
Games with Costs and Delays
Martin Zimmermann

Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany
Email: zimmermann@react.uni-saarland.de

Abstract—We demonstrate the usefulness of adding delay to
infinite games with quantitative winning conditions. In a delay
game, one of the players may delay her moves to obtain a
lookahead on her opponent’s moves. We show that determining
the winner of delay games with winning conditions given by
parity automata with costs is EXPTIME-complete and that
exponential bounded lookahead is both sufficient and in general
necessary. Thus, although the parity condition with costs is a
quantitative extension of the parity condition, our results show
that adding costs does not increase the complexity of delay games
with parity conditions.

Furthermore, we study a new phenomenon that appears in
quantitative delay games: lookahead can be traded for the quality
of winning strategies and vice versa. We determine the extent of
this tradeoff. In particular, even the smallest lookahead allows
to improve the quality of an optimal strategy from the worst
possible value to almost the smallest possible one. Thus, the
benefit of introducing lookahead is twofold: not only does it allow
the delaying player to win games she would lose without, but
lookahead also allows her to improve the quality of her winning
strategies in games she wins even without lookahead.

I. INTRODUCTION

Infinite games are one of the pillars of logics and automata
theory with a plethora of applications, e.g., as solutions for
the reactive synthesis problem and for the model-checking of
fixed-point logics, and as the foundation of the game-based
proof of Rabin’s theorem to name a few highlights.

The study of infinite games in automata theory was initiated
by the seminal Büchi-Landweber theorem [1], which solved
Church’s controller synthesis problem [2]: the winner of
an infinite-duration two-player zero-sum perfect-information
game with ω-regular winning condition can be determined
effectively. Furthermore, a finite-state winning strategy, i.e., a
strategy that is finitely described by an automaton with output,
can be computed effectively. Ever since, this result has been
extended along various axes, e.g., the number of players, the
type of winning condition, the type of interaction between
the players, the informedness of the players, etc. Here, we
consider two extensions: first, we allow one player to delay
her moves, which gives her a lookahead on her opponent’s
moves. Second, we consider quantitative winning conditions,
i.e., the finitary parity condition and the parity condition with
costs, which both strengthen the classical parity condition.

Delay Games: The addition of delay to the original
setting of Büchi and Landweber was already studied by Hosch
and Landweber himself [3] shortly after the publication of the

Supported by the project “TriCS” (ZI 1516/1-1) of the German Research
Foundation (DFG).

original result. It concerns the ability of one player to delay
her moves in order to gain a lookahead on her opponent’s
moves. This allows her to win games she would lose without
lookahead, e.g., if her first move depends on the third move
of the opponent. Delay games are not only useful to model
buffers and transmission of data, but the existence of a
continuous uniformization function for a given relation is also
characterized by winning a delay game (see [4] for details).
Recently, delay games have been reconsidered by Holtmann
et al. [4] and the first comprehensive study of their properties
has been initiated [5], [6], [7], [8], [9].

In particular, determining the winner of delay games with
winning conditions given by deterministic parity automata
is EXPTIME-complete, where hardness already holds for
safety conditions [7]. These results have to be contrasted
with those for the delay-free setting: determining the winner
of parity games is in UP ∩ coUP [10], while the special
case of safety games is in PTIME. Additionally, exponential
constant lookahead is both sufficient and in general neces-
sary [7], i.e., unbounded lookahead does not offer an additional
advantage for the delaying player in ω-regular delay games.
Either she wins by delaying an exponential number of moves
at the beginning of a play and then never again, or not at all.

Parity Games with Costs: Another important generaliza-
tion of the Büchi-Landweber theorem concerns quantitative
winning conditions, as qualitative ones are often too weak
to capture the specifications of a system to be synthesized.
Prominent examples of quantitative specification languages are
parameterized extensions of Linear Temporal Logic (LTL) like
Prompt-LTL [11], which adds the prompt-eventually operator
whose scope is bounded in time, and the finitary parity condi-
tion [12]. The latter strengthens the classical parity condition
by requiring a fixed, but arbitrary, bound b on the distance
between occurrences of odd colors and the next larger even
color. Recently, a further generalization has been introduced
in the setting of arenas with costs, i.e., non-negative edge
weights. Here, the bound b on the distance is replaced by
a bound on the cost incurred between occurrences of odd
colors and the next larger even color [13]. This condition, the
parity condition with costs, subsumes both the classical parity
condition and the finitary parity condition.

Although the finitary parity condition is a strengthening of
the classical parity condition, the winner of a finitary parity
game can be determined in polynomial time [12], i.e., the
solution problem is simpler than that of parity games (unless
UP ∩ coUP = PTIME). In contrast, parity games with
costs are not harder than they have to be, i.e., as hard as parity978-1-5090-3018-7/17/$31.00 c©2017 IEEE

games [14]. Furthermore, such games induce an optimization
problem: determine the smallest bound b that allows to satisfy
the condition with respect to b. It turns out that determining
the optimal bound is much harder [15]: determining whether
a given parity game with costs can be won with respect to a
given bound b is PSPACE-complete, where hardness already
holds for the special case of finitary parity games. The same
phenomenon manifests itself in the memory requirements of
winning strategies for finitary parity games: playing optimally
requires exponentially more memory than just winning.

Quantitative Delay Games: Recently, both extensions
have been investigated simultaneously, first in the form of
delay games with WMSO+U winning conditions, i.e., weak
monadic second-order logic with the unbounding quanti-
fier [16]. This logic turned out to be too strong: in general,
unbounded lookahead is necessary to win such games and
the problem of determining the winner has only partially
been resolved [9]. Thus, the search for tractable classes of
quantitative winning conditions started. A first encouraging
candidate was found in Prompt-LTL: determining the winner
of Prompt-LTL delay games is 3EXPTIME-complete and
triply-exponential constant lookahead is sufficient and in gen-
eral necessary [8]. This comparatively high complexity has
to be contrasted with that of delay-free Prompt-LTL games,
which are already 2EXPTIME-complete [17]. Thus, adding
delay incurs an exponential blowup, which is in line with other
results for delay games mentioned above.

Our Contribution: In this work, we investigate delay
games with finitary parity conditions and parity conditions
with costs and demonstrate the positive effects of adding
lookahead to quantitative games. As both the finitary parity
and the parity condition with costs subsume the classical safety
condition, we immediately obtain EXPTIME-hardness and
an exponential lower bound on the necessary lookahead.

First, we show that the exponential lower bound on the
lookahead is tight, by presenting a matching upper bound via
a pumping argument for the opponent of the delaying player:
if he wins with a large enough lookahead, then he can pump
his moves to win for an arbitrarily large lookahead.

Second, using this result, we construct a delay-free parity
game with costs that is equivalent to the delay game with
fixed exponential lookahead. Furthermore, we show that the
resulting game can be solved in exponential time, i.e., we
prove EXPTIME-completeness of determining the winner
of delay games with finitary parity conditions and parity
conditions with costs.

These two results show that adding costs to delay games
with parity conditions comes for free, i.e., the complexity does
not increase, both in terms of necessary lookahead and the
computational complexity of determining the winner. These
results are similar to the ones for Prompt-LTL delay games,
which are just as hard as LTL delay games. However, unlike
the latter games, which are 3EXPTIME-complete, delay
games with quantitative extensions of parity conditions are
only EXPTIME-complete.

Third, we investigate the power of delay in quantitative

games: having a lookahead on the moves of her opponent
allows a player not only to win games she would lose without
this advantange, but also to improve the (semantic) quality
of her winning strategies in games she wins even without
lookahead. For example, we present a game induced by an
automaton with O(n) states such that she wins the delay-
free game with bound n on every play, which is close to the
worst-case [13]. However, with a lookahead of just a single
move, she wins the game with bound 1. Thus, lookahead
can be traded for quality and vice versa. In further examples,
we show that this tradeoff can be gradual, i.e., decrementing
the bound requires one additional move lookahead, and that
exponential lookahead may be necessary to obtain the optimal
bound. Furthermore, we present matching upper bounds on
the tradeoff between lookahead and quality.

All examples we present in this work are from a very small
fragment, finitary Büchi games, i.e., every edge has cost 1 and
the only colors are 1 and 2. Thus, every occurrence of a 1 has
to be answered quickly by an occurrence of a 2. Our results
show that even these games are as hard as general parity games
with costs, i.e., games with arbitrary weights and an arbitrary
number of colors.

