
Principles of Computer Game 
Design and Implementation

Lecture 28



Outline for today

• Pathfinding 2

2



Tackling Paths

• Characters “live” in a 
computer world

– Even developers may not 
know exact location

• Physics simulations

3

• Pathfinders operate on 
discrete structures



World Representation

To use pathfinding

• Division Scheme
– Quantisation and Localisation

• Converting positions into nodes and back

– Generation
• Who and how define the mapping

– Validity
• Being able to fulfil the plan

4



Bad Quantisation

• Errors in quantisation can lead to invalid plans 

• Plans have to agree with steering

5



Tile-Based Graphs

• tileX = (int) (x/tileSize) 

tileY = (int) (y/tileSize)

6

Works in square worlds



Tile-Based Graphs: Validity

• If wall are not parallel to tiles

• Will steering succeed?

• Not widely used in 3D games

7



Waypoints

Locations on map + edges

• Identified by designers

• Computed automatically

– Corner waypoints

– Points of visibility

8

Popular game AI technique
• Half-life 



Navigation Mashes

• In modern games models are built from 
polygons (triangles)

9

• A character can 
always pass between 
adjacent polygons 

• Fully automated 
generation of graphs



Correct Quantisation

• Several levels in the model

– Take elevations into account
when mapping to 
a graph node

10



Validity of Plans

• Character can always pass between adjacent 
polygons

• No direct pass between
A and B

• Floor plan is done by 
designers and they avoid this

11

A

B



Chunky Paths

• Pathfinding may not produce a
natural movement

• After a path is found

– It needs to be smoothed

12

A

B



String Pulling

• Move A – B – C

– If C can be seen from A, drop B

13

A

B

C A

B

C

A

B

C

No change



Example

14

A

B

• Extreme case

• Even if there are 
obstacles, string pulling 
gives better paths



Splines

• Chunky paths can be further smoothed by 
converting them to splines

– Curves that approximate paths

• Some maths required (see wikipedia)

15



Passable Edges

• Not every agent can pass

• Need to adapt graphs for agents
16



Following Paths

• We assume that if a move is planned it can be 
executed

– Validity of a division scheme

• What is the world changes

– Other agents move about?

17



Possible Solutions

• Leave space between agents
– Different pathfinding graphs for different agents

• 

– Centralised pathfinding 

– May not be natural (e.g. tanks)

• Assume there is no path
–

• Navigate around the obstacle
– Steering / Pathfinding

18



Beware of the Pit

• Pathfinder requires to move X ➔ Y

– Steering can fail

• Navigation meshes are much better
– Easier to re-plan (full information about passable areas)

• Hierarchical pathfinding

19

X Y

Dynamic
obstacle



Hierarchical Pathfinding

20

May not discover shortest path



Other Pathfinding Topics

• Cooperative pathfinding

– Finding a path for a group of agents

• Variable terrain cost

– Penalise paths near existing units

• Pathfinding using the GPU

• Pathfinding in dynamic environments

• …

21



Pathfinding: Summary

• Algorithmically, not very difficult
– A*

– Choice of heuristics is important
• Do not fear inadmissible heuristics!

• Linking model and graph can be tricky
– A number of methods

– Trend towards navigational meshes
• Some developers disagree

• Paths often require smooting

22


