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Abstract

What is a finite-state strategy in a delay game? We answer this surprisingly
non-trivial question by presenting a very general framework that allows to
remove delay: finite-state strategies exist for all winning conditions where
the resulting delay-free game admits a finite-state strategy. The framework is
applicable to games whose winning condition is recognized by an automaton
with an acceptance condition that satisfies a certain aggregation property.

Our framework also yields upper bounds on the complexity of determining
the winner of such delay games and upper bounds on the necessary lookahead
to win the game. In particular, we cover all previous results of that kind as
special cases of our uniform approach.
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1. Introduction

What is a finite-state strategy in a delay game? The answer to this
question is surprisingly non-trivial due to the nature of delay games in which
one player is granted a lookahead on her opponent’s moves. This puts her
into an advantage when it comes to winning games, i.e., there are games that
can only be won with lookahead, but not without. A simple example is a
game where one has to predict the third move of the opponent with one’s
first move. This is impossible when moving in alternation, but possible if
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one has access to the opponent’s first three moves before making the first
move. More intriguingly, lookahead also allows to improve the quality of
winning strategies in games with quantitative winning conditions, i.e., there
is a tradeoff between quality and amount of lookahead [1]. More practically,
when modeling reactive synthesis as a two-player game, the addition of delay
allows us to model delay inherent to sensing and actuating in the physical
world as well as the delay caused by the transmission of data [2]. Thus, delay
games capture aspects of real-life synthesis problems that cannot easily be
expressed in the classical, i.e., delay-free, framework.

However, managing (and, if necessary, storing) the additional information
gained by the lookahead can be a burden. Consider another game where
one just has to copy the opponent’s moves. This is obviously possible with
or without lookahead (assuming the opponent moves first). In particular,
without lookahead one just has to remember the last move of the opponent
and copy it. However, when granted lookahead, one has to store the last
moves of the opponent in a queue to implement the copying properly. This
example shows that lookahead is not necessarily advantageous when it comes
to minimizing the memory requirements of a strategy.

In this work, we are concerned with Gale-Stewart games [3], abstract
games without an underlying arena.1 In such a game, both players produce an
infinite sequence of letters and the winner is determined by the combination of
these sequences. If it is in the winning condition, a set of such combinations,
then the second player wins, otherwise the first one wins. In a classical Gale-
Stewart game, both players move in alternation while in a delay game, the
second player skips moves to obtain a lookahead on the opponent’s moves.
Which moves are skipped is part of the rules of the game and known to both
players.

Delay games have recently received a considerable amount of attention
after being introduced by Hosch and Landweber [4] only three years after the
seminal Büchi-Landweber theorem [5]. Büchi and Landweber had shown how
to solve infinite two-player games with ω-regular winning conditions. Forty
years later, delay games were revisited by Holtmann, Kaiser, and Thomas [6]
and the first comprehensive study was initiated, which settled many basic

1The models of Gale-Stewart games and arena-based games are interreducible, but
delay games are naturally presented as a generalization of Gale-Stewart games. This is
the reason we prefer this model here.
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problems like the exact complexity of solving ω-regular delay games and the
amount of lookahead necessary to win such games [7]. Furthermore, Martin’s
seminal Borel determinacy theorem [8] for Gale-Stewart games has been lifted
to delay games [9] and winning conditions beyond the ω-regular ones have
been investigated [10, 11, 12, 1].

Finally, the decision version of the uniformization problem is to decide
whether a given relation has a uniformization, that is, whether there exists
a function with a prescribed property that is contained in the relation and
has the same domain. This problem for relations over infinite words and
continuous functions boils down to solving delay games: a relation L ⊆ (ΣI×
ΣO)ω is uniformized by a continuous function (in the Cantor topology) if, and
only if, the delaying player wins the delay game with winning condition L.
We refer to [6] for details.

What makes finite-state strategies in infinite games particularly useful
and desirable is that a general strategy is an infinite object, as it maps
finite play prefixes to next moves. On the other hand, a finite-state strategy
is implemented by a transducer, an automaton with output, and therefore
finitely represented: the automaton reads a play prefix and outputs the next
move to be taken. Thus, the transducer computes a finite abstraction of the
play’s history using its state space as memory and determines the next move
based on the current memory state.

In Gale-Stewart games, finite-state strategies suffice for all ω-regular
games [5] and even for deterministic ω-contextfree games, if one allows push-
down transducers [13]. For Gale-Stewart games (and arena-based games),
the notion is well-established and one of the most basic questions about a
class of winning conditions is that about the existence and size of winning
strategies for such games.

While foundational questions for delay games have been answered and
many results have been lifted from Gale-Stewart games to those with de-
lay, the issue of computing tractable and implementable strategies has not
been addressed before. However, this problem is of great importance, as the
existence and computability of finite-state strategies is a major reason for
the successful application of infinite games to diverse problems like reactive
synthesis, model-checking of fixed-point logics, and automata theory.

In previous work, restricted classes of strategies for delay games have been
considered [9]. However, those restrictions are concerned with the amount
of information about the lookahead’s evolution a strategy has access to, and
do not restrict the size of the strategies: In general, they are still infinite
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objects. On the other hand, it is known that bounded lookahead suffices for
many winning conditions of importance, e.g., the ω-regular ones [7], those
recognized by parity and Streett automata with costs [1], and those definable
in (parameterized) linear temporal logics [11]. Furthermore, for all those
winning conditions, the winner of a delay game can be determined effectively.
In fact, all these proofs rely on the same basic construction that was already
present in the work of Holtmann, Kaiser, and Thomas, i.e., a reduction to a
Gale-Stewart game using equivalence relations that capture behavior of the
automaton recognizing the winning condition. These reductions and the fact
that finite-state strategies suffice for the games obtained in the reductions
imply that (some kind of) finite-state strategies exist for such games.

Indeed, in his master’s thesis, Salzmann recently introduced the first no-
tion of finite-state strategies in delay games and, using these reductions,
presented an algorithm computing them for several types of acceptance con-
ditions, e.g., parity conditions and related ω-regular ones [14]. However, the
exact nature of finite-state strategies in delay games is not as canonical as for
Gale-Stewart games. We discuss this issue in-depth in Sections 3 and 5 by
proposing two notions of finite-state strategies, a delay-oblivious one which
yields large strategies in the size of the lookahead, and a delay-aware one
that follows naturally from the reductions to Gale-Stewart games mentioned
earlier. In particular, the number of states of the delay-aware strategies is
independent of the size of the lookahead, but often larger in the size of the
automaton recognizing the winning condition. However, this is offset by
the fact that strategies of the second type are simpler to compute than the
delay-oblivious ones and have overall fewer states, if the lookahead is large.
In comparison to Salzmann’s notion, where strategies syntactically depend
on a given automaton representing the winning condition, our strategies are
independent of the representation of the winning condition and therefore
more general. Also, our framework is more abstract and therefore applicable
to a wider range of acceptance conditions (e.g., qualitative ones) and yields
in general smaller strategies, but there are of course some similarities, which
we discuss in detail.

To present these notions, we first introduce some definitions in Section 2,
e.g., delay games and finite-state strategies for Gale-Stewart games. After
introducing the two notions of finite-state strategies for delay games in Sec-
tion 3, we show how to compute such strategies in Section 4. To this end, we
present a generic account of the reduction from delay games to Gale-Stewart
games which subsumes, to the best of our knowledge, all decidability results
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presented in the literature. Furthermore, we show how to obtain the desired
strategies from our construction. Then, in Section 5, we compare the dif-
ferent definitions of finite-state strategies for delay games proposed here and
discuss their advantages and disadvantages. Also, we compare our approach
to that of Salzmann. In Section 6, discuss how to implement finite-state
strategies in delay games even more succinctly. We conclude by mentioning
some directions for further research in Section 7.

This work is an extended and revised version of a paper presented at
GandALF 2017 [15].