Fourth, we consider the more general setting of delay games
with winning conditions given by Streett automata with costs.
Streett conditions are obtained from parity conditions by aban-
doning the hierarchy between requests (even numbers) and
responses (odd numbers) by allowing arbitrary sets of states to
represent requests and responses. We prove that the techniques
developed for parity conditions can be extended to Streett
conditions with costs, at the cost of an exponential blowup:
doubly-exponential constant lookahead is sufficient and such
games can be solved in doubly-exponential time. Also, we
show that an optimal winning strategy requires in general
doubly-exponential lookahead. Whether general strategies do
as well is an open problem. Note that this is already the case
for delay games with qualitative Streett conditions.

All proofs omitted due to space restrictions can be found in
the full version [18].

II. DEFINITIONS

We denote the non-negative integers by N. Given two
infinite words α ∈ ΣωI and β ∈ ΣωO we write

(
α
β

)
for the word(

α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

)
· · · ∈ (ΣI ×ΣO)ω . Similarly, we write

(
x
y

)
for finite words x and y, provided they are of equal length.

A. Parity Automata with Costs

A parity automaton with costs A = (Q,Σ, qI , δ,Ω,Cst)
consists of a finite set Q of states, an alphabet Σ, an ini-
tial state qI ∈ Q, a (deterministic and complete) transition
function δ : Q × Σ → Q, a coloring Ω: Q → N, and a cost
function Cst: δ → {ε, i} (here, and whenever convenient, we
treat δ as a relation). If Cst(q, a, q′) = ε, then we speak of an
ε-transition, otherwise of an increment-transition. The size of
A is defined as |A| = |Q|.

2

Gj

(/∈{j,#}
6=#

) ({1,...,j}
6=#

)(j

6=#
)

({j+1,...,n}
6=#

)
...

G1

Gn

(6=#
6=#
)(6=#

1

)
(6=#
n

)
(
1
#
)

(
n
#
)

(#
6=#
)

Fig. 1. The automaton An (on the left), which contains gadgets G1, . . . , Gn (on the right). Transitions not depicted are defined as follows: those of the
form

(#
b

)
for arbitray b ∈ ΣO lead to an (accepting) sink of color 2, those of the form

(6=#
#

)
lead to a (rejecting) sink of color 1. Both sinks are not drawn.

The run of A starting in q0 ∈ Q on a finite word w =
a0 · · · an−1 is the unique sequence

(q0, a0, q1) (q1, a1, q2) · · · (qn−1, an−1, qn) ∈ δ∗, (1)

i.e., qj+1 = δ(qj , aj) for every j < n. We say the run ends in
qn and define its cost as the number of traversed increment-
transitions. The run of A starting in q0 on an infinite word
and its cost is defined analogously. If we speak of the run of
A on an infinite word, then we mean the one starting in qI .

As usual in parity games, we interpret the occurrence
of an odd color c as a request, which has to be an-
swered by an even c′ > c. Hence, we define Ans(c) =
{c′ ∈ Ω(Q) | c′ > c and c′ is even}. An infinite run
ρ = (q0, a0, q1) (q1, a1, q2) (q2, a2, q3) · · · is accepting, if it
satisfies the parity condition with costs: there is a bound b ∈ N
such that for almost all n with odd Ω(qn), the cost between
the positions n and n′ is at most b, where n′ is minimal such
that Ω(qn′) answers the request Ω(qn). Formally, we require
the cost lim supn→∞ Cor(ρ, n) of ρ to be finite, where the
cost-of-response Cor(ρ, n) is defined to be 0 if Ω(qn) is even
and defined to be

min{Cst((qn, an, qn+1) · · · (qn′−1, an′−1, qn′)) | n′ > n and
Ω(qn′) ∈ Ans(Ω(qn))}

if Ω(qn) is odd, where min ∅ =∞.
The language of A, denoted by L(A), contains all infinite

words whose run of A is accepting. If every transition in A is
an ε-transition, then the parity condition with costs boils down
to the parity condition, i.e., A is a classical parity automaton
and L(A) is ω-regular. In contrast, if every transition is an
increment-transition, then A is a finitary parity automaton,
which have been studied by Chatterjee and Fijalkow [19].

Remark 1. In the following, and without mentioning it again,
we only consider parity automata with both even and odd
colors. If this is not the case, then the automaton is trivial,
i.e., its language is either universal or empty.

In our examples, we often use finitary Büchi automata, i.e.,
automata having only increment-transitions and colors 1 and
2. Hence, every state of color 2 answers all pending requests

and all other states open a request (of color 1). Hence, a run of
such an automaton is accepting, if there is a bound b such that
every infix of length b contains a transition whose target state
has color 2. Furthermore, the cost of the run is the smallest b′

such that almost every infix of length b′ contains a transition
whose target state has color 2. In figures, we denote states of
color 2 by doubly-lined states, all other states have color 1,
and we do not depict the cost function, as it is trivial.

Example 1. Consider the finitary Büchi automaton An, for
n > 1, on the left side of Figure 1 over the alphabet ΣI ×
ΣO = {1, . . . , n,#}2. A word

(
α(0)···α(m)
β(0)···β(m)

)
leads An from

the initial state, which opens a request, to the rightmost state,
which answers all requests, without visiting the latter in the
meantime, if, and only if, it has the following form: α(i) 6= #
for all i, β(i) = # if, and only if i = m, and α(1) · · · (m) has
two occurrences of β(0) with no larger letter in between (a so-
called bad j-pair for j = β(0)), where the second occurrence
is α(m). Call such a word productive.

Then, the language of An contains two types
of words: first all those that can be decomposed
into w0x0

(#
6=#
)
w1x1

(#
6=#
)
w2x2

(#
6=#
)
· · · where each

wi is productive, where supi |wi| < ∞, and
where each xi is in ({1, . . . , n}2)∗. The other way
An accepts a word is by reaching the accepting
sink state, which it does for all words of the
form w0x0

(#
6=#
)
· · ·wm−1xm−1

(#
6=#
)
w′m
(#
∗
)
({1, . . . , n}2)ω

where each wi is productive, each xi is in ({1, . . . , n}2)∗,
w′m is a strict prefix of a productive word, and ∗ denotes an
arbitrary letter.

To conclude this introductory subsection, we state a
replacement lemma for accepting runs: fix a parity au-
tomaton with costs A = (Q,Σ, qI , δ,Ω,Cst) and let
(q0, a0, q1) · · · (qn−1, an−1, qn) be a non-empty finite run of
A. Its type is the tuple (q0, qn, c0, c1, `) where c0, c1 ∈
Ω(Q)∪{⊥} and ` ∈ {ε, i} are defined (using max ∅ = ⊥) as
• c0 = max{Ω(qj) | 0 ≤ j ≤ n and Ω(qj) is even},
• c1 = max{Ω(qj) | 0 ≤ j ≤
n, Ω(qj) is odd, and Ω(qj′) /∈ Ans(Ω(qj)) for all j <
j′ ≤ n}, i.e., c1 is the maximal unanswered request, and

3

• ` = i if, and only if, the run contains an increment-
transition.

The following lemma shows that we can replace infixes
of accepting runs by infixes of the same type, provided the
replacements are of bounded length.

Lemma 1. Let (ρ1j)j∈N and (ρ2j)j∈N be sequences of finite
runs of a parity automaton with costs such that ρ1j and ρ2j have
the same type for every j, and such that supj |ρ2j | = d <∞.
Let ρ′ = ρ10ρ

1
1ρ

1
2 · · · and ρ′′ = ρ20ρ

2
1ρ

2
2 · · · .

If lim supn→∞ Cor(ρ′, n) ≤ b for some b, then
lim supn→∞Cor(ρ′′, n) ≤ (b+2) ·d, i.e., if ρ′ is an accepting
run, then ρ′′ is an accepting run as well.

The special case where both the lengths of the ρ1j and the
lengths of the ρ2j are bounded is useful later on, too.

Corollary 1. Let (ρ1j)j∈N and (ρ2j)j∈N be sequences of finite
runs of a parity automaton with costs such that ρ1j and ρ2j
have the same type for every j, and such that supj |ρ1j | <∞
and supj |ρ2j | <∞.

Then, ρ10ρ
1
1ρ

1
2 · · · is an accepting run if, and only if,

ρ20ρ
2
1ρ

2
2 · · · is an accepting run.

Finally, let us remark that the type of a run can be computed
on the fly. Let TA = Q2× (Ω(Q)∪{⊥})2×{ε, i} be the set
of types of A. Define InitA(q) = (q, q, c0, c1, ε) with
• c0 = Ω(q), if Ω(q) is even, and c0 = ⊥ otherwise, and
• c1 = Ω(q), if Ω(q) is odd, and c1 = ⊥ otherwise.

