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Energy games are infinite two-player games played in weighted arenas with quantitative objectives
that restrict the consumption of a resource modeled by the weights, e.g., a battery that is charged
and drained. Typically, upper and/or lower bounds on the battery capacity are part of the problem
description. Here, we consider the problem of determining upper bounds on the average accumulated
energy or on the capacity while satisfying a given lower bound, i.e., we do not determine whether a
given bound is sufficient to meet the specification, but if there exists a sufficient bound to meet it.

In the classical setting with positive and negative weights, we show that the problem of deter-
mining the existence of a sufficient bound on the long-run average accumulated energy can be solved
in doubly-exponential time. Then, we consider recharge games: here, all weights are negative, but
there are recharge edges that recharge the energy to some fixed capacity. We show that bounding
the long-run average energy in such games is complete for exponential time. Then, we consider the
existential version of the problem, which turns out to be solvable in polynomial time: here, we ask
whether there is a recharge capacity that allows the system player to win the game.

We conclude by studying tradeoffs between the memory neededto implement strategies and the
bounds they realize. We give an example showing that memory can be traded for bounds and vice
versa. Also, we show that increasing the capacity allows to lower the average accumulated energy.

1 Introduction

Quantitative games provide a natural framework for synthesizing controllers with resource restrictions
and for performance requirements for reactive systems withan uncontrollable environment. In a tradi-
tional two-player graph game of infinite duration (see [18]), two players, Player 0 (who represents the
system to be synthesized) and Player 1 (representing the antagonistic environment), construct an infi-
nite path by moving a pebble through a graph, which describesthe interaction between the system and
its environment. The objective, which encodes the controller’s specification, determines the winner of
such a play. Quantitative games extend classical ones by having weights on edges for modeling costs,
consumption or rewards, and a quantitative objective to encode the specification in terms of the weights.
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Consider the game depicted to the right: we interpret nega-

tive weights as energy consumption and correspondingly positive
weights as recharges. Then, Player 0 (who moves the pebble atthe
circled vertices) can always maintain an energy level (the sum of
the weights seen along a play prefix starting with energy 0) between
zero and five using the following strategy: when at vertexv0 with
non-zero energy level go to vertexv1, otherwise go to vertexv2 in
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2 Finding Bounds in Average-energy Games

order to satisfy the lower bound. At vertexv1 she moves tov0 if the energy level is zero, otherwise to
v2. It is straightforward to verify that the strategy has the desired property when starting at the initial
vertex v0 with initial energy 0. However, this strategy requires memory to implement, as its choices
depend on the current energy level.

Quantitative games [2, 9, 24] and objectives such as mean-payoff [7, 26, 28], energy [4, 10, 19], and
their combination [12] have attracted considerable attention recently. The focus has been on establishing
the computational complexity of deciding whether Player 0 wins the game and on memory requirements.
In mean-payoff games, Player 0’s goal is to optimize the long-run average gain per edge taken, whereas
in energy games the goal is to keep the accumulated energy within given bounds. Recently, the average-
energy objective was introduced [5] to capture the specification in an industrial case study [8]. In this
study, the authors synthesize a controller to operate an oilpump using timed games and UPPAAL TiGA.
The controller has to keep the amount of oil in an accumulatorwithin given bounds while minimizing the
average amount of oil in the accumulator in the long run. A discrete version of this problem is exactly
an average-energy game, where the goal for Player 0 is to optimize the long-run average accumulated
energy during a play while keeping the accumulated energy within given bounds.

Recall the introductory example above. The strategy for Player 0 described there realizes the long-
run average 4: the consistent playv0(v2v0v1)

ω with energy levels 0,(3,5,4)ω has average 4, obtained by
dividing the sum of the levels in the period by the length of the period. Every other consistent play has a
smaller or equal average.

The computational complexity of these quantitative objectives are typically studied with respect to
given bounds on the energy level or given thresholds on the mean-payoff or on the average accumulated
energy. In this work, we consider the variants where the bounds and thresholds are existentially quantified
instead of given as part of the input, i.e., we ask if there exist bounds and thresholds such that Player 0
has a winning strategy. This question is natural for models with bounds and thresholds as it desirable to
know if a given model is realizable for some bounds. In a second step, one would then determine the
minimal bounds for which Player 0 is able to win.

In particular, we study existential questions on two different game models, average-energy games
and average-bounded recharge games. Average-energy gamesare defined as in [5] with both positive
and negative weights on edges whereas in average-bounded recharge games all weights are negative, but
there are designated recharge-edges that recharge the energy to some fixed capacity.

