Principles of Computer Game
Design and Implementation

Lecture 3

Acknowledgement

e All of the materials of this module are
inherited from Prof. Boris Konev.

We already knew

ntroduction to this module
History of video games

High-level information for a game (such as
Game platform, player motivation, game
structure, player-game model, character
archetype, game genres

Outline for Today

Overall architecture
Game structure
scripting language
Game engine
Programming language

Game Architecture

More than Code

Until the 1980s programmers developed the
whole game (and did the art and sounds too!)

Now programmers write code to support
designers and artists (content creators)

The code for modern games is highly complex

With code bases exceeding a million lines of
code, a well-defined architecture is essential

History

* |nitially, games were written as a monolith
entity
— Ad-hoc manner
— Low-level programming languages (Assembly, C)

* Low resource requirements

e Atari 2600 VCS only had 4K memory for the entire
game!

— Rapid development of hardware lead to poor code
reuse

History

* id Software games (Doom and Quake) were so
popular that other developers preferred to
licence their 3D manipulation code rather
than develop it from scratch

* Leads to a better design in computer games

Overall Architecture: Ad-hoc

No organisation NN
|
Code grows “organically” S caEam /

Subsystems not identified JJJ ey
nor isolated

Works for small projects
(used in the past also for efficiency)

Overall Architecture: Modular

Subsystems clearly isolated

Well-defined module
interfaces

MODULE A

Reuse and maintainability

Dependencies between modules are not
controlled

10

Overall Architecture: DAG

 Modular + no cycles
* Classify modules

— Higher-level

* E.g. Game-specific code | | ovuie |

— Lower-level

e E.g. Platform-specific code

11

Overall Architecture: Layered

* Rigid layers . e /—I\
— Can only interact with fl\ —rl '
modules directly below e U [] |
— Can lead to code duplication ™ o] ‘_|

* Give MODULE A access to MODULE |
— Improves portability and best for code reuse

Perils of Modular Architecture

 We want something like this

Al Graphics

N—"

Physics

 We want something like this for this game
— No silver bullet

Game Subsystems

Input
Networking
Rendering
Sound

Script
Loading
Front-end
HUD

Physics
Al/Gameplay

|deally, we wan them to be as
independent as possible

Each system as a black box

with controlled

communication

But...

 Renderer, Physics,
Networking, sound, Al
all need positions of
objects

Inspiration: MVC Pattern

* |n business applications, Model-View-
Controller design pattern is quite popular

PR Contraller
f
]
|
|
|
| Wiew ! Model

* Model: data * World model
* View: Ul * Graphics
* Controller: links thetwo <+ Game Engine

Game State

* A collection of information that presents the
state of game entities in a particular moment
— Position, orientation, velocity
— Behaviour, intentions, ...
— Geometry

e Putting it all together (global state) may not
be a good idea NN

GAME AND
INGINE C

Game Structure

Large Projects

* Game code
— Anything related directly to the game

* Game engine

— Any code that can be reused between different
games

* Tools
— In house tools
— Plug-ins for off-the-shelf tools

Game Code

* Everything directly related to the game
— Camera behaviour
— Characters
— Al entities
— Choices

e C, C++, but increasingly scripting languages
used

Scripting Languages

 Why use scripting languages?
— Ease and speed of development
— Short iteration time
— Code becomes a game asset
— Offer additional features and are customizable
— Can be mastered by artists / designers

Scripting Languages

* Drawbacks
— Slow performance
— Limited tool support
— Dynamic typing makes it difficult to catch errors
— Awkward interface with the rest of the game
— Difficult to implement well

Scripting Languages

* Popular scripting languages
— Python
— Lua

— Custom scripting languages
* UnrealScript, QuakeC, NWNScript

Game Engine

0 isolate game from hardware
‘0 encourage code reuse
‘0 simplify game development

Tasks:

— Rendering (2D or 3D), physics, sound, animation,
networking

— Al
— Interface to game code

C++

* |nitially, there was no alternative to the
Assembly language (performance, resources)

* Then, C became the most popular language
for games

* Today, C++ is the language of choice for game
development especially in game engines

C++: Strengths

e Performance

— Control over low-level functionality (memory
management, etc)

— Can switch to assembly or C whenever necessary

— Good interface with OS, hardware, and other
languages

C++: Strengths

* High-level, object-oriented

— High-level language features are essential for
making today's complex games

— Has inheritance, polymorphism, templates, and
exceptions

— Strongly typed, so it has improved reliability

C++: Strengths

* C Heritage

— C++is the only high-level language that is
backwards-compatible with C

— Has APIs and compiler support in all platforms
— Easier transition for experienced programmers

C++: Strengths

e Libraries

— STL (Standard Template Library)
* Comprehensive set of standard libraries

— Boost: widely used library with wide variety of
functionality

— Many commercial C++ libraries also available

C++: Weaknesses

e Too low-level

— Still forces programmers to deal with low-level
Issues

— Too error-prone

— Attention to low-level details is overkill for high-
level features or tools

C++: Weaknesses

* Too complicated
— Because of its C heritage, C++ is very complicated

— Long learning curve to become competent with
the language

Java for Game Development

 Why use Java?

— It's a high-level OO language that simplifies many
C++ features

— Adds several useful high-level features

— Easy to develop for multiple platforms because of
intermediate bytecode

— Good library support

Java for Game Development

Performance
— Has typically been Java's weak point

— Has improved in the last few years: still not up to
C++ level, but very close

— Uses Just-In-Time compiling and HotSpot
optimizations

— Now has high-performance libraries
— Also has access to native functionality

Java for Game Development

e Platforms

— Well suited to downloadable and browser-based
games

— Dominates development on mobile and handheld
platforms

— Possible to use in full PC games

* More likely to be embedded into a game

— Not currently used in consoles

Java for Game Development

* Teaching Java game development
— Java is taught to all our students

— We can concentrate on game development issues
rather than on the study of a new language

— Knowledge can be used in broader context

We will use a Java game engine,
jMonkeyEngine

