
Principles of Computer Game
Design and Implementation

Lecture 7

We already Knew

• Viewport, rendering

• How to position an object

• Translation of an object

• Some basic vector operation (sum, subtract)

• Scene graph

Book sample code in Vital

2

Outline for Today

• Movement

• Code for Rotation

3

Movement in Space

• We used vectors to specify the position of an
object in space.

• Vectors are also used to specify the direction
of movement

– (and other purposes, e.g., lightening, physics, etc.)

4

Uniform Motion

• An object moves
– starting from point P0

– with a constant speed

– along a straight line

P(t) = P0 + tV

Position in time tx

y

. P0
V

5

Vector Speed

• Motion equation

P(t) = P0 + tV

– V specifies direction and speed

Twice as fast than thisx

y

. P0
V

2V

6

Main Loop

• In a game engine we do not
have access to continuous time

• Every iteration update the
position

P = P + V

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End

7

jMonkeyEngine

• Create two boxes and then…

public void simpleUpdate(float tpf) {

b.move(new Vector3f(1,0,0).mult(0.005f));

c.move(new Vector3f(2,1,0).mult(0.005f));

}

8

Motion Speed

• How to make the objects move in any
direction with the same speed?

• Given a vector, we need to be able to keep the
direction but make its length 1.

9

Length of a 2D Vector

• Given a 2D vector V=(xv,yv) its length

x

y

a

b
c

Pythagoras theorem

E.g.

10

A Unit (Direction) Vector

• A vector of length ONE is called a unit vector

• One can always normalise a vector

?

11

Length of a 3D Vector

• Given a 3D vector V=(xv,yv,zv) its length

Vector normalisation

12

Vector Normalisation

Vector3f v = new Vector3f(1,2,3);

float l = v.length();

Vector3f u = v.clone().mult(1/l);

c.move(u.mult(.01f));

13

But then…

Vector3f v = new

Vector3f(1,2,3);

Vector3f u = v.normalize();

float speed = 0.1f; // arbitrary

c.move(u.mult(speed));

14

Main Loop

• Every iteration update the
position

P = P + speedU

• U is a unit vector

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End

Different speed on different hardware!

15

Welcome TPF

• simpleUpdate can use a time-per-frame
counter

c.move(u.mult(tpf));

16

Uniform Motion

• Every iteration update the
position

P = P + speedtpfU

• U is a unit vector

• speed is speed

• tpf is time per frame

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End

17

Arbitrary Translation

• Every iteration update the
position

P = P + speedtpfU(t)

• U(t) - the direction of movement
– Depends on time!!

• speed is speed

• tpf is time per frame

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End

18

Rotation

• Rotating is harder than translating

• We will look at the maths of it in the next
lecture

• For now, let’s talk about coding

19

Quaternions

• We could have studies what quaternions are

Quaternion is a “thing” that helps rotate objects.

20

simpleInitApp()

…

Box box = new Box(1, 1, 1);

b = new Geometry("Box", box);

b.setMaterial(mat);

rootNode.attachChild(this.b);

…

21

Example

…

Vector3f axis =
new Vector3f(1, 2, 3);

Quaternion quat = new Quaternion();

…

public void simpleUpdate(float tpf) {

quat.fromAngleAxis(tpf, axis);

b.rotate(quat);

}

…

22

Demo

23

But Then…

b.rotate(pitch, yaw, roll);

also works

24
http://upload.wikimedia.org/wikipedia/commons/7/7e/Rollpitchyawplain.png

A Simple Example

25

b.rotate(tpf*10*FastMath.DEG_TO_RAD,

0,

0);

Turns b at the rate of 10 degrees per second
around the X axis

Complex Motion Example

• A moon rotating around a planet

26

simpleInitApp()

Sphere a = new Sphere(100, 100, 1);

earth = new Geometry("earth", a);

earth.setMaterial(mat);

rootNode.attachChild(earth);

Sphere b = new Sphere(100, 100,

0.3f);

moon = new Geometry("moon", b);

moon.setMaterial(mat);

moon.setLocalTranslation(3, 0, 0);

27

simpleUpdate()

public void simpleUpdate(float tpf) {

quat.fromAngleAxis(tpf, axis);

moon.rotate(quat);

}

28

Let’s Run It

OOPS!

29

What Went Wrong

• In jME rotation and translation
are independent

• The moon rotates about it’s
centre

• Scene graph to the rescue!

30

rootNode

pivotNode

moon

planet

The pivotNode is the
centre of rotation

Demo

31

Code Snippet

private Node pivotNode = new Node(“PN");

…

public void simpleInitApp() {

…

pivotNode.attachChild(moon);

…

}

public void simpleUpdate(float tpf) {

quat.fromAngleAxis(tpf, axis);

pivotNode.rotate(quat);

}

32

X

Y

Z

Pivot Node Explained

33

Local translation

Pivot Points

• While it is possible to specify the exact
position of a geometry, it is often much
simpler to introduce a series of
transformations associated with internal
nodes of a scene graph.

34