Our contribution. For average-energy games, we show that the problem of deciding whether there ex-
ists a threshold to which Player 0 can bound the long-run average accumulated energy while keeping the
accumulated energy non-negative can be solved in doubly-exponential time. To this end, we show that
the problem is equivalent to determining whether the maximal energy level can be uniformly bounded by
a strategy. The latter problem is known to be in 2EXPTIME [19]. The challenging part is to construct a
strategy that uniformly bounds the energy from the strategythat only bounds the long-run average accu-
mulated energy, but might reach arbitrarily high energy levels. But whenever the energy level increases
above the given threshold, it has to drop below it at some later point. Thus, we can always play like in a
situation where the peak between these two threshold crossings is as small as possible. This yields a new
strategy that bounds the energy level. Our result is one steptowards solving the open problem of solving
lower-bounded average-energy games with a given threshold[5].

For average-bounded recharge games, we show that given a bound on the long-run average energy,
deciding the winner is EXPTIME-complete. For the existential versions of the problem, we show that it
remains EXPTIME-hard when the recharge capacity is quantified and the average threshold is given. The
problem becomes solvable in polynomial time when only the recharge capacity is considered: here, we
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ask whether there is a recharge capacity such that Player 0 wins the game with respect to this capacity.
Finally, we study tradeoffs between the different bounds and the memory requirements of winning

strategies, and show that increasing the upper bound on the maximal energy level allows to improve the
average energy level and memory can be traded for smaller upper bounds and vice versa.

Related work. The average energy objective was first introduced in [25] under the name total-reward
but has until recently not undergone a systematic study. Independently, it was studied (under the name
total-payoff) for Markov decision processes and stochastic games [3], and [5] presented a comprehensive
investigation into the problem in the deterministic case. The latter also considered extensions where the
average-energy objective is combined with bounds on the energy, which is the model we consider here.

Several other games with combined objectives have been introduced such as mean-payoff parity [11],
energy-parity [10], multi-dimensional energy [16], multi-dimensional mean-payoff [26] and the combi-
nation of multi-dimensional energy, mean-payoff and parity [12]. In [6], consumption games are studied
where edges only have negative weights, and some distinguished edges recharge the energy to a level
determined by Player 0. This model is related to recharge games, but in recharge games the recharge
capacity is given and we consider average-bounded objectives. Existential questions in games have been
studied before in the form of determining the emptiness of a set of bounds that allow Player 0 to win a
quantitative game, e.g., for multi-dimensional energy games with upper bounds [19] and for games with
objectives in parameterized generalizations of LTL [1, 17,22, 27].

2 Definitions

An arena A = (V,V0,V1,E,vI) consists of a finite directed graph(V,E) without terminal vertices, a
partitionV =V0⊎V1 of the vertices, and an initial vertexvI ∈V. Vertices inV0 are under Player 0’s control
and are drawn as circles, whereas vertices inV1 are under Player 1’s control and drawn as rectangles. A
play inA is an infinite pathρ = v0v1v2 · · · with v0 = vI . A gameG = (A ,Win) consists of an arenaA ,
and a set Win⊆Vω of winning plays for Player 0, theobjectiveof G . The objectives we consider are
induced by weight functions, assigning integer weights to edges, which are encoded in binary. We say
an algorithm runs inpseudo-polynomial time, if it runs in polynomial time in the number of vertices and
in the largest absolute weight. An algorithm runs in polynomial time, if it runs in polynomial time in the
number of vertices and in the size of the encoding of the largest absolute weight.

A strategyfor Playeri ∈ {0,1} is a mappingσi : V∗Vi →V such that(v,σi(wv))∈E for all wv∈V∗Vi .
A play v0v1v2 · · · is consistentwith a strategyσi for Playeri if vn+1 = σi(v0v1 · · ·vn) for everyn with
vn ∈Vi . A strategyσ0 for Player 0 is winning for the gameG = (A ,Win) if every play that is consistent
with σ0 is in Win. We say that Player 0 winsG if she has a winning strategy forG . We define Prefs(σ) to
denote the set of finite play prefixes that are consistent withσ . We denote the last vertex of a non-empty
word w by Last(w).

A memory structureM = (M,mI ,Upd) for an arena(V,V0,V1,E,vI ) consists of a finite setM of
memory states, an initial memory statemI ∈ M, and an update function Upd:M×E → M. The update
function can be extended to Upd+ : V+ →M in the usual way: Upd+(v0)=mI and Upd+(v0 · · ·vnvn+1)=
Upd(Upd+(v0 · · ·vn),(vn,vn+1)). A next-move function (for Playeri) Nxt : Vi ×M → V has to satisfy
(v,Nxt(v,m)) ∈ E for all v ∈ Vi and allm∈ M. It induces a strategyσ for Player i via σ(v0 · · ·vn) =
Nxt(vn,Upd+(v0 · · ·vn)). A strategy is calledfinite-state(positional) if it can be implemented by a
memory structure (with a single state). Intuitively, the next move of a positional strategy only de-
pends on the last vertex of the play prefix. An arenaA = (V,V0,V1,E,vI ) and a memory structure
M = (M,mI ,Upd) for A induce the expanded arenaA ×M = (V ×M,V0 ×M,V1 ×M,E′,(vI ,mI))
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where((v,m),(v′,m′)) ∈ E′ if and only if (v,v′) ∈ E and Upd(m,(v,v′)) = m′. Each playv0v1v2 · · · in
A has a unique extended play(v0,m0)(v1,m1)(v2,m2) · · · in A ×M defined bym0 = mI andmn+1 =
Upd(mn,(vn,vn+1)), i.e.,mn = Upd+(v0 · · ·vn). A gameG = (A ,Win) is reducibleto G ′ = (A ′,Win′)
via M , written G ≤M G ′, if A ′ = A ×M and every playρ in G is won by the player who wins the
extended playρ ′ in G ′, i.e.,ρ ∈ Win if, and only if, ρ ′ ∈ Win′.

