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Abstract
We continue the investigation of delay games, infinite games in which one player may postpone
her moves for some time to obtain a lookahead on her opponent’s moves. We show that the
problem of determining the winner of such a game is undecidable for deterministic context-free
winning conditions. Furthermore, we show that the necessary lookahead to win a deterministic
context-free delay game cannot be bounded by any elementary function. Both results hold already
for restricted classes of deterministic context-free winning conditions.
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1 Introduction

Many of today’s problems in computer science are no longer concerned with programs that
transform data and then terminate, but with non-terminating reactive systems which have to
interact with an (possibly) antagonistic environment for an unbounded amount of time. The
framework of infinite two-player games is a powerful and flexible tool to verify and synthesize
such systems [6]. The seminal theorem of Büchi and Landweber [2] states that the winner of
an infinite game on a finite arena with a regular winning condition can be determined and a
corresponding finite-state winning strategy can be constructed effectively.

Ever since, this result was extended along different dimensions, e.g., the number of
players, the type of arena, the type of winning condition, the type of interaction between the
players (alternation or concurrency), zero-sum or nonzero-sum, and complete or incomplete
information. In this work, we consider two of these dimensions, namely context-free winning
conditions and the possibility for one player to delay her moves.

Walukiewicz showed that games with deterministic context-free winning conditions can
be solved in exponential time [12]. On the other hand, the problem of determining the winner
of a game with (non-deterministic) context-free winning condition is undecidable, which can
be shown by a reduction from the universality problem for non-deterministic ω-pushdown
automata (see, e.g. [5]).

In a delay game, one of the players can postpone her moves for some time, thereby
obtaining a lookahead on the moves of her opponent. This allows her to win some games
which she loses without lookahead, e.g., if her first move depends on the third move of her
opponent. On the other hand, there are simple winning conditions that cannot be won with
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any finite lookahead, e.g., if her first move depends on all of the infinitely many moves of
her opponent. Delay arises naturally when transmission of data in networks or components
equipped with buffers are modeled. Also, from a theoretical point of view, uniformization of
relations by continuous functions can be expressed and analyzed in this setting.

Hosch and Landweber proved that it is decidable, whether a game with regular winning
condition can be won with bounded lookahead (i.e., only finitely many moves are post-
poned) [8]. This result was improved by Holtmann, Kaiser, and Thomas [7] who showed that
if a player wins a game with arbitrary lookahead, then already with (doubly-exponential)
bounded lookahead, and gave a streamlined decidability proof.

We consider games in which two players pick letters from alphabets ΣI and ΣO, respec-
tively, thereby producing two infinite sequences α and β. Thus, a strategy for the second
player induces a mapping σ : Σω

I → Σω
O. It is winning for the second player if (α, σ(α)) is

contained in the winning condition L ⊆ Σω
I × Σω

O for every α. In this case, we say that
σ uniformizes L. In the classical setting, in which the players pick letters in alternation,
the n-th letter of σ(α) depends only on the first n letters of α. A strategy with bounded
lookahead induces a Lipschitz-continuous function σ (in the Cantor topology on Σω) and a
strategy with arbitrary lookahead induces a continuous function (or equivalently, a uniformly
continuous function, as Σω is compact).

Thus, stated in these terms, Hosch and Landweber proved the decidability of the uni-
formization problem for regular relations by Lipschitz-continuous functions. Holtmann,
Kaiser, and Thomas proved the equivalence of the existence of a continuous uniformization
function and the existence of a Lipschitz-continuous uniformization function for regular
relations. They observe that this equivalence does not hold for deterministic context-free
winning conditions by giving an example in which every other move has to be postponed, i.e.,
the lookahead grows linearly. They ask whether the winner of such a game can be determined
effectively and what kind of lookahead is necessary to win. We answer these questions.

Firstly, by applying the result of Walukiewicz [12] it is easy to see that if we only allow a
fixed bounded lookahead, then determining the winner is decidable. Then, we show that
determining whether a given player wins the game with arbitrary lookahead is undecidable
for deterministic context-free winning conditions. We complement this by giving a criterion
to determine when this question is decidable, if the lookahead is restricted to some fixed
class of functions. Intuitively, if there is no global bound on the lookahead provided by the
class, then the problem of determining the winner is undecidable. If there is such a bound,
then it follows from the decidability result that the winner can be determined effectively.

By closely inspecting the winning conditions constructed in the proofs, it follows that
these undecidability results already hold for winning conditions given by visibly one-counter
automata. These are pushdown automata that have a single stack symbol, i.e., their stack
is essentially a counter which can be incremented, decremented, and tested for zero, and
whose input letters control the behavior of the stack, i.e., a letter either always triggers a
push transition, a pop transition, or a skip transition (the stack is not changed). Visibly
pushdown automata are a popular choice to model recursive processes as their languages are
closed under all boolean operations (as opposed to (deterministic) context-free languages in
general), they can be determinized, and have good algorithmic properties (for a thorough
discussion see [1], for the determinization procedure for visibly pushdown automata on
ω-words see [9]). At the same time, we do not need the full strength of the parity or Muller
acceptance condition: all winning conditions can be recognized by automata with weak
acceptance conditions that refer only to the set of visited states, and not to the set of states
visited infinitely often.
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Finally, we consider the lookahead necessary to win delay games with deterministic
context-free winning conditions. We present a deterministic context-free delay game which
can be won if arbitrary lookahead is available, but not with lookahead that is bounded
by an elementary function, i.e., bounded by a k-fold exponential for some fixed k. Again,
the winning condition can be recognized by a visibly one-counter automaton with weak
acceptance condition.

