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What is a finite-state strategy in a delay game? We answer this surprisingly non-trivial question and

present a very general framework for computing such strategies: they exist for all winning conditions

that are recognized by automata with acceptance conditions that satisfy a certain aggregation prop-

erty. Our framework also yields upper bounds on the complexity of determining the winner of such

delay games and upper bounds on the necessary lookahead to win the game. In particular, we cover

all previous results of that kind as special cases of our uniform approach.

1 Introduction

What is a finite-state strategy in a delay game? The answer to this question is surprisingly non-trivial due

to the nature of delay games in which one player is granted a lookahead on her opponent’s moves. This

puts her into an advantage when it comes to winning games, i.e., there are games that can only be won

with lookahead, but not without. A simple example is a game where one has to predict the third move of

the opponent with one’s first move. This is impossible when moving in alternation, but possible if one

has access to the opponent’s first three moves before making the first move. More intriguingly, lookahead

also allows Player O to improve the quality of her winning strategies in games with quantitative winning

conditions, i.e., there is a tradeoff between quality and amount of lookahead [34].

However, managing (and, if necessary, storing) the additional information gained by the lookahead

can be a burden. Consider another game where one just has to copy the opponent’s moves. This is

obviously possible with or without lookahead (assuming the opponent moves first). In particular, without

lookahead one just has to remember the last move of the opponent and copy it. However, when granted

lookahead, one has to store the last moves of the opponent in a queue to implement the copying properly.

This example shows that lookahead is not necessarily advantageous when it comes to minimizing the

memory requirements of a strategy.

In this work, we are concerned with Gale-Stewart games [11], abstract games without an underlying

arena.1 In such a game, both players produce an infinite sequence of letters and the winner is determined

by the combination of these sequences. If it is in the winning condition, a set of such combinations,

then the second player wins, otherwise the first one wins. In a classical Gale-Stewart game, both players

move in alternation while in a delay game, the second player skips moves to obtain a lookahead on the

opponent’s moves. Which moves are skipped is part of the rules of the game and known to both players.

Delay games have recently received a considerable amount of attention after being introduced by

Hosch and Landweber [15] only three years after the seminal Büchi-Landweber theorem [2]. Büchi

and Landweber had shown how to solve infinite two-player games with ω-regular winning conditions.

∗Supported by the project “TriCS” (ZI 1516/1-1) of the German Research Foundation (DFG).
1The models of Gale-Stewart games and arena-based games are interreducible, but delay games are naturally presented as a

generalization of Gale-Stewart games. This is the reason we prefer this model here.
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Forty years later, delay games were revisited by Holtmann, Kaiser, and Thomas [13] and the first com-

prehensive study was initiated, which settled many basic problems like the exact complexity of solv-

ing ω-regular delay games and the amount of lookahead necessary to win such games [19]. Further-

more, Martin’s seminal Borel determinacy theorem [21] for Gale-Stewart games has been lifted to delay

games [18] and winning conditions beyond the ω-regular ones have been investigated [10, 20, 32, 34].

Finally, the uniformization problem for relations over infinite words boils down to solving delay games:

a relation L ⊆ (ΣI ×ΣO)
ω is uniformized by a continuous function (in the Cantor topology) if, and only

if, the delaying player wins the delay game with winning condition L. We refer to [13] for details.

What makes finite-state strategies in infinite games particularly useful and desirable is that a general

strategy is an infinite object, as it maps finite play prefixes to next moves. On the other hand, a finite-state

strategy is implemented by a transducer, an automaton with output, and therefore finitely represented:

the automaton reads a play prefix and outputs the next move to be taken. Thus, the transducer computes

a finite abstraction of the play’s history using its state space as memory and determines the next move

based on the current memory state.

In Gale-Stewart games, finite-state strategies suffice for all ω-regular games [2] and even for deter-

ministic ω-contextfree games, if one allows pushdown transducers [31]. For Gale-Stewart games (and

arena-based games), the notion is well-established and one of the most basic questions about a class of

winning conditions is that about the existence and size of winning strategies for such games.

While foundational questions for delay games have been answered and many results have been lifted

from Gale-Stewart games to those with delay, the issue of computing tractable and implementable strate-

gies has not been addressed before. However, this problem is of great importance, as the existence and

computability of finite-state strategies is a major reason for the successful application of infinite games

to diverse problems like reactive synthesis, model-checking of fixed-point logics, and automata theory.

In previous work, restricted classes of strategies for delay games have been considered [18]. How-

ever, those restrictions are concerned with the amount of information about the lookahead’s evolution

a strategy has access to, and do not restrict the size of the strategies: In general, they are still infinite

objects. On the other hand, it is known that bounded lookahead suffices for many winning conditions of

importance, e.g., the ω-regular ones [19], those recognized by parity and Streett automata with costs [34],

and those definable in (parameterized) linear temporal logics [20]. Furthermore, for all those winning

conditions, the winner of a delay game can be determined effectively. In fact, all these proofs rely on the

same basic construction that was already present in the work of Holtmann, Kaiser, and Thomas [13], i.e.,

a reduction to a Gale-Stewart game using equivalence relations that capture the behavior of the automa-

ton recognizing the winning condition. These reductions and the fact that finite-state strategies suffice

for the games obtained in the reductions imply that (some kind of) finite-state strategies exist.

