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Energy games are infinite two-player games played in weihatenas with quantitative objectives
that restrict the consumption of a resource modeled by thghts® e.g., a battery that is charged
and drained. Typically, upper and/or lower bounds on théebatapacity are part of the problem
description. Here, we consider the problem of determinjygen bounds on the average accumulated
energy or on the capacity while satisfying a given lower lthure., we do not determine whether a
given bound is sufficient to meet the specification, but if¢hexists a sufficient bound to meet it.

In the classical setting with positive and negative weigtws show that the problem of deter-
mining the existence of a sufficient bound on the long-rumaye accumulated energy can be solved
in doubly-exponential time. Then, we consider rechargeagarhere, all weights are negative, but
there are recharge edges that recharge the energy to somedipacity. We show that bounding
the long-run average energy in such games is complete fanexjpial time. Then, we consider the
existential version of the problem, which turns out to bevable in polynomial time: here, we ask
whether there is a recharge capacity that allows the syskayeto win the game.

We conclude by studying tradeoffs between the memory needetplement strategies and the
bounds they realize. We give an example showing that mermambe traded for bounds and vice
versa. Also, we show that increasing the capacity allowswef the average accumulated energy.

1 Introduction

Quantitative games provide a natural framework for syritiiveg controllers with resource restrictions
and for performance requirements for reactive systems avithncontrollable environment. In a tradi-
tional two-player graph game of infinite duration (se€ [18No players, Player O (who represents the
system to be synthesized) and Player 1 (representing thgamstic environment), construct an infi-
nite path by moving a pebble through a graph, which descileinteraction between the system and
its environment. The objective, which encodes the comrslispecification, determines the winner of
such a play. Quantitative games extend classical ones bgdaxeights on edges for modeling costs,
consumption or rewards, and a quantitative objective to@athe specification in terms of the weights.
Consider the game depicted to the right: we interpret nega-
tive weights as energy consumption and correspondinglytiyp®s 3
weights as recharges. Then, Player O (who moves the pebthie at
circled vertices) can always maintain an energy level (tma sf
the weights seen along a play prefix starting with energy Gyden
zero and five using the following strategy: when at vengxvith ~ —
non-zero energy level go to vertex, otherwise go to vertex, in
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2 Finding Bounds in Average-energy Games

order to satisfy the lower bound. At vertex she moves tay if the energy level is zero, otherwise to
Vo. It is straightforward to verify that the strategy has theidel property when starting at the initial
vertex Vg with initial energy 0. However, this strategy requires meyntm implement, as its choices
depend on the current energy level.

Quantitative games [2] B, P4] and objectives such as megoidd| 26,/28], energyi[4, 10, 19], and
their combination[[12] have attracted considerable datiamecently. The focus has been on establishing
the computational complexity of deciding whether Playeri@sthe game and on memory requirements.
In mean-payoff games, Player 0’s goal is to optimize the fangaverage gain per edge taken, whereas
in energy games the goal is to keep the accumulated energinwiven bounds. Recently, the average-
energy objective was introduced [5] to capture the spetiificdn an industrial case studyl[8]. In this
study, the authors synthesize a controller to operate guailp using timed games andPBaAAL TIGA.

The controller has to keep the amount of oil in an accumulattiiin given bounds while minimizing the
average amount of oil in the accumulator in the long run. Amdite version of this problem is exactly
an average-energy game, where the goal for Player 0O is tmizgtithe long-run average accumulated
energy during a play while keeping the accumulated energlyinvjiven bounds.

Recall the introductory example above. The strategy foydtl@ described there realizes the long-
run average 4: the consistent phayvovov; ) with energy levels 03,5,4)“ has average 4, obtained by
dividing the sum of the levels in the period by the length & pleriod. Every other consistent play has a
smaller or equal average.

The computational complexity of these quantitative olbyest are typically studied with respect to
given bounds on the energy level or given thresholds on ttenrpayoff or on the average accumulated
energy. In this work, we consider the variants where the dsamd thresholds are existentially quantified
instead of given as part of the input, i.e., we ask if therstdxdunds and thresholds such that Player O
has a winning strategy. This question is natural for modétls bounds and thresholds as it desirable to
know if a given model is realizable for some bounds. In a séiap, one would then determine the
minimal bounds for which Player 0 is able to win.

In particular, we study existential questions on two défgrgame models, average-energy games
and average-bounded recharge games. Average-energy gaendésfined as i [5] with both positive
and negative weights on edges whereas in average-bountletge games all weights are negative, but
there are designated recharge-edges that recharge tlgy émepme fixed capacity.