Thus, InitA(q) can be understood as the type of the empty
prefix of a run starting in state q. Furthermore, define
UpdA((q0, q1, c0, c1, `), a) = (q0, q

′
1, c
′
0, c
′
1, `
′) where

• q′1 = δ(q1, a),

• c′0 =

{
max{c0,Ω(q′1)} if Ω(q1) is even,
c0 if Ω(q1) is odd,

• c′1 =


max{c1,Ω(q′1)} if Ω(q′1) is odd,
⊥ if Ω(q′1) ∈ Ans(c1),
c1 else,

and

• `′ = i if ` = i or if (q1, a, q
′
1) is an increment transition.

Here, we use max{⊥, c} = c for every c ∈ Ω(Q).

Remark 2. The run (q, a, δ(q, a)) has
type UpdA(InitA(q), a), and for every non-empty finite
run ρ = (q0, a0, q1) · · · (qn−1, an−1, qn) and every a ∈ Σ: if
ρ has type t, then ρ · (qn, a, δ(qn, a)) has type UpdA(t, a).

B. Delay Games

A delay function is a map f : N → N \ {0}, which is
said to be constant, if f(i) = 1 for every i > 0. A delay
game Γf (L) consists of a delay function f and a winning con-
dition L ⊆ (ΣI ×ΣO)ω . It is played in rounds i = 0, 1, 2, . . .
between Player I and Player O. In round i, first Player I
picks ui ∈ Σ

f(i)
I , then Player O answers by picking vi ∈ ΣO.

Player O wins the resulting play (u0, v0)(u1, v1)(u2, v2) · · ·
if the outcome

(
u0u1u2···
v0v1v2···

)
is in L, else Player I wins.

A strategy for Player I in Γf (L) is a mapping τI : Σ∗O →
Σ∗I such that |τI(w)| = f(|w|); a strategy for Player O is a

mapping τO : Σ∗I → ΣO. A play (u0, v0)(u1, v1)(u2, v2) · · ·
is consistent with τI , if ui = τI(v0 · · · vi−1) for every i and
it is consistent with τO, if vi = τO(u0 · · ·ui) for every i. A
strategy for Player P ∈ {I,O} is winning, if the outcome of
every consistent play is winning for Player P . In this case we
say that Player P wins Γf (L). A game is determined if one
of the players wins it.

Parity automata with costs recognize Borel languages [13].1

Thus, the Borel determinacy result for delay games [6] is
applicable: delay games with winning conditions given by
parity automata with costs are determined.

In this work, we study delay games whose winning condi-
tions are given by a parity automaton with costs A. In par-
ticular, we determine the complexity of determining whether
Player O wins Γf (L(A)) for some f and what kind of f
is necessary in general. Furthermore, we study the tradeoff
between the quality and the necessary lookahead of winning
strategies.

To this end, given a winning strategy τO for Player O in a
delay game Γf (L(A)), let

CstA(τO) = sup
w

(lim sup
n→∞

Cor(ρ(w), n)),

where w ranges over the outcomes of τO and where ρ(w)
denotes the unique run of A on w. A winning strategy for
Γf (L(A)) is optimal, if it has minimal cost among the winning
strategies for Γf (L(A)). Note that the delay function f is fixed
here, i.e., the cost of optimal strategies might depend on f .
Furthermore, the cost of a winning strategy might be infinite,
if has outcomes with arbitrarily large cost. This is possible,
as the parity condition with costs only requires a bound for
every run, but not a uniform one among all runs.

Example 2. Consider delay games with winning condi-
tions Ln = L(An), where An is the parity automaton with
costs from Example 1.

We claim that Player O wins Γf (Ln) if f(0) ≥ 2n + 1,
based on the following fact: every word over {1, . . . , n} of
length 2n contains a bad j-pair for some j [7].

Now, consider the situation after the first move of Player I:
An is in the initial state, as Player O has not yet produced
any letters, and Player I has picked at least 2n + 1 let-
ters α(0) · · ·α(f(0)− 1) lookahead. Let w = α(1) · · ·α(2n).
We consider several cases:

If w contains a # without a bad j-pair in the prefix before
the first #, then Player O can pick 1’s until the automaton has
reached the accepting sink state. The resulting run is accepting
with cost 0.

Otherwise, w contains a bad j-pair without an earlier
occurrence of #, for some j. Then, Player 0 picks β(0) = j
and afterwards arbitrary letters (but #) until the second j
constituting the bad j-pair, which she answers by a #. The
resulting word is productive, i.e., it leads the automaton to the
rightmost state. Then, either the run stays in this state forever,

1The result proven there is about winning conditions of games, which covers
languages of automata as a special case.

4

which implies it is accepting, or the initial state is reached
again. Then, Player O can iterate her strategy, as the size of
the lookahead is non-decreasing.

Hence, if the initial state is visited infinitely often, then the
rightmost state of color 2 is visited at least once in every
run infix of length 2n + 1, which implies that the resulting
outcome is winning for Player O. Every other outcome has
only finitely many requests and is therefore winning with
cost 0. In particular, the cost of this strategy is bounded from
above by 2n + 1.

On the other hand, Player I wins Γf (Ln) if f(0) < 2n+ 1.
Let wn ∈ ΣI be inductively defined by w1 = 1 and wj =
wj−1 · j · wj−1 for j > 0. Then, wn has length 2n − 1 and
contains no bad j-pair for every j, and trivially no #.

Let Player I pick the prefix of length f(0) of 1wn in the first
round and let Player O answer by picking β(0). If β(0) = #,
thenAn reaches the rejecting sink-state of color 1. If β(0) = j,
then Player I picks j′ ad infinitum for some j′ /∈ {j,#}. Then,
An neither reaches the accepting sink state (since he never
plays a #) nor the rightmost state (as he has not produced a
bad j-pair). Hence, the resulting run is rejecting.

One can even show an exponential lower bound on the
cost of an optimal winning strategy for Player O: using the
word wn to begin each round and then restart the play by
picking # after Player O has reached the rightmost state by
picking #, he can enforce a cost-of-response of 2n + 1 for
infinitely many requests, i.e., a winning strategy for Player O
has at least cost 2n + 1 as well.

Proposition 1. For every n, there is a finitary parity automa-
ton An of size O(n) such that Player O wins Γf (L(An)) if,
and only if, f(0) ≥ 2n+1. Furthermore, the cost of an optimal
winning strategy for Γf (L(An)) is 2n + 1, for every such f .

III. CONSTANT LOOKAHEAD SUFFICES

In this section, we prove that constant delay functions suf-
fice for Player O to win delay games with winning conditions
specified by parity automata with costs and give an exponential
upper bound on the necessary initial lookahead. To this end,
we generalize a similar result proven for delay games with
winning conditions given by parity automata [7]. This is the
first step towards proving that the winner of such a game can
be determined effectively.

Theorem 1. Let L be recognized by a parity automaton
with costs A with n states and k colors, and let f be the
constant delay function with f(0) = 22n

4k2+1. The following
are equivalent:

1) Player I wins Γf (L(A)).
2) Player I wins Γf ′(L(A)) for every delay function f ′.

Proof. We only prove the non-trivial direction by taking a
winning strategy for Γf (L(A)) and pumping its moves to
obtain a winning strategy for Γf ′(L(A)), which might require
Player I to provide more lookahead.

To this end, let A = (Q,ΣI ×ΣO, qI , δ,Ω,Cst), let TA be
the set of types of A, and recall that InitA and UpdA compute

the type of a run as described in Remark 2. We extend A so
that it tracks the type of its runs using the state set Q×TA. This
information does not change the language of the automaton,
but is useful when pumping the moves in Γf (L(A)).

Formally, we define A′ = (Q′,ΣI × ΣO, q
′
I , δ
′,Ω′,Cst′)

with
• Q′ = Q× TA,
• q′I = (qI , Init(qI)) ,
• δ′((q, t),

(
a
b

)
) = (δ(q,

(
a
b

)
),Upd(t,

(
a
b

)
)),

• Ω′(q, t) = Ω(q), and
• Cst′((q, t),

(
a
b

)
, (q′, t′)) = Ω(q,

(
a
b

)
, q′).

Now, define δP : 2Q
′ × ΣI → 2Q

′
via

δP (S, a) =

{
δ′
(

(q, t),

(
a

b

))∣∣∣∣ (q, t) ∈ S and b ∈ ΣO

}
.