Lemma 1. If G ≤M G ′ and Player i has a positional winning strategy forG ′, then she has a finite-state
winning strategy forG which is implemented byM .

3 Finding Bounds in Average-energy Games

In this section, we study average-energy games with existentially quantified bounds on the average ac-
cumulated energy: our main theorem shows that these games are solvable in doubly-exponential time.

A weight function for an arena(V,V0,V1,E,vI ) is a functionw: E → Z mapping every edge to an in-
teger weight. The energy level of a play prefix is the accumulated weight of its edges, i.e., EL(v0 · · ·vn) =

∑n−1
i=0 w(vi ,vi+1). We consider several objectives obtained by specifying upper and lower bounds on the

energy level and on the long-run average accumulated energy.

• The lower-bounded energy objective requires Player 0 to keep the energy level non-negative:

EnergyL(w) = {v0v1v2 · · · ∈Vω | ∀n.0≤ EL(v0 · · ·vn)}

• The lower- and upper-bounded energy objective requires Player 0 to keep the energy level always
between 0 and some given upper boundcap, the so-called capacity:

EnergyLU(w,cap) = {v0v1v2 · · · ∈Vω | ∀n.0≤ EL(v0 · · ·vn)≤ cap}

• The average-energy objective requires Player 0 to keep the long-run average of the accumulated
energy below a given thresholdt:

AvgEnergy(w, t) = {v0v1v2 · · · ∈Vω | limsup
n→∞

1
n∑n−1

i=0 EL(v0 · · ·vi)≤ t}

• Also, we consider conjunctions of objectives, i.e., the lower-bounded average-energy objective

AvgEnergyL(w, t) = EnergyL(w)∩AvgEnergy(w, t)

and the lower- and upper-bounded average-energy objective

AvgEnergyLU(w,cap, t) = EnergyLU(w,cap)∩AvgEnergy(t).

Note that we always assume the initial energy level to be zero. This is not a restriction, as one can always
add a fresh initial vertex with an edge to the old initial vertex that is labeled by the desired initial energy
level. Similarly, one can reduce arbitrary non-zero lower bounds to the case of the lower bound being
zero, which is the one we consider here.

Decidability of determining the winner of a game with lower-bounded average-energy objective with
a given thresholdt is an open problem [5]. To take a step towards solving this problem, we consider the
existential variant of the problem, i.e., we ask whether there exists some thresholdt such that Player 0
wins the game with objectiveAvgEnergyL(w, t):
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Problem 1. Existence of a threshold in a lower-bounded average-energygame.
Input: ArenaA = (V,V0,V1,E,vI ) and w: E → Z

Question: Exists a threshold t∈ N s.t. Player0 wins(A ,AvgEnergyL(w, t))?

We show that this problem is reducible to asking for the existence of an upper bound on the capac-
ity cap. Note that such an upper bound also bounds the average accumulated energy. However, the
converse is non-trivial as the average can be bounded while the energy level is unbounded. Formally, we
consider the following problem:

Problem 2. Existence of an upper bound in a lower- and upper-bounded energy game.
Input: ArenaA = (V,V0,V1,E,vI ) and w: E → Z

Question: Exists a capacity cap∈ N s.t. Player0 wins(A ,EnergyLU(w,cap))?

The main theorem of this section shows that the existence of athreshold in a lower-bounded average-
energy game can be checked in doubly-exponential time. Our choice of encoding the weights influ-
ences the complexity of the problem: if the weights are encoded in unary, then the complexity drops to
EXPTIME . Furthermore, the problem is trivially at least as hard as solving mean-payoff games.

Theorem 1. The threshold problem for lower-bounded average-energy games is in2EXPTIME .

To prove this theorem, it suffices to show that Problem 1 and Problem 2 are equivalent, as the latter
problem was shown to be in 2EXPTIME [19].

Lemma 2. LetA be an arena and let w be a weight function forA . Player0wins(A ,AvgEnergyL(w, t))
for some t∈ N if, and only if, Player0 wins(A ,EnergyLU(w,cap)) for some cap∈ N.

Proof. It is clear that a winning strategyσ for (A ,EnergyLU(w,cap)) for somecap∈ N is a winning
strategy for(A ,AvgEnergyL(w,cap)), as if the energy level is always below somecap, then the average
energy is also bounded bycap.