Related Work. As mentioned earlier, the existence of finite-state strategies
is the technical core of many applications of infinite games, e.g., in reac-
tive synthesis one synthesizes a correct-by-construction system from a given
specification by casting the problem as an infinite game between a player
representing the system and one representing the antagonistic environment.
It is a winning strategy for the system player that yields the desired imple-
mentation, which is finite if the winning strategy is finite-state. Similarly,
Gurevich and Harrington’s game-based proof of Rabin’s decidability theo-
rem for monadic second-order logic over infinite binary trees [16] relies on
the existence of finite-state strategies.2

These facts explain the need for studying the existence and properties
of finite-state strategies in infinite games [17, 18, 19, 20]. In particular, the
seminal work by Dziembowski, Jurdziński, and Walukiewicz [21] addressed
the problem of determining upper and lower bounds on the size of finite-state
winning strategies in games with Muller winning conditions. Nowadays, one
of the most basic questions about a given winning condition is that about such
upper and lower bounds. For most conditions in the literature, tight bounds
are known, see, e.g., [22, 23, 24]. But there are also surprising exceptions to
that rule, e.g., generalized reachability games [25]. More recently, Colcombet,
Fijalkow, and Horn presented a very general technique that yields tight upper
and lower bounds on memory requirements in safety games, which even hold
for games in infinite arenas, provided their degree is finite [26].

2The proof is actually based on positional strategies, a further restriction of finite-state
strategies for arena-based games, because they are simpler to handle. Nevertheless, the
same proof also works for finite-state strategies.
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2. Preliminaries

We denote the non-negative integers by N. An alphabet Σ is a non-
empty finite set. The set of finite words over Σ is denoted by Σ∗ and the set
of infinite words by Σω. Given a finite or infinite word α, we denote by α(i)
the ith letter of α, starting with 0, i.e., α = α(0)α(1)α(2) · · · . Given two
ω-words α ∈ (Σ0)ω and β ∈ (Σ1)ω, we define

(
α
β

)
=
(
α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

)
· · · ∈

(Σ0 × Σ1)ω. Similarly, we define
(
x
y

)
for finite words x and y with |x| = |y|.

2.1. ω-automata
A (deterministic and complete) ω-automaton is a tuple A = (Q,Σ, qI , δ,Acc)

where Q is a finite set of states, Σ is an alphabet, qI ∈ Q is the initial state,
δ : Q×Σ→ Q is the transition function, and Acc ⊆ δω is the set of accepting
runs (here, and whenever convenient, we treat δ as a relation δ ⊆ Q×Σ×Q).
A finite run π of A is a sequence

π = (q0, a0, q1)(q1, a1, q2) · · · (qi−1, ai−1, qi) ∈ δ+.

As usual, we say that π starts in q0, ends in qi, and processes a0 · · · ai−1 ∈ Σ+.
Infinite runs on infinite words are defined analogously. If we speak of the run
of A on α ∈ Σω, then we mean the unique run of A starting in qI processing
α. The language L(A) ⊆ Σω of A contains all those ω-words whose run of A
is accepting. The size of A is defined as |A| = |Q|.

This definition is very broad, which allows us to formulate our theorems
as general as possible. In examples, we consider safety, reachability, parity,
and Muller automata whose sets of accepting runs are finitely represented:
An ω-automaton A = (Q,Σ, qI , δ,Acc) is a safety automaton, if there is a
set F ⊆ Q of accepting states such that

Acc = {(q0, a0, q1)(q1, a1, q2)(q2, a2, q3) · · · ∈ δω | qi ∈ F for every i}.
Moreover, an ω-automaton A = (Q,Σ, qI , δ,Acc) is a reachability automaton,
if there is a set F ⊆ Q of accepting states such that

Acc = {(q0, a0, q1)(q1, a1, q2)(q2, a2, q3) · · · ∈ δω | qi ∈ F for some i}.
Furthermore, A is a parity automaton, if

Acc = {(q0, a0, q1)(q1, a1, q2)(q2, a2, q3) · · · ∈ δω | lim supi→∞Ω(qi) is even}
for some coloring Ω: Q → N. To simplify our notation, define Ω(q, a, q′) =
Ω(q). Finally, A is a Muller automaton, if there is a family F ⊆ 2Q of sets
of states such that Acc = {ρ ∈ δω | Inf(ρ) ∈ F}, where Inf(ρ) is the set of
states visited infinitely often by ρ.
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2.2. Delay Games
A delay function is a mapping f : N → N \ {0}, which is said to be

constant if f(i) = 1 for all i > 0. A delay game Γf (L) consists of a delay
function f and a winning condition L ⊆ (ΣI × ΣO)ω for some alphabets ΣI

and ΣO. Such a game is played in rounds i = 0, 1, 2, . . . as follows: in round i,
first Player I picks a word xi ∈ Σ

f(i)
I , then Player O picks a letter yi ∈ ΣO.

Player O wins a play (x0, y0)(x1, y1)(x2, y2) · · · if the outcome
(
x0x1x2···
y0y1y2···

)
is in

L; otherwise, Player I wins.
A strategy for Player I in Γf (L) is a mapping τI : Σ∗O → Σ∗I satisfying

|τI(w)| = f(|w|) while a strategy for Player O is a mapping τO : Σ+
I → ΣO.

A play (x0, y0)(x1, y1)(x2, y2) · · · is consistent with τI if xi = τI(y0 · · · yi−1)
for all i, and it is consistent with τO if yi = τO(x0 · · ·xi) for all i. A strategy
for Player P ∈ {I, O} is winning, if every play that is consistent with the
strategy is won by Player P .

An important special case are delay-free games, i.e., those with respect
to the delay function f mapping every i to 1. In this case, we drop the
subscript f and write Γ(L) for the game with winning condition L. Such
games are typically called Gale-Stewart games [3].

2.3. Finite-state Strategies in Gale-Stewart Games
A strategy for PlayerO in a Gale-Stewart game is still a mapping τO : Σ+

I →
ΣO. Such a strategy is said to be finite-state, if there is a deterministic
finite transducer T that implements τO in the following sense: T is a tu-
ple (Q,ΣI , qI , δ,ΣO, λ) where Q is a finite set of states, ΣI is the input alpha-
bet, qI ∈ Q is the initial state, δ : Q×ΣI → Q is the deterministic transition
function, ΣO is the output alphabet, and λ : Q→ ΣO is the output function.
Let δ∗(q, x) denote the unique state that is reached by T when processing
x ∈ Σ∗I from q ∈ Q. Then, the strategy τT implemented by T is defined
as τT(x) = λ(δ∗(qI , x)). We say that a strategy is finite-state, if it is im-
plementable by some transducer. Slightly abusively, we identify finite-state
strategies with transducers implementing them and talk about finite-state
strategies with some number of states. Thus, we focus on the state complex-
ity (e.g., the number of memory states necessary to implement a strategy)
and ignore the other components of a transducer (which are anyway of poly-
nomial size in |Q|, if we assume ΣI and ΣO to be fixed).
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3. What is a Finite-state Strategy in a Delay Game?

Before we answer this question, we first ask what properties a finite-state
strategy should have, i.e., what makes finite-state strategies in Gale-Stewart
games useful and desirable? A strategy τO : Σ+

I → ΣO is in general an infinite
object and does not necessarily have a finite representation. Furthermore,
to execute such a strategy, one needs to store the whole sequence of moves
made by Player I thus far: Unbounded memory is needed to execute it.

On the other hand, a finite-state strategy is finitely described by an au-
tomaton T implementing it. To execute it, one only needs to store a single
state of T and access to the transition function δ and the output function λ
of T. Assume the current state is q at the beginning of some round i (ini-
tialized with qI before round 0). Then, Player I makes his move by picking
some a ∈ ΣI , which is processed by updating the memory state to q′ = δ(q, a).
Then, T prescribes picking λ(q′) ∈ ΣO and round i is completed.

Thus, there are two aspects that make finite-state strategies desirable:
(1) the next move depends only on a finite amount of information about
the history of the play, i.e., a state of the automaton, which is (2) easily
updated. In particular, the necessary machinery of the strategy is encoded
in the transition function and the output function.