Indeed, in his master’s thesis [28], Salzmann recently introduced the first notion of finite-state strate-

gies in delay games and, using these reductions, presented an algorithm computing them for several types

of acceptance conditions, e.g., parity conditions and related ω-regular ones. However, the exact nature

of finite-state strategies in delay games is not as canonical as for Gale-Stewart games. We discuss this

issue in-depth in Sections 3 and 5 by proposing two notions of finite-state strategies, a delay-oblivious

one which yields large strategies in the size of the lookahead, and a delay-aware one that follows nat-

urally from the reductions to Gale-Stewart games mentioned earlier. In particular, the number of states

of the delay-aware strategies is independent of the size of the lookahead, but often larger in the size of

the automaton recognizing the winning condition. However, this is offset by the fact that strategies of

the second type are simpler to compute than the delay-oblivious ones and have overall fewer states, if

the lookahead is large. In comparison to Salzmann’s notion, where strategies syntactically depend on a

given automaton representing the winning condition, our strategies are independent of the representation
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of the winning condition and therefore more general. Also, our framework is more abstract and therefore

applicable to a wider range of acceptance conditions (e.g., qualitative ones) and yields in general smaller

strategies, but there are of course some similarities, which we discuss in detail.

To present these notions, we first introduce some definitions in Section 2, e.g., delay games and

finite-state strategies for Gale-Stewart games. After introducing the two notions of finite-state strategies

for delay games in Section 3, we show how to compute such strategies in Section 4. To this end, we

present a generic account of the reduction from delay games to Gale-Stewart games which subsumes,

to the best of our knowledge, all decidability results presented in the literature. Furthermore, we show

how to obtain the desired strategies from our construction. Then, in Section 5, we compare the two

different definitions of finite-state strategies for delay games proposed here and discuss their advantages

and disadvantages. Also, we compare our approach to that of Salzmann. We conclude by mentioning

some directions for further research in Section 6.

Proofs and constructions omitted due to space restrictions can be found in the full version [33].

Related Work As mentioned earlier, the existence of finite-state strategies is the technical core of many

applications of infinite games, e.g., in reactive synthesis one synthesizes a correct-by-construction system

from a given specification by casting the problem as an infinite game between a player representing the

system and one representing the antagonistic environment. It is a winning strategy for the system player

that yields the desired implementation, which is finite if the winning strategy is finite-state. Similarly,

Gurevich and Harrington’s game-based proof of Rabin’s decidability theorem for monadic second-order

logic over infinite binary trees [25] relies on the existence of finite-state strategies.2

These facts explain the need for studying the existence and properties of finite-state strategies in

infinite games [17, 26, 27, 29]. In particular, the seminal work by Dziembowski, Jurdziński, and

Walukiewicz [6] addressed the problem of determining upper and lower bounds on the size of finite-state

winning strategies in games with Muller winning conditions. Nowadays, one of the most basic questions

about a given winning condition is that about such upper and lower bounds. For most conditions in the

literature, tight bounds are known, see, e.g., [4, 14, 30]. But there are also surprising exceptions to that

rule, e.g., generalized reachability games [9]. More recently, Colcombet, Fijalkow, and Horn presented

a very general technique that yields tight upper and lower bounds on memory requirements in safety

games, which even hold for games in infinite arenas, provided their degree is finite [5].

2 Preliminaries

We denote the non-negative integers by N. Given two ω-words α ∈ (Σ0)
ω and β ∈ (Σ1)

ω , we define
(

α
β

)

=
(α(0)

β(0)

)(α(1)
β(1)

)(α(2)
β(2)

)

· · · ∈ (Σ0 ×Σ1)
ω . Similarly, we define

(

x
y

)

for finite words x and y with |x|= |y|.

ω-automata A (deterministic and complete) ω-automaton is a tuple A=(Q,Σ,qI ,δ ,Acc) where Q is a

finite set of states, Σ is an alphabet, qI ∈ Q is the initial state, δ : Q×Σ→ Q is the transition function, and

Acc⊆ δ ω is the set of accepting runs (here, and whenever convenient, we treat δ as a relation δ ⊆Q×Σ×
Q). A finite run π of A is a sequence π = (q0,a0,q1)(q1,a1,q2) · · · (qi−2,ai−2,qi−1)(qi−1,ai−1,qi) ∈ δ+.

As usual, we say that π starts in q0, ends in qi, and processes a0 · · ·ai−1 ∈ Σ+. Infinite runs on infinite

words are defined analogously. If we speak of the run of A on α ∈ Σω , then we mean the unique run of

2The proof is actually based on positional strategies, a further restriction of finite-state strategies for arena-based games,

because they are simpler to handle. Nevertheless, the same proof also works for finite-state strategies.
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A starting in qI processing α . The language L(A)⊆ Σω of A contains all those ω-words whose run of A

is accepting. The size of A is defined as |A|= |Q|.
This definition is very broad, which allows us to formulate our theorems as general as possible. In

examples, we consider parity and Muller automata whose set of accepting runs is finitely represented: An

ω-automaton A=(Q,Σ,qI ,δ ,Acc) is a parity automaton, if Acc= {(q0,a0,q1)(q1,a1,q2)(q2,a2,q3) · · · ∈
δ ω | limsupi→∞ Ω(qi) is even} for some coloring Ω : Q→N. To simplify our notation, define Ω(q,a,q′)=
Ω(q). Furthermore, A is a Muller automaton, if there is a family F ⊆ 2Q of sets of states such that

Acc = {ρ ∈ δ ω | Inf(ρ) ∈ F}, where Inf(ρ) is the set of states visited infinitely often by ρ .

Delay Games A delay function is a mapping f : N→ N\{0}, which is said to be constant if f (i) = 1

for all i > 0. A delay game Γf (L) consists of a delay function f and a winning condition L ⊆ (ΣI ×
ΣO)

ω for some alphabets ΣI and ΣO. Such a game is played in rounds i = 0,1,2, . . . as follows: in

round i, first Player I picks a word xi ∈ Σ
f (i)
I , then Player O picks a letter yi ∈ ΣO. Player O wins a

play (x0,y0)(x1,y1)(x2,y2) · · · if the outcome
(

x0x1x2···
y0y1y2···

)

is in L; otherwise, Player I wins.