For the other direction, assume thatσ is a winning strategy for Player 0 in(A ,AvgEnergyL(w, t)) for
somet ∈N. Now, we want to construct a strategyσ ′ that is winning for Player 0 in(A ,EnergyLU(w,cap))
for somecap∈ N. Note thatσ might bound the average to some value while the energy level might be
unbounded. But whenever the energy level increases abovet, it has to drop belowt at some point. We
use this property to construct a strategyσ ′ that bounds the energy level.

First, we need to introduce some notation. Fix a play prefixw∈ Prefs(σ) with EL(w)> t and define

Peak(w) = sup{EL(wx) | wx∈ Prefs(σ) and EL(wx′)> t for all x′ ⊑ x},

i.e., Peak(w) is the supremum of the energy levels of prolongations ofw that are consistent withσ and
have not yet had an energy level belowt. Applying König’s Lemma [21] and the fact thatσ is a winning
strategy implies that the peak is always bounded.

Remark 1. We havePeak(w) ∈N for every w∈ Prefs(σ).

For an energy levelc∈N and a vertexv∈V we define the set of possible ways to end up in vertexv
with the energy levelc playing consistently withσ as

Real(v,c) = {w∈ Prefs(σ) | Last(w) = v and EL(w) = c}.

For every combination(v,c) with c > t, we pick a representative from Real(v,c) that minimizes the
peak height among all such realizations, i.e., we define Rep(v,c) to be an elementw from Real(v,c)
with minimal peak-value Peak(w) among the play prefixes in Real(v,c). Note that Rep(v,c) might be
undefined, i.e., if there is no play prefix ending inv with energy levelc.
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Intuitively, we construct a new strategy that mimics the behavior ofσ until the energy level increases
abovet. At this point, the history is replaced by the representative for the last vertex and the current
energy level. Then, our new strategy mimics the behavior ofσ with this history until the thresholdt
is again crossed from below. Then, the next representative is picked. This strategy satisfies an upper
bound, as only a finite number of representatives, each with abounded peak-value, are considered when
mimicking σ . To formalize this, we recursively defineh: V+ → Prefs(σ) via h(vI ) = vI and

h(wv) =

{

Rep(v,EL(h(w)v)) if EL(h(w))≤ t and EL(h(w)v)> t

h(w)v otherwise

for a play prefixwv∈V+ ending in a vertexv, i.e., h(w) is the play prefix that simulatesw. Now, we
define the new strategyσ ′ via σ ′(w) = σ(h(w)). The following remark implies that this is well-defined,
although Rep and thereforeh andσ might be undefined for certain inputs.

Remark 2. Let w be consistent withσ ′. Then, h(w) is defined and consistent withσ , Last(w) =
Last(h(w)), andEL(w) = EL(h(w)).

Applying the remark inductively we conclude thath(w) is defined for every play prefixw that is
consistent withσ ′. This implies thatσ ′(w) is well-defined for every suchw that ends in a vertex from
V0. Furthermore, this also implies thatσ ′ still satisfies the lower bound on the energy level.

Thus, it remains to prove that an upper bound exists. Letρ = v0v1v2 · · · be consistent withσ ′ and let
n be such that EL(v0 · · ·vn)≤ t and EL(v0 · · ·vnvn+1)> t. If there is no suchn, thenσ bounds the energy
level by t and we are done. Furthermore, definen′ to be minimal withn′ > n+1 and EL(v0 · · ·vn′) ≤ t
and EL(v0 · · ·vn′vn′+1)> t (if no suchn′ exists the reasoning is analogous). As the energy level between
the positionsn+ 1 andn′ never crosses the thresholdt from below, we are always in the second case
of the definition ofh. Thus, after the play prefixv0 · · ·vn+1, the strategyσ ′ mimics the behavior of
σ after the prefixh(v0 · · ·vn+1) = Rep(vn+1,EL(v0 · · ·vn+1)). Therefore, the energy level between these
two positions is bounded by Peak(Rep(vn+1,EL(v0 · · ·vn+1))). As we only take those representatives into
account that have an energy level betweent +1 andt +W, whereW is the largest positive weight in the
image ofw, the energy level of the play is bounded by the maximal peak ofone of these representatives.
Finally, this bound is uniform for all plays that are consistent with σ ′. Thus, σ ′ is winning in the
game(A ,AvgEnergyL(w,cap)) for somecap.

Note that we do not obtain any upper bounds on the energy levelor on the long-run average energy
realized byσ ′, as they depend on properties ofσ . One can even construct examples that show these
values to be arbitrarily large by starting with abadwinning strategyσ for the energy game.