Our contribution. For average-energy games, we show that the problem of dgoidiether there ex-
ists a threshold to which Player O can bound the long-runegesaccumulated energy while keeping the
accumulated energy non-negative can be solved in doulggrential time. To this end, we show that
the problem is equivalent to determining whether the makenargy level can be uniformly bounded by
a strategy. The latter problem is known to be in@E IME [19]. The challenging part is to construct a
strategy that uniformly bounds the energy from the strategyonly bounds the long-run average accu-
mulated energy, but might reach arbitrarily high energelevBut whenever the energy level increases
above the given threshold, it has to drop below it at some faamt. Thus, we can always play like in a
situation where the peak between these two threshold ogssi as small as possible. This yields a new
strategy that bounds the energy level. Our result is onetstegrds solving the open problem of solving
lower-bounded average-energy games with a given thre$&pld

For average-bounded recharge games, we show that givemd bauthe long-run average energy,
deciding the winner is EPTIME-complete. For the existential versions of the problem, hansthat it
remains XPTIME-hard when the recharge capacity is quantified and the adinagshold is given. The
problem becomes solvable in polynomial time when only tlehaege capacity is considered: here, we
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ask whether there is a recharge capacity such that Playanthhé game with respect to this capacity.

Finally, we study tradeoffs between the different bounds e memory requirements of winning
strategies, and show that increasing the upper bound ondkiral energy level allows to improve the
average energy level and memory can be traded for smaller lpmunds and vice versa.

Related work. The average energy objective was first introduced_in [25kurnke name total-reward
but has until recently not undergone a systematic studyedaddently, it was studied (under the name
total-payoff) for Markov decision processes and stochagtmes/[3], and |5] presented a comprehensive
investigation into the problem in the deterministic caske Tatter also considered extensions where the
average-energy objective is combined with bounds on theggnehich is the model we consider here.

Several other games with combined objectives have beertinted such as mean-payoff parityl[11],
energy-parity[[10], multi-dimensional enerdy [16], mwdimensional mean-payolff [26] and the combi-
nation of multi-dimensional energy, mean-payoff and pddi®]. In [6], consumption games are studied
where edges only have negative weights, and some disthrgpiedges recharge the energy to a level
determined by Player 0. This model is related to rechargeegatiut in recharge games the recharge
capacity is given and we consider average-bounded obgsctiuxistential questions in games have been
studied before in the form of determining the emptiness aftad6bounds that allow Player 0 to win a
guantitative game, e.g., for multi-dimensional energy gamvith upper bounds [19] and for games with
objectives in parameterized generalizations of LTIL[1,22,/27].

2 Definitions

An arena </ = (V,Vo,V1,E, V) consists of a finite directed gragh, E) without terminal vertices, a
partitionV =VywV; of the vertices, and an initial vertex< V. Vertices invy are under Player 0’s control
and are drawn as circles, whereas verticeg iare under Player 1's control and drawn as rectangles. A
play in.e/ is an infinite pathp = vov1v, - - - with vo = v;. A game¥ = (<7, Win) consists of an aren,
and a set WirC V of winning plays for Player 0, thebjectiveof ¢4. The objectives we consider are
induced by weight functions, assigning integer weightsdges, which are encoded in binary. We say
an algorithm runs ipseudo-polynomial timéf it runs in polynomial time in the number of vertices and
in the largest absolute weight. An algorithm runs in polyfertime, if it runs in polynomial time in the
number of vertices and in the size of the encoding of the &rglsolute weight.

A strategyfor Playeri € {0,1} is a mappingg; : V*V; —V such tha(v, o;(wv)) € E for all wv e V*V,.

A play vov1V2 - - - is consistentwith a strategyo; for Playeri if v,.1 = Gi(Vov1 - - - V) for everyn with

Vh € Vi. A strategyoy for Player 0 is winning for the gam& = (<7, Win) if every play that is consistent
with gp is in Win. We say that Player O wirg if she has a winning strategy fét. We define Prefs) to
denote the set of finite play prefixes that are consistent ittVe denote the last vertex of a non-empty
wordw by Las{w).