A strategy for Player I in Γf (L) is a mapping τI : Σ∗
O → Σ∗

I satisfying |τI(w)|= f (|w|) while a strategy

for Player O is a mapping τO : Σ+
I → ΣO. A play (x0,y0)(x1,y1)(x2,y2) · · · is consistent with τI if xi =

τI(y0 · · ·yi−1) for all i, and it is consistent with τO if yi = τO(x0 · · ·xi) for all i. A strategy for Player P ∈
{I,O} is winning, if every play that is consistent with the strategy is won by Player P.

An important special case are delay-free games, i.e., those with respect to the delay function f

mapping every i to 1. In this case, we drop the subscript f and write Γ(L) for the game with winning

condition L. Such games are typically called Gale-Stewart games [11].

Finite-state Strategies in Gale-Stewart Games A strategy for Player O in a Gale-Stewart game is

still a mapping τO : Σ+
I → ΣO. Such a strategy is said to be finite-state, if there is a deterministic finite

transducer T that implements τO in the following sense: T is a tuple (Q,ΣI,qI ,δ ,ΣO,λ ) where Q is a

finite set of states, ΣI is the input alphabet, qI ∈ Q is the initial state, δ : Q×ΣI → Q is the deterministic

transition function, ΣO is the output alphabet, and λ : Q → ΣO is the output function. Let δ ∗(x) denote

the unique state that is reached by T when processing x ∈ Σ∗
I from qI . Then, the strategy τT implemented

by T is defined as τT(x) = λ (δ ∗(x)). We say that a strategy is finite-state, if it is implementable by some

transducer. Slightly abusively, we identify finite-state strategies with transducers implementing them and

talk about finite-state strategies with some number of states. Thus, we focus on the state complexity (e.g.,

the number of memory states necessary to implement a strategy) and ignore the other components of a

transducer (which are anyway of polynomial size in |Q|, if we assume ΣI and ΣO to be fixed).

3 What is a Finite-state Strategy in a Delay Game?

Before we answer this question, we first ask what properties a finite-state strategy should have, i.e., what

makes finite-state strategies in Gale-Stewart games useful and desirable? A strategy τO : Σ+
I → ΣO is in

general an infinite object and does not necessarily have a finite representation. Furthermore, to execute

such a strategy, one needs to store the whole sequence of moves made by Player I thus far: Unbounded

memory is needed to execute it.

On the other hand, a finite-state strategy is finitely described by a transducer T implementing it. To

execute it, one only needs to store a single state of T and needs to have access to the transition function δ

and the output function λ of T. Assume the current state is q at the beginning of some round i (initialized

with qI before round 0). Then, Player I makes his move by picking some a ∈ ΣI , which is processed
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by updating the memory state to q′ = δ (q,a). Then, T prescribes picking λ (q′) ∈ ΣO and round i is

completed. Thus, there are two aspects that make finite-state strategies desirable: (1) the next move

depends only on a finite amount of information about the history of the play, i.e., a state of the automaton,

which is (2) easily updated. In particular, the strategy is completely specified by the transition function

and the output function.

Further, there is a generic framework to compute such strategies by reducing them to arena-based

games (see, e.g., [12] for an introduction to such games). As an example, consider a game Γ(L(A)) where

A is a parity automaton with set Q of states and transition function δ . We describe the construction of an

arena-based parity game contested between Player I and Player O whose solution allows us to compute

the desired strategies (formal details are presented in the full version [33]). The positions of Player I are

transitions of A while those of Player O are pairs (q,a) where q ∈ Q and where a is an input letter. From

a vertex (q,
(

a
b

)

,q′) Player I can move to every vertex (q′,a′) for a′ ∈ ΣI , from which Player O can move

to every vertex (q′,
(

a′

b′

)

,δ (q′,
(

a′

b′

)

) for b′ ∈ ΣO. Finally, Player O wins a play, if the run constructed during

the infinite play is accepting. It is easy to see that the resulting game is a parity game with |δ | · (|ΣI |+1)
vertices, and has the same winner as Γ(L(A)). The winner of the arena-based game has a positional3

winning strategy [7, 23], which can be computed in quasipolynomial time [3, 8, 16]. Such a positional

winning strategy can easily be turned into a finite-state winning strategy with |Q| · |ΣI | states for Player O

in the game Γ(L(A)), which is implemented by an automaton with state set Q×ΣI. This reduction can

be generalized to arbitrary classes of Gale-Stewart games whose winning condition is recognized by an

ω-automaton with set Q of states: if Player O has a finite-state strategy with n states in the arena-based

game obtained by the construction described above, then Player O has a finite-state winning strategy

with |Q| · |ΣI | · n states for the original Gale-Stewart game. Such a strategy is obtained by solving an

arena-based game with |δ | · (|ΣI|+1) vertices.

So, what is a finite-state strategy in a delay game? In the following, we discuss this question for

the case of delay games with respect to constant delay functions, which is the most important case. In

particular, constant lookahead suffices for all ω-regular winning conditions [19], i.e, Player O wins with

respect to an arbitrary delay function if, and only if, she wins with respect to a constant one. Similarly,

constant lookahead suffices for many quantitative conditions like (parameterized) temporal logics [20]

and parity conditions with costs [34]. For winning conditions given by parity automata, there is an

exponential upper bound on the necessary constant lookahead. On the other hand, there are exponential

lower bounds already for winning conditions specified by deterministic automata with reachability or

safety acceptance (which are subsumed by parity acceptance).

3.1 Delay-oblivious Finite-state Strategies for Delay Games

Technically, a strategy for Player O in a delay game is still a mapping τO : Σ+
I →ΣO. Hence, the definition

of finite-state strategies via transducers as given above for Gale-Stewart games is also applicable to delay

games. As a (cautionary) example, consider a delay game with winning condition L= = {
(

α
α

)

| α ∈
{0,1}ω}, i.e., Player O just has to copy Player I’s moves, which she can do with respect to every delay

function: Player O wins Γf (L=) for every f . However, a finite-state strategy has to remember the whole

lookahead, i.e., those moves that Player I is ahead of Player O, in order to copy his moves. Thus, an

automaton implementing a winning strategy for Player O in Γf (L=) needs at least |{0,1}|d states, if f

is a constant delay function with f (0) = d. Thus, the memory requirements grow with the size of the

3A strategy in an arena-based games is positional, if its output only depends on the last vertex of the play’s history, not on

the full history (see, e.g., [12]).
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lookahead granted to Player O, i.e., lookahead is a burden, not an advantage. She even needs unbounded

memory in the case of unbounded lookahead.