Intuitively, δP is obtained as follows: take A′, project away
ΣO, and apply the power set construction (ignoring the col-
oring and the costs). Then, δP is the transition function of
the resulting deterministic automaton. As usual, we extend
δP to δ+P : 2Q

′ × Σ+
I → 2Q

′
via δ+P (S, a) = δP (S, a) and

δ+P (S,wa) = δP (δ+P (S,w), a).

Remark 3. The following are equivalent for q ∈ Q and w ∈
Σ+
I :
1) (q′, t′) ∈ δ+P ({(q, InitA(q))}, w).
2) There is a w′ ∈ (ΣI ×ΣO)+ whose projection to ΣI is

w such that the run of A processing w′ from q ends in
q′ and has type t′.

Let τI be a winning strategy for Player I in Γf (L(A)) and
let f ′ be an arbitrary delay function. We construct a winning
strategy τ ′I for Player I in Γf ′(L(A)) by simulating a play of
Γf ′(L(A)) by a play in Γf (L(A)). For the sake of brevity, we
denote Γf (L(A)) by Γ and Γf ′(L(A)) by Γ′ from now on.

Recall that we only consider automata A with non-trivial
colorings. Thus, we can bound the number of A’s types by
2n2k2, where n is the number of states and k the number of
colors. We define d = |(2Q′)Q| = 22n

4k2 . In the simulating
play in Γ, the players make their moves in blocks of length d:
Player I’s are denoted by ai and Player O’s by bi, i.e., in
the following, every ai is in ΣdI and every bi is in ΣdO.
Furthermore, we say that a decomposition ai = xyz is
pumpable, if y is non-empty and if

δ+P ({(q, InitA(q))}, x) = δ+P ({(q, InitA(q))}, xy)

for every q ∈ Q. As A is complete, δ+P ({(q, InitA(q)), w}) is
always non-empty, which implies the following remark.

Remark 4. Every a ∈ ΣdI has a pumpable decomposition.

Now, we begin the construction of τ ′I . Note that we have
f(0) = 2d. Thus, let τI(ε) = a0a1 be the first move of
Player I in Γ according to τI . Remark 4 yields pumpable de-
compositions a0 = x0y0z0 and a1 = x1y1z1. We pick h0 > 0
such that |x0(y0)h0z0| ≥ f ′(0) and define α(0) · · ·α(`0 −
1) = x0(y0)h0z0. Similarly, we pick h1 > 0 such that
|x1(y1)h1z1| ≥

∑`0−1
j=1 f ′(j) and define α(`0) · · ·α(`1− 1) =

5

Γ

I:

O:

Γ′
I:

O:

xi−1 yi−1 zi−1 xi yi zi

x′i−1 y′i−1 z′i−1

qI qi−1 q∗i−1

xi−1 yi−1 · · · yi−1 zi−1 xi yi · · · yi zi

y′i−1 z′i−1

qi−1 q∗i−1

0 `i−2 `i−1 `i

Fig. 2. The situation (in solid lines): in Γ, Player I has picked a0, . . . , ai, Player O has picked b0, . . . , bi−2 (hidden in the thin part at the beginning),
and qi−1 is the state of A reached when processing

(a0

b0

)
· · ·

(ai−2

bi−2

)
(denoted by the curly line). In Γ′, Player I has repeated yi sufficiently often so that

Player O has provided an answer to xi−1yi−1 · · · yi−1zi−1, i.e., up to position `i−1 − 1, and q∗i−1 is the state reached when processing xi−1 and all but
the last copy of yi−1 (and the corresponding answers of Player O) starting in qi−1.
By construction, there is an answer x′i−1 to xi−1 such that processing

(xi−1

x′i−1

)
from qi−1 brings A to q∗i−1 as well. The block bi−1 (dotted) is the

concatenation of x′i−1, and y′i−1z
′
i−1 from Γ′.

x1(y1)h1z1. Now, we define the strategy τ ′I for Player I in Γ′

to pick the prefix of length
∑`0−1
j=0 f ′(j) of α(0) · · ·α(`1− 1)

during the first `0 rounds, independently of the choices of
Player O. This prefix is well-defined by the choices of h0 and
h1. The remaining letters of α(0) · · ·α(`1− 1) are stored in a
buffer γ1. During these first `0 rounds, Player O answers by
producing some β(0) · · ·β(`0 − 1).

Thus, we are in the following situation for i = 1 (see the
solid part of Figure 2).
• In Γ, Player I has picked a0, . . . , ai such that for every
j ≤ i: xjyjzj is a pumpable decomposition of aj .
Furthermore, Player O has picked b0, . . . , bi−2.

• In Γ′, Player I has picked the prefix of
length

∑`i−1−1
j=0 f ′(j) of

α(0) · · ·α(`i − 1) = x0(y0)h0z0 · · ·xi(yi)hizi

while the remaining suffix is the buffer γi. Player O has
picked β(0) · · ·β(`i−1 − 1).

Now, let i > 0 be arbitrary and let qi−1 be the state
reached by A when processing

(a0
b0

)
· · ·
(ai−2

bi−2

)
from qI . Fur-

thermore, let q∗i−1 be the state reached by A when pro-
cessing xi−1(yi−1)hi−1−1 and the corresponding part of
β(0) · · ·β(`i−1 − 1) starting in qi−1, and let t∗i−1 be the
type of the run. Then, due to Remark 3 and the decompo-
sition xi−1yi−1zi−1 being pumpable, there is a word x′i−1 ∈
Σ
|xi−1|
O such that A reaches the same state q∗i−1 when pro-

cessing
(xi−1

x′i−1

)
starting in qi−1, and the run has type t∗i−1 as

well. Now, we define bi−1 = x′i−1y
′
i−1z

′
i−1 where y′i−1 and

z′i−1 are the letters picked by Player O at the positions of the
last repetition of yi1 and at the positions of zi1 , respectively
(see Figure 2).

Using bi−1 we continue the simulation in Γ by letting
Player O pick the letters of bi−1 during the next d rounds,
which yields d moves for Player I by applying τI . Call

this sequence of letters ai+1, which again has a pumpable
decomposition xi+1yi+1zi+1. We again pick hi+1 > 0
such that |xi+1(yi+1)hi+1zi+1| ≥

∑`i−1
j=`i−1

f ′(j) and define
α(`i) · · ·α(`i+1 − 1) = xi+1(yi+1)hi+1zi+1. The strategy τ ′I
for Player I in Γ′ is defined so that it picks the prefix of
length

∑`i−1
j=`i−1

f ′(j) of γiα(`i) · · ·α(`i+1 − 1) during the
next `i rounds, independently of the choices of Player O, and
the remaining letters are stored in the buffer γi+1. The prefix is
again well-defined by the choice of hi+1. Hence, during these
rounds, Player O answers by producing β(`i−1) · · ·β(`i− 1).
Then, we are again in the situation described above for i+ 1.

We conclude by showing that τ ′I is indeed a winning strategy
for Player I in Γ′. To this end, let w′ =

(
α
β

)
be an outcome of

a play that is consistent with τ ′I and let w =
(a0
b0

)(a1
b1

)(a2
b2

)
· · ·

be the play in Γ constructed during the simulation as described
above, which is consistent with τI and therefore winning for
Player I . Hence, the run of A on w′ is rejecting.

A simple induction shows that A reaches the same state
when processing(

α(0) · · ·α(`i − 1)

β(0) · · ·β(`i − 1)

)
and

(
a0 · · · ai
ab · · · bi

)
,

call it qi. By construction, the run ofA starting in qi processing(α(`i−1)···α(`i−1)
β(`i−1)···β(`i−1)

)
(using `−1 = 0) and the one starting in qi

processing
(ai
bi

)
have the same type. The runs on the

(ai
bi

)
all

have length d, hence applying Lemma 1 to the rejecting run
of A on w shows that the run of A on w′ is rejecting as well.
Thus, the outcome is winning for Player I and τI is indeed a
winning strategy for Player I in Γ′.

Applying both directions of the equivalence proved in
Theorem 1 and determinacy yields an upper bound on the
necessary lookahead for Player O.

Corollary 2. Let L be recognized by a parity automaton with
costs A with n states and k colors. If Player O wins Γf (L)

6

for some delay function f , then also for the constant delay
function f with f(0) = 22n

4k2+1.

Finally, the upper bound of Corollary 2 is asymptotically
tight due to Proposition 1, which is a generalization of the
corresponding lower bound for delay games with winning
conditions given by deterministic safety automata [7].

