Principles of Computer Game
Design and Implementation

Lecture 7

We already Knew

Viewport, rendering

How to position an object

Translation of an object

Some basic vector operation (sum, subtract)
Scene graph

Book sample code in Vital

Outline for Today

* Movement
e Code for Rotation

Movement in Space

 We used vectors to specify the position of an
object in space.

* Vectors are also used to specify the direction
of movement

— (and other purposes, e.g., lightening, physics, etc.)

Uniform Motion

* An object moves
— starting from point P,
— with a constant speed
— along a straight line

vV

P(t) = Py + tsV

I ix> \

Position in time t

Vector Speed

* Motion equation
P(t) = Py + tsV

— V specifies direction and speed

Twice as fast than this

Main Loop

Initialise

* |n a game engine we do not
have access to continuous time

Update Game

* Every iteration update the Draw Scene
position

P=P+V

Cleanup

jMonkeyEngine
 Create two boxes and then...

public void simpleUpdate (float tpf) {
b.move (new Vector3f(1,0,0) .mult(0.005f));
c.move (new Vector3f(2,1,0) . .mult(0.005f));

Motion Speed

* How to make the objects move in any
direction with the same speed?

* Given a vector, we need to be able to keep the
direction but make its length 1.

Length of a 2D Vector

v
/ b Pythagoras theorem

* Given a 2D vector V=(x,,y,) its length
VI = Va2 + 32

e V=(27); |V|[=v22+7

A Unit (Direction) Vector

* A vector of length ONE is called a unit vector
* One can always normalise a vector

V=@7; [VI=V2+7; U=7

U= - (2,7) ~ (0.274,0.959)

1
Vo3

Length of a 3D Vector

* Given a 3D vector V=(x,,y,,z,) its length

VI = Vxe 2 +y,%+2,°

Vector normalisation

1
U=— .V
V|

Vector Normalisation

Vector3f v = new Vector3f(l,2,3);
float 1 = v.length();
Vector3f u = v.clone () .mult(1l/1);

c.move (u.mult (.01f));

But then...

Vector3f v = new
Vector3f(1l,2,3);

Vector3f u = v.normalize () ;
float speed = 0.1f; // arbitrary

c.move (u.mult (speed)) ;

14

Main Loop

Initialise

* Every iteration update the
position

Update Game

P — P + Speed ‘U Draw Scene
e Uis a unit vector

Cleanup

Different speed on different hardware!

15

Welcome TPF

* simpleUpdate can use a time-per-frame
counter

c.move(u.mult(tpf));

Uniform Motion

Every iteration update the
position

P= P + speed-tpf-U
U is a unit vector

speed is speed
tpf is time per frame

Initialise

Update Game

Draw Scene

Cleanup

17

Arbitrary Translation

Every iteration update the
position

P = P + speed-tpf-U(t)

U(t) - the direction of movement
— Depends on time!!

speed is speed
tpf is time per frame

Rotation

e Rotating is harder than translating

e We will look at the maths of it in the next
lecture

* For now, let’s talk about coding

Quaternions

 We could have studies what quaternions are

Quaternion is a “thing” that helps rotate objects.

simplelnitApp()

Box box = new Box (1, 1, 1);

b = new Geometry ("Box", box);
b.setMaterial (mat) ;
rootNode.attachChild(this.b);

Example

Vector3f axis =
new Vector3f(l, 2, 3);
t

Quaternion quat = new Quaternion();

public void simpleUpdate (float tpf)
quat.fromAngleAxis (tpf, axis);
b.rotate (quat) ;

Demo

But Then...

b.rotate(pitch, yaw, roll);

Center of
Gravity

Pitch Axis

+ Pitch

Roll Axis

Yaw Axis
+ Roll

also works

24
http://upload.wikimedia.org/wikipedia/commons/7/7e/Rollpitchyawplain.png

A Simple Example

b.rotate (tpf*10*FastMath.DEG TO RAD,
0,

0);

Turns b at the rate of 10 degrees per second
around the X axis

Complex Motion Example

* A moon rotating around a planet

simplelnitApp()

Sphere a = new Sphere (100, 100, 1);
earth = new Geometry ("earth", a);
earth.setMaterial (mat) ;
rootNode.attachChild(earth);

Sphere b = new Sphere (100, 100,
0.3%f);

moon = new Geometry ("moon", Db);
moon.setMaterial (mat) ;
moon.setLocalTranslation (3, 0, 0);

simpleUpdate()

public void simpleUpdate (float tpf) {
quat.fromAngleAxis (tpf, axis);

moon.rotate (quat) ;

Let’s Run It

OOPS!

What Went Wrong

* |[n jME rotation and translation

are independent { }
rootNode
e The moon rotates about it’s

centre |

| |
* Scene graph to thwpivowode} { planet }
|

The pivotNode is the

centre of rotation { J
moon

30

Demo

Code Snippet

private Node pivotNode = new Node (“PN");
public void simplelInitApp () {

pilvotNode.attachChild (moon) ;

public void simpleUpdate (float tpf) {
quat.fromAngleAxis (tpf, axis);
pivotNode.rotate (quat) ;

Pivot Node Explained

LocPI translation

- |
- SEN
X

Pivot Points

 While it is possible to specify the exact
position of a geometry, it is often much
simpler to introduce a series of
transformations associated with internal
nodes of a scene graph.