4 Finding Bounds in Average-bounded Recharge Games

In this section, we study a variation of energy games called recharge games (the name is inspired by
recharge automata, first introduced in [14]). In such games,there are designated recharge edges that
recharge the energy to some given capacity. All other edges have non-positive cost, i.e., they only
decrease the energy level or leave it unchanged. This is reminiscent of so-called consumption games [6],
where Player 0 picks the new energy level while traversing a recharge edge. There, one is interested in
which initial energy levels allow Player 0 to win and to compute upper bounds on the recharge levels
picked by Player 0.
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In this section, we go beyond just bounding the energy level by also considering bounds on the
average accumulated energy, as we have done for average-energy games. However, the resulting games
are intractable, as soon as the threshold on the average is part of the input. These results are presented in
Subsection 4.1. To overcome the high complexity, in Subsection 4.2 we consider the problem where the
recharge capacity is existentially quantified: this problem is solvable in polynomial time by a reduction
to three-color parity games.

Here, we consider weight functions with only non-positive weights and a special recharge action R,
i.e., w: E → −N∪ {R}. The recharge action R returns the energy level to some givenupper bound
capacitycap. The recharge energy level is the energy left since the last recharge action, which is de-
fined as ELcap(v0 · · ·vn) = cap+EL(x), wherex is the longest suffix ofv0 · · ·vn without an R-edge, i.e.,
w(v j ,v j+1) 6= R for all (v j ,v j+1) in x, which implies that a play starts with energy levelcap. We define
the objective of a recharge game as

Recharge(w,cap) = {v0v1v2 · · · ∈Vω | ∀n.ELcap(v0 · · ·vn)≥ 0}

and the average-bounded version as

AvgRecharge(w,cap, t) = {v0v1v2 · · · ∈Vω | limsup
n→∞

1
n

n−1

∑
i=0

ELcap(v0 · · ·vi)≤ t}∩Recharge(w,cap).

4.1 Solving Average-bounded Recharge Games

First, we show that solving average-bounded recharge gamesfor a given thresholdt and a given recharge
capacitycap is EXPTIME-complete and that the problem is still EXPTIME-hard, if the capacity is exis-
tentially quantified and only the threshold is given. Formally, we are interested in the following problems:
Problem 3. Solving Average-bounded recharge games
Input: ArenaA = (V,V0,V1,E,vI ), w: E →−N∪{R}, cap∈ N, and t∈ N.
Question: Does Player0 win (A ,AvgRecharge(w,cap, t))?

Problem 4. Solving Average-bounded recharge games with existentially quantified capacity
Input: ArenaA = (V,V0,V1,E,vI ), w: E →−N∪{R}, and t∈ N.
Question: Exists cap∈ N s.t. Player0 wins(A ,AvgRecharge(w,cap, t))?

First, we consider Problem 3.
Theorem 2. Solving average-bounded recharge games isEXPTIME-complete.

We begin the proof by presenting an exponential time algorithm for solving average-bounded recharge
games by reducing them to mean-payoff games, similarly to the reduction from lower- and upper-
bounded energy games to mean-payoff games [5]. The mean-payoff objective is given by

MeanPayoff(w, t) = {v0v1v2 · · · ∈Vω | limsup
n→∞

1
n

EL(v0 · · ·vn−1)≤ t}.

Lemma 3. Average-bounded recharge games can be solved in exponential time.

Proof. Fix an arenaA = (V,V0,V1,E,vI), w: E → −N∪ {R}, cap∈ N, and t ∈ N. We construct a
memory structureM = (M,mI ,Upd) to reduce the average-bounded recharge game to a mean-payoff
game. To this end, letM = {0, . . . ,cap}∪{⊥}, mI = cap, Upd(⊥,(v,v′)) =⊥, and

Upd(c,(v,v′)) =











cap if w(v,v′) = R,

c+w(v,v′) if c+w(v,v′)≥ 0,

⊥ if c+w(v,v′)< 0.
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Intuitively, the memory structure keeps track of the energylevel as long as it is non-negative. If it is
negative, then a sink state is reached. Finally, we define a new weight functionw′ by w′((v,c),(v′,m)) = c
for everyc∈ M \{⊥} andm∈ M andw′((v,⊥),(v′,⊥)) = t +1.

Remark 3. Letρ = v0v1v2 · · · andρ ′ = (v0,m0)(v1,m1)(v2,m2) · · · be such thatρ is a play inA andρ ′

is the corresponding extended play inA ×M .

1. If there is no s≤ n such thatELcap(v0 · · ·vs)< 0, then mn = ELcap(v0 · · ·vn).

2. If there is an s≤ n such thatELcap(v0 · · ·vs)< 0, then mn =⊥.

3. If there is no s such thatELcap(v0 · · ·vs)< 0, then

limsup
n→∞

1
n

EL((v0,m0) · · · (vn−1,mn−1)) = limsup
n→∞

1
n∑n−1

i=0 ELcap(v0 · · ·vi).

4. If there is an s such thatELcap(v0 · · ·vs)< 0, then

limsup
n→∞

1
n

EL((v0,m0) · · · (vn−1,mn−1) = t +1.