In terms of uniformization of relations by continuous functions, we show that it is
undecidable to determine whether a deterministic context-free relation is uniformized by
some continuous function and to determine whether it is uniformized by some Lipschitz-
continuous function. Furthermore, the example by Holtmann, Kaiser, and Thomas shows
that the equivalence between the existence of a continuous uniformization function and the
existence of a Lipschitz-continuous uniformization function does not hold for deterministic
context-free relations, as opposed to the regular case.

Our results show that, unlike in the regular case, adding lookahead to deterministic
context-free games significantly changes their algorithmic properties. Bounded lookahead,
which is sufficient to win regular games, can always be encoded into the winning condition,
hence the classical algorithms to solve regular games without lookahead are still applicable.
However, in case of deterministic context-free games, where unbounded lookahead is necessary,
one cannot encode it into the winning condition while preserving its context-freeness. This is
a reason why these games are hard to handle algorithmically.

This work is structured as follows: in Section 2, we introduce infinite games with delay
formally and present the types of pushdown automata we consider. Then, in Section 3 we
present the decidability and undecidability results. The lower bound for the lookahead is
presented in Section 4. In Section 5, we conclude with some open questions.

2 Definitions

The set of non-negative integers is denoted by N, and we define N+ = N \ {0}. For an
integer n > 0 let [n] denote the set {0, . . . , n− 1}. We define the k-fold exponential function
expk : N → N inductively by exp0(n) = n, and expk+1(n) = 2expk(n). An alphabet Σ is a
non-empty finite set of letters, Σ∗ denotes the set of finite words over Σ, Σn denotes the set
of words over Σ of length n, and Σω denotes the set of infinite words over Σ. The empty
word is denoted by ε. For α ∈ Σ∗ ∪Σω and n ∈ N we write α(n) for the n-th letter of α. For
w ∈ Σ∗ and a ∈ Σ, |w|a denotes the number of a’s in w.

2.1 Games with Delay
Given a delay function f : N→ N+ and an ω-language L ⊆ (ΣI × ΣO)ω, the game Γf (L) is
played by two players (the input player I and the output player O) in rounds i = 0, 1, 2, . . . as
follows: in round i, Player I picks a word ui ∈ Σf(i)

I , then Player O picks one letter vi ∈ ΣO.
We refer to the sequence (u0, v0), (u1, v1), (u2, v2), . . . as a play of Γf (L), which yields two
infinite words α = u0u1u2 · · · and β = v0v1v2 · · · . Player O wins the play if and only if the
induced word

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · is in L.

Given a delay function f , a strategy for Player I is a mapping τI : Σ∗O → Σ∗I such that
|τI(w)| = f(|w|), and a strategy for Player O is a mapping τO : Σ∗I → ΣO. Consider a play
(u0, v0), (u1, v1), (u2, v2), . . . of Γf (L). Such a play is consistent with τI , if ui = τI(v0 · · · vi−1)
for every i; it is consistent with τO, if vi = τO(u0 · · ·ui) for every i. A strategy τ for Player p
is winning for her, if every play that is consistent with τ is won by Player p. In this case, we
say Player p wins Γf (L).
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For a delay function f : N→ N+ define its distance function df by df (i) =
(∑i

j=0 f(j)
)
−

(i+ 1), i.e., df (i) is the lookahead attained by Player O after i rounds. We say that f is a
constant-delay function with delay d, if df (i) = d for all i; f is a linear-delay function with
delay k > 0, if df (i) = (i + 1)(k − 1) for all i; and we say that f is an elementary-delay
function, if df ∈ O(expk) for some fixed k. Here, “constant”, “linear”, and “elementary”
refer to the lookahead for Player O, i.e., to the kind of distance function df , and not to the
kind of delay function f .

I Example 1. Consider the language L over {0, 1, ]} × {0, 1, ]} containing the words of the
form

(0
0
)n0(0

1
)n0(]

]

)(0
0
)n1(0

1
)n1(]

]

)(0
0
)n2(0

1
)n2(]

]

)
· · · with ni > 0 for all i, as well as all words

whose first component is not of the form 02n0]02n1]02n2] · · · with ni > 0 for all i. In order to
win a game with winning condition L, Player I has to produce infinitely many blocks of 0’s,
all of even length. If he does this, then Player O can still guarantee to win by answering the
first half of every block by 0 and the second half by 1. To do so, she needs to know in which
half of a block she currently is, which is guaranteed by the linear-delay function with delay 2.