Further, there is a generic framework to compute such strategies by reduc-
ing them to arena-based games.3 As an example, consider a game Γ(L(A))
where A is a parity automaton with set Q of states and transition function δ.
We describe the construction of an arena-based parity game contested be-
tween Player I and Player O whose solution allows us to compute the desired
strategies (formal details are presented in the appendix). The positions of
Player I are states of A while those of Player O are pairs (q, a) where q ∈ Q
and where a is an input letter. From a vertex q Player I can move to every
state (q, a) for a ∈ ΣI , from which Player O can move to every vertex δ(q,

(
a
b

)
)

for b ∈ ΣO. Finally, Player O wins a play, if the run of A constructed during
the play is accepting. It is easy to see that the resulting game is a parity
game with |Q| · (|ΣI |+ 1) vertices, and has the same winner as Γ(L(A)). The
winner of the arena-based game has a positional4 winning strategy [27, 28],

3Appendix A gives a short introduction to arena-based games.
4A strategy in an arena-based game is positional, if only depends on the last vertex

of the play’s history, not on the full history. A formal definition can be found in the
appendix.
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which can be computed in quasipolynomial time [29, 30, 31, 32]. Such a
positional winning strategy can easily be turned into a finite-state winning
strategy with |Q| · |ΣI | states for Player O in the game Γ(L(A)), which is
implemented by an automaton with state set Q×ΣI . This reduction can be
generalized to arbitrary classes of Gale-Stewart games whose winning condi-
tions are recognized by an ω-automaton with set Q of states: if Player O has
a finite-state strategy with n′ states in the arena-based game obtained by
the construction described above, then Player O has a finite-state winning
strategy with |Q| · |ΣI | · n′ states for the original Gale-Stewart game. Such
a strategy is obtained by solving an arena-based game with |Q| · (|ΣI | + 1)
vertices. Again, see the appendix for technical details.

3.1. Delay-oblivious Finite-state Strategies in Delay Games
So, what is a finite-state strategy in a delay game? In the following, we

discuss this question for the case of delay games with respect to constant
delay functions, which is the most important case. In particular, constant
lookahead suffices for all ω-regular winning conditions [7], i.e, Player O wins
with respect to an arbitrary delay function if, and only if, she wins with
respect to a constant one. Similarly, constant lookahead suffices for many
quantitative conditions like (parameterized) temporal logics [11] and parity
conditions with costs [1]. For winning conditions given by parity automata,
there is an exponential upper bound on the necessary constant lookahead.
On the other hand, there are exponential lower bounds already for winning
conditions specified by deterministic automata with reachability or safety
acceptance [7] (which are subsumed by parity acceptance).

Technically, a strategy for Player O in a delay game is still a map-
ping τO : Σ+

I → ΣO. Hence, the definition of finite-state strategies for Gale-
Stewart games (see Subsection 2.3) is also applicable to delay games. With
reasons that become apparent in the example succeeding the definition, we
call such strategies delay-oblivious.

As a (cautionary) example, consider a delay game with winning condi-
tion L= = {

(
α
α

)
| α ∈ {0, 1}ω}, i.e., Player O just has to copy Player I’s

moves, which she can do with respect to every delay function: Player O wins
Γf (L=) for every f . However, a finite-state strategy has to remember the
whole lookahead, i.e., those moves that Player I is ahead of Player O, in
order to copy his moves. Thus, an automaton implementing a winning strat-
egy for Player O in Γf (L=) needs at least |{0, 1}|d states, if f is a constant
delay function with f(0) = d. Thus, the memory requirements grow with the
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size of the lookahead granted to Player O, i.e., lookahead is a burden, not
an advantage. She even needs unbounded memory in the case of unbounded
lookahead.

An advantage of this delay-oblivious definition is that finite-state strate-
gies can be obtained by a trivial extension of the reduction presented for
Gale-Stewart games above: now, states of Player I are from Q × Σd−1

I and
those of Player O are from Q×Σd

I . Player I can move from (q, w) to (q, wa)
for a ∈ ΣI while Player O can move from (q, aw) to (δ(q,

(
a
b

)
), w) for b ∈ ΣO.

Intuitively, a state now additionally stores a queue of length d−1, which con-
tains the lookahead granted to Player O. Coming back to the parity example,
this approach yields a finite-state strategy with |Q| · |ΣI |d states. To obtain
such a strategy, one has to solve a parity game with |Q| · (|ΣI |+ 1) · |ΣI |d−1

vertices, which is of doubly-exponential size in |A|, if d is close to the (tight)
exponential upper bound. This can be done in doubly-exponential time, as
it still has the same number of colors as the automaton A. Again, this re-
duction can be generalized to arbitrary classes of delay games with constant
delay whose winning conditions are recognized by an ω-automaton with set Q
of states: if Player O has a finite-state strategy with n′ states in the arena-
based game obtained by the construction, then Player O has a finite-state
winning strategy with |Q| · |ΣI |d · n′ states for the delay game with constant
lookahead of size d. In general, d factors exponentially into n′, as n′ is the
memory size required to win a game with O(|ΣI |d) vertices. Also, to obtain
the strategy for the delay game, one has to solve an arena-based game with
|Q| · (|ΣI |+1) · |ΣI |d−1 vertices. Again, see the appendix for technical details.

3.2. Block Games
We show that one can do better by decoupling the history tracking and the

handling of the lookahead, i.e., by using delay-aware finite-state strategies.
In the delay-oblivious definition, we hardcode a queue into the arena-based
game, which results in a blowup of the arena and therefore also in a blowup
in the solution complexity and in the number of memory states for the arena-
based game, which is turned into one for the delay game. To overcome this,
we introduce a slight variation of delay games with respect to constant delay
functions, so-called block games5, present a notion of finite-state strategy in
block games, and show how to transfer strategies between delay games and

5Holtmann, Kaiser, and Thomas already introduced a notion of block game in connec-
tion to delay games [6]. However, their notion differs from ours in several aspects. Most
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block games. Then, we show how to solve block games and how to obtain
finite-state strategies for them.

The motivation for introducing block games is to eliminate the queue
containing the letters Player I is ahead of Player O, which is cumbersome
to maintain, and causes the blowup in the case of games with winning con-
dition L=. Instead, in a block game, both players pick blocks of letters of a
fixed length with Player I being one block ahead to account for the delay,
i.e., Player I has to pick two blocks in round 0 and then one in every round,
as does Player O in every round. This variant of delay games lies implicitly
or explicitly at the foundation of all arguments establishing upper bounds
on the necessary lookahead and at the foundations of all algorithms solving
delay games [6, 7, 11, 12, 1]. Furthermore, we show how to transform a (win-
ning) strategy for a delay game into a (winning) strategy for a block game
and vice versa, i.e., Player O wins the delay game if, and only if, she wins
the corresponding block game.6

Formally, the block game Γd(L), where d ∈ N \ {0} is the block length
and where L ⊆ (ΣI × ΣO)ω is the winning condition, is played in rounds as
follows: in round 0, Player I picks two blocks a0, a1 ∈ Σd

I , then Player O
picks a block b0 ∈ Σd

O. In round i > 0, Player I picks a block ai+1 ∈
Σd
I , then Player O picks a block bi ∈ Σd

O. Player O wins the resulting
play a0a1b0a2b1 · · · , if the outcome

(
a0a1a2···
b0b1b2···

)
is in L.

A strategy for Player I in Γ is a map τI : (Σd
O)∗ → (Σd

I)
2 ∪ Σd

I such that
τI(ε) ∈ (Σd

I)
2 and τI(b0 · · · bi) ∈ Σd

I for i ≥ 0. A strategy for Player O
is a map τO : (Σd

I)
∗ → Σd

O. A play a0a1b0a2b1 · · · is consistent with τI , if
(a0, a1) = τI(ε) and ai = τI(b0 · · · bi−2) for every i ≥ 2; it is consistent with
τO if bi = τO(a0 · · · ai+1) for every i ≥ 0. Winning strategies and winning a
block game are defined as for delay games.