5. ρ ∈ AvgRecharge(w,cap, t) if, and only if,ρ ′ ∈MeanPayoff(w′, t).

Thus, we have(A ,AvgRecharge(w,cap, t)) ≤M (A ×M ,MeanPayoff(w′, t)). Hence, positional
determinacy of mean-payoff games [13], Lemma 1, and mean-payoff games being solvable in pseudo-
polynomial time [28] yield the exponential time algorithm.

An application of Lemma 1 additionally yields an upper boundon the necessary memory states to
implement a winning strategy.

Corollary 1. If Player0 wins an average-bounded recharge game with capacity cap, then she also wins
it with a finite-state strategy of size cap+2.

v0 v1

R

−1

−1

Figure 1: The arena for the lower
bound on memory requirements in
average-bounded recharge games.

Conversely, it is straightforward to show that this bound istight:
consider the average-bounded recharge game depicted in Figure 1
with some fixed even capacitycapand thresholdt = cap

2 . With cap
memory states, Player 0 can implement a strategy whose unique
consistent play has the form(v0vcap

1 )ω which has the energy lev-
els(cap,cap−1, . . . ,1,0)ω , which results in a long-run average oft.
However, withn< capmemory states, the best Player 0 is able to do
is to implement a strategy whose unique consistent play has the form
(v0vn

1)
ω which has the energy levels(cap,cap− 1, . . . ,cap− n)ω ,

which results in a long-run average of(cap−n)+ n
2 = cap− n

2 > cap− cap
2 = t. Every other play that

is implementable withn memory states has an even higher average. Thus, Player 0 needs capmemory
states to meet the bound on the average.

Next, we give an EXPTIME lower bound by a reduction from countdown games. The arenaA =
(V,V0,V1,E,vI) and the weight functionw of such a game are subject to some restrictions:

1. The initial vertex is inV0 and there is a designated sink vertexv⊥ ∈V1 with a self loop,

2. every vertex inV0 has an edge tov⊥ and all other edges are inV0× (V1\{v⊥})∪ (V1\{v⊥})×V0,

3. all edges inV0× (V1 \{v⊥}) have negative weight and there are no two outgoing transitions from
a vertex inV0 with the same weight, and
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4. all other edges have weight zero.

The objective is given as

Countdown(w,c) = {v0v1v2 · · · ∈Vω | ∃n.vn = v⊥ andc+EL(v0 · · ·vn) = 0}.

Intuitively, Player 0 picks negative weights that are subtracted from the initial energyc and Player 1
picks the next vertex to continue at (vertices of the countdown game are inV0, V1 only contains auxiliary
vertices). Player 0 wins if the energy level is exactly zero at some point, at which she has to move to
the sink vertex. Otherwise, Player 1 wins. Solving countdown games is EXPTIME-complete [20]. Our
reduction is a straightforward adaption of the reduction from countdown to average-energy games [5].

Lemma 4. Solving average-bounded recharge games isEXPTIME-hard.

Proof. Fix A = (V,V0,V1,E,vI) andw satisfying the requirements of a countdown game and some initial
energyc. We add a fresh vertexv′I toV1, add an edge fromv′I to vI and label it with the recharge action R
to obtain the arenaA ′ and the weight functionw′. As every play that does not reach the sink vertex
traverses infinitely many edges with negative weight, we have ρ ∈ Countdown(w,c) if, and only if,
v′I ·ρ ∈ AvgRecharge(w′,c,0). Thus, Player 0 wins(A ′,AvgRecharge(w′,c,0)) if, and only if, she wins
(A ,Countdown(w,c)). Hence, solving average-bounded recharge games is EXPTIME-hard.

Note that the hardness depends on the requirement to bound the average. Recharge games without
average-bound are solvable in pseudo-polynomial time, as such a game can be expressed as a one-
dimensional consumption game [6]. Determining the minimalcover (the analogue of our capacity in
consumption games, see [6] for a formal definition) for the initial vertex and comparing it to the given
capacity yields the desired result, as the minimal cover in aone-dimensional consumption game can be
computed in pseudo-polynomial-time [6]. Whether rechargegames can be solved in polynomial time is
open. In the next subsection, we present a variant that is solvable in polynomial time.

Also, the previous hardness proof can be adapted to rechargegames with a given threshold and
existentially quantified capacity (Problem 4). To this end,we add the initial gadget presented in Figure 2
to a countdown gameG . In order to win this game, Player 0 has to reach the Player 1 vertex with energy
level c. If the energy level is larger then Player 1 can take the edge with weight−c and reach the sink
with a positive energy level. Hence, the average accumulated energy will be non-zero, too. Conversely,
if the energy level is smaller thanc, then taking the same edge yields a negative energy level. Hence, in
both cases the objectiveAvgRecharge(w,cap,0) is violated, independently of the value ofc. However,
if Player 0 reaches the Player 1 vertex with energy levelc, then she wins from there, if and only if, she
has a winning strategy for the countdown gameG with initial valuec. Thus, she wins the recharge game
with objectiveAvgRecharge(w,cap,0) for somecap if, and only if, she wins the countdown gameG

with objectiveCountdown(w,c).