On the other hand, an advantage of this “delay-oblivious” definition is that finite-state strategies

can be obtained by a trivial extension of the reduction presented for Gale-Stewart games above: now,

states of Player I are from δ ×Σd−1
I and those of Player O are from Q×Σd

I . Player I can move from

((q,
(

a
b

)

,q′),w) to (q′,wa′) for a′ ∈ ΣI while Player O can move from (q,aw) to ((q,
(

a
b

)

,δ (q,
(

a
b

)

)),w) for

b ∈ ΣO. Intuitively, a state now additionally stores a queue of length d−1, which contains the lookahead

granted to Player O. Coming back to the parity example, this approach yields a finite-state strategy with

|Q| · |ΣI |
d states. To obtain such a strategy, one has to solve a parity game with |δ | · (|ΣI |+ 1) · |ΣI |

d−1

vertices, which is of doubly-exponential size in |A|, if d is close to the (tight) exponential upper bound.

This can be done in doubly-exponential time, as it still has the same number of colors as the automaton A.

Again, this reduction can be generalized to arbitrary classes of delay games with constant delay whose

winning conditions are recognized by an ω-automaton with set Q of states: if Player O has a finite-state

strategy with n states in the arena-based game obtained by the construction, then Player O has a finite-

state winning strategy with |Q| · |ΣI |
d · n states for the delay game with constant lookahead of size d.

In general, d factors exponentially into the size, as n is the memory size required to win a game with

O(|ΣI |
d) vertices. Also, to obtain the strategy for the delay game, one has to solve an arena-based game

with |δ | · (|ΣI|+1) · |ΣI|
d−1 vertices.

3.2 Block Games

We show that one can do better than by decoupling the history tracking and the handling of the lookahead,

i.e., by using delay-aware finite-state strategies. In the delay-oblivious definition, we hardcode a queue

into the arena-based game, which results in a blowup of the arena and therefore also in a blowup in the

solution complexity and in the number of memory states for the arena-based game, which is turned into

one for the delay game. To overcome this, we introduce a slight variation of delay games with respect to

constant delay functions, so-called block games4, present a notion of finite-state strategy in block games,

and show how to transfer strategies between delay games and block games. Then, we show how to solve

block games and how to obtain finite-state strategies for them.

The motivation for introducing block games is to eliminate the queue containing the letters Player I

is ahead of Player O, which is cumbersome to maintain, and causes the blowup in the case of games with

winning condition L=. Instead, in a block game, both players pick blocks of letters of a fixed length with

Player I being one block ahead to account for the delay, i.e., Player I has to pick two blocks in round 0

and then one in every round, as does Player O in every round. This variant of delay games lies implicitly

or explicitly at the foundation of all arguments establishing upper bounds on the necessary lookahead

and at the foundation of all algorithms solving delay games [13, 19, 20, 32, 34]. Furthermore, we show

how to transform a (winning) strategy for a delay game into a (winning) strategy for a block game and

vice versa, i.e., Player O wins the delay game if, and only if, she wins the corresponding block game.5

Formally, the block game Γd(L), where d ∈N\{0} is the block length and where L ⊆ (ΣI ×ΣO)
ω is

the winning condition, is played in rounds as follows: in round 0, Player I picks two blocks a0,a1 ∈ Σd
I ,

then Player O picks a block b0 ∈ Σd
O. In round i > 0, Player I picks a block ai+1 ∈ Σd

I , then Player O

4Holtmann, Kaiser, and Thomas already introduced a notion of block game in connection to delay games [13]. However,

their notion differs from ours in several aspects. Most importantly, in their definition, Player I determines the length of the

blocks (within some bounds specified by f ) while our block length is fixed.
5Due to their prevalence and importance for solving delay games, one could even argue that the notion of block games is

more suitable to model delay in infinite games.
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picks a block bi ∈ Σd
O. Player O wins the resulting play a0a1b0a2b1 · · · , if the outcome

(a0a1a2···
b0b1b2···

)

is in L.

A strategy for Player I in Γd(L) is a map τI : (Σd
O)

∗ → (Σd
I )

2 ∪ Σd
I such that τI(ε) ∈ (Σd

I )
2 and

τI(b0 · · ·bi) ∈ Σd
I for i ≥ 0. A strategy for Player O is a map τO : (Σd

I )
∗ → Σd

O. A play a0a1b0a2b1 · · ·
is consistent with τI , if (a0,a1) = τI(ε) and ai = τI(b0 · · ·bi−2) for every i ≥ 2; it is consistent with τO

if bi = τO(a0 · · ·ai+1) for every i ≥ 0. Winning strategies and winning a block game are defined as for

delay games.

In the following, we call strategies for block games delay-aware and strategies for delay games delay-

oblivious. The next lemma relates delay games with constant lookahead and block games: for a given

winning condition, Player O wins a delay game with winning condition L (with respect to some delay

function) if, and only if, she wins a block game with winning condition L (for some block size).

Lemma 1. Let L ⊆ (ΣI ×ΣO)
ω .