IV. DETERMINING THE WINNER

The main result of this section is that the following problem
is EXPTIME-complete: given a parity automaton with
costs A, does Player O win Γf (L(A)) for some f? Hardness
already holds for the special case of safety automata, thus we
focus our attention on membership. To this end, we revisit
the analogous result for delay games with classical parity
conditions (i.e., without costs) [7]: such games are reduced to
equivalent delay-free parity games of exponential size, which
can be solved in exponential time (in the size of the original
parity automaton). Here, we extend this proof to automata with
costs while simplifying its structure. Furthermore, we obtain
an exponential upper bound on the cost of a winning strategy
for Player O.

For the remainder of this section, fix A = (Q,ΣI ×
ΣO, qI , δ,Ω,Cst), let A′ = (Q′,ΣI×ΣO, q

′
I , δ
′,Ω′,Cst′) and

δ+P : 2Q
′ × ΣI → 2Q

′
be defined as in Section III, and recall

that Q′ = Q×TA, where TA is the set of types of runs of A.
Given x ∈ Σ+

I , we define the function rx : Q→ 2Q
′

via

rx(q) = δ+P ({(q, InitA(q))}, x).

Now, we define x ≡A x′ if, and only if, rx = rx′ , which
is a finite equivalence relation. Furthermore, we can assign
to every ≡A equivalence class S a function rS from Q to
2Q
′
, i.e., rS = rx for all x ∈ S, which is independent of

representatives. Finally, let R denote the set of ≡A equivalence
classes of words in Σ2d

I , where d = 22n
4k2 as before.

Next, we construct a delay-free game G(A) between
Player I and Player O that is won by Player O if, and only if,
she wins Γf (L(A)) for some delay function f . The game G(A)
is a zero-sum infinite-duration two-player game of perfect
information played in rounds i = 0, 1, 2, Intuitively,
Player I picks a sequence S0S1S2 · · · of equivalence classes
from R, which induces an infinite word α over ΣI by picking
representatives. Player O implicitly picks an infinite word over
ΣO by constructing a run of A on a word over ΣI×ΣO whose
projection to ΣI is α. She wins, if the run is accepting. To
account for the delay, she is always one move behind.

Formally, in round 0, Player I picks an equivalence
class S0 ∈ R and then Player O has to pick (q0, t0) = q′I ,
the initial state of A′.2 In round i > 0, Player I picks
an equivalence class Si ∈ R and then Player O picks
a state (qi, ti) ∈ rSi−1

(qi−1) (due to completeness of A,
Player O always has an available move).

For every t ∈ TA such that there is some run of A of
type t, fix one such run ρt. Now, consider a play π =
S0(q0, t0)S1(q1, t1)S2(q2, t2) · · · of G(A). By construction,

2This move is trivial, but we add it to keep the definition consistent.

ρti+1 starts in qi and ends in qi+1, for every i ≥ 0. The play π
is winning for Player O if, and only if, the run ρt1ρt2ρt3 · · ·
of A is accepting (note that t0 is disregarded). As the length
of the representatives ρti is bounded (there are only finitely
many), Corollary 1 implies that the winner is independent of
the choice of the representatives.

A strategy for Player I in G(A) is a mapping τI : (R ·
Q′)∗ → R while a strategy for Player O is a map-
ping τO : (R · Q′)∗ · R → Q′ that has to satisfy τO(S0) =
q′I for every S0 ∈ R and τO(S0 · · · (qi, ti)Si+1) ∈
rSi

(qi) for all S0 · · · (qi, ti)Si+1 ∈ (R · Q′)+ · R. A play
S0(q0, t0)S1(q1, t1)S2(q2, t2) · · · is consistent with τI if Si =
τI(S0 · · · (qi−1, ti−1)) for every i, and it is consistent with τO,
if (qi, ti) = τO(S0 · · ·Si) for every i. A strategy is winning for
a Player P ∈ {I,O}, if every play that is consistent with the
strategy is won by Player P . As usual, we say that Player P
wins G(A), if she has a winning strategy.

Lemma 2. Player O wins G(A) if, and only if, she wins
Γf (L(A)) for some f .

Now, we are able to state and prove our main theorem of
this section.

Theorem 2. The following problem is EXPTIME-complete:
given a parity automaton with costs A, does Player O win
Γf (L(A)) for some f?

Proof. We focus on membership as EXPTIME-hardness
already holds for safety automata [7]. To this end, we show
how to model the abstract game G(A) as an arena-based parity
game with costs [13] of exponential size with at most one
more color than A. This game can be constructed (argued
below) and solved in exponential time (in the size of A) [13].
Lemma 2 shows that solving this game yields the correct
answer. Hence, the problem is in EXPTIME.

Intuitively, the arena encodes the rules of G(A): the players
pick equivalence classes from R and states from Q′ in
alternation. The restrictions on the states that may be picked
are enforced by storing the last equivalence class and the
last state in the vertices of the arena. Finally, to encode
the winning condition of G(A), we simulate the effect of a
run of type t = (q, q′, c, c′, `) every time Player O picks a
state (q, t). Recall that c encodes the largest answer, c′ the
largest unanswered request, and ` whether the overall cost
is zero or greater than zero. The effect is simulated by first
visiting a state of color c, then one of color c′, and equipping
the edge between these vertices with cost `. Afterwards,
Player I again picks another equivalence class.

Formally, we define the parity game with
costs (A,CostParity(Ω)) with arena A = (V, VI , VO, E,Cst)
where
• V = VI ∪ VO with VI = {vI} ∪ R × Q′ × {0, 1} and
VO = R×Q′ ×R, and

• E is the union of the following sets of edges:
– {(vI , (S0, q

′
I , S1)) | S0, S1 ∈ R}: the initial moves

of Player I (which subsume the first (trivial) move
of Player O),

7

vI

0

(S0, (q0, t0), S1)

0

(S1, (q1, t1), 0)

c10

(S1, (q1, t1), 1)

c11

(S1, (q1, t1), S2)

0

(S2, (q2, t2), 0)

c20

(S2, (q2, t2), 1)

c21

· · ·

ε ε `1

ε `2

ε

Fig. 3. The construction of A: a play prefix S0, (q0, t0)S1, (q1, t1), S2, (q2, t2) of G(A) with ti = (qi, q
′
i, c

i
0, c

i
1, `i) is simulated by the depicted sequence

of vertices. Colors are depicted above vertices, edge weights above edges.

– {((S0, (q0, t0), 0), (S0, (q0, t0), 1)) | S0 ∈
R, (q0, t0) ∈ Q′}: deterministic moves of Player I
used to simulate the effect of a run of type t0,

– {((S0, (q0, t0), 1), (S0, (q0, t0), S1)) | S0, S1 ∈
R, (q0, t0) ∈ Q′}: regular moves of Player I picking
the next equivalence class S1, and

– {((S0, (q0, t0), S1), (S1, (q1, t1), 0)) | S0, S1,∈
R, (q0, t0), (q1, t1) ∈ Q′, (q1, t1) ∈ rS0(q0)}: moves
of Player O picking the next state (q1, t1).

• We define Cst(e) = i, if, and only if,
e = ((S0, (q0, t0), 0), (S0, (q0, t0), 1)) with
t0 = (q, q′, c, c′, i) for some q, q′ ∈ Q and c, c′ ∈ Ω(Q),
i.e., we simulate the cost encoded in the type t0.

• Finally, for t = (q, q′, c0, c1, `) we define
Ω(S, (q, t), 0) = c0 and Ω(S, (q, t), 1) = c1, i.e.,
we simulate the largest response and afterwards the
largest unanswered request encoded in t. Every other
state has color 0, which has no effect on the satisfaction
of the parity condition with costs, as it is too small to
answer requests.

As an illustration of the construction, consider Figure 3,
which depicts the vertices reached while simulating a play pre-
fix of G(A). Note that the infix (S1, (q1, t1), 0)(S1, (q1, t1), 1)
has largest response c10 and largest unanswered request c11,
just as encoded by the type t1. Similarly, the cost of this
infix is the one encoded by t1. All other vertices and edges
are neutral. Furthermore, the type t0 encoded in the initial
state q′I = (qI , InitA(qI)) = (q0, t0) is not simulated, just as
it is ignored when it comes to determining the winner of a
play in G(A).

Thus, Corollary 1, implies that Player O wins G(A) if, and
only if, Player O has a winning strategy for the parity game
with costs (A,CostParity(Ω)) from vI . The construction of
(A,CostParity(Ω)) is possible in exponential time using the
same automata construction to determine the elements of R
as in the case of plain parity conditions [7].