2.2 Pushdown Automata

A deterministic pushdown machine (DPDM) is a tuple M = (Q,Σ,Γ, δ, qin,⊥) where
Q is a finite set of states, Σ is an input alphabet, Γ is a pushdown alphabet, ⊥ /∈ Γ
is the initial pushdown symbol (let Γ⊥ = Γ ∪ {⊥}), qin ∈ Q is the initial state, and
δ : Q× (Σ ∪ {ε})× Γ⊥ → Q× Γ∗⊥ is a partial transition function satisfying for every q ∈ Q
and every A ∈ Γ⊥: either δ(q, a,A) is defined for all a ∈ Σ and δ(q, ε, A) is undefined, or
δ(q, ε, A) is defined and δ(q, a,A) is undefined for all a ∈ Σ. We require that the initial
pushdown symbol ⊥ can neither be written on the stack nor be deleted from the stack.

A stack content is a word from Γ∗⊥, we assume the leftmost symbol to be the top of the
stack. A configuration is a pair (q, γ) consisting of a state q ∈ Q and a stack content γ ∈ Γ∗⊥.
We write (q, Aγ) a7− (q′, γ′γ), if (q′, γ′) = δ(q, a,A) for a ∈ Σ ∪ {ε}, γ, γ′ ∈ Γ∗⊥ and A ∈ Γ⊥.
For an ω-word α ∈ Σω an infinite sequence of configurations ρ = (q0, γ0)(q1, γ1)(q2, γ2) · · · is
a run ofM on α if and only if (q0, γ0) = (qin,⊥) and for all i ∈ N exists ai ∈ Σ ∪ {ε} such
that (qi, γi)

ai7− (qi+1, γi+1) and a0a1a2 · · · = α. For a run ρ we define the set of states visited
in ρ as Occ(ρ) = {q ∈ Q | ∃j : ρ(j) = (q, γj) for some γj}. Similarly, we define the set of
states visited infinitely often in ρ as Inf(ρ) = {q ∈ Q | ∀i∃j > i : ρ(j) = (q, γj) for some γj}.

A parity pushdown automaton (parity-DPDA) is a tuple A = (MA, col) whereMA is a
DPDM and col : Q→ [d] is a priority function assigning to each state ofMA a natural number.
It accepts an ω-word α ∈ Σω if there exists a run ρ of A on α, such that min{col(q) | q∈ Inf(ρ)}
is even. The set of ω-words accepted by a parity-DPDA A is denoted by L(A).

2.2.1 Weak Automata

A weak-parity pushdown automaton (weak-parity-DPDA) is a tuple A = (MA, col) where
MA is a DPDM and col : Q → [d] is a priority function assigning to each state of MA a
natural number. It accepts an ω-word α ∈ Σω if there exists a run ρ of A on α, such that
min{col(q) | q ∈ Occ(ρ)} is even. The set of ω-words accepted by a weak-parity-DPDA A is
again denoted by L(A).

A weak-parity-DPDA is an E-DPDA, if col(Q) ⊆ {0, 1}, i.e., a run is accepting if it visits
a state with priority 0 at least once. A weak-parity-DPDA is an A-DPDA, if col(Q) ⊆ {1, 2},
i.e., a run is accepting if it never visits a state with priority 1.
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2.2.2 Visibly and One-counter Automata
A DPDM is one-counter, if Γ is a singleton set. A visibly pushdown alphabet Σ = Σc∪Σr∪Σint
is an alphabet partitioned into three disjoint alphabets: Σc is a set of calls, Σr a set of
returns, Σint is a set of internal actions. A deterministic visibly pushdown machine is a
DPDMM = (Q,Σ,Γ, δ, qin,⊥) where Σ is a visibly pushdown alphabet and the transition
function is composed of three functions δ = δc ∪ δr ∪ δint where δc : Q× Σc × Γ⊥ → Q× Γ,
δr : Q × Σr × Γ⊥ → Q, and δint : Q × Σint × Γ⊥ → Q. A deterministic visibly pushdown
machine can be seen as a DPDM with transition function δ′ by defining

δ′(q, a,A) = (q′, A′A), if a ∈ Σc and δc(q, a, A) = (q′, A′),

δ′(q, a,A) =
{

(q′, ε) if A 6= ⊥,
(q′,⊥) if A = ⊥,

if a ∈ Σr and δr(q, a,A) = q′, and

δ′(q, a,A) = (q′, A), if a ∈ Σint and δint(q, a,A) = q′.

Note that a deterministic visibly pushdown machine treats a return symbol as an internal
action when the stack is empty.

Any type of DPDA introduced above is called visibly one-counter, denoted by DV1CA, if
the underlying DPDM is visibly and one-counter. We prefix the abbreviation DV1CA by the
type of acceptance condition of the automaton (parity, weak-parity, E, or A).

3 Decision Problems

In this section, we consider various decision problems regarding delay games with context-free
winning conditions. We begin by showing that the winner for a fixed delay function with
bounded distance function can be determined effectively. Then, we show that determining
whether Player O has a winning strategy for some finite delay is undecidable. As a corollary
we obtain that determining whether Player O has a winning strategy for some constant-delay
or linear-delay function is undecidable, too. We conclude by giving a general criterion to
classify the sets F of delay functions for which it is decidable whether Player O can win a
given delay game with some function from F .

As we consider winning conditions L that are recognizable by parity-DPDA, Γf (L) can
be modeled as a parity game on a countable arena with finitely many priorities. Since parity
games are determined [4, 10], we conclude that delay games are also determined.

I Theorem 2. Let A be a parity-DPDA and f : N→ N+. Then, Γf (L(A)) is determined.