1. If Player O wins Γf (L) for some constant delay function f , then she also wins Γ f (0)(L).

2. If Player O wins Γd(L), then she also wins Γf (L) for the constant delay function f with f (0) = 2d.

Proof. 1.) Let τO : Σ+
I → ΣO be a winning strategy for Player O in Γf (L) and fix d = f (0). Now,

define τ ′
O : (Σd

I )
∗ → (ΣO)

d for Player O in Γd(L) via τ ′
O(a0 · · ·aiai+1) = β (0) · · ·β (d − 1) with β ( j) =

τO(a0 · · ·aiα(0)α(1) · · ·α( j−1)) for ai+1 = α(0)α(1) · · ·α(d −1).
A straightforward induction shows that for every play consistent with τ ′

O there is a play consistent

with τO that has the same outcome. Thus, as τO is a winning strategy, so is τ ′
O.

2.) Now, let τ ′
O : (Σd

I )
∗ → (ΣO)

d be a winning strategy for Player O in Γd(L). We define τO : Σ+
I →ΣO

for Player O in Γf (L). To this end, let x ∈ Σ+
I be a possible input occurring during a play. Hence, by the

choice of f , we obtain |x| ≥ f (0) = 2d. Thus, we can decompose x into x = a0 · · ·aix
′ such that i ≥ 1,

each ai′ is a block over ΣI of length d and |x′| < d. Now, let τ ′
O(a0 · · ·ai) = β (0) · · ·β (d −1). Then, we

define τO(x) = β (|x′|).

Again, a straightforward induction shows that for every play consistent with τO there is a play con-

sistent with τ ′
O that has the same outcome. Thus, τO is a winning strategy.

3.3 Delay-aware Finite-state Strategies in Block Games

Now fix a block game Γd(L) with L ⊆ (ΣI × ΣO)
ω . A finite-state strategy for Player O in Γd(L) is

implemented by a transducer T = (Q,ΣI,qI ,δ ,ΣO,λ ) where Q, ΣI , and qI are defined as in Subsec-

tion 2.2. However, the transition function δ : Q× Σd
I → Q processes full input blocks and the output

function λ : Q×Σd
I ×Σd

I → Σd
O maps a state and a pair of input blocks to an output block. The strat-

egy τT implemented by T is defined as τT(a0 · · ·ai) = λ (δ ∗(a0 · · ·ai−2),ai−1,ai) for i ≥ 1.

Again, we identify delay-aware strategies with transducers implementing them and are interested

in the number of states of the transducer. This definition captures the amount of information that is

differentiated in order to implement the strategy. Note however, that it ignores the representation of the

transition and the output function. These are no longer “small” (in |Q|), as it is the case for transducers

implementing strategies for Gale-Stewart games. When focussing on executing such strategies, these

factors become relevant, but for our purposes they are not: We have decoupled the history tracking from

the lookahead-handling. The former is implemented by the automaton as usual while the latter is taken

care of by the output function. In particular, the size of the automaton is (a-priori) independent of the

block size. In the conclusion, we revisit the issue of presenting the transition and the output function.

In the next section, we present a very general approach to computing finite-state strategies for block

games whose winning conditions are specified by automata with acceptance conditions that satisfy a
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certain aggregation property. For example, for block games with winning conditions given by deter-

ministic parity automata, we obtain a strategy implemented by a transducer with exponentially many

states, which can be obtained by solving a parity game of exponential size. In both aspects, this is an

exponential improvement over the delay-oblivious variant for classical delay games.

To conclude the introduction of block games, we strengthen Lemma 1 to transfer finite-state strategies

between delay games and block games.

Lemma 2. Let L ⊆ (ΣI ×ΣO)
ω .

1. If Player O has a delay-oblivious finite-state winning strategy for Γf (L) with n states for some

constant delay function f , then she also has a delay-aware finite-state winning strategy for Γ f (0)(L)
with n states.

2. If Player O has a delay-aware finite-state winning strategy for Γd(L) with n states, then she also

has a delay-oblivious finite-state winning strategy for Γf (L) with n · |ΣI |
2d states for the constant

delay function f with f (0) = 2d.

Proof. It is straightforward to achieve the strategy transformations described in the proof of Lemma 1

by transforming transducers that implement finite-state strategies.

The blowup in the direction from block games to delay games is in general unavoidable, as finite-

state winning strategies for the game Γf (L=) need at least 2d states to store the lookahead while winning

strategies for the block game need only one state, independently of the block size.

4 Computing Finite-state Strategies for Block Games

The aim of this section is twofold. Our main aim is to compute finite-state strategies for block games

(and, by extension, for delay games with constant lookahead). We do so by presenting a general frame-

work for analyzing delay games with winning conditions specified by ω-automata whose acceptance

conditions satisfy a certain aggregation property. The technical core is a reduction to a Gale-Stewart

game, i.e., we remove the delay from the game. This framework yields upper bounds on the necessary

(constant) lookahead to win a given game, but also allows us to determine the winner and a finite-state

winning strategy, if the resulting Gale-Stewart game can be effectively solved.

Slightly more formally, let A be the automaton recognizing the winning condition of the block game.

Then, the winning condition of the Gale-Stewart game constructed in the reduction is recognized by

an automaton B that can be derived from A. In particular, the acceptance condition of B simulates

the acceptance condition of A. Many types of acceptance conditions are preserved by the simulation,

e.g., starting with a parity automaton A, we end up with a parity automaton B. Thus, the resulting

Gale-Stewart game can be effectively solved.

Our second aim is to present a framework as general as possible to obtain upper bounds on the

necessary lookahead and on the solution complexity for a wide range of winning conditions. In fact,

our framework is a generalization and abstraction of techniques first developed for the case of ω-regular

winning conditions [19], which were later generalized to other winning conditions [20, 32, 34]. Here,

we cover all these results in a uniform way.

4.1 Aggregations

Let us begin by giving some intuition for the construction. The winning condition of the game is rec-

ognized by an automaton A. Thus, as usual, the exact input can be abstracted away, only the induced
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behavior in A is relevant. Such a behavior is characterized by the state transformations induced by pro-

cessing the input and by the effect on the acceptance condition triggered by processing it. For many

acceptance conditions, this effect can be aggregated, e.g., for parity conditions, one can decompose runs

into non-empty pieces and then only consider the maximal colors of the pieces. For quantitative winning

conditions, one typically needs an additional bound on the lengths of these pieces (cp. [32, 34]).

