
Principles of Computer Game
Design and Implementation

Lecture 3

Acknowledgement

• All of the materials of this module are
inherited from Prof. Boris Konev.

2

We already knew

• Introduction to this module

• History of video games

• High-level information for a game (such as
Game platform, player motivation, game
structure, player-game model, character
archetype, game genres

3

Outline for Today

• Overall architecture

• Game structure

• scripting language

• Game engine

• Programming language

4

Game Architecture

More than Code

• Until the 1980s programmers developed the
whole game (and did the art and sounds too!)

• Now programmers write code to support
designers and artists (content creators)

• The code for modern games is highly complex

• With code bases exceeding a million lines of
code, a well-defined architecture is essential

6

History

• Initially, games were written as a monolith
entity

– Ad-hoc manner

– Low-level programming languages (Assembly, C)

• Low resource requirements

• Atari 2600 VCS only had 4K memory for the entire
game!

– Rapid development of hardware lead to poor code
reuse

7

History

• id Software games (Doom and Quake) were so
popular that other developers preferred to
licence their 3D manipulation code rather
than develop it from scratch

• Leads to a better design in computer games

8

• No organisation

• Code grows “organically”

• Subsystems not identified
nor isolated

• Works for small projects

(used in the past also for efficiency)

Overall Architecture: Ad-hoc

9

Overall Architecture: Modular

• Subsystems clearly isolated

• Well-defined module
interfaces

• Reuse and maintainability

• Dependencies between modules are not
controlled

10

Overall Architecture: DAG

• Modular + no cycles

• Classify modules

– Higher-level

• E.g. Game-specific code

– Lower-level

• E.g. Platform-specific code

11

Overall Architecture: Layered

12

• Rigid layers

– Can only interact with
modules directly below

– Can lead to code duplication

• Give MODULE A access to MODULE I

– Improves portability and best for code reuse

Perils of Modular Architecture

• We want something like this

13

AI

Physics

Graphics

• We want something like this for this game
– No silver bullet

Game Subsystems

• Input
• Networking
• Rendering
• Sound
• Script
• Loading
• Front-end
• HUD
• Physics
• AI/Gameplay

14

Ideally, we wan them to be as
independent as possible
• Each system as a black box

with controlled
communication

• But…
• Renderer, Physics,

Networking, sound, AI
all need positions of
objects

Inspiration: MVC Pattern

• In business applications, Model-View-
Controller design pattern is quite popular

15

• Model: data

• View: UI

• Controller: links the two

• World model

• Graphics

• Game Engine

Game State

• A collection of information that presents the
state of game entities in a particular moment

– Position, orientation, velocity

– Behaviour, intentions, …

– Geometry

• Putting it all together (global state) may not
be a good idea

16

Game Structure

17

Large Projects

• Game code

– Anything related directly to the game

• Game engine

– Any code that can be reused between different
games

• Tools

– In house tools

– Plug-ins for off-the-shelf tools

18

Game Code

• Everything directly related to the game
– Camera behaviour

– Characters

– AI entities

– Choices

– …

• C, C++, but increasingly scripting languages
used

19

Scripting Languages

• Why use scripting languages?

– Ease and speed of development

– Short iteration time

– Code becomes a game asset

– Offer additional features and are customizable

– Can be mastered by artists / designers

20

Scripting Languages

• Drawbacks

– Slow performance

– Limited tool support

– Dynamic typing makes it difficult to catch errors

– Awkward interface with the rest of the game

– Difficult to implement well

21

Scripting Languages

• Popular scripting languages

– Python

– Lua

– Custom scripting languages

• UnrealScript, QuakeC, NWNScript

22

Game Engine

• To isolate game from hardware

• To encourage code reuse

• To simplify game development

• Tasks:
– Rendering (2D or 3D), physics, sound, animation,

networking

– AI

– Interface to game code

23

C++

• Initially, there was no alternative to the
Assembly language (performance, resources)

• Then, C became the most popular language
for games

• Today, C++ is the language of choice for game
development especially in game engines

24

C++: Strengths

• Performance

– Control over low-level functionality (memory
management, etc)

– Can switch to assembly or C whenever necessary

– Good interface with OS, hardware, and other
languages

25

C++: Strengths

• High-level, object-oriented

– High-level language features are essential for
making today's complex games

– Has inheritance, polymorphism, templates, and
exceptions

– Strongly typed, so it has improved reliability

26

C++: Strengths

• C Heritage

– C++ is the only high-level language that is
backwards-compatible with C

– Has APIs and compiler support in all platforms

– Easier transition for experienced programmers

27

C++: Strengths

• Libraries

– STL (Standard Template Library)

• Comprehensive set of standard libraries

– Boost: widely used library with wide variety of
functionality

– Many commercial C++ libraries also available

28

C++: Weaknesses

• Too low-level

– Still forces programmers to deal with low-level
issues

– Too error-prone

– Attention to low-level details is overkill for high-
level features or tools

29

C++: Weaknesses

• Too complicated

– Because of its C heritage, C++ is very complicated

– Long learning curve to become competent with
the language

30

Java for Game Development

• Why use Java?

– It's a high-level OO language that simplifies many
C++ features

– Adds several useful high-level features

– Easy to develop for multiple platforms because of
intermediate bytecode

– Good library support

31

Java for Game Development

• Performance

– Has typically been Java's weak point

– Has improved in the last few years: still not up to
C++ level, but very close

– Uses Just-In-Time compiling and HotSpot
optimizations

– Now has high-performance libraries

– Also has access to native functionality

32

Java for Game Development

• Platforms

– Well suited to downloadable and browser-based
games

– Dominates development on mobile and handheld
platforms

– Possible to use in full PC games

• More likely to be embedded into a game

– Not currently used in consoles

33

Java for Game Development

• Teaching Java game development
– Java is taught to all our students

– We can concentrate on game development issues
rather than on the study of a new language

– Knowledge can be used in broader context

We will use a Java game engine,

jMonkeyEngine

34