By encoding the delay into the winning condition the following theorem is obtained. Note
that the property “{i | f(i) 6= 1} is finite” covers all constant-delay functions f .

I Theorem 3. The following problem is decidable:
Input: Parity-DPDA A and f : N→ N+ such that {i | f(i) 6= 1} is finite.
Question: Does Player O win Γf (L(A))?

Proof. Let ] be a letter not occurring in ΣO. For a word β = β(0)β(1)β(2) · · · ∈ ΣωO, define
shiftf (β) = β′(0)β′(1)β′(2) · · · ∈ (ΣO ∪ {]})ω by

β′(n) =

β(i) if n =
(∑i

j=0 f(j)
)
− 1 for some i,

] otherwise.

Figure 1 shows an example for this operation.
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β: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 · · ·
shiftf (β): ] ] a0 a1 ] a2 ] a3 a4 a5 · · ·

Figure 1 The shiftf -operation where f(0) = 3, f(2) = 2, f(3) = 2, and f(i) = 1 otherwise.

Now, let L = L(A) and define

Lshiftf
=
{(

α(0)
β′(0)

)(
α(1)
β′(1)

)(
α(2)
β′(2)

)
· · ·
∣∣∣∣(α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

)
· · · ∈ L and

shiftf (β(0)β(1)β(2) · · · ) = β′(0)β′(1)β′(2) · · ·
}

.

Since L is deterministic context-free and {i | f(i) 6= 1} is finite, Lshift is also deterministic
context-free. Furthermore, Player p wins Γf (L) if and only if she wins the game Γg(Lshiftf

)
where g(i) = 1 for all i ∈ N. As Γg(Lshiftf

) is a game without delay, its winner can be
determined effectively [12]. J

It turns out that Theorem 3 is the most general decidability result for arbitrary parity-
DPDA: relaxing the finiteness condition on {i | f(i) 6= 1} makes the problem undecidable
(see Theorem 6).

We continue with the undecidability results which are obtained by a reduction from the
halting problem for 2-register machines. A 2-register machine R is a list (0 : I0), . . . , (k −
2: Ik−2), (k − 1: STOP), where the first entry of a pair (` : I`) is the line number and the
second one is the instruction, which is of the form INC(Xi), DEC(Xi), or IF Xi=0 GOTO m
where i ∈ {0, 1} is the number of a register and m ∈ [k]. A configuration of R is a tuple
(`, n0, n1) where ` ∈ [k] is a line number and n0, n1 ∈ N are the contents of the registers. The
semantics are defined in the obvious way with the convention that a decrease of a register
holding a zero has no effect. We say that R halts, if it reaches a configuration (k − 1, n0, n1)
for some n0, n1 ∈ N when started with the initial configuration (0, 0, 0). It is well-known that
the halting problem for 2-register machines is undecidable [11].

I Theorem 4. The following problem is undecidable:
Input: Parity-DPDA A.
Question: Is there a delay function f such that Player O wins Γf (L(A))?

Proof. We proceed by a reduction from the halting problem for 2-register machines. Given
such a machine R = (0: I0), . . . , (k − 2: Ik−2), (k − 1: STOP), we encode a configuration
(`, n0, n1) by the word `rn0

0 rn1
1 . Note that if c encodes a configuration, then we have

|c′| ≤ |c|+ 1 for the encoding c′ of the successor configuration.
Now, define Conf = {`rn0

0 rn1
1 | ` ∈ [k], n0, n1 ∈ N}, Conf0 = 0, and consider the following

game specification over ΣI × ΣO, where ΣI = {], r0, r1} ∪ [k] and ΣO = {N,E0, E1, L}:
Player I builds up a word of the form ]Conf0(]Conf)ω (if he does not, he loses). Consider
such a word ]c0]c1]c2] · · · with c0 = Conf0 and ci ∈ Conf for all i > 0. In order to win,
Player O has to find a pair cj , cj+1 such that cj+1 does not encode the successor configuration
of the configuration encoded by cj . To do this, she indicates at each position where Player I
has played a ] whether she believes that the following two configurations are indeed successive
configurations (by playing the letter N) or whether she claims an error (by playing E0, E1, L

indicating that the first register, the second register, or the line number is not updated
correctly). At any other position, she may pick an arbitrary letter.
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· · · ]

N

(3,3,1)︷ ︸︸ ︷
3
∗
r0

∗
r0

∗
r0

∗
r1

∗
]

E0

(4,4,1)︷ ︸︸ ︷
4
∗
r0

∗
r0

∗
r0

∗
r0

∗
r1

∗
]

N

(5,5,0)︷ ︸︸ ︷
5
∗
r0

∗
r0

∗
r0

∗
r0

∗
r0

∗
]

N
· · ·

Figure 2 Part of a play encoding three configurations.

Figure 2 depicts the encoding of three configurations (here, ∗ denotes an arbitrary letter).
Assuming that line 3 contains INC(X0) and line 4 contains DEC(X1), then the first update is
correct, while the second one is not: the first register is increased incorrectly, an error which
is claimed by the letter E0 in front of the second encoding.