Thus, we begin by introducing two types of such aggregations of different strength. Fix an ω-

automaton A= (Q,Σ,qI ,δ ,Acc) and let s : δ+ →M for some finite set M. Given a decomposition (πi)i∈N

of a run π0π1π2 · · · into non-empty pieces πi ∈ δ+ we define s((πi)i∈N) = s(π0)s(π1)s(π2) · · · ∈ Mω .

• We say that s is a strong aggregation (function) for A, if for all decompositions (πi)i∈N and (π ′
i )i∈N

of runs ρ = π0π1π2 · · · and ρ ′ = π ′
0π ′

1π ′
2 · · · with supi |π

′
i | < ∞ and s((πi)i∈N) = s((π ′

i )i∈N): ρ ∈
Acc ⇒ ρ ′ ∈ Acc.

• We say that s is a weak aggregation (function) for A, if for all decompositions (πi)i∈N and (π ′
i )i∈N

of runs ρ = π0π1π2 · · · and ρ ′ = π ′
0π ′

1π ′
2 · · · with supi |πi| < ∞, supi |π

′
i | < ∞, and s((πi)i∈N) =

s((π ′
i )i∈N): ρ ∈ Acc ⇒ ρ ′ ∈ Acc.

Example 1.

• The function sprty : δ+ → Ω(Q) defined as sprty(t0 · · · ti) = max0≤ j≤i Ω(t j) is a strong aggregation

for a parity automaton (Q,Σ,qI ,δ ,Acc) with coloring Ω (recall that Ω(q,a,q′) = Ω(q)).

• The function smllr : δ+ → 2Q defined as smllr((q0,a0,q1) · · · (qn,an,qn+1)) = {q0,q1, . . . ,qn} is a

strong aggregation for a Muller automaton (Q,Σ,qI ,δ ,Acc).

• The exponential time algorithm for delay games with winning conditions given by parity automata

with costs, a quantitative generalization of parity automata, is based on a strong aggregation [34].

• The algorithm for delay games with winning conditions given by max automata [1], another quan-

titative automaton model, is based on a weak aggregation [32].

Due to symmetry, we can replace the implication ρ ∈ Acc ⇒ ρ ′ ∈ Acc by an equivalence in the

definition of a weak aggregation. Also, every strong aggregation is trivially a weak one as well.

Let us briefly comment on the difference between strong and weak aggregations using the examples

of parity automata with costs and max-automata: the acceptance condition of the former automata is

a boundedness condition on some counters while the acceptance condition of the latter is a boolean

combination of boundedness and unboundedness conditions on some counters. The aggregations for

these acceptance conditions capture whether a piece of a run induces an increment of a counter or not, but

abstract away the actual number of increments if it is non-zero. Now, consider the parity condition with

costs, which requires to bound the counters. Assume the counters in some run π0π1π2 · · · are bounded

and that we have pieces π ′
i of bounded length having the same aggregation. Then, the increments in some

piece π ′
i have at least one corresponding increment in πi. Thus, if a counter in π ′

0π ′
1π ′

2 · · · is unbounded,

then it is also unbounded in π0π1π2 · · · , which yields a contradiction. Hence, the implication π0π1π2 · · · ∈
Acc ⇒ π ′

0π ′
1π ′

2 · · · ∈ Acc holds. For details, see [34]. On the other hand, to preserve boundedness and

unboundedness properties, one needs to bound the length of the π ′
i and the length of the πi. Hence, there

is only a weak aggregation for max-automata. Again, see [32] for details.

Given a weak aggregation s for A with acceptance condition Acc, let

s(Acc) = {s((πi)i∈N) | π0π1π2 · · · ∈ Acc is an accepting run of A with supi |πi|< ∞}.

Next, we consider aggregations that are trackable by automata. A monitor for an automaton A

with transition function δ is a tuple M = (M,⊥,upd) where M is a finite set of memory elements,
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⊥ /∈ M is the empty memory element, and upd: M⊥ × δ → M is an update function, where we use

M⊥ = M ∪{⊥}. Note that the empty memory element ⊥ is only used to initialize the memory, it is not

in the image of upd. We say that M computes the function sM : δ+ → M defined by sM(t) = upd(⊥, t)
and sM(π · t) = upd(sM(π), t) for π ∈ δ+ and t ∈ δ .

Example 2. Recall Example 1. The strong aggregation sprty for a parity automaton is computed by the

monitor (Ω(Q),⊥,(c, t) 7→ max{c,Ω(t)}), where ⊥< c for every c ∈ Ω(Q).

Next, we take the product of A and the monitor M for A, which simulates A and simultaneously ag-

gregates the acceptance condition. Formally, we define the product as A×M=(Q×M⊥,(qI ,⊥),Σ,δ ′, /0)
where δ ′((q,m),a) = (q′,upd(m,(q,a,q′))) for q′ = δ (q,a). Note that A×M has an empty set of ac-

cepting runs, as these are irrelevant to us.

4.2 Removing Delay via Aggregation

Consider a play prefix in a delay game Γf (L(A)): Player I has produced a sequence α(0) · · ·α(i) of letters

while Player O has produced β (0) · · ·β (i′) with, in general, i′ < i. Now, she has to determine β (i′+1).

The automaton A×M can process the joint sequence
(α(0)···α(i′)

β(0)···β(i′)

)

, but not the sequence α(i′+1) · · ·α(i),

as Player O has not yet picked the letters β (i′+1) · · ·β (i). However, one can determine which states are

reachable by some completion
(α(i′+1)···α(i)

β(i′+1)···β(i)

)

by projecting away ΣO from A×M.

