animation
— Play sound effect
— Converse with player
— Fire weapon

Acting: Showing Intelligence

Adeptness and subtlety of actions impact perceived
level of intelligence

Enormous burden on asset generation

Agent can only express intelligence in terms of
vocabulary of actions

Current games have huge sets of animations/assets

— Must use scalable solutions to make selections

Extra Step in Cycle: Learning and
Remembering

e Optional 4t step
* Not necessary in many games

— Agents don’t live long enough
— Game design might not desire it

Learning

e Remembering outcomes and generalizing to
future situations

* Simplest approach: gather statistics
— If 80% of time player attacks from left
— Then expect this likely event

* Adapts to player behavior

Remembering

« Remember hard facts

— Observed states, objects, or players
* For example

— Where was the player last seen?

— What weapon did the player have?

— Where did | last see a health pack?
 Memories should fade

— Helps keep memory requirements lower
— Simulates poor, imprecise, selective human memory

Remembering within the World

 All memory doesn’ t need to be stored in the
agent — can be stored in the world

* For example:
— Agents get slaughtered in a certain area

— Area might begin to “smell of death”

« Agent’ s path planning will avoid the area

— Simulates group memory

Virtual Player Example: Game Playing

e Recall from COMP219:

deterministic chance

perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleships, bridge, poker, scrabble
blind tictactoe nuclear war

Problem Formulation

Initial state
— Initial board position, player to move.

Successor function

— Returns list of (move, state) pairs, one per legal move.

Terminal test
— Determines when the game is over.

Utility function

— Numeric value for terminal states
— E.g. Chess +1, -1, 0

— E.g. Backgammon +192 to -192

17

D

X

Game Tree

O

+1

O
>

X

O

O
>

O

@)
>

O

-
W

@
X
X

O
O

+1

X
O
X

O

O

+1

18

Game Tree

* Each level labelled with player to move
* Each level represents a ply

— Half a turn

* Represents what happens with competing
agents

19

Minimax Value

Formally:
(Utility(n) Terminal
MinimaxValue(n) = { maxgeguccessors(n) MinimaxValue(s) MAX
| Mingcgyccessors(n) MinimaxValue(s) MIN

20

Minimax Algorithm

Calculate minimax value of each node
recursively

Depth-first exploration of tree
Game tree as minimax tree

Max Node: ‘
Min Node v

21

Minimax Tree

Min takes the lowest
value from its children

Max takes the highest
value from its children

A

22

Extension: Nondeterministic Games

* Consider Naughts and Crosses game with an
element of chance:
* Before each move, a player tosses a coin

— Head: you play crosses
— Tail: you play naughts

Game Tree With Chance Nodes

0.5

@)

X X o o

@] Ol X[X @)

o O O| O O

tl A5 +1
X

e X X @)
Ol X | X O| X|X X
Oo| O e=e==6 O

CHANCE
0.5
0 MAX
X x| ol x
ol x X o x CHANCE
Lolo o) o|lo
+1 0.5

(0)
x| o o) xlo| x| | x|olx
o] X X o| X o|x|o
o|0 o) olo|lo]| |o|o

Backgammon

* Admittedly, this Naughts

and Crosses modification
is weird

e Backgammon is a better
example of a chance
game

25 24 23 22 21 20 19 18 17 16 15 14 13

25

ExpectiMinimax

(Utility(n) Terminal
_ MaXsecSuccessors(n) EMV(S) MAX
EMV(”) = minsGSuccessors(n) EMV(S) MIN
\ ZSGSuccessors(n) PrOb(S)EMV(S) CHOICE
X X
0| x
o|o
0.5 0.5
O
X|IX X [x| [x| [x] [x] [x]o]x
0 o|x|x| [o]x o| x o|x|ol| |o]x
o] o 0|0 o|0 olalo| |ofo ol|o -

Playing Cards

* Chance + Imperfect information

* |dea: Chance nodes for all possible deals

— (compatible with the revealed information)

* Use ExpectiMinimax

Summary

 Game artificial intelligence differs in that it
sets a different goal

— Appear intelligent rather than be one

 Game agent & Virtual player
— Virtual player is closer to traditional Al

— Game agents correspond to the modern view on
Al

* Next, we look more on agents than on the VP.