If Player O wins an arena-based parity game with costs, then
there is also a winning strategy for her whose cost is bounded
by the number of vertices of the arena [13], [15]. Hence, an
application of Lemma 1 yields an exponential upper bound on
the cost of a winning strategy in a delay game with such a
winning condition.

Corollary 3. Let A be a parity automaton with costs with n
states and k colors. If Player O wins Γf (L(A)) for some f ,
then she also wins Γf (L(A)) for the constant delay function f
given by f(0) = 22n

4k2+2 with a winning strategy τO
satisfying CstA(τO) ≤ n3k222n

7k4+3.

Due to Proposition 1, these bounds are asymptotically tight.

V. STREETT CONDITIONS

In this section, we consider the more general case of delay
games with winning conditions given by automata with finitary
Streett acceptance or with Streett conditions with costs. In a
parity condition, the requests and responses are hierarchically
ordered. Streett conditions generalize parity conditions by
giving up this hierarchy.

Formally, a Streett automaton with costs is a tuple A =
(Q,Σ, qI , δ, (Qj , Pj)j∈J , (Cstj)j∈J) where Q, Σ, qI , and δ
are defined as for parity automata with costs. Furthermore, the
acceptance condition (Qj , Pj)j∈J consists of a finite collection
of Streett pairs (Qj , Pj) of subsets Qj , Pj ⊆ Q. Here, states in
Qj are requests of condition j which are answered by visiting
a response in Pj . Finally, (Cstj)j∈J is a collection of cost
functions for A, one for each Streett pair. The size of A is
defined as |Q|+ |J |.

For a run (q0, a0, q1)(q1, a1, q2)(q2, a2, q3) · · · and a posi-
tion n, we define the cost-of-response StCorj(ρ, n) of pair j
to be 0, if qn /∈ Qj , and to be

min{Cstj((qn, an, qn+1) · · · (qn′−1, an′−1, qn′)) | n′ ≥ n and
qn′ ∈ Pj},

if qn ∈ Qj . Furthermore, we aggregate these costs by defining

StCor(ρ, n) = maxj∈J StCorj(ρ, n).

Finally, we say that ρ is accepting if it satisfies the Streett con-
dition with costs, i.e., if lim supn→∞ StCor(ρ, n) < ∞. We
recover classical Streett acceptance as the special case where
every edge is an ε-edge w.r.t. every cost function. Similarly,
finitary Streett [12] acceptance is the special case where every
edge is an increment-edge w.r.t. every cost function.

In the following, we consider delay games with winning
conditions specified by such automata. The notion of the
cost of a strategy for Player O and that of optimality is
defined as in the case of parity automata. Also, note that
every parity condition is a Streett condition, i.e., all lower
bounds already proven hold for Streett conditions as well. In

8

particular, exponential lookahead is necessary to win delay
games with finitary Streett conditions and solving such games
is EXPTIME-hard. We complement these lower bounds
by doubly-exponential upper bounds, both on the necessary
lookahead and on the solution complexity. It is open whether
this gap can be closed. Nevertheless, we show in Section VI
that doubly-exponential lookahead is necessary for optimal
strategies!

Our first step towards these results is the generaliza-
tion of the replacement lemma for parity conditions with
costs. To this end, we have to generalize the notion of
types. To this end, fix a Streett automaton with costs A =
(Q,Σ, qI , δ, (Qj , Pj)j∈J , (Cstj)j∈J). The set of types of A is
defined as TA = Q2×{⊥, p, q, pq}J ×{ε, i}J . The type of a
non-empty finite run (q0, a0, q1) · · · (qn1

, an−1, qn) is defined
as (q0, qn, g, `) where
• g(j) = pq if the run contains a response of condition j

as well as an unanswered request of condition j,
• g(j) = p if the run contains a response of condition j,

but no unanswered request of condition j,
• g(j) = q if the run contains no response of condition j,

but an unanswered request of condition j, and
• g(j) = ⊥ if the run contains neither a request nor a

response of condition j.
Furthermore, `(j) is equal to i if, and only if, the run contains
an increment-transition with respect to Cstj .

With this definition, the replacement property formalized
in Lemma 1 also holds for runs of Streett automata with
costs, which is proven using essentially the same argument
as for parity automata with costs. Similarly, Corollary 1 holds
for Streett automata with costs as well. Also, as for parity
automata with costs, the type of a run can be computed on the
fly using functions InitA and UpdA with the same properties
as their analogues in Remark 2.

Using these results, we determine upper bounds on the
necessary lookahead and the complexity of solving delay
games induced by Streett automata with costs. Here, the
exponential increase in complexity in comparison to games
induced by parity automata with costs stems from the fact
that there are exponentially many types for Street automata,
but only polynomially many for parity automata.

Theorem 3. Let L be recognized by a Streett automaton with
costs A with n states and k Streett pairs, and let f be the
constant delay function with f(0) = 2n

423k+1. The following
are equivalent:

1) Player I wins Γf (L(A)).
2) Player I wins Γf ′(L(A)) for every delay function f ′.

Proof. Similar to the one of Theorem 1 using d =
|(2Q×TA)Q| = 2n

423k .

Thus, we obtain f(0) = 2n
423k+1 as an upper bound on

the necessary constant lookahead for Player O to win a delay
game with winning condition L.

Also, the decidability proof for parity conditions is applica-
ble to Streett conditions, again with an exponential blowup.

Theorem 4. The following problem is in 2EXPTIME:
given a Streett automaton with costs A, does Player O win
Γf (L(A)) for some f?

Proof. Given A, one constructs an abstract game G(A) as for
the parity case and proves the analogue of Lemma 2. Then,
one models G(A) as an arena-based Streett game with costs of
doubly-exponential size with the same number of Streett pairs
as A, which can be solved in doubly-exponential time [13].

Again, modeling the abstract game as an arena-based game
yields an upper bound on the cost of a winning strategy
for a delay game with winning condition given by a Streett
automaton with costs: in an arena-based Streett game with
costs, there is a tight exponential bound on the cost of an
optimal strategy [13], [20]. This implies a triply-exponential
upper bound for the original delay game.

VI. TRADING LOOKAHEAD FOR COSTS

Introducing lookahead allows Player O to win games she
loses in a delay-free setting. In this section, we study another
positive effect of lookahead: it allows to reduce the cost of
optimal strategies, i.e., one can trade lookahead for quality
and vice versa. To simplify our notation, let fk for k ≥ 0
denote the unique constant delay function with fk(0) = k+1.
Thus, k denotes the size of the lookahead. In particular, a
delay game Γf0(L) is a delay-fee game.

A. Tradeoffs for Parity Conditions with Costs

First, we consider parity conditions and show that already
the smallest possible lookahead allows to improve the cost of
an optimal strategy from |A| to 1.

Theorem 5. For every n > 0, there is a language Ln
recognized by a finitary Büchi automaton with costs An with
n+ 2 states such that
• an optimal strategy for Γf0(Ln) has cost n, but
• an optimal strategy for Γf1(Ln) has cost 1.

Proof. Consider the finitary Büchi automaton An depicted in
Figure 4 over ΣI × ΣO = {0, 1}2. Every run of An visits
the initial state infinitely often, which answers all requests.
Thus, consider a run starting and ending in the initial state,
but not visiting it in between. There are two types of such
runs, those of length two and those of length n + 1 (visiting
the gray state). Runs of the first type process a word of the
form

(∗
b

)(
b
∗
)

for some b ∈ {0, 1} and an arbitrary letter ∗, runs
of the second type a word of the form

(∗
b

)(
1−b
∗
)(∗
∗
)n−1

. A run
having infinitely many infixes of the second type has cost n,
otherwise it has cost 1. Thus, to achieve cost 1, Player O has
to predict the next move of Player I . This is possible with
constant lookahead 1, but not without lookahead.

Another simple example shows that even exponential looka-
head might be necessary to achieve the smallest cost possible,
relying on the exponential lower bound shown in Example 2.

9

... (∗
∗
)

(∗
∗
)

(∗
∗
)
(∗
0

)(∗
1

)
(
0
∗
)(

1
∗
)

(
1
∗
)(

0
∗
)

Fig. 4. The automaton An for the proof of
Theorem 5. The path from the gray state to the
doubly-lined state has n−1 edges and ∗ denotes
an arbitrary letter.