Thus, from now on assume Σ = ΣI ×ΣO and define δP : 2Q×M⊥ ×ΣI → 2Q×M via

δP(S,a) =

{

δ ′

(

(q,m),

(

a

b

))
∣

∣

∣

∣

(q,m) ∈ S and b ∈ ΣO

}

.

Intuitively, δP is obtained as follows: take A×M, project away ΣO, and apply the power set construction

(while discarding the anyway empty acceptance condition). Then, δP is the transition function of the

resulting deterministic automaton. As usual, we extend δP to δ+
P : 2Q×M⊥ ×Σ+

I → 2Q×M via δ+
P (S,a) =

δP(S,a) and δ+
P (S,wa) = δP(δ

+
P (S,w),a).

Remark 1. The following are equivalent for q ∈ Q and w ∈ Σ+
I :

1. (q′,m′) ∈ δ+
P ({(q,⊥)},w).

2. There is a w′ ∈ (ΣI ×ΣO)
+ whose projection to ΣI is w such that the run π of A processing w′

starting from q ends in q′ and satisfies sM(π) = m′.

We use this property to define an equivalence relation formalizing the idea that words having the same

behavior in A×M do not need to be distinguished. To this end, to every w ∈ Σ+
I we assign the transition

summary rw : Q → 2Q×M defined via rw(q) = δ+
P ({(q,⊥)},w). Having the same transition summary is

a finite equivalence relation ≡ over Σ+
I whose index is bounded by 2|Q|2 ·|M|. For an ≡-class S = [w]≡

define rS = rw, which is independent of representatives. Let R be the set of infinite ≡-classes.

Now, we define a Gale-Stewart game in which Player I determines an infinite sequence of equivalence

classes from R. By picking representatives, this induces a word α ∈ Σω
I . Player O picks states (qi,mi)

such that the mi aggregate a run of A on some completion
(

α
β

)

of α . Player O wins if the mi imply that

the run of A on
(

α
β

)

is accepting. To account for the delay, Player I is always one move ahead, which is

achieved by adding a dummy move for Player O in round 0.

Formally, in round 0, Player I picks an ≡-class S0 ∈ R and Player O has to pick (q0,m0) = (qI ,⊥). In

round i > 0, first Player I picks an ≡-class Si ∈ R, then Player O picks a state (qi,mi) ∈ rSi−1
(qi−1) of the

product automaton. Player O wins the resulting play S0(q0,m0)S1(q1,m1)S2(q2,m2) · · · if m1m2m3 · · · ∈
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sM(Acc) (note that m0 is ignored). The notions of (finite-state and winning) strategies are inherited from

Gale-Stewart games, as this game is indeed such a game Γ(L(B)) for some automaton B of size |R| ·
|Q| · |M| which can be derived from A and M.

Formally, we define B= (R×Q×M⊥,R× (Q×M),(SI ,qI ,mI),δ
′,Acc′) for some arbitrary SI ∈ R,

some arbitrary mI ∈ M, δ ′((S,q,m),
(

S′

(q′,m′)

)

) = (S′,q′,m′), and (S0,q0,m0)(S1,q1,m1)(S2,q2,m2) · · · ∈

Acc′ if, and only if,

• (q0,m0) = (qI ,⊥),

• (qi,mi) ∈ rSi−1
(qi−1) for all i > 0, and

• m1m2m3 · · · ∈ sM(Acc).

It is straightforward to prove that B has the desired properties.

Note that, due to our very general definition of acceptance conditions, we are able to express the

local consistency requirement “(qi,mi) ∈ rSi−1
(qi−1)” using the acceptance condition. For less general

acceptance modes, e.g., parity, one has to check this property using the state space of the automaton,

which leads to a polynomial blowup, as one has to store each Si−1 for one transition.

Theorem 2. Let A be an ω-automaton and let M be a monitor for A such that sM is a strong aggregation

for A, let B be constructed as above, and define d = 2|Q|2 ·|M⊥|.

1. If Player O wins Γf (L(A)) for some delay function f , then she also wins Γ(L(B)).

2. If Player O wins Γ(L(B)), then she also wins the block-game Γd(L(A)). Moreover, if she has

a finite-state winning strategy for Γ(L(B)) with n states, then she has a delay-aware finite-state

winning strategy for Γd(L(A)) with n states.

By applying both implications and Item 2 of Lemma 1, we obtain upper bounds on the complexity

of determining for a given A whether Player O wins Γf (L(A)) for some f and on the necessary constant

lookahead necessary to do so.

Corollary 1. Let A, B, and d be as in Theorem 2. Then, the following are equivalent:

1. Player O wins Γf (L(A)) for some delay function f .

2. Player O wins Γf (L(A)) for the constant delay function f with f (0) = 2d.

3. Player O wins Γ(L(B)).

Thus, determining whether, given A, Player O wins Γf (L(A)) for some f is achieved by determining

the winner of the Gale-Stewart game Γ(L(B)) and, independently, we obtain an exponential (in |Q| · |M|)
upper bound on the necessary constant lookahead.

Example 3. Continuing our example for the parity acceptance condition, we obtain the exponential up-

per bound 2|Q|2 ·|Ω(Q)|+2 on the constant lookahead necessary to win the delay game and an exponential-

time algorithm for determining the winner, as B has exponentially many states, but the same number of

colors as A. Both upper bounds are tight [19].

In case there is no strong aggregation for A, but only a weak one, one can show that finite-state

strategies exist, if Player O wins with respect to some constant delay function at all.

Theorem 3. Let A be an ω-automaton and let M be a monitor for A such that sM is a weak aggregation

for A, let B be constructed as above, and define d = 2|Q|2 ·|M⊥|.