This winning condition can be recognized by a parity-DPDA AR. The automaton checks
whether the first component is a word in ]Conf0(]Conf)ω. If it encounters a letter

(
]
E0

)
,
(
]
E1

)
,

or
(
]
L

)
it has to check the next two encodings `rn0

0 rn1
1 ]`′r

n′0
0 r

n′1
1 ].

Case
(
]
Ei

)
for i ∈ {0, 1}: AR has to verify ni + s 6= n′i, where s = 1, if I` = INC(Xi),

s = −1, if I` = DEC(Xi) and ni > 0, and s = 0 otherwise.
Case

(
]
L

)
: AR has to verify ` + 1 6= `′, if I` = INC(Xi), I` = DEC(Xi), or I` =

IF Xi=0 GOTO m and ni > 0; and AR has to verify `′ 6= m, if I` = IF Xi=0 GOTO m
and ni = 0.

All these tests can be implemented in terms of a parity-DPDA AR that accepts a word if
and only if the first component is not a word in ]Conf0(]Conf)ω or if the first occurrence of
a letter E0, E1, or L in the second component correctly claims an error.

We show that R halts if and only if there exists a delay function f such that Player O
wins the game Γf (L(AR)).

Suppose R halts and consider the linear-delay function f(i) = 6 for all i. We claim that
Player O has a winning strategy for Γf (L(AR)) which finds the first error introduced by
Player I. In round 0 Player I chooses 6 letters which are sufficient for Player O to check
whether Player I has encoded the initial configuration and its successor configuration, as
the length of such an encoding is bounded by 6. Now consider a round i > 0: if the i-th
input letter is not a ], then Player O can choose an arbitrary output letter. So suppose
that it is a ] and that Player O has not yet signaled an error up to this position: Player I
has produced a word ]x]y of length 6(i + 1) where |x| = i − 1 and hence, |y| = 5(i + 1).
Note that both x and y might contain the letter ]. Let c denote the last encoding of a
configuration in x and c′ the first encoding of a configuration in y. As Player O has not
signaled an error at the previous ], we know that c′ is well-defined and that it is the encoding
of the successor configuration of the configuration encoded by c. We have |c| ≤ |x| = i− 1
and hence |c′| ≤ i. Thus, the successor configuration of c′ is encoded by at most i+ 1 letters.
As i+ (i+ 1) + 2 < 5(i+ 1) for all i > 0, in every round Player O has enough information to
detect an error if one is introduced. This strategy is indeed winning for Player O as an error
will eventually be introduced, since a halting configuration has no successor.

Now suppose R does not halt. Player I has a winning strategy in Γf (L(AR)) for any
function f by building up the word ]c0]c1]c2] · · · where c0, c1, c2, . . . are the encodings of the
infinite run of R starting with the initial configuration. Hence, due to determinacy, Player O
does not win Γf (L(AR)). J

The game induced by L(AR) can be won by Player O with some suitable constant-delay
function or with the linear-delay function with delay 6 if and only if R halts. Hence, we
obtain the following corollary.
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I Corollary 5. The following problems are undecidable:
1. Input: Parity-DPDA A.

Question: Is there a constant-delay function f such that Player O wins Γf (L(A))?
2. Input: Parity-DPDA A.

Question: Is there a linear-delay function f such that Player O wins Γf (L(A))?
3. Input: Parity-DPDA A and k ∈ N.

Question: Let f(i) = k for all i. Does Player O win Γf (L(A))?

By slightly modifying the game described above, one shows that all undecidability results
hold even for winning conditions given by E-DV1CA. To this end, we supply Player O
with additional letters C,R, Int and define Σc = ΣI × {C}, Σr = ΣI × {R}, and Σint =
ΣI ×{Int, N, L,E0, E1}, i.e., Player O controls the behavior of the stack. As soon as she has
answered a ] by one of the letters E0, E1, L she has to use the letters C,R, Int to enable the
automaton to compare the respective parts of the following two encodings. If she fails to do
so, she loses immediately. This can be implemented by means of a finite automaton, which
can be combined with the parity-DPDA AR to obtain a visibly parity-DPDA. Furthermore,
all necessary tests can be implemented using a single stack symbol. Finally, by modifying
the game specification such that the first component is no longer required to be of the form
]Conf0(]Conf)ω, it can be recognized by an E-DV1CA. If Player I does not produce an
infinite sequence of encodings of configurations, Player O has the possibility to claim an
error and thereby win.

Based on the proofs of the previous theorems, we conclude this section by giving a general
criterion to determine for a set F of delay functions whether it is decidable whether Player O
wins a given delay game with some delay function from F . We say that a set F of delay
functions f : N→ N+ is bounded, if there exists a d ∈ N such that for every f ∈ F and every
i ∈ N we have df (i) ≤ d, i.e., there is a global bound on the lookahead for Player O given by
the functions in F . Notice that since F is not part of the input, we can state the following
theorem for any set of delay functions without having to represent the set effectively.

I Theorem 6. Let F be a set of delay functions. The following problem is decidable if and
only if F is bounded:

Input: Parity-DPDA A.
Question: Does there exist an f ∈ F such that Player O wins Γf (L(A))?