A memory structure# = (M, m;,Upd) for an arenaV,Vo,V1,E, V) consists of a finite sa¥l of
memory states, an initial memory state € M, and an update function UpdM x E — M. The update
function can be extended to UpdV " — M in the usual way: Upd(vo) = my and Upd (Vo - - ViV 1) =
Upd(Upd™ (Vo- -+ Vn), (Vn,Vni1)). A next-move function (for Playei) Nxt: V x M — V has to satisfy
(v,Nxt(v,m)) € E for all ve V; and allm e M. It induces a strategy for Playeri via o(vp---Vq) =
Nxt(vn, Upd™(Vo---Vn)). A strategy is calledinite-state(positiona) if it can be implemented by a
memory structure (with a single state). Intuitively, thexnenove of a positional strategy only de-
pends on the last vertex of the play prefix. An arewa= (V,Vp,V1,E,v;) and a memory structure
# = (M,m;,Upd) for o/ induce the expanded areméd x .# = (V x M,Vp x M,V; x M,E’, (v;,m;))
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where ((v,m), (V,m)) € E" if and only if (v,V') € E and Updm, (v,V')) = m'. Each playvovivz--- in
</ has a unique extended pléyo, Mo)(V1,My)(V2,Mp)--- in o/ x .# defined bymg = m andmy;1 =
Upd(my, (Vn, Vi 1)), i.€.,my = Upd™ (Vo--- V). A game¥ = (o7, Win) is reducibleto ¥’ = (&', Win')
via ., written¥ < , 9, if &' = o/ x .# and every play in ¢ is won by the player who wins the
extended play’ in ¢, i.e.,p € Win if, and only if, p’ € Win'.

Lemmal. If ¥ < , %' and Player i has a positional winning strategy féf, then she has a finite-state
winning strategy fof# which is implemented hy7 .

3 Finding Bounds in Average-energy Games

In this section, we study average-energy games with exiatenquantified bounds on the average ac-
cumulated energy: our main theorem shows that these gameslaable in doubly-exponential time.

A weight function for an arené/,Vp, Vi, E, ;) is a functionw: E — Z mapping every edge to an in-
teger weight. The energy level of a play prefix is the accutedlaveight of its edges, i.e., Bl - --v,) =
zi”:‘Olw(vi,viH). We consider several objectives obtained by specifyingeuppd lower bounds on the
energy level and on the long-run average accumulated energy

e The lower-bounded energy objective requires Player 0O tp Kee energy level non-negative:
Energy| (W) = {voviV2--- € V® |Vn.0 < EL(Vp---Vn)}

e The lower- and upper-bounded energy objective requiregePato keep the energy level always
between 0 and some given upper bowag, the so-called capacity:

EnergyLu(w,cap) = {Vovavz--- € V¥ | ¥n.0 < EL(vp---Vp) < cap}

e The average-energy objective requires Player 0 to keeptigerun average of the accumulated
energy below a given threshaid

. 1 n-
AvgEnergy (W,t) = {VoviV2--- € V¥ | lim supﬁ Zin:OlEL(vo---vi) <t}

nN—oo

e Also, we consider conjunctions of objectives, i.e., thedowounded average-energy objective
AvgEnergy| (W,t) = Energy, (W) N AvgEnergy(w,t)
and the lower- and upper-bounded average-energy objective
AvgEnergy, y(w,capt) = Energy y(w,cap) NAvgEnergy(t).

Note that we always assume the initial energy level to be. ZEhis is not a restriction, as one can always
add a fresh initial vertex with an edge to the old initial earthat is labeled by the desired initial energy
level. Similarly, one can reduce arbitrary non-zero loweurds to the case of the lower bound being
zero, which is the one we consider here.

Decidability of determining the winner of a game with lowmtnded average-energy objective with
a given threshold is an open problem [5]. To take a step towards solving thiblpro, we consider the
existential variant of the problem, i.e., we ask whetherdhaxists some threshotdsuch that Player 0
wins the game with objectivAvgEnergy, (w,t):
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Problem 1. Existence of a threshold in a lower-bounded average-engagye.
Input: Arena.«/ = (V,Vo,V1,E,v;) and w: E — Z
Question: Exists a threshold € N s.t. PlayerO wins (<7, AvgEnergy, (w,t))?

We show that this problem is reducible to asking for the exisé of an upper bound on the capac-
ity cap. Note that such an upper bound also bounds the average detedhenergy. However, the
converse is non-trivial as the average can be bounded vigleriergy level is unbounded. Formally, we
consider the following problem:

Problem 2. Existence of an upper bound in a lower- and upper-boundedygrgame.
Input: Arenae? = (V,Vo,V1,E,vy) and w. E — Z
Question: Exists a capacity cag N s.t. PlayerO wins (<7, Energy, y (w,cap))?

The main theorem of this section shows that the existencélwéahold in a lower-bounded average-
energy game can be checked in doubly-exponential time. @eice of encoding the weights influ-
ences the complexity of the problem: if the weights are eadad unary, then the complexity drops to
ExPTIME. Furthermore, the problem is trivially at least as hard &grsp mean-payoff games.

Theorem 1. The threshold problem for lower-bounded average-energgeagais in2EXPTIME.

To prove this theorem, it suffices to show that Problém 1 awtlBPm[2 are equivalent, as the latter
problem was shown to be in ZEBTIME [19].