0

−c

0

−1 0 G

Figure 2: The gadget for showing Problem 4 EXPTIME-hard.

Theorem 3. Solving average-bounded recharge games with existentially quantified capacity and a given
threshold isEXPTIME-hard.
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However, it is an open problem whether these games can be solved in exponential time. The reduction
to mean-payoff games presented above depends on the capacity being part of the input. This is related to
the absence of good upper bounds on the necessary capacity toachieve a given threshold.

4.2 Finding a Sufficient Capacity in Recharge Games

To tackle the high complexity of solving average-bounded recharge games, we consider the problem
where the recharge capacitycapand the thresholdt are existentially quantified. As the energy level is
always bounded from above bycap, which implies that the average accumulated energy is also bounded
by cap, it suffices to consider the objectiveRecharge(w,cap), analogous results hold for the objec-
tive AvgRecharge(w,cap, t). We show that the following problem can be solved in polynomial time.

Problem 5. Existence of a sufficient recharge level in recharge games
Input: ArenaA = (V,V0,V1,E,vI ) and w: E →−N∪{R}
Question: Exists a capacity cap s.t. Player0 wins(A ,Recharge(w,cap))?

One attempt to prove this result is to again encode the game asa one-dimensional consumption game
as described above. However, this only yields a pseudo-polynomial time algorithm. In the following,
we present a truly polynomial time algorithm by a reduction to three-color parity games. Given a color-
ing Ω : V → N, Parity(Ω) denotes the (max)-parity objective, which contains all plays v0v1v2 · · · ∈Vω

such that the maximal color appearing infinitely often inΩ(v0)Ω(v1)Ω(v2) · · · is even.

Theorem 4. The existence of a sufficient recharge level in a recharge game can be determined in poly-
nomial time.

Proof. Fix an arenaA = (V,V0,V1,E,vI ) and w: E → −N∪ {R}. We construct a three-color parity
game with the following property: Player 0 wins the parity game if, and only if, there is acap such
that Player 0 wins(A ,Recharge(w,cap)). We assume w.l.o.g. that every vertex ofA either only has
incoming edges labeled with R, only has incoming edges labeled with 0, or only has incoming edges
labeled with a negative weight. This can always be achieved by tripling the set of vertices, one copy for
each type of incoming edge. The new initial vertex is some fixed copy of the original initial vertex. This
transformation does not change the winner and only results in a linear increase in the number of states.

Now, we can speak of recharge-vertices, zero-vertices, andof decrement-vertices and define the
coloring Ω such that it assigns color 2 to the recharge-vertices, color1 to the decrement-vertices, and
color 0 to the zero-vertices. We claim that Player 0 has a winning strategy for the induced parity game
if, and only if, there is acapsuch that Player 0 wins(A ,Recharge(w,cap)).

First, assume Player 0 has a winning strategy for the parity game, which we can assume w.l.o.g. to be
positional [15, 23]. LetW be the largest absolute weight in the image ofw and definecap= (|V|−1) ·W.
We claim thatσ is a winning strategy for Player 0 in(A ,Recharge(w,cap)). Assume it is not: then,
there is a play prefixv0 · · ·vn that is consistent withσ such that ELcap(v0 · · ·vn) < 0. Let vi · · ·vn be the
suffix since the last recharge edge was traversed, i.e.,−EL(vi · · ·vn) > cap. By the choice ofcap, there
are positionsj and j ′ satisfying i < j < j ′ ≤ n such thatv j = v j ′ and EL(v j · · ·v j ′) < 0, i.e., there is a
cycle with negative cost and without recharge edge. Asσ is positional, the playv0 · · ·v j−1(v j · · ·v j ′−1)

ω

obtained by reaching and then repeating this cycle is consistent withσ as well. However, in the parity
game, this cycle visits no recharge-vertex, but at least onedecrement-vertex. Hence, it is losing for
Player 0, which contradictsσ being a winning strategy. Hence,σ is indeed also a winning strategy for
(A ,Recharge(w,cap)).

Now, assume there is somecapand a strategyσ that is winning for Player 0 in(A ,Recharge(w,cap)).
We claim that this strategy is also winning for her in the parity game. Assume, it is not, i.e., there is a



K.G. Larsen, S. Laursen & M. Zimmermann 11

play that is consistent withσ , but losing for Player 0 in the parity game. By our choice of colors, this
implies that this play visits only finitely many recharge-vertices, but infinitely many decrement-vertices.
Thus, it has a prefix whose recharge energy level is negative.But this contradicts the fact thatσ is a
winning strategy for the recharge game.

To conclude, it remains to remark that three-color parity games can be solved in polynomial time.