Proof. Consider a bounded set F of delay functions. We define a partial order on delay
functions as follows: f ≤ g if and only if df (i) ≤ dg(i) for all i, i.e., g allows at any round at
least as much lookahead as f does. Applying Dickson’s Lemma [3] and the boundedness of
F one shows that there exists a finite set of maximal elements Fmax ⊆ F (a function f ∈ F
is maximal if for all g ∈ F , f ≤ g implies f = g). We claim that there exists an f ∈ F such
that Player O wins Γf (L(A)) if and only if there exists an g ∈ Fmax such that Player O
wins Γg(L(A)). As Fmax is finite and every g ∈ Fmax satisfies “{i | g(i) 6= 1} is finite”, the
latter property can be decided by Theorem 3.

The implication from right to left is trivially true, so assume there exists an f ∈ F \Fmax
such that Player O wins Γf (L(A)). Then, there is a function g ∈ Fmax such that f ≤ g, i.e.,
the function g admits Player O at least as much lookahead as f . Hence, a winning strategy
for Player O in Γf (L(A)) can easily be turned into a winning strategy for her in Γg(L(A)).

Now consider an unbounded set F of delay functions, i.e., for every d ∈ N there exists
an f ∈ F and an i ∈ N such that df (i) > d. We adapt the specification described in the
proof of Theorem 4 by allowing Player O to postpone the beginning of the simulation of a
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computation of R until she has attained enough lookahead to inspect the complete halting
computation of R (if there exists one) before she has to indicate potential errors.

Given a 2-register machine R with k instructions, define Conf0 and Conf as in the
proof of Theorem 4, and consider the following game specification over ΣI × ΣO, where
ΣI = {], r0, r1, $} ∪ [k] and ΣO = {N,E0, E1, L, S, $}: Player I builds a word of the form
$∗Conf0(]Conf)ω or $ω. If he does not adhere to the format, he loses. Player I may produce
the word $ω if and only if Player O never plays the letter S to start the simulation. If
Player O plays the letter S, then Player I has to play a word of the form $∗c0]c1]c2] · · · with
c0 = Conf0 and ci ∈ Conf for every i > 0. Again, in order to win, Player O has to find a
pair cj , cj+1 such that cj+1 does not encode the successor configuration of the configuration
encoded by cj . The mechanism to do so is similar to the one described in the proof of
Theorem 4. We denote the parity-DPDA recognizing this winning condition by A′R.

Suppose R halts after n computation steps. Then, the full computation of R is encoded
by at most d =

∑n+1
j=1 (j + 1) letters. Let f ∈ F and i ∈ N such that df (i) ≥ d. Player O

has a winning strategy in Γf (L(A′R)). In the first i rounds, she chooses $. If Player I has
picked in a round j ≤ i+ 1 a word uj 6= $f(j), then Player O wins by playing $ ad infinitum.
Otherwise, she plays S in round i+ 1. Hence, in order to win Player I has to start simulating
R, say at position j > i. As df is non-decreasing, Player O has at least d letters lookahead
when picking her letter in any round j′ ≥ j. As the machine halts, this lookahead enables
her to detect an error which Player I has to introduce, since a halting configuration does not
have a successor configuration.

If R does not halt, then Player I has a winning strategy in Γf (L(A′R)) for every delay
function f ∈ F : as long as Player O has not played S, pick $f(i) in round i. As soon as she
has played S, he starts producing the word ]c0]c1]c2] · · · , where c0, c1, c2, . . . are encodings
of the infinite run of R starting in the initial configuration. J

Using the ideas presented above, one can show that Theorem 6 holds even for weak-parity-
DV1CA. However, E-acceptance and A-acceptance are not sufficient, since Player O has to
be forced to play an S and Player I has to be forced to start the simulation after Player O
played an S.

4 Lower Bounds on Delays

In this section we show that there exists a deterministic context-free winning condition L such
that Player O wins the game Γf (L) for some delay function f , but not for any elementary-
delay function. To this end, we adapt the idea of the previous section: Player I produces an
ω-word which can be decomposed into blocks on which a successor relation is defined. In
order to win, Player O has to find a pair of consecutive blocks that are not in the successor
relation and the game specification forces Player I to produce such an error at some point.
In contrast to the specifications of the previous section, Player O does not signal a potential
error in front of the i-th block, but with her i-th bit. By ensuring that a valid successor
block is exponentially longer than its predecessor we obtain our result.

I Theorem 7. There exists a parity-DPDA A and a delay function f such that Player O
wins Γf (L(A)), but Player I wins Γf ′(L(A)) for every elementary-delay function f ′.