Lemma 2. Let.e# be an arena and let w be a weight function fgr PlayerOwins (<7, AvgEnergy, (W,t))
for some te N if, and only if, PlayerO wins (<7, Energy, y (w,cap)) for some cape N.

Proof. It is clear that a winning strategy for (<, Energy (W, cap)) for somecap < N is a winning
strategy for(.«7, AvgEnergy| (w,cap)), as if the energy level is always below sooep, then the average
energy is also bounded lmap.

For the other direction, assume tlwis a winning strategy for Player O {a7, AvgEnergy, (w,t)) for
somet € N. Now, we want to construct a strategythat is winning for Player 0 il , Energy| y (W, cap))
for somecape N. Note thato might bound the average to some value while the energy leig#itrbe
unbounded. But whenever the energy level increases abdiveas to drop belovt at some point. We
use this property to construct a stratemjjthat bounds the energy level.

First, we need to introduce some notation. Fix a play prefixPref§o) with EL(w) > t and define

Peakw) = sup{EL(wx) | wx € Pref{o) and EL(wX) >t for all X C x},

i.e., Peakw) is the supremum of the energy levels of prolongations tiiat are consistent witlr and
have not yet had an energy level belowApplying Kénig’'s Lemmal[2]1] and the fact thatis a winning
strategy implies that the peak is always bounded.

Remark 1. We havePeakw) € N for every we Prefgo).

For an energy levet € N and a vertex € V we define the set of possible ways to end up in vevtex
with the energy levet playing consistently witlo as

Realv,c) = {w e Pref§o) | Lastw) = vand ELw) = c}.

For every combinatior{v,c) with ¢ > t, we pick a representative from Réakt) that minimizes the
peak height among all such realizations, i.e., we define(\Repto be an elemeniv from Realv,c)
with minimal peak-value Ped&w) among the play prefixes in Réalc). Note that Repv,c) might be
undefined, i.e., if there is no play prefix endingviwith energy levet.
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Intuitively, we construct a new strategy that mimics theawébr of o until the energy level increases
abovet. At this point, the history is replaced by the represengafr the last vertex and the current
energy level. Then, our new strategy mimics the behaviar efith this history until the thresholtl
is again crossed from below. Then, the next representatiyicked. This strategy satisfies an upper
bound, as only a finite number of representatives, each withuaded peak-value, are considered when
mimicking o. To formalize this, we recursively defite V* — Pref{o) viah(v;) = v; and

h(wy) = RepVv,EL(h(w)v)) if EL(h(w)) <tand ELh(w)v) >t
~ | h(w)v otherwise

for a play prefixwv € V' ending in a vertew, i.e., h(w) is the play prefix that simulates. Now, we
define the new strategy’ via o’(w) = o(h(w)). The following remark implies that this is well-defined,
although Rep and therefohreand g might be undefined for certain inputs.

Remark 2. Let w be consistent witls’. Then, fw) is defined and consistent wiih, Lastw) =
Lasth(w)), andEL(w) = EL(h(w)).

Applying the remark inductively we conclude thafw) is defined for every play prefiw that is
consistent witho”. This implies thato’(w) is well-defined for every suctv that ends in a vertex from
Vp. Furthermore, this also implies that still satisfies the lower bound on the energy level.

Thus, it remains to prove that an upper bound exists pl-etvgvi Vs - - - be consistent witlo” and let
nbe such that Elvp---vp) <tand EL\Vp--- Vo1 1) > t. If there is no suci, theno bounds the energy
level byt and we are done. Furthermore, defii@o be minimal withn’ > n+1 and ELvp---vy) <t
and EL(vp---vyVy41) >t (if no suchn’ exists the reasoning is analogous). As the energy leveldestw
the positionsn+ 1 andn’ never crosses the threshdldrom below, we are always in the second case
of the definition ofh. Thus, after the play prefixg---vn. 1, the strategyo’ mimics the behavior of
o after the prefii(Vp- - - Vnr1) = Rep(Vhr1, EL(Vo- - - Vnt1)). Therefore, the energy level between these
two positions is bounded by Pe&ep(vn:1, EL(Vo---Vni1))). As we only take those representatives into
account that have an energy level betweerll andt +W, whereW is the largest positive weight in the
image ofw, the energy level of the play is bounded by the maximal pealnefof these representatives.
Finally, this bound is uniform for all plays that are coneigt with o’. Thus, ¢’ is winning in the
game(.«, AvgEnergy, (w,cap)) for somecap. O

Note that we do not obtain any upper bounds on the energy ¢ewi the long-run average energy
realized byd’, as they depend on properties @f One can even construct examples that show these
values to be arbitrarily large by starting wittbad winning strategyo for the energy game.