The next lemma relates delay games with constant lookahead and block
games: for a given winning condition, Player O wins a delay game with
winning condition L (with respect to some delay function) if, and only if, she
wins a block game with winning condition L (for some block size).

Lemma 1. Let L ⊆ (ΣI × ΣO)ω.

importantly, in their definition, Player I determines the length of the blocks (within some
bounds specified by f) while our block length is fixed and part of the rules of the game.

6Due to their importance and prevalence for solving delay games, one could even argue
that the notion of block games is more suitable to model delay in infinite games.
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1. If Player O wins Γf (L) for some constant delay function f , then she
also wins Γf(0)(L).

2. If Player O wins Γd(L), then she also wins Γf (L) for the constant delay
function f with f(0) = 2d.

Proof. 1.) Let τO : Σ+
I → ΣO be a winning strategy for Player O in Γf (L)

and fix d = f(0). Now, define τ ′O : (Σd
I)
∗ → (ΣO)d for Player O in Γd(L) via

τ ′O(a0 · · · aiai+1) = β(0) · · · β(d−1) with β(j) = τO(a0 · · · aiα(0)α(1) · · ·α(j−
1)) for ai+1 = α(0)α(1) · · ·α(d− 1).

A straightforward induction shows that for every play consistent with τ ′O
there is a play consistent with τO that has the same outcome. Thus, as τO is
a winning strategy, so is τ ′O.

2.) Now, let τ ′O : (Σd
I)
∗ → (ΣO)d be a winning strategy for Player O in

Γd(L). We define τO : Σ+
I → ΣO for Player O in Γf (L). To this end, let

x ∈ Σ+
I . By the choice of f , we obtain |x| ≥ f(0) = 2d. Thus, we can

decompose x into x = a0 · · · aix′ such that i ≥ 1, each ai′ is a block over
ΣI and |x′| < d. Now, let τ ′O(a0 · · · ai) = β(0) · · · β(d − 1). Then, we define
τO(x) = β(|x′|).

Again, a straightforward induction shows that for every play consistent
with τO there is a play consistent with τ ′O that has the same outcome. Thus,
τO is a winning strategy.

3.3. Delay-aware Finite-state Strategies in Block Games
After having proved the equivalence of block games and delay games

w.r.t. constant delay, we now define delay-aware finite-state strategies for
block games. Fix a block game Γd(L) with L ⊆ (ΣI × ΣO)ω. A finite-
state strategy for Player O in Γd(L) is implemented by a transducer T =
(Q,ΣI , qI , δ,ΣO, λ) where Q, ΣI , and qI are defined as in Subsection 2.3.
However, the transition function δ : Q× Σd

I → Q processes full input blocks
and the output function λ : Q×Σd

I×Σd
I → Σd

O maps a state and a pair of input
blocks to an output block. The strategy τT implemented by T is defined as
τT(a0 · · · ai) = λ(δ∗(qI , a0 · · · ai−2), ai−1, ai) for i ≥ 1. Here, δ∗(q, a0 · · · ai−2)
is the state reached by T when processing a0 · · · ai−2 from q.

Example 1. Fix some d > 0. Player O has a trivial delay-aware finite-state
winning strategy for Γd(L=) which is implemented by the transducer (Q,ΣI , qI , δ,ΣO, λ)
where Q = {qI}, δ(qI , a) = qI for every q ∈ Q and every a ∈ Σd

I , and where
λ(q, a0, a1) = a0 for every q ∈ Q and every a0, a1 ∈ Σd

I .
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Again, we identify delay-aware strategies with transducers implementing
them and are interested in the number of states of the transducer. This cap-
tures the amount of information about a play’s history that is differentiated
in order to implement the strategy. Note that this ignores the representation
of the transition and the output function. These are no longer “small” (in
|Q|), as it is the case for transducers implementing strategies for Gale-Stewart
games. When focussing on executing such strategies, these factors become
relevant, but for our current purposes they are not: We have decoupled the
history tracking from the lookahead-handling. The former is implemented
by the automaton as usual while the latter is taken care of by the output
function. In particular, the size of the automaton is (a-priori) independent
of the block size. In Section 6, we revisit the issue of representing the tran-
sition and the output function succinctly, thereby addressing the issue of
implementability.

In the next section, we present a very general approach to computing
finite-state strategies for block games whose winning conditions are specified
by automata with acceptance conditions that satisfy a certain aggregation
property. For example, for block games with winning conditions given by
deterministic parity automata, we obtain a strategy implemented by a trans-
ducer with exponentially many states, which can be obtained by solving a
parity game of exponential size. In both aspects, this is an exponential im-
provement over the delay-oblivious variant for classical delay games.

To conclude the introduction of block games, we strengthen Lemma 1 to
transfer finite-state strategies between delay games and block games.

Lemma 2. Let L ⊆ (ΣI × ΣO)ω.

1. If Player O has a delay-oblivious finite-state winning strategy for Γf (L)
with n states for some constant delay function f , then she also has a
delay-aware finite-state winning strategy for Γf(0)(L) with n states.

2. If Player O has a delay-aware finite-state winning strategy for Γd(L)
with n states, then she also has a delay-oblivious finite-state winning
strategy for Γf (L) with n · |ΣI |2d states for the constant delay function f
with f(0) = 2d.

Proof. It is straightforward to achieve the strategy transformations described
in the proof of Lemma 1 by transforming transducers that implement finite-
state strategies.
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The blowup in the direction from block games to delay games is in general
unavoidable, as finite-state winning strategies for the game Γf (L=) need at
least 2d states to store the lookahead while winning strategies for the block
game need only one state, independently of the block size.

4. Computing Finite-state Strategies for Block Games

The aim of this section is twofold. Our main aim is to compute finite-state
strategies for block games (and, by extension, for delay games with constant
lookahead). We do so by presenting a general framework for analyzing delay
games with winning conditions specified by ω-automata whose acceptance
conditions satisfy a certain aggregation property. The technical core is a
reduction to a Gale-Stewart game, i.e., we remove the delay from the game.
This framework yields upper bounds on the necessary (constant) lookahead
to win a given game, but also allows to determine the winner and a finite-
state winning strategy, if the resulting Gale-Stewart game can be effectively
solved.

Slightly more formally, let A be the automaton recognizing the winning
condition of the block game. Then, the winning condition of the Gale-Stewart
game constructed in the reduction is recognized by an automaton B that can
be derived from A. In particular, the acceptance condition of B simulates
the acceptance condition of A. Many types of acceptance conditions are
preserved by the simulation, e.g., starting with a parity automaton A, we
end up with a parity automaton B. Thus, the resulting Gale-Stewart game
can be effectively solved.

Our second aim is to present a framework as general as possible to obtain
upper bounds on the necessary lookahead and on the solution complexity for
a wide range of winning conditions. In fact, our framework is a generalization
and abstraction of techniques first developed for the case of ω-regular winning
conditions [7], which were later generalized to other winning conditions [11,
12, 1]. Here, we cover all these results in a uniform way.

Let us begin by giving some intuition for the construction. The winning
condition of the game is recognized by an automaton A. Thus, as usual,
the exact input can be abstracted away, only the induced behavior in A
is relevant. Such a behavior is characterized by the state transformations
induced by processing the input and by the effect on the acceptance condition
triggered by processing it. For many acceptance conditions, this effect can
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be aggregated, e.g., for parity conditions, one can decompose runs into non-
empty pieces and then only consider the maximal colors of the pieces. For
many quantitative winning conditions, one additionally needs bounds on the
lengths of these pieces (cf. [12, 1]).

We first introduce aggregations and give some examples in Subsection 4.1
before we present the reduction to Gale-Stewart games using aggregations in
Subsection 4.2

4.1. Aggregations
We begin by introducing two types of aggregations of varying strength.

Fix an ω-automaton A = (Q,Σ, qI , δ,Acc) and let s : δ+ →M for some finite
set M . Given a decomposition (πi)i∈N of a run π0π1π2 · · · into non-empty
pieces πi ∈ δ+ we define s((πi)i∈N) = s(π0)s(π1)s(π2) · · · ∈Mω.