Proof. Let S] = {]N , ]D, ]C} and S[ = {[N , [H} be two sets of signals for Player I and define
B = S[0(S[0+)∗ and B0 = S[0. We say that a block w = [00[10n1[2 · · · [k−10nk−1 ∈ B has k
[-blocks. Consider a word ]0w0]1w1]2w2]3 · · · where w0 ∈ B0 and wi ∈ B, ]i ∈ S] for all i.
We say that a block wi = [00n0[10n1[2 · · · [k−10nk−1 has a doubling error at position j in the



10 Degrees of Lookahead in Context-free Infinite Games

]N

N

w0︷ ︸︸ ︷
[N

ED

0
N

]C

N

w1︷ ︸︸ ︷
[N

H

0
N

[N

N

0
N

]N

N

w2︷ ︸︸ ︷
[N

N

0
N

[N

N

0
N

0
N

[N

N

0
N

0
N

0
N

0
N

]N

N
· · ·

Figure 3 A play prefix with three blocks w0, w1, and w2.

range 0 ≤ j < k−1 if nj+1 6= 2nj (note that n0 = 1 for every wi ∈ B). The doubling error at
position j in block wi is signaled, if ]i = ]D, [j = [H , and [j′ = [N for all j′ < j. We say that
two consecutive blocks wi and wi+1 constitute a copy error, if |wi| 6= |wi+1|[N

+ |wi+1|[H

(i.e., in the absence of a copy error, wi+1 has |wi| [-blocks). For two blocks wi and wi+1 the
copy error is signaled if ]i = ]C .

Figure 3 depicts the encoding of three blocks in the first component. The blocks w1 and
w2 constitute a copy error, as w2 contains only three [-blocks, and not the required four (due
to |w1| = 4). This error is signaled by the letter ]C in front of w1. Furthermore, the block
w1 contains a doubling error at position 0 which is not signaled.

Consider the following game specification over ΣI × ΣO, where ΣI = {0} ∪ S] ∪ S[ and
ΣO = {N,ED, EC , H}: Player I builds a word α = ]0w0]1w1]2w2]3 · · · ∈ S]B0(S]B)ω while
Player O produces a word β ∈ Σω

O. Player O uses her letters to announce errors in α: if
β(i) = EC , then she claims that the pair wi and wi+1 constitutes a copy error. If β(i) = ED,
then she claims that wi = [00n0[10n1[2 · · · [k−10nk−1 contains a doubling error at a position j,
which she has to specify by answering [j by H (and every [j′ for j′ < j not by H).

Going back to the example in Figure 3, we see that Player O claims the doubling error in
w1 by choosing β(1) = ED and identifying its position by playing H directly in front if it.

Player O wins a play if and only if the induced word
(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · satisfies at

least one of the following conditions.

α /∈ S]B0(S]B)ω (i.e., Player I does not adhere to the format).
There exists an i such that β(i) = ED, β(j) = N for all j < i, ]j = ]N for all j < i, the
`-th [ of wi is answered by H (and ` is minimal with this property) and wi contains a
doubling error at position ` (i.e., Player O detects a doubling error in block wi and there
is no error signaled by Player I in front of any block wj for some j < i. Note that the
doubling error in block wi may have been signaled by Player I).
There exists an i such that β(i) = EC , β(j) = N for all j < i, ]j = ]N for all j < i, and
the pair wi and wi+1 constitutes a copy error (i.e., Player O detects a copy error in blocks
wi and wi+1 and there is no error signaled by Player I in front of any block wj for some
j < i. Note that the copy error in the blocks wi and wi+1 may have been signaled by
Player I in front of wi).
There exists an i such that ]i = ]D and ]j = ]N for all j < i, and β(j) = N for all j ≤ i,
and wi does not contain [H or the two blocks following the first [H do not constitute a
doubling error (i.e., Player I signals a doubling error but does not indicate its position
correctly).
There exists an i such that ]i = ]C and ]j = ]N for all j < i, and β(j) = N for all j ≤ i,
and the pair wi and wi+1 does not constitute a copy error (i.e., Player I signals a copy
error without producing one).
]i = ]N for all i (i.e., Player I never signals an error).

Hence, the play indicated in Figure 3 is winning for Player O as her correct claim
β(1) = ED precedes the signal ]1 = ]C of Player I.
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Let L = {ρ ∈ (ΣI × ΣO)ω | ρ is winning for Player O}. We show that L can be
recognized by a parity-DPDA A: on an ω-word ρ =

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · where α =

]0w0]1w1]2w2]3 · · · ∈ S]B0(S]B)ω, A proceeds in four phases described below. If α is
not of the required format or contains no letter ]C or ]D, then ρ is accepted.

In the first phase, it prepares its stack to be able to find the beginning of wi when starting
at letter ρ(i) as required in the second phase. To do so, it counts the number of letters
processed so far minus the number of letters from S] in the first component. This phase is
stopped as soon as a letter ]C or ]D in the first component is read or a letter EC or ED in
the second component is read. In the first case, the automaton jumps to phase four, in the
second it starts with phase two.

The second phase starts if β(i) is EC or ED for the first time. Then, the automaton uses
the information on the stack to find the beginning of wi by decreasing the stack every time
a ]N in the first component is processed. If ]j = ]C or ]j = ]D for j < i is processed, the
automaton jumps to phase four. Otherwise, phase two continues until the beginning of wi is
reached. Then, A continues with phase three.

In phase three, A checks whether the error indicated by β(i) occurs (for this purpose,
it stores β(i) at the beginning of phase two). If β(i) = EC , then it checks whether wi and
wi+1 constitute a copy error. If β(i) = ED, then it checks whether wi contains a doubling
error, which has to be indicated in the second component by an H right before the error. If
the first H does not indicate an error correctly (or if none is read), then A rejects ρ. The
automaton accepts in phase three if and only if the error indicated by β(i) is detected.