4 Finding Bounds in Average-bounded Recharge Games

In this section, we study a variation of energy games cakstharge games (the name is inspired by
recharge automata, first introduced [inl[14]). In such garttese are designated recharge edges that
recharge the energy to some given capacity. All other edges hon-positive cost, i.e., they only
decrease the energy level or leave it unchanged. This isireraint of so-called consumption games [6],
where Player 0 picks the new energy level while traversingcaarge edge. There, one is interested in
which initial energy levels allow Player 0 to win and to cortupper bounds on the recharge levels
picked by Player 0.
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In this section, we go beyond just bounding the energy leyetlbo considering bounds on the
average accumulated energy, as we have done for averagp-g@enes. However, the resulting games
are intractable, as soon as the threshold on the average of fiae input. These results are presented in
Subsection 4]1. To overcome the high complexity, in Sulbmed2 we consider the problem where the
recharge capacity is existentially quantified: this prabie solvable in polynomial time by a reduction
to three-color parity games.

Here, we consider weight functions with only non-positiveights and a special recharge action R,
i.e., w: E—~ —NU{R}. The recharge action R returns the energy level to some gipper bound
capacitycap. The recharge energy level is the energy left since the és$targe action, which is de-
fined as Elap(Vo- - - Vn) = cap+ EL(x), wherex is the longest suffix ofg - - - v, without an R-edge, i.e.,
w(vj,Vj4+1) # R for all (vj,vj11) in X, which implies that a play starts with energy lecalp. We define
the objective of a recharge game as

Recharge(w,cap) = {VoviVz--- € V¥ | Vn.ELcap(Vo- - - Vn) > 0}

and the average-bounded version as

) 1nfl
AvgRecharge(w,capt) = {vovivz--- € V¥ |lim sup— ZJ ELcap(Vo---Vi) <t} NRecharge(w,cap).
i=

n—o0

4.1 Solving Average-bounded Recharge Games

First, we show that solving average-bounded recharge gaonagiven threshold and a given recharge

capacitycapis ExPTIME-complete and that the problem is stilkETIME-hard, if the capacity is exis-

tentially quantified and only the threshold is given. Folgale are interested in the following problems:
Problem 3. Solving Average-bounded recharge games

Input: Arena.«? = (V,Vo,V1,E,v;), w: E -+ —NU{R}, cape N, and te N.

Question: Does PlayerO win (<7, AvgRecharge(w,capt))?

Problem 4. Solving Average-bounded recharge games with existgntigiantified capacity
Input: Arena.«Z = (V,Vo,V1,E.vi), w: E - —NU{R}, and te N.
Question: Exists cape N s.t. PlayerO wins (<7, AvgRecharge(w,capt))?

First, we consider Problepi 3.
Theorem 2. Solving average-bounded recharge gamesxsTIME-complete.

We begin the proof by presenting an exponential time algaritor solving average-bounded recharge
games by reducing them to mean-payoff games, similarly ¢éoréduction from lower- and upper-
bounded energy games to mean-payoff gamles [5]. The meaffpdyective is given by

. 1
MeanPayoff (w,t) = {VoviV--- € V¥ | IlmsupﬁEL(vo---vn,l) <t}.

n—o0

Lemma 3. Average-bounded recharge games can be solved in expolnimia

Proof. Fix an arenaZ = (V,Vo,V1,E,v), w: E - —NU{R}, cape N, andt € N. We construct a
memory structure# = (M, m;,Upd) to reduce the average-bounded recharge game to a meari-payof
game. To this end, Ié¥ = {0,...,cap} U{ L}, m =cap Upd(L,(v,V)) =1, and
cap if w(v,vV) =R,
Upd(c, (v,V)) = < c+w(v,V) if c+w(v,V) >0,
1 if c+w(v,V) <O0.
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Intuitively, the memory structure keeps track of the endayel as long as it is non-negative. If it is
negative, then a sink state is reached. Finally, we definvaw@gght functionw’ by w((v,c), (V,m)) =c
foreveryce M\ { L} andme M andw/((v, L),(V, 1)) =t+1.

Remark 3. Letp =vpvivz--- andp’ = (v, mp) (v, my)(v2,my) - - - be such thap is a play ine and p’
is the corresponding extended playdn x .# .

1. Ifthere is no s< n such thaELcap(Vo- - Vs) < 0, then m = ELcap(Vo- - - V).
2. Ifthere is an s< n such thaELcap(Vo---Vs) <0, then m = L.
3. Ifthere is no s such th&Lcap(Vo- - - vs) < 0, then

. 1 . 1n-
M SUP=EL((Vo,Mo) -+ (Vo 1, Mh1)) = imsUp= 5 El cap(Vo- i),

n—e N N—soo

4. If there is an s such th&Lcap(Vo - - - vs) < 0, then

. 1
imSUp=EL((Vo, o) -+ (Vo-1,Mh 1) = t+1.

n—oo

5. p € AvgRecharge(w,capt) if, and only if,p’ € MeanPayoff (W t).