• We say that s is a strong aggregation (function) for A, if for all de-
compositions (πi)i∈N and (π′i)i∈N of any runs ρ = π0π1π2 · · · and ρ′ =
π′0π

′
1π
′
2 · · · with supi |π′i| < ∞ and s((πi)i∈N) = s((π′i)i∈N): ρ ∈ Acc ⇒

ρ′ ∈ Acc.

• We say that s is a weak aggregation (function) for A, if for all de-
compositions (πi)i∈N and (π′i)i∈N of any runs ρ = π0π1π2 · · · and ρ′ =
π′0π

′
1π
′
2 · · · with supi |πi| <∞, supi |π′i| <∞, and s((πi)i∈N) = s((π′i)i∈N):

ρ ∈ Acc⇒ ρ′ ∈ Acc.

Thus, in a strong aggregation, only the pieces π′i of ρ′ are of bounded
length while in a weak aggregation both the pieces πi of ρ and the pieces π′i
of ρ′ are of bounded length.

Example 2.

• The function sprty : δ+ → Ω(Q) defined as sprty(t0 · · · ti) = max0≤j≤i Ω(tj)
is a strong aggregation for a parity automaton (Q,Σ, qI , δ,Acc) with
coloring Ω.

• The function smllr : δ+ → 2Q defined as smllr((q0, a0, q1) · · · (qn, an, qn+1)) =
{q0, q1, . . . , qn} is a strong aggregation for a Muller automaton (Q,Σ, qI , δ,Acc).

• The exponential time algorithm for delay games with winning condi-
tions given by parity automata with costs, a quantitative generalization
of parity automata, is based on a strong aggregation [1].
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• The algorithm for delay games with winning conditions given by max
automata [33], another quantitative automaton model, is based on a
weak aggregation [12].

Due to symmetry, we can replace the implication ρ ∈ Acc⇒ ρ′ ∈ Acc by
an equivalence in the definition of a weak aggregation. Also, the notions are
trivially hierarchical, i.e., every strong aggregation is also a weak one.

Let us briefly comment on the difference between strong and weak aggre-
gations using the examples of parity automata with costs and max-automata:
the acceptance condition of the former automata is a boundedness condition
on some counters while the acceptance condition of the latter is a boolean
combination of boundedness and unboundedness conditions on some coun-
ters. The aggregations for these acceptance conditions capture whether a
piece of a run induces an increment of a counter or not, but abstract away
the actual number of increments if it is non-zero. Now, consider the par-
ity condition with costs, which requires to bound the counters. Assume the
counters in some run π0π1π2 · · · are bounded and that we have pieces π′i of
bounded length having the same aggregation. Then, the increments in some
piece π′i have at least one corresponding increment in πi. Thus, if a counter in
π′0π

′
1π
′
2 · · · is unbounded, then it is also unbounded in π0π1π2 · · · , which yields

a contradiction. Hence, the implication π0π1π2 · · · ∈ Acc⇒ π′0π
′
1π
′
2 · · · ∈ Acc

holds. For details, see [1]. On the other hand, to preserve boundedness and
unboundedness properties, one needs to bound the length of the π′i and the
length of the πi. Hence, there is only a weak aggregation for max-automata.
Again, see [12] for details.

Given a weak aggregation s for A with acceptance condition Acc, let

s(Acc) = {s((πi)i∈N) | π0π1π2 · · · ∈ Acc is an accepting run of A with supi |πi| <∞}.

Next, we consider aggregations that are trackable by automata. A moni-
tor for an automaton A with transition function δ is a tupleM = (M,⊥, upd)
where M is a finite set of memory elements, ⊥ /∈ M is the empty mem-
ory element, and upd: M⊥ × δ → M is an update function, where we use
M⊥ = M ∪ {⊥}. Note that the empty memory element ⊥ is only used
to initialize the memory, it is not in the image of upd. We say that M
computes the function sM : δ+ → M defined by sM(t) = upd(⊥, t) and
sM(π · t) = upd(sM(π), t) for π ∈ δ+ and t ∈ δ.
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Example 3. Recall Example 2. The strong aggregation sprty for a parity
automaton is computed by the monitor (Ω(Q),⊥, (c, t) 7→ max{c,Ω(t)}),
where ⊥ < c for every c ∈ Ω(Q).

Finally, we take the product of A and the monitor M for A, which
simulates A and simultaneously aggregates the acceptance condition. For-
mally, we define the product as A ×M = (Q ×M⊥, (qI ,⊥),Σ, δ′, ∅) where
δ′((q,m), a) = (q′, upd(m, (q, a, q′))) for q′ = δ(q, a). Note that A ×M has
an empty set of accepting runs, as these are irrelevant to us.

4.2. Removing Delay via Aggregations
Consider a play prefix in a delay game Γf (L(A)): Player I has produced

a sequence α(0) · · ·α(i) of letters while Player O has produced β(0) · · · β(i′)
with, in general, i′ < i. Now, she has to determine β(i′ + 1). The au-
tomaton A ×M can process the joint sequence

(
α(0)···α(i′)
β(0)···β(i′)

)
, but not the se-

quence α(i′ + 1) · · ·α(i), as Player O has not yet picked the letters β(i′ +
1) · · · β(i). However, one can determine which states are reachable by some
completion

(
α(i′+1)···α(i)
β(i′+1)···β(i)

)
by projecting away ΣO from A×M.

Thus, from now on assume Σ = ΣI × ΣO and define δP : 2Q×M⊥ × ΣI →
2Q×M (P for power set) via

δP (S, a) =

{
δ′
(

(q,m),

(
a

b

))∣∣∣∣ (q,m) ∈ S and b ∈ ΣO

}
.

Intuitively, δP is obtained as follows: take A×M, project away ΣO, and apply
the power set construction (while discarding the anyway empty acceptance
condition). Then, δP is the transition function of the resulting determinis-
tic automaton. As usual, we extend δP to δ+

P : 2Q×M⊥ × Σ+
I → 2Q×M via

δ+
P (S, a) = δP (S, a) and δ+

P (S,wa) = δP (δ+
P (S,w), a).

Given states q and q′ of A, a memory state m, and a word w ∈ Σ+
I , we

call a word w′ ∈ Σ
|w|
O a (q, q′,m)-completion of w, if the run π of A processing(

w
w′

)
starting from q ends in q′ and satisfies sM(π) = m.

Remark 1. The following are equivalent for q ∈ Q and w ∈ Σ+
I :

1. (q′,m′) ∈ δ+
P ({(q,⊥)}, w).

2. There is a (q, q′,m′)-completion of w.
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We use this property to define an equivalence relation formalizing the
idea that words having the same behavior in A × M do not need to be
distinguished. To this end, to every w ∈ Σ+

I we assign the transition sum-
mary rw : Q → 2Q×M defined via rw(q) = δ+

P ({(q,⊥)}, w). Having the same
transition summary is a finite equivalence relation ≡ over Σ+

I whose index
is bounded by 2|Q|

2|M |. For an ≡-class S = [w]≡ define rS = rw, which is
independent of representatives. Let R be the set of infinite ≡-classes.

Now, we define a Gale-Stewart game in which Player I determines an
infinite sequence of equivalence classes from R. By picking representatives,
this induces a word α ∈ Σω

I . Player O picks states (qi,mi) such that the
mi aggregate a run of A on some completion

(
α
β

)
of α. Player O wins if the

mi imply that the run of A on
(
α
β

)
is accepting. To account for the delay,

Player I is always one move ahead, which is achieved by adding a dummy
move for Player O in round 0.