Finally, in phase four A checks whether the error indicated by ]j occurs. If ]j = ]C , then
it checks whether wj and wj+1 constitute a copy error. If ]j = ]D, then it checks whether
wj contains a doubling error, which is signaled properly by a [H at the appropriate position.
If the first [H does not indicate an error correctly (or if wj does not contain a [H), then A
accepts ρ. The automaton accepts in phase four if and only if the error indicated by ]j is
not detected.

All the tests described in phases three and four can be implemented by a parity-DPDA.

We continue by showing that there exists a delay function f such that Player O wins
the game Γf (L). To this end, note that the following holds true for two consecutive blocks
w and w′ not containing a copy or doubling error: |w′| = 2|w| + |w| − 1. Hence, we define
the auxiliary function g by g(0) = 2 and g(n+ 1) = 2g(n) + g(n)− 1 for every n ≥ 0. Now,
define the delay function f by f(0) = g(0) + g(1) + 3 and f(n) = g(n+ 1) + 1 for every n > 0
(note that f is non-elementary). We claim that Player O has a winning strategy for Γf (L):
if Player I does not pick ]0[000]1[100[1100]2 in the first round, then he has committed some
error within his first two blocks, which can be claimed by Player O with v0. Now assume he
has produced a play prefix ]0w0]1w1]2 · · · ]iwi]i+1 after round i− 1 without introducing a
doubling error in the blocks wj for all j < i and no copy error in the pairs wj and wj+1 for all
j < i. If he produces an x in the next round i that is of the form w] such that wi and w do
not constitute a copy error and if wi does not contain a doubling error, then Player O picks
vi = N . Otherwise, she claims the error that occurs. This strategy is winning for Player O,
as Player I is not able to signal and produce an error that cannot be claimed by Player O.

Finally, consider an elementary-delay function fe ∈ O(expk). Player I can always play
blocks without introducing errors until the length of the block wi exceeds the lookahead(∑i

j=0 fe(j)
)
− i of Player O. At such a position, Player O has to make a claim concerning

a block which is not completed yet. So, Player I signals a doubling error for this incomplete
block. If Player O does not claim a doubling error, then he can introduce a doubling error
while completing the block. Then, Player I wins, if he sticks to the input format, since he is
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the first to claim an error. Vice versa, if Player O claims the doubling error, then Player I
does not introduce a doubling error while completing the block. Then he continues to stick
to the input format and wins, as his claim is preceded by the claim of Player O. J

Using ideas as presented in Section 3 one can show that Theorem 7 holds even for A-DV1CA.
However, the game specification as described above, cannot be accepted by a visibly one-
counter automaton: the problem arises if the automaton has to change from phase two to
phase four. In this situation, the stack is not yet empty and the automaton has to check a
claimed error. To do this using one stack symbol, the stack has to be emptied before the next
letter is processed, which cannot be done by a visibly automaton, as it has no ε-transitions.
To resolve this, we modify the game specification such that if this situation occurs (changing
from phase two to phase four), Player O loses immediately. Player O has still the possibility
to win by additionally never claiming an error in a block wi if Player I already claimed an
error in a block wj for some j < i. This modified game specification is visibly one-counter.
Finally, as a play is only winning for Player I, if he claims an existing error before Player O
does, the set of winning plays for Player O can be accepted by an A-DV1CA.

5 Conclusion

In this paper we continued the investigation of delay games. We showed that determining the
winner of deterministic context-free delay games is undecidable. Also, we presented a game
that is won by Player O with finite delay, but the necessary lookahead is non-elementary.
Both results already hold for the restricted class of winning conditions recognized by visibly
one-counter automata with weak acceptance conditions.

Our undecidability results and lower bounds on the delay for visibly winning conditions
hold even for the more restricted case where Player O controls the behavior of the stack
(more formally, the membership of a letter to Σc, Σr, or Σint respectively, depends only on its
second component). An interesting open question is whether these results also hold if Player I
obtains control over the stack behavior, i.e., the first component of a letter determines to
which alphabet it belongs. The following example shows that linear delay is necessary in this
case, even for one-counter winning conditions.

Let ΣI = {c, r} and ΣO = {0, 1}. We partition the alphabet ΣI × ΣO into the alphabets
Σc = {c}×ΣO and Σr = {r}×ΣO, i.e., Player I controls the behavior of the stack. Consider
the following game specification L with ρ =

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · ∈ L if one of the following

conditions holds:

α(0) = r, i.e., Player O wins immediately if Player I’s first letter is a return,
|α(0) · · ·α(n)|c > |α(0) · · ·α(n)|r for all n ∈ N, i.e., the stack is never empty, or
for the minimal n such that |α(0) · · ·α(n)|c = |α(0) · · ·α(n)|r we have β(m) = 1 and
β(m′) = 0 for all m′ < m, where m < n is the maximal position such that α(m) = c, i.e.,
Player O indicates the last call position before the stack is empty for the first time.

This winning condition requires a linear-delay function with delay at least 2 for Player O,
which is also sufficient for her to win. This is due to the fact that the stack height after
processing n letters is bounded by n. Hence, Player I can play at most n returns before the
stack is empty.

It is open whether linear delay is always sufficient for visibly winning conditions, if
Player I controls the behavior of the stack. Moreover, it is open whether the winner of such
a game can be determined effectively.
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