Thus, we have <7, AvgRecharge(w,capt)) <, (& x .#,MeanPayoff(wt)). Hence, positional
determinacy of mean-payoff gamés|[13], Lemnha 1, and megofpgames being solvable in pseudo-
polynomial time[[28] yield the exponential time algorithm. O

An application of Lemmall additionally yields an upper bowmdthe necessary memory states to
implement a winning strategy.

Corollary 1. If Player 0 wins an average-bounded recharge game with capacity cap,she also wins
it with a finite-state strategy of size caq®.

Conversely, it is straightforward to show that this bountight: 1
consider the average-bounded recharge game depictedureBlg P
with some fixed even capacitapand threshold = %’ Withcap —| V0 \_@3 -1
memory states, Player 0 can implement a strategy whose ainiqu R

consistent play has the foritwov;*")® which has the energy lev-
_ @ whi i -
els(cap, cap 1,...,1,0)“, which results in a long-run av_eragetof Fcigure 1- The arena for the lower
However, withn < capmemory states, the best Player 0 is able to % . .
o . . ound on memory requirements in
is to implement a strategy whose unique consistent playneg®tm
© o » average-bounded recharge games.

(vov])® which has the energy levelgap,cap—1,...,cap—n)?,
which results in a long-run average @ap—n) + 5 = cap— 5 > cap— %8P —t. Every other play that
is implementable witlh memory states has an even higher average. Thus, Player § caggohemory
states to meet the bound on the average.

Next, we give an EPTIME lower bound by a reduction from countdown games. The argna
(V,Vo,V1,E,v;) and the weight functiom of such a game are subject to some restrictions:

1. The initial vertex is in/g and there is a designated sink vertexe Vi with a self loop,
2. every vertex in/g has an edge te, and all other edges areVy x (V1\ {v.})U M\ {v.}) x Vo,

3. all edges ing x (V1 \ {v, }) have negative weight and there are no two outgoing transiticom
a vertex inVy with the same weight, and
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4. all other edges have weight zero.
The objective is given as

Countdown(w,c) = {VovaV2--- € V¥ | In.vy = v, andc+EL(vg--- V) = 0}.

Intuitively, Player O picks negative weights that are sattied from the initial energg and Player 1
picks the next vertex to continue at (vertices of the countdgame are iV, V1 only contains auxiliary
vertices). Player 0 wins if the energy level is exactly zerg@ne point, at which she has to move to
the sink vertex. Otherwise, Player 1 wins. Solving counta@ames is EPTIME-complete [20]. Our
reduction is a straightforward adaption of the reductiamfrcountdown to average-energy games [5].

Lemma 4. Solving average-bounded recharge gamdsxsTIME-hard.

Proof. Fix o7 = (V,Vp, V1, E, V) andw satisfying the requirements of a countdown game and sorti ini
energyc. We add a fresh vertex to Vi, add an edge frong to v and label it with the recharge action R
to obtain the arena’’ and the weight functionv. As every play that does not reach the sink vertex
traverses infinitely many edges with negative weight, weehae Countdown(w,c) if, and only fif,

V| - p € AvgRecharge(W,c,0). Thus, Player O winge/’, AvgRecharge(w, c,0)) if, and only if, she wins
(<7, Countdown(w,C)). Hence, solving average-bounded recharge gamesr3 e -hard. O

Note that the hardness depends on the requirement to boara¢nage. Recharge games without
average-bound are solvable in pseudo-polynomial time,uek a game can be expressed as a one-
dimensional consumption game [6]. Determining the minig@ler (the analogue of our capacity in
consumption games, se€ [6] for a formal definition) for th@ahvertex and comparing it to the given
capacity yields the desired result, as the minimal coveronedimensional consumption game can be
computed in pseudo-polynomial-timel [6]. Whether rechaygmes can be solved in polynomial time is
open. In the next subsection, we present a variant thatvalsiel in polynomial time.

Also, the previous hardness proof can be adapted to reclgamges with a given threshold and
existentially quantified capacity (Problém 4). To this end,add the initial gadget presented in Figure 2
to a countdown gam# . In order to win this game, Player O has to reach the Playertéxevith energy
level c. If the energy level is larger then Player 1 can take the edgeweight —c and reach the sink
with a positive energy level. Hence, the average accundieergy will be non-zero, too. Conversely,
if the energy level is smaller thar then taking the same edge yields a negative energy levelcd{én
both cases the objectivivgRecharge(w, cap,0) is violated, independently of the value of However,
if Player O reaches the Player 1 vertex with energy leyéhen she wins from there, if and only if, she
has a winning strategy for the countdown gaghwith initial valuec. Thus, she wins the recharge game
with objective AvgRecharge(w,cap 0) for somecapif, and only if, she wins the countdown garse
with objectiveCountdown (W, ).