1. If Player O wins Γf (L(A)) for some constant delay function f , then she also wins Γ(L(B)).
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2. If Player O wins Γ(L(B)), then she also wins the block-game Γd(L(A)). Moreover, if she has

a finite-state winning strategy for Γ(L(B)) with n states, then she has a delay-aware finite-state

winning strategy for Γd(L(A)) with n states.

Again, we obtain upper bounds on the solution complexity (here, with respect to constant delay

functions) and on the necessary constant lookahead.

Corollary 2. Let A, B, and d be as in Theorem 3. Then, the following are equivalent:

1. Player O wins Γf (L(A)) for some constant delay function f .

2. Player O wins Γf (L(A)) for the constant delay function f with f (0) = 2d.

3. Player O wins Γ(L(B)).

5 Discussion

Let us compare the two approaches presented in the previous section with three use cases: delay games

whose winning conditions are given by deterministic parity automata, by deterministic Muller automata,

and by LTL formulas. All formalisms only define ω-regular languages, but vary in their succinctness.

The following facts about arena-based games will be useful for the comparison:

• The winner of arena-based parity games has positional winning strategies [7, 23], i.e., finite-state

strategies with a single state.

• The winner of an arena-based Muller game has a finite-state strategy with n! states [22], where n

is the number of vertices of the arena.

• The winner of an arena-based LTL game has a finite-state strategy with 22|ϕ| states [24], where ϕ

is the formula specifying the winning condition.

Also, we need the following bounds on the necessary lookahead in delay games:

• In delay games whose winning conditions are given by deterministic parity automata, exponential

(in the size of the automata) constant lookahead is both sufficient and in general necessary [19].

• In delay games whose winning conditions are given by deterministic Muller automata, doubly-

exponential (in the size of the automata) constant lookahead is sufficient. This follows from the

transformation of deterministic Muller automata into deterministic parity automata of exponential

size (see, e.g., [12]). However, the best lower bound is the exponential one for parity automata,

which are also Muller automata.

• In delay games whose winning conditions are given by LTL formulas, triply-exponential (in the

size of the formula) constant lookahead is both sufficient and in general necessary [20].

Using these facts, we obtain the following complexity results for finite-state strategies: Figure 1

shows the upper bounds on the number of states of delay-oblivious finite-state strategies for delay games

and on the number of states of delay-aware finite-state strategies for block games. In all three cases, the

former strategies are at least exponentially larger. This illustrates the advantage of decoupling tracking

the history from managing the lookahead.

Finally, let us compare our approach to that of Salzmann. Fix a delay game Γf (L(A)) and assume

Player I has picked α(0) · · ·α(i) while Player O has picked β (0) · · ·β (i′) with i′ < i. His strategies are

similar to our delay-aware ones for block games. The main technical difference is that his strategies have

access to the state reached by A when processing
(α(0)···α(i′)

β(0)···β(i′)

)

. Thus, his strategies explicitly depend on
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parity Muller LTL

delay-oblivious doubly-exp. quadruply-exp. quadruply-exp.

delay-aware exp. doubly-exp. triply-exp.

Figure 1: Memory size for delay-oblivious strategies (for delay games) and delay-aware finite-state

strategies (for block games), measured in the size of the representation of the winning condition. For the

sake of readability, we only present the orders of magnitude, but not exact values.

the specification automaton A while ours are independent of it. In general, his strategies are therefore

smaller than ours, as our transducers have to simulate A if they need access to the current state. On

the other hand, our aggregation-based framework is more general and readily applicable to quantitative

winning conditions as well, while he only presents results for selected qualitative conditions like parity,

weak parity, and Muller.

6 Conclusion

We have presented a very general framework for analyzing delay games. If the automaton recognizing

the winning condition satisfies a certain aggregation property, our framework yields upper bounds on the

necessary lookahead to win the game, an algorithm for determining the winner (under some additional

assumptions on the acceptance condition), and finite-state winning strategies for Player O, if she wins

the game at all. These results cover all previous results on the first two aspects (although not necessarily

with optimal complexity of determining the winner).

Thereby, we have lifted another important aspect of the theory of infinite games to the setting with

delay. However, many challenging open questions remain, e.g., a systematic study of memory require-

ments in delay games is now possible. For delay-free games, tight upper and lower bounds on these

requirements are known for almost all winning conditions.

Another exciting question concerns the tradeoff between memory and amount of lookahead: can one

trade memory for lookahead? In other settings, such tradeoffs exist, e.g., lookahead allows Player O to

improve the quality of her strategies [34]. Salzmann has presented some tradeoffs between memory and

lookahead, e.g., linear lookahead allows exponential reductions in memory size in comparison to delay-

free strategies [28]. In current work, we investigate whether these results are inherent to his setting,

which differs subtly from the one proposed here, or whether they exist in our setting as well.

Finite-state strategies in arena-based games are typically computed by game reductions, which turn

a game with a complex winning condition into one in a larger arena with a simpler winning condition. In

future work, we plan to lift this approach to delay games. Note that the algorithm for computing finite-

state strategies presented here can already be understood as a reduction, as we turn a delay game into a

Gale-Stewart game. This removes the delay, but preserves the type of winning condition. However, it is

also conceivable that staying in the realm of delay games yields better results, i.e., by keeping the delay

while simplifying the winning condition. In future work, we address this question.

In our study here we focussed on the state complexity of the automata implementing the strategies,

i.e., we measure the quality of a strategy in the number of states of a transducer implementing it. How-

ever, this is not the true size of such a machine, as we have ignored the need to represent the transition

function and the output function, which have an exponential domain (in the block size) in the case of

delay-aware strategies. Thus, when represented as lookup tables, they are prohibitively large. However,
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our delay-removing reduction hints at these functions also being implementable by transducers. For the

transition function this is straightforward; in current work, we investigate whether this is also possible

for the output function.

Finally, in future work we will determine the complexity of computing finite-state strategies in delay

games and investigate notions of finite-state strategies for Player I, which should be much simpler since

he does not have to deal with the lookahead.
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