By applying both directions of the equivalence, we obtain the following corollary.

Corollary 2. If there is a cap such that Player0 wins (A ,Recharge(w,cap)), then she also wins
(A ,Recharge(3 · (n− 1) ·W,w)), where n is the number of vertices ofA and W is the largest abso-
lute weight in the domain of w. Player0 wins the latter game with a finite-state strategy of size three.

Note that this can be improved slightly by a finer analysis: the factor(n−1) can be replaced by the
number of decrement-vertices. Conversely, it is straightforward to construct examples that prove these
bounds to be tight, e.g., a cycle ofn edges, one being a recharge edge and all others having weight−W.

5 Tradeoffs in Recharge Games

In this section, we illustrate two different tradeoff scenarios between different quality measures for win-
ning strategies that occur in average-bounded recharge games, i.e., tradeoffs between capacity and long-
run average and between memory size and long-run average. Note that increasing the recharge capacity
in such a game has a (possibly negative) influence on the long-run average, as every recharge returns
the energy level to the capacity. All games we consider here are solitaire games for Player 0, i.e., every
vertex belongs to Player 0. Thus, a strategy can be identifiedwith the unique play consistent with it.

(a) (b)

(c) (d) (e)

v0 v3

v4v5

v2

v1

−3

0

0
000

−1
R

Capacity

Average

0

1

2

1 2 3 4 5 6 7

•
•

•

•
• •

•

(v0v1v2v0)
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0

1

1 2 3 4
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AE = 3

4

(v0v1v2v0v1v2v0)
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Energy

0

1

2

1 2 3 4 5 6 7

cap= 2

AE = 9
7

(v0v3v4v4v0)
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Step

Energy

0

1

2
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1 2 3 4 5

cap= 3

AE = 3
5

Figure 3: (a) An average-bounded recharge game with tradeoff between capacity and long-run average.
(b) A plot of the tradeoff. (c) - (e) Energy progressions of different plays in the average-bounded recharge
game for different capacities.

First, we study the tradeoff between the capacity and the long-run average energy level. Consider the
game in Figure 3(a): Player 0 wins the game forcap= 1 andt = 1 by realizing the long-run average34
with the play(v0v1v2v0)

ω (Figure 3(c)). But, by increasing the capacity tocap= 2, it is no longer possi-
ble for her to win fort = 1, as the best long-run average she can realize is9

7 by playing(v0v1v2v0v1v2v0)
ω
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(Figure 3(d)). However, forcap= 3, she can again win fort = 1, and it is possible to realize the long-run
average3

5 by playing(v0v3v4v5v0)
ω (Figure 3(e)). Again, withcap= 4 Player 0 loses fort = 1.

This example shows that higher capacity can be traded for a lower long-run average and that the
tradeoff is non-monotonic. Figure 3(b) shows a plot of the tradeoff for capacities ranging from 1 to 7.

Memory

Average
cap− 1

2

cap
2

0
cap1

Figure 4: A plot of the tradeoff be-
tween memory size and long-run av-
erage in the game in Figure 1.

Another tradeoff scenario is between the number of mem-
ory states required to implement a strategy and the long-runav-
erage energy level it realizes. Consider the recharge game from
Figure 1: as discussed below Corollary 1, Player 0 can win for
the thresholdt = cap

2 with cap memory states. However, with
n < cap memory states, she can only guarantee the long-run
average(cap−n)+ n

2. In particular, the best long-run average
that is realizable by a positional strategy (which requiresone
memory state to implement) iscap− 1

2 (see Fig. 4).

6 Conclusion

We continued the study of average-energy games by considering problems where the bound on the aver-
age is existentially quantified instead of given as part of the input. We showed that solving this problem
is equivalent to determining whether the maximal energy level can be uniformly bounded by a strategy.
The latter problem is known to be decidable in doubly-exponential time, which therefore also holds for
our original problem. Then, we considered a different type of energy evolution where energy is only
consumed or reset to some fixed capacity. Solving the average-bounded variants of these games is shown
to be complete for exponential time. Due to this high complexity, we again considered a variant where
the bounds are existentially quantified. This problem turnsout to be solvable in polynomial time. Finally,
we studied tradeoffs between the different bounds and the memory requirements of winning strategies:
increasing the upper bound on the maximal energy level is shown to allow to improve the average energy
level and memory can be traded for smaller upper bounds and vice versa.

For future work, it would be interesting to extend our results to a multi-dimensional setting. Also,
the exact complexity of determining the existence of an upper bound in average-energy games is open.
Finally, the decidability of average-energy games with a given threshold, but without an upper bound on
the energy level is open [5]. In current work, we study whether our approach presented in Section 3 can
be adapted to solve these problems, e.g., by not picking representatives by minimizing peak height but
some other measure. These questions are also related to the complexity of recharge games with a given
threshold where the capacity is existentially quantified. Finally, we are studying upper bounds on the
tradeoffs presented in Section 5.
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