~Ceal =0 ’ }

0 0

Figure 2: The gadget for showing Problem A IME-hard.

Theorem 3. Solving average-bounded recharge games with existentjathntified capacity and a given
threshold isExPTIME-hard.
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However, it is an open problem whether these games can bedsolexponential time. The reduction
to mean-payoff games presented above depends on the gdpaiog part of the input. This is related to
the absence of good upper bounds on the necessary capaaifyi¢ve a given threshold.

4.2 Finding a Sufficient Capacity in Recharge Games

To tackle the high complexity of solving average-boundethagge games, we consider the problem
where the recharge capacitgp and the threshold are existentially quantified. As the energy level is
always bounded from above logp which implies that the average accumulated energy is alsoded

by cap it suffices to consider the objectivRecharge(w,cap), analogous results hold for the objec-
tive AvgRecharge(w,capt). We show that the following problem can be solved in polyrairtime.

Problem 5. Existence of a sufficient recharge level in recharge games
Input: Arenae/ = (V,Vo,V1,E,v) and w. E - —NU{R}
Question: Exists a capacity cap s.t. Play@rwins (<7, Recharge(w,cap))?

One attempt to prove this result is to again encode the gamemas-dimensional consumption game
as described above. However, this only yields a pseudmpoial time algorithm. In the following,
we present a truly polynomial time algorithm by a reductiothree-color parity games. Given a color-
ing Q: V — N, Parity(Q) denotes the (max)-parity objective, which contains alyplyvivy--- € V®
such that the maximal color appearing infinitely ofter@tvp)Q(v1)Q(vz) - - is even.

Theorem 4. The existence of a sufficient recharge level in a rechargeegzan be determined in poly-
nomial time.

Proof. Fix an arenas = (V,Vp,Vi1,E,v;) andw: E - —NU{R}. We construct a three-color parity
game with the following property: Player 0 wins the parityrgaif, and only if, there is @ap such
that Player 0 wing.</, Recharge(w,cap)). We assume w.l.0.g. that every vertex.f either only has
incoming edges labeled with R, only has incoming edges dabelith 0, or only has incoming edges
labeled with a negative weight. This can always be achieydrifiling the set of vertices, one copy for
each type of incoming edge. The new initial vertex is somedfo@py of the original initial vertex. This
transformation does not change the winner and only resulidinear increase in the number of states.

Now, we can speak of recharge-vertices, zero-vertices,cdrtbcrement-vertices and define the
coloring Q such that it assigns color 2 to the recharge-vertices, dolorthe decrement-vertices, and
color 0 to the zero-vertices. We claim that Player 0 has a winstrategy for the induced parity game
if, and only if, there is @apsuch that Player 0 wingz, Recharge(w, cap)).

First, assume Player 0 has a winning strategy for the paaityeg which we can assume w.l.0.g. to be
positional [15| 23]. LeW be the largest absolute weight in the imageveind defineeap= (|V|—1) -W.
We claim thato is a winning strategy for Player 0O ifx7, Recharge(w,cap)). Assume it is not: then,
there is a play prefixg - - - vn that is consistent witlw such that Ekap(Vo---Va) < 0. Lety;---v, be the
suffix since the last recharge edge was traversed-EL(v; - --v,) > cap. By the choice oftap, there
are positionsj and j’ satisfyingi < j < j’ < nsuch thatv; = vj and EL(v;---vj) <0, i.e., there is a
cycle with negative cost and without recharge edgeoAs positional, the playp - - - vj_1(Vj---Vji_1)%
obtained by reaching and then repeating this cycle is ctamisvith o as well. However, in the parity
game, this cycle visits no recharge-vertex, but at leastdsoeement-vertex. Hence, it is losing for
Player 0, which contradictg being a winning strategy. Hence,is indeed also a winning strategy for
(o7 ,Recharge(w,cap)).

Now, assume there is soroapand a strategy that is winning for Player 0 if.e7, Recharge(w, cap)).
We claim that this strategy is also winning for her in the yagame. Assume, it is not, i.e., there is a
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play that is consistent witkr, but losing for Player 0 in the parity game. By our choice dbeg this
implies that this play visits only finitely many rechargeti@es, but infinitely many decrement-vertices.
Thus, it has a prefix whose recharge energy level is negaBwe.this contradicts the fact that is a
winning strategy for the recharge game.