(∗
(3,0)

) (∗(2,0))(∗
(1,0)

)
(∗
(1,1)

)(∗
(3,1)

) (∗
(2,1)

)

(∗
∗
) (∗

∗
)2 (∗

∗
)2 (∗

∗
)

(∗
∗
)2
(∗
∗
)

(∗
∗
)2(∗
∗
)

(
0
∗
)

(
1
∗
)

(
0
∗
)

(
1
∗
)

(
0
∗
)

(
1
∗
)

(
1
∗
)

(
0
∗
)

Fig. 5. The automaton A3 for the proof of Theorem 7. A transition labeled by
(∗
∗
)2 represents a path

of two transitions, each labeled with
(∗
∗
)
, where ∗ denotes an arbitrary letter. The missing transitions

of the gray states lead to a sink state of color 1.

Theorem 6. For every n > 0, there is a language L′n
recognized by a finitary Büchi automaton with costs A′n with
O(n) states such that

• Player O wins Γf (L′n) for every delay function f , but
• an optimal strategy for Γf2n (L′n) has cost 0, and
• an optimal strategy for Γfk(L′n) for k < 2n has cost n.

Finally, we generalize Theorem 5 to a gradual tradeoff, i.e.,
with every additional increase of the lookahead decreases the
cost of an optimal strategy, up to some upper bound.

Theorem 7. For every n > 0, there is a language L′′n
recognized by a finitary Büchi automaton with costs A′′n with
O(n2) states such that for every j ∈ {0, 1, . . . , n}: an optimal
strategy for Γfj (L′′n) exists, but has cost 2(n+ 1)− j.

Proof. The finitary Büchi automaton A′′n has alphabet {0, 1}×
{(i, j) | i ∈ {1, . . . , n}, j ∈ {0, 1}} and is depicted in Figure 5
for n = 3.

The automaton generalizes the idea from Theorem 5. For
every j ∈ {1, 2, 3}, with lookahead j at the initial state,
Player O can use a transition of the form (j, b), where b is
the letter picked by Player I j positions ahead. The resulting
run infix from the initial state back to it has a request that is
answered with cost 2(n + 1) − j, none with larger cost, and
ends with all requests being answered. With less lookahead,
Player I can falsify the prediction by moving from the gray
states to the sink state and thereby win. Thus, an optimal
strategy for Γfj (L′′n) with j > 0 has cost 2(n+ 1)− j.

Finally, for j = 0, Player O has to always pick a letter
of the form (1, b) when at the initial state. The prediction
can be immediately falsified by Player I by picking 1 − b
in the next round, leading to a request that is answered with
cost 8 = 2(n+ 1)− j.

The automaton A′′3 can easily be generalized to an arbitrary
n by allowing Player O for every j ∈ {1, . . . , n} to predict
the letter picked by Player I j positions ahead with a cost of
2(n+ 1)− j.

After exhibiting these tradeoffs, a natural question concerns
upper bounds on the tradeoff between quality and lookahead.
The results on (delay-free, arena-based) parity games with
costs imply that an optimal strategy for Γf0(L(A)) has cost
at most 2|A| (with a little more effort, the factor 2 can be
eliminated): every such game can be modeled as an arena-
based parity game with costs by splitting the transitions of the
automaton into two moves. For such games, it is known that
the cost of an optimal strategy is at most the number of states
of the arena [13], [15]. On the other hand, we have shown
in Corollary 3 that exponential lookahead and exponential
cost is (simulatenously) achievable, if Player O wins at all.
These results constrain the type of lookahead exhibited in the
previous theorems.

B. Tradeoffs for Streett Conditions with Costs

To conclude this section, we consider Streett conditions
with costs. Recall that there is a trivial exponential lower
bound on the necessary lookahead in delay games with Streett
conditions with costs obtained from the same lower bound
for parity conditions with costs. However, we only proved
a doubly-exponential upper bound. Next, we show that this
upper bound is tight, when considering strategies realizing the
smallest possible cost with respect to all delay functions.

To this end, we consider a modification of the bad j-pair
game described in Examples 1 and 2 showing an exponential
lower bound on the necessary lookahead for parity conditions
with costs. Recall that Player O needs lookahead 2n + 1

10

when picking numbers from {1, . . . , n}. Thus, to prove a
doubly-exponential lower bound, it suffices to implement this
game with numbers from the range {0, . . . , 2n − 1} (encoded
in binary to keep the alphabet small) by an automaton of
polynomial size in n. However, we have to modify the rules
of the game, as such a small automaton cannot recognize the
winning condition, which requires to distinguish 2n different
choices for y0. Instead, we would like to require Player O to
pick yi = y0 for all i > 0 and to mark the two positions i and
i′ inducing the bad y0-pair by some special markers Ü and Ü.
Then, the automaton just has to check that xj and yj are equal
at the marked positions and that xj is strictly smaller than yj
in between these positions. Due to the binary encoding, both
checks are easily implemented using the transition structure.

It remains to explain how to require Player O to copy her
choice y0. As before, using the state space requires too many
states. Instead, we employ the finitary Streett condition with
respect to a small bound to enforce the copying. The j-th bit
of a binary encoding of a number opens a request that can
only be answered by encountering the same bit at the same
position of a later encoding. Thus, to answer these requests
with cost n, the numbers have to be copied.

To simplify our notation, we say that a delay function f
eventually grants a lookahead of size m, if there is an i
such that

∑
0≤i′≤i(f(i) − 1) ≥ m. Furthermore, we say a

Streett pair in a Streett automaton is qualitative (finitary), if
the associated cost function assigns ε (i) to every transition.

Theorem 8. For every n > 0, there is a language Ln
recognized by a Streett automaton with costs An of polynomial
size in n such that
• Player O has a winning strategy τO for Γf (Ln) for some
f with Cst(τO) = n, but

• if Player O has a winning strategy τO for Γf (Ln) with
Cst(τO) = n, then f eventually grants a lookahead of
size n · (22n − 1).

Proof. We start by describing the language Ln and by ar-
guing that it can be recognized by a Streett automaton with
costs An of polynomial size in n. Fix ΣI = {0, 1}∪ {0, 1}×
{#} and ΣO = {0, 1} ∪ {0, 1} × {Ü, Ü} and consider a
word

(
α
β

)
∈ (ΣI ×ΣO)ω . By grouping the bits of α (ignoring

the mark #) into blocks of length n, α can be interpreted as
a sequence α = x0x1x2 · · · ∈ {0, . . . , 2n − 1}ω of natural
numbers. Analogously, the bits of β can be interpreted as a
sequence β = y0y1y2 · · · ∈ {0, . . . , 2n − 1}ω when ignoring
the marks Ü and Ü. We say that xi is marked, if # holds at
the first position of the block encoding xi, that yi is marked
by Ü, if Ü holds at the first position of the block encoding yi,
and yi being marked by Üis defined analogously. Player I
uses his mark to start a new round while Player O uses her
marks to pick bad j-pairs.

Fix a word w =
(
α
β

)
with α = x0x1x2 · · · and β =

y0y1y2 · · · . If x0 is not marked, then w ∈ Ln. Thus, assume
from now on that x0 is marked and let i# be arbitrary
with xi#

being marked. To be in Ln, w has to satisfy the
following condition (amongst others): there have to be exactly

two marked yi with i ≥ i# before the next xi′
#

is marked.

The first one after i# has to be marked by Ü, the second one
by Ü. However, if there is another marked xi′

#
before the yi

marked by Üthen w is in Ln, i.e., Player I may only start
a new round after Player O has picked a bad j-pair in the
current round. These properties can be implemented using the
transition structure of the automaton and a classical Streett
pair to require Player O to use her marks eventually. Also,
whenever a yi is marked, it has to be equal to xi. Furthermore,
let yi be marked by Ü and let yi′ be the next marked number.
Then, we require xj < yj for every j in the range i < j < i′.
These requirements can be enforced by the transition structure.

Finally, we employ finitary Streett pairs and a small bound
on the cost to enforce the copying. Every occurrence of a bit b
(ignoring the marks) in β at a position k opens a request that is
only answered by a later b (again ignoring the marks) in β at a
position k′ with k mod n = k′ mod n or by a later block that
is marked by Ü. This property is enforced by finitary Streett
pairs. Thus, to answer these requests with cost n, all the yj
between a marked xi (the start of a round) and the next yi′
marked by Ü(the end of the round) have to coincide.

It is straightforward to construct a Streett automaton with
costs An of polynomial size that recognizes the language Ln
described above.

Now, analogously to the arguments in Example 2, one can
show that Player O wins Γf (Ln) for the constant f with
f(0) = n · 22n : at the start of each round, she has enough
lookahead to pick a yi such that Player I has already produced
a bad yi-pair in the current round. Then, she copies the yi and
marks the pair correctly and waits for the start of the next
round. This satisfies the qualitative Streett pairs as well as the
finitary ones with cost n, i.e, she wins.

Now fix some delay function f such that Player O has a
winning strategy τO for Γf (Ln) with Cst(τO) = n. Assume
towards a contradiction that f does not eventually grant a
lookahead of size n · (22n − 1). As mentioned in Example 2,
there is a sequence x of length 22

n − 1 without a bad j-pair
for every j ∈ {0, . . . , 2n − 1}. Player I’s strategy against τO
is to first play the binary encoding of x, with the first number
marked. Due to the small lookahead, Player O has to specify
y0 during these moves. Then, Player I just plays some x 6= y0
until Player O has played both her marks. If she never does,
then Player I wins the play. Otherwise, he just starts a new
round and proceeds as previously described.

Consider a round of an outcome of this strategy and say
Player O picks yi as first number in this round. Then, the
sequence of numbers picked by Player I in this round contains
no bad yi-pair. If Player O does not mark any numbers in this
round, or they do not constitute a bad j-pair for some j, then
she loses the play, which contradicts our assumption. Thus,
assume she does mark a bad j-pair correctly. Then, we have
j 6= y0. This means she does not copy yi throughout the round
until she plays her second mark. Thus, there is a request that
is not answered with cost n. As Player I is able to enforce
such a request in each round, the resulting play has at least

11

cost n+ 1, again a contradiction.

On the other hand, the previous example does not yield a
doubly-exponential lower bound on the necessary lookahead
for arbitrary bounds on the costs, as Player O can satisfy the
acceptance condition of the automaton by starting each round
by playing 0n and then 1n, which answers all finitary Streett
pairs in the game and then correctly marking a bad j-pair for
some j. This strategy has much larger cost than n, but is still
winning. Whether there is a tradeoff (and, if yes, it’s extent)
remains an open problem.

Also note that the automaton An has both classical and
finitary Streett pairs. It is an open problem to show the same
result for finitary Streett automata. The problem one encoun-
ters is that the acceptance condition has to force Player O to
mark a bad j-pair in each round. Implementing this with a
finitary Streett pair increases the cost of a winning strategy,
as it may take doubly-exponentially long before such a pair
appears. This large bound allows Player O to cheat in the
copying process, as described above.

VII. CONCLUSION

We have demonstrated the usefulness of adding delay to
games with quantitative winning conditions, here finitary
parity and Streett conditions as well as parity and Streett
conditions with costs.

We have shown that delay games with parity conditions with
costs are just as hard as delay games with parity conditions,
both in terms of the necessary lookahead and in terms of the
computational complexity of determining the winner. Thus,
adding quantitative features to such games comes for free,
which is in line with similar results for both delay-free
games [13], [11], [21] and delay games [8]. Furthermore, we
exhibited the usefulness of delay by showing that lookahead
can be traded for quality of strategies. This phenomenon
goes beyond the advantages in qualitative delay games, where
lookahead only allows to win more games.

Another interesting property of delay-free finitary parity
games is that playing them optimally is much harder than just
winning them: the bounding player always has a positional
winning strategy [13], which is winning with respect to some
uniform bound b, but satisfying the optimal uniform bound
might require exponential memory [15]. Similarly, determining
the optimal bound is PSPACE-complete [15] while just
determining the winner of a delay-free finitary parity game
is in PTIME [12].

In current work, we study the tradeoffs between quality,
memory requirements, lookahead, and solution complexity.
In particular, this requires to develop a theory of finite-state
strategies for delay games, which is, due to the presence of
lookahead, non-trivial (see [22] for a proposal of finite-state
strategies in a setting that is similar to the definition of G(A)).

Furthermore, we gave a doubly-exponential upper bound
on the necessary lookahead for delay games with Streett
conditions with costs and showed that such games can be
solved in doubly-exponential time. The best lower bounds

are those for parity conditions with costs, i.e., there is an
exponential gap in both cases. Note that these gaps already
exists in the case of qualitative Streett conditions: doubly-
exponential constant lookahead is sufficient and solving such
games is in 2EXPTIME (this follows via determinization
from the results for parity conditions), but the best lower
bounds are exponential for the lookahead and EXPTIME-
completeness. In future work, we aim to close these gaps.

Acknowledgments: We thank Alexander Weinert for nu-
merous fruitful discussions.

REFERENCES

[1] J. R. Büchi and L. H. Landweber, “Solving sequential conditions
by finite-state strategies,” Transactions of the American Mathematical
Society, vol. 138, pp. pp. 295–311, 1969.

[2] A. Church, “Logic, arithmetic, and automata,” in Proc. Int. Congr. Math.
1962. Inst. Mittag-Lefler, Djursholm, Sweden, 1963, pp. 23–35.

[3] F. A. Hosch and L. H. Landweber, “Finite delay solutions for sequential
conditions,” in ICALP 1972, 1972, pp. 45–60.

[4] M. Holtmann, L. Kaiser, and W. Thomas, “Degrees of lookahead in
regular infinite games,” LMCS, vol. 8, no. 3, 2012.

[5] W. Fridman, C. Löding, and M. Zimmermann, “Degrees of lookahead in
context-free infinite games.” in CSL 2011, ser. LIPIcs, M. Bezem, Ed.,
vol. 12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011, pp.
264–276.

[6] F. Klein and M. Zimmermann, “What are strategies in delay games?
Borel determinacy for games with lookahead,” in CSL 2015, ser. LIPIcs,
S. Kreutzer, Ed., vol. 41. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015, pp. 519–533.

[7] ——, “How much lookahead is needed to win infinite games?” LMCS,
vol. 12, no. 3, 2016.

[8] ——, “Prompt delay,” in FSTTCS 2016, ser. LIPIcs, A. Lal, S. Akshay,
S. Saurabh, and S. Sen, Eds., vol. 65. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2016, pp. 43:1–43:14.

[9] M. Zimmermann, “Delay games with WMSO+U winning conditions,”
RAIRO-Theor. Inf. Appl., vol. 50, no. 2, pp. 145–165, 2016.

[10] M. Jurdziński, “Deciding the winner in parity games is in UP∩coUP,”
Inf. Process. Lett., vol. 68, no. 3, pp. 119–124, 1998.

[11] O. Kupferman, N. Piterman, and M. Y. Vardi, “From liveness to
promptness,” Form. Method. Syst. Des., vol. 34, no. 2, pp. 83–103, 2009.

[12] K. Chatterjee, T. A. Henzinger, and F. Horn, “Finitary winning in ω-
regular games,” ACM Trans. Comput. Log., vol. 11, no. 1, 2009.

[13] N. Fijalkow and M. Zimmermann, “Parity and Streett games with costs,”
LMCS, vol. 10, no. 2, 2014.

[14] F. Mogavero, A. Murano, and L. Sorrentino, “On promptness in parity
games,” Fundam. Inform., vol. 139, no. 3, pp. 277–305, 2015.

[15] A. Weinert and M. Zimmermann, “Easy to win, hard to master: Optimal
strategies in parity games with costs,” in CSL 2016, ser. LIPIcs, J. Talbot
and L. Regnier, Eds., vol. 62. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016, pp. 31:1–31:17.

[16] M. Bojańczyk, “Weak MSO with the unbounding quantifier,” Theory
Comput. Syst., vol. 48, no. 3, pp. 554–576, 2011.

[17] A. Pnueli and R. Rosner, “On the synthesis of an asynchronous re-
active module,” in ICALP 1989, ser. LNCS, G. Ausiello, M. Dezani-
Ciancaglini, and S. R. D. Rocca, Eds., vol. 372. Springer, 1989, pp.
652–671.

[18] M. Zimmermann, “Games with costs and delays,” arXiv, vol.
1701.02168, 2017.

[19] K. Chatterjee and N. Fijalkow, “Finitary languages,” in LATA 2011, ser.
LNCS, A. H. Dediu, S. Inenaga, and C. Martín-Vide, Eds., vol. 6638.
Springer, 2011, pp. 216–226.

[20] A. Weinert and M. Zimmermann, “Easy to win, hard to master: Optimal
strategies in parity games with costs,” 2017, Journal version of [15].
Under submission.

[21] M. Zimmermann, “Optimal bounds in parametric LTL games,” Theoret.
Comput. Sci., vol. 493, no. 0, pp. 30 – 45, 2013.

[22] T. Salzmann, “How much memory is needed to win regular delay
games?” Master’s thesis, Saarland University, 2015.

12