Formally, in round 0, Player I picks an≡-class S0 ∈ R and Player O has to
pick (q0,m0) = (qI ,⊥). In round i > 0, first Player I picks an ≡-class Si ∈ R,
then Player O picks a state (qi,mi) ∈ rSi−1

(qi−1) of the product automa-
ton. Player O wins the resulting play S0(q0,m0)S1(q1,m1)S2(q2,m2) · · · if
m1m2m3 · · · ∈ sM(Acc) (note thatm0 is ignored). The notions of (finite-state
and winning) strategies are inherited from Gale-Stewart games, as this game
is indeed such a game Γ(L(B)) for some automaton B of size |R| · |Q| · |M |
which can be derived from A and M as follows:

Let A = (Q,ΣI × ΣO, qI , δ,Acc) and M = (M,⊥, upd) be given. We
define B = (R × Q ×M⊥, R × (Q ×M), (SI , qI ,mI), δ

′,Acc′) for some ar-
bitrary SI ∈ R, some arbitrary mI ∈ M , δ′((S, q,m),

(
S′

(q′,m′)

)
) = (S ′, q′,m′),

and (S0, q0,m0)(S1, q1,m1)(S2, q2,m2) · · · ∈ Acc′ if, and only if,

• (q0,m0) = (qI ,⊥),

• (qi,mi) ∈ rSi−1
(qi−1) for all i > 0, and

• m1m2m3 · · · ∈ sM(Acc).

It is straightforward to prove that B has the desired properties.
Note that, due to our very general definition of acceptance conditions, we

are able to express the local consistency requirement “(qi,mi) ∈ rSi−1
(qi−1)”

using the acceptance condition. For less general acceptance modes, e.g.,
parity, one has to check this property using the state space of the automaton,
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which leads to a polynomial blowup, as one has to store each Si−1 for one
transition.

Theorem 1. Let A be an ω-automaton and let M be a monitor for A such
that sM is a strong aggregation for A, let B be constructed as above, and
define d = 2|Q|

2·|M⊥|.

1. If Player O wins Γf (L(A)) for some delay function f , then she also
wins Γ(L(B)).

2. If Player O wins Γ(L(B)), then she also wins the block game Γd(L(A)).
Moreover, if she has a finite-state winning strategy for Γ(L(B)) with
n states, then she has a delay-aware finite-state winning strategy for
Γd(L(A)) with n states.

Before we prove these results, we need to establish a closure property of
the sets s(Acc) in case s is a strong aggregation for an ω-automaton with
acceptance condition Acc. Recall that we defined

s(Acc) = {s((πi)i∈N) | π0π1π2 · · · ∈ Acc is an accepting run of A with supi |πi| <∞},

i.e., s(Acc) only contains the aggregations of decompositions into pieces of
bounded length. However, if s is strong, then this restriction is not essential:
the πi in the following lemma are not required to be of bounded length.

Lemma 3. Let s be a strong aggregation for an ω-automaton A with accep-
tance condition Acc and let π0π1π2 · · · ∈ Acc. Then, s((πi)i∈N) ∈ s(Acc).

Proof. The s-profile of a finite run π is the tuple (q,m, q′) where q is the
state π starts in, m = s(π), and q′ is the state π ends in. Having the same
s-profile is an equivalence relation over finite runs of finite index. For each
equivalence class S of this relation, let rep(S) be an arbitrary, but fixed,
element of S. For notational convenience, define rep(π) = rep(S) for the
unique equivalence class S with π ∈ S.

Now, consider the sequence rep(π0)rep(π1)rep(π2) · · · . By construction,
it is also a run of A and we have s((πi)i∈N) = s((rep(πi))i∈N). As the rep(πi)
are of bounded length (after all, there are only finitely many representatives),
s being a strong aggregation yields rep(π0)rep(π1)rep(π2) · · · ∈ Acc. Hence,
s((πi)i∈N) = s((rep(πi))i∈N) ∈ s(Acc).
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Also, we need some basic properties of equivalence classes S ∈ R. They
follow from the fact that every equivalence class S, which is a language of
finite words, is recognized by a deterministic finite automaton of size d (as
defined above) obtained using the state set (2Q×M⊥)Q to simulate δ+

P starting
from the states of the form {(q,⊥)}.

Remark 2.

1. [w]≡ ∈ R for every w of length at least d.
2. Let S ∈ R. For every n, S contains a word w of length n ≤ |w| ≤ n+d.

Now, we are ready to prove Theorem 1.

Proof. The argument is a further generalization of similar constructions for
parity automata (with or without costs) and max-automata (cp. [7, 12, 1]).

1.) Let τ fO : Σ+
I → ΣO be a winning strategy for Player O in Γf (L(A))

for some fixed f . For the sake of readability, we denote Γf (L(A)) by Γf and
Γ(L(B)) by Γ. We describe how to simulate a play in Γ by a play in Γf to
transform τ fO into a winning strategy τO for Player O in Γ.

To this end, let Player I pick S0 ∈ R in Γ, which has to be answered by
Player O by picking (q0,m0) = (qI ,⊥). Thus, we define τO(S0) = (q0,m0).
Next, Player I picks some S1 ∈ R.

To simulate this, pick some x0 ∈ S0 satisfying |x0| ≥ f(0), which exists
due to S0 being infinite by virtue of being in R. Similarly, we pick some
x1 ∈ S1 satisfying |x0x1| ≥

∑|x0|−1
j=0 f(j), which again exists due to S1 being

infinite.
Now, assume Player I starts a play by picking the letters of the prefix of

x0x1 of length
∑|x0|−1

j=0 f(j) during the first |x0| rounds of Γf . By the choice of
|x1|, x0x1 is long enough to do so. Let y0 be the answer of Player O according
to τO during these |x0| rounds, i.e., |y0| = |x0|.

Thus, we are in the following situation for i = 1:

• In Γ, the players have produced the play prefix S0(q0,m0) · · ·Si−1(qi−1,mi−1)Si.

• In Γf , Player I has picked a prefix of x0 · · ·xi while Player O has picked
y0 · · · yi−1 according to τ fO such that |y0 · · · yi−1| = |x0 · · ·xi−1|. Fur-
thermore, we have [xj]≡ = Sj for every j ≤ i.

Now, let i > 0 be arbitrary. Let qi be the state reached by A when process-
ing
(
xi−1

yi−1

)
when starting in qi−1, let πi−1 be the corresponding run, and define
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mi = sM(πi−1). Then, by definition of rSi
and by Remark 1, τO(S0 · · ·Si) =

(qi,mi) is a legal move in Γ, which is answered by Player I picking some
Si+1 ∈ R. Again, we pick some xi+1 ∈ Si+1 such that |x0 · · · xi+1| ≥∑|x0···xi|−1

j=0 f(j) and consider the play prefix of Γf where Player I starts by
picking the letters of the prefix of x0 · · ·xi+1 of length

∑|x0···xi|−1
j=0 f(j) during

the first |x0 · · ·xi| rounds, which is a continuation of the previously defined
one. Player O answers the letters of xi by some yi of the same length. Thus,
we are in the situation above for i+1, which concludes the inductive definition
of τO.

To conclude, we show that τO is indeed winning for Player O in Γ. So, let
w = S0(q0,m0)S1(q1,m1)S2(q2,m2) · · · be a play consistent with τO and let
wf =

(
x0
y0

)(
x1
y1

)(
x2
y2

)
· · · be the outcome of the simulated play of Γf as described

above. By construction, wf is in L(A), as the simulated play is consistent
with the winning strategy τ fO.

Let πi be defined as above, i.e., π0π1π2 · · · is the run of A on wf and
therefore accepting. By construction, we have sM(πi) = mi+1. Applying
Lemma 3 yields m1m2m3 · · · = sM((πi)i∈N) ∈ sM(Acc). Thus, w is indeed
winning for Player O.

2.) Let τO be a winning strategy for Player O in Γ(L(B)). Again, for
the sake of readability, we denote Γ(L(B)) by Γ and Γd(L(A)) by Γd. As
before, we simulate a play in Γd by a play in Γ to transform τO into a winning
strategy τ dO for Player O in Γd. In the following proof, all blocks ai are in Σd

I

and all bi are in Σd
O.

Thus, let Player I pick a0 and a1 during the first round in Γd and de-
fine S0 = [a0]≡, (q0,m0) = τO(S0), S1 = [a1]≡, and (q1,m1) = τO(S0S1).

Now, we are in the following situation for i = 1.

• In Γd Player I has picked a0 · · · ai and Player O has picked b0 · · · bi−2

(which is empty for i = 1).

• In Γ, we have constructed the play prefix S0(q0,m0) · · ·Si−1(qi−1,mi−1)Si(qi,mi)
that is consistent with τO and satisfies Sj = [aj]≡ for every j ≤ i.

Now, let i > 0 be arbitrary. By definition of Γ, we have (qi,mi) ∈
rai−1

(qi−1). Thus, by definition of rai−1
and Remark 1 there is a bi−1 such

that the run πi−1 of A processing
(ai−1

bi−1

)
from qi−1 ends in qi and satisfies

sM(πi−1) = mi. We define τ dO(a0 · · · ai) = bi−1. This move is answered by
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Player I picking some block ai+1, which again induces Si+1 = [ai+1]≡. Ap-
plying τO yields (qi+1,mi+1) = τO(S0 · · ·Si+1). Thus, we are in the situation
described above for i+ 1, which completes the inductive definition of τ dO.

Note that if τO is implemented by a transducer T with n states, then τ dO
can easily be implemented by an automaton with n states, which is obtained
from T as follows: we use the same set of states so that processing a0 · · · ai−2

leads to the state reached when processing [a0]≡ · · · [ai−2]≡, call it q. Now,
assume we have two additional blocks ai−1 and ai and have to compute the
block bi−1 = τ dO(a0 · · · ai) as defined above. This block only depends on the
state q of the automaton implementing the strategy, on the states qi−1 and
qi of A, on mi, and on ai−1. All this information can be computed from q
and the moves [ai−1]≡ and [ai]≡ of Player I in the simulating play.

It remains to show that τ dO is indeed a winning strategy for Player O in
Γd. To this end, let wd = a0a1b0a2b1 · · · a play that is consistent with τ dO.
Furthermore, let S0(q0,m0)S1(q1,m1)S2(q2,m2) · · · be the simulated play in
Γ constructed as described above, which is consistent with τO. Therefore, it
is winning for Player O, i.e., m1m2m3 · · · ∈ sM(Acc).

Let the finite runs πi be defined as above, i.e., π0π1π2 · · · is the run
of A on wd and the part πi processes

(
ai
bi

)
. Thus, the length of each πi

is equal to d. Furthermore, we have sM(πi) = mi+1 for every i. From
sM((πi)i∈N) = m1m2m3 · · · ∈ sM(Acc) and sM being a weak aggregation (as
it is strong), we conclude that π0π1π2 · · · is accepting. Hence, wd ∈ L(A),
i.e., Player O wins the play.

By applying both implications and Item 2 of Lemma 1, we obtain upper
bounds on the complexity of determining for a given A whether Player O
wins Γf (L(A)) for some f and on the constant lookahead necessary to do so.

Corollary 1. Let A, M, B, and d be as in Theorem 1. Then, the following
are equivalent:

1. Player O wins Γf (L(A)) for some delay function f .
2. Player O wins Γf (L(A)) for the constant delay function f with f(0) =

2d.
3. Player O wins Γ(L(B)).

Thus, determining whether, given A, Player O wins Γf (L(A)) for some
f is achieved by determining the winner of the Gale-Stewart game Γ(L(B))
and, independently, we obtain an exponential upper bound on the necessary
constant lookahead (in |Q| · |M |).
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Example 4. Continuing our example for the parity acceptance condition,
we obtain the exponential upper bound 2|Q|

2·|Ω(Q)|+2 on the constant looka-
head necessary to win the delay game and an exponential-time algorithm for
determining the winner, as B has exponentially many states, but the same
number of colors as A. Both upper bounds are tight [7].

In case there is no strong aggregation for A, but only a weak one, one can
show that finite-state strategies exist, if Player O wins with respect to some
constant delay function at all.

Theorem 2. Let A be an ω-automaton and let M be a monitor for A such
that sM is a weak aggregation for A, let B be constructed as above, and define
d = 2|Q|

2·|M⊥|.

1. If Player O wins Γf (L(A)) for some constant delay function f , then
she also wins Γ(L(B)).

2. If Player O wins Γ(L(B)), then she also wins the block game Γd(L(A)).
Moreover, if she has a finite-state winning strategy for Γ(L(B)) with
n states, then she has a delay-aware finite-state winning strategy for
Γd(L(A)) with n states.

Proof. The second implication is the same as the second one in Theorem 1,
in whose proof we only required s to be a weak aggregation, which is the
setting here. Hence, we only have to consider the first implication.

To this end, we construct a strategy τO for Player O in Γ(L(B)) from a
winning strategy τ fO for Player O in Γf (L(A)) as described in the proof of
Item 1 of Theorem 1. The only difference is that here we can ensure that the
length of the xi is bounded, as f is constant. This allows us to replace the
invocation of Lemma 3 and directly apply the definition of sM(Acc) to show
that the plays consistent with τO are winning for Player O.

Again, we obtain upper bounds on the solution complexity (here, with
respect to constant delay functions) and on the necessary constant lookahead.

Corollary 2. Let A, M, B, and d be as in Theorem 2. Then, the following
are equivalent:

1. Player O wins Γf (L(A)) for some constant delay function f .
2. Player O wins Γf (L(A)) for the constant delay function f with f(0) =

2d.
3. Player O wins Γ(L(B)).
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5. Discussion

Let us compare the two approaches presented in the previous section
with three use cases: delay games whose winning conditions are given by
deterministic parity automata, by deterministic Muller automata, and by
LTL formulas. All formalisms only define ω-regular languages, but vary in
their succinctness.

The following facts about arena-based games will be useful for the com-
parison:

• The winner of an arena-based parity game has a positional winning
strategy [27, 28], i.e., a finite-state strategy with a single state.

• The winner of an arena-based Muller game has a finite-state strategy
with n! states [34], where n is the number of vertices of the arena.

• The winner of an arena-based LTL game has a finite-state strategy
with 22O(|ϕ|) states [35], where ϕ is the formula specifying the winning
condition.

Also, we need the following bounds on the necessary lookahead in delay
games:

• In delay games whose winning conditions are given by deterministic
parity automata, exponential (in the size of the automata) constant
lookahead is both sufficient and in general necessary [7].

• In delay games whose winning conditions are given by deterministic
Muller automata, doubly-exponential (in the size of the automata) con-
stant lookahead is sufficient. This follows from the transformation of
deterministic Muller automata into deterministic parity automata of
exponential size (see, e.g., [36]). However, the best lower bound is the
exponential one for parity automata, which are also Muller automata.

• In delay games whose winning conditions are given by LTL formulas,
triply-exponential (in the size of the formula) constant lookahead is
both sufficient and in general necessary [11].

Using these facts, we obtain the following complexity results for finite-
state strategies: Figure 1 shows the upper bounds on the number of states of
delay-oblivious finite-state strategies for delay games and on the number of
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states of delay-aware finite-state strategies for block games and upper bounds
on the complexity of determining such strategies. In all three cases, the
former strategies are at least exponentially larger and at least exponentially
harder to compute. This illustrates the advantage of decoupling tracking the
history from managing the lookahead.

parity Muller LTL
delay-oblivious doubly-exp. quadruply-exp. quadruply-exp.

delay-aware exp. doubly-exp. triply-exp.

Figure 1: Memory size for delay-oblivious strategies (for delay games) and delay-aware
finite-state strategies (for block games), measured in the size of the representation of the
winning condition. For the sake of readability, we only present the orders of magnitude,
but not exact values.

Finally, let us compare our approach to that of Salzmann. Fix a delay
game Γf (L(A)) and assume Player I has picked α(0) · · ·α(i) while Player O
has picked β(0) · · · β(i′) with i′ < i. His strategies are similar to our delay-
aware ones for block games. The main technical difference is that his strate-
gies have access to the state reached by A when processing

(
α(0)···α(i′)
β(0)···β(i′)

)
. Thus,

his strategies explicitly depend on the specification automaton A while ours
are independent of it. In general, his strategies are therefore smaller than
ours, as our transducers have to simulate A if they need access to the current
state. On the other hand, our aggregation-based framework is more gen-
eral and readily applicable to quantitative winning conditions as well, while
he only presents results for selected qualitative conditions like parity, weak
parity, and Muller.

6. Succinctly Implementing Finite-state Strategies for Block Games

In the previous section, we have shown how to compute delay-aware finite-
state strategies for block games via a reduction to Gale-Stewart games. The
transducers implementing these strategies process blocks of letters, i.e., the
domains of the transition function and of the output function are (roughly)
of size |ΣI |d and |ΣI |2d, where d is the block size of the block game. It
is known that even for very simple winning conditions, an exponential d is
necessary (measured in the size of the automaton A recognizing the winning
condition). In this case, the representation of these transducers is at least of
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doubly-exponential size in |A|, independently of the number of states of the
transducer.

In this section, we propose a succinct notion of transducers implementing
delay-aware strategies which can be significantly smaller, e.g., of constant
size for the winning condition L= introduced in Section 3, which requires
Player O to copy the moves of Player I. Here, the size of the domains of the
transition function and of the output function grows exponentially with the
block size d, although the transition function and the output function of a
transducer implementing a winning strategy are trivial.

Intuitively, to obtain succinct transducers implementing strategies in block
games, we implement the transition function and the output function by
transducers. As already alluded to, we present examples (see Examples 5 and 6)
in which this representation is much smaller than the explicit representation.
Furthermore, we give an upper bound on the size of such succinct transducers
which is asymptotically equal to the true representation size of explicit trans-
ducers in Subsection 6.2. Thus, succinct transducers are never larger than
explicit ones. However, we also present an example where they cannot be
smaller than explicit ones in Subsection 6.3. Finally, we discuss the relation
between block sizes and sizes of succinct transducers in Subsection 6.4.

6.1. Succinct Transducers
Formally, for a block game Γd(L) with L ⊆ (ΣI × ΣO)ω, we imple-

ment a finite-state strategy for Player O in Γd(L) by a transducer T =
(Q,ΣI , qI ,∆,ΣO,Λ), where Q, ΣI , qI , and ΣO are defined as before in Sub-
section 3.3. However, the transition function and the output function are
now succinctly represented by transducers ∆ and Λ which we define below,
respectively. From now on, we refer to this type of transducer as succinct
transducer and to the type introduced in Subsection 3.3 as explicit trans-
ducer. Regarding succinct transducers, we speak of “master states” to refer
to Q, and we speak of “transition slave” and “output slave” to refer to ∆ and
Λ, respectively.

The transition slave is a tuple ∆ = (Q∆,ΣI , q
∆
I , δ, Q, λ), where Q∆ is

a finite set of states, q∆
I : Q → Q∆ is a function returning an initial state,

δ : Q∆ × ΣI → Q∆ is the transition function, and λ : Q∆ → Q is the output
function. We say that the transition slave computes the function ∆: Q ×
Σ∗I → Q defined by ∆(q, x) = λ(δ∗(q∆

I (q), x)), where δ∗(q∆
I (q), x) is the state

of ∆ reached by processing x from the state q∆
I (q) of ∆. The size of ∆ is

defined as |∆| = |Q∆|.
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The output slave is a tuple Λ = (QΛ,ΣI , q
Λ
I , E,ΣO), where QΛ is a finite

set of states, ΣI is the input alphabet, qΛ
I : Q→ QΛ is a function returning an

initial state, and E : QΛ×(ΣI∪{$})→ Σ∗O×QΛ is the deterministic transition
function conveniently treated as a relation. Here, $ is a fresh symbol that is
used to separate input blocks.

A finite run π of Λ is a sequence

π = (q0, a0, b0, q1)(q1, a1, b1, q2) · · · (qi−1, ai−1, bi−1, qi) ∈ E+.

We say that π starts in q0, ends in qi, its processed input is in(π) = a0 · · · ai−1 ∈
(ΣI ∪ {$})+, and its produced output is out(π) = b0 · · · bi−1 ∈ Σ∗O. We say
that the output slave computes the function Λ: Q×Σ+

I ×Σ+
I → Σ∗O defined

by Λ(q, x1, x2) = out(π), where π is the unique run that starts in qΛ
I (q) with

in(π) = x1$x2$. The size of Λ is defined as |Λ| = |QΛ| + `, where ` is the
length of the longest output in E, that is, max{|v| | (p, u, v, q) ∈ E}.

Clearly, if additionally Λ(q, a0, a1) ∈ Σd
O for every q ∈ Q and every a0, a1 ∈

Σd
I , then the succinct transducer T implements a strategy τT as before, namely

τT(a0 · · · ai) = Λ(∆∗(qI , a0 · · · ai−2), ai−1, ai) for i ≥ 1. The size of T is defined
as |T| = |Q|+ |∆|+ |Λ|.

We illustrate these definitions with two examples. In the first one, we
substantiate our above claim that a succinct transducer of constant size im-
plements a winning strategy for Player O in Γd(L=), independently of d. This
is in sharp contrast to explicit transducers implementing winning strategies,
whose transition and output function have exponentially-sized domains in d.

Example 5. Consider the winning condition L= as introduced in Section 3.
Obviously, Player O can win the block game Γd(L=) by copying the moves of
Player I for every block size d. A succinct transducer implementing a winning
strategy for Player O can be defined independently of d. One master state,
one state for the transition slave, and one state for the output slave suffice;
the output slave just copies the input until the first $ occurs and ignores the
remaining input.

One obvious weakness of the previous example is that Player O does not
need lookahead to win a game with winning condition L=. Next, we give
an example in which Player O needs lookahead to win, which is obtained by
adapting the exponential lower bound on the necessary lookahead in delay
games with safety conditions [7]. In this game, Player O needs exponential
lookahead (in the size of an automaton A recognizing the winning condition).
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Hence, the transition and output function of an explicit transducer have
doubly-exponentially-sized domains in |A|. We show how to construct a
succinct transducer of exponential size implementing a winning strategy, an
exponential improvement.

Example 6. Consider the reachability automaton An, for n > 1, over the
alphabet ΣI×ΣO = {1, . . . , n}2 of size O(n), given in Figure 2. The language
of An contains words of the form

(
α
β

)
where α(1)α(2)α(3) · · · has two occur-

rences of β(0) with only smaller letters in between (a so-called bad j-pair
for j = β(0)). Note that the first letter of α is ignored. In words, the first
letter of the second component indicates the existence of a bad j-pair in the
α-component (again, without its first letter). It is known that Player O wins
Γd(L(An)) for all d > 2n/2, but not for smaller ones [7].

An

G1

Gn

...

(∗
n

)
(∗
n

)
(

1
∗

)
(
n
∗

)
(∗
∗

) Gj (
j
∗

)(6=j
∗

) (
<j
∗

)(
>j
∗

)

Figure 2: The automaton An (left) contains gadgets G1, . . . ,Gn (right). Transitions not
depicted lead to a sink state, which is not drawn. The only accepting state is the rightmost
state, which is drawn circled. Here, ∗ denotes an arbitrary letter from the respective
alphabet.

Now, we show that we can construct a succinct transducer implementing
a winning strategy in the block game Γd(L(An)) of exponential size in n for
every d > 2n/2.

To begin with, we note that a block size of d = 2n/2 + 1 is sufficient in
order for Player O to win the block game Γd(L(An)), since every word over
{1, . . . , n} of length at least 2n contains a bad j-pair for some j [7].

We now construct a succinct transducer that implements a winning strat-
egy for Player O in the block game Γd(L(An)) for every d > 2n/2. Clearly,
to implement a winning strategy, the output slave of a succinct transducer
must identify a bad j-pair before it can make its first output. To achieve
this, the following transition structure is used: The automaton collects the
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seen letters, upon reading a letter, all smaller seen letters are deleted from
the collection, if a letter is seen that has already been collected, a bad pair
has been found. More formally, from a state P ⊆ 2{1