To conclude, it remains to remark that three-color paritygsa can be solved in polynomial timelJ

By applying both directions of the equivalence, we obtamftillowing corollary.

Corollary 2. If there is a cap such that Played wins (<, Recharge(w,cap)), then she also wins
(o7 ,Recharge(3- (n— 1) -W,w)), where n is the number of vertices .of and W is the largest abso-
lute weight in the domain of w. Play@mwins the latter game with a finite-state strategy of sizeghre

Note that this can be improved slightly by a finer analysig: fittor(n— 1) can be replaced by the
number of decrement-vertices. Conversely, it is stragghtard to construct examples that prove these
bounds to be tight, e.g., a cycle medges, one being a recharge edge and all others having weaight

5 Tradeoffs in Recharge Games

In this section, we illustrate two different tradeoff sceas between different quality measures for win-

ning strategies that occur in average-bounded rechargegjam., tradeoffs between capacity and long-
run average and between memory size and long-run average tih increasing the recharge capacity
in such a game has a (possibly negative) influence on therlomgwverage, as every recharge returns
the energy level to the capacity. All games we consider heraalitaire games for Player 0, i.e., every

vertex belongs to Player 0. Thus, a strategy can be identifiddthe unique play consistent with it.

Average

(b)

()
Energy
1 ]

0 0
12 3 4 1234567 12345
(VoviVvavp)®, cap=1 (VoV1V2aVoV1VaVp) @, cap=2 VoV3VaVaVo)®, cap=3

—~~

Figure 3: (a) An average-bounded recharge game with tridletfieen capacity and long-run average.
(b) A plot of the tradeoff. (c) - (e) Energy progressions dfedient plays in the average-bounded recharge
game for different capacities.

First, we study the tradeoff between the capacity and thg-tan average energy level. Consider the
game in Figurél3(a): Player O wins the gamedap= 1 andt = 1 by realizing the long-run avera@e
with the play(vovavavp)® (Figurel3(c)). But, by increasing the capacitycep= 2, it is no longer possi-
ble for her to win fort = 1, as the best long-run average she can reali%ebjsplaying(vov1v2vov1v2vo)‘*’
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(Figure[3(d)). However, focap= 3, she can again win far= 1, and it is possible to realize the long-run
averageg by playing (vovsvavsvp)® (Figurel3(e)). Again, witttap= 4 Player 0O loses far= 1.
This example shows that higher capacity can be traded fowarltong-run average and that the
tradeoff is non-monotonic. Figuteé 3(b) shows a plot of tlaeléoff for capacities ranging from 1 to 7.
Another tradeoff scenario is between the number of mem-
ory states required to implement a strategy and the longwein 1
erage energy level it realizes. Consider the recharge gaome f cap—3
Figure[1: as discussed below Corollaty 1, Player 0 can win for

Average

the threshold = %P with cap memory states. However, with Cile

n < cap memory states, she can only guarantee the long-run

average(cap—n) + 3. In particular, the best long-run average 0 T cap Memory
that is realizable by a positional strategy (which requoes

memory state to implement) &ap— ; (see Fig[H). Figure 4: A plot of the tradeoff be-

tween memory size and long-run av-

) erage in the game in Figulré 1.
6 Conclusion J g g

We continued the study of average-energy games by consideroblems where the bound on the aver-
age is existentially quantified instead of given as part efitiput. We showed that solving this problem
is equivalent to determining whether the maximal energegllean be uniformly bounded by a strategy.
The latter problem is known to be decidable in doubly-exptiaktime, which therefore also holds for
our original problem. Then, we considered a different typerergy evolution where energy is only
consumed or reset to some fixed capacity. Solving the avdragieded variants of these games is shown
to be complete for exponential time. Due to this high comipfexve again considered a variant where
the bounds are existentially quantified. This problem taurtso be solvable in polynomial time. Finally,
we studied tradeoffs between the different bounds and theanerequirements of winning strategies:
increasing the upper bound on the maximal energy level iwsho allow to improve the average energy
level and memory can be traded for smaller upper bounds @edveirsa.

For future work, it would be interesting to extend our reswdt a multi-dimensional setting. Also,
the exact complexity of determining the existence of an uppend in average-energy games is open.
Finally, the decidability of average-energy games withvegithreshold, but without an upper bound on
the energy level is openl[5]. In current work, we study whethe approach presented in Sectidn 3 can
be adapted to solve these problems, e.g., by not picking@septatives by minimizing peak height but
some other measure. These questions are also related tontipdexity of recharge games with a given
threshold where the capacity is existentially quantifiechalfy, we are studying upper bounds on the
tradeoffs presented in Sectibh 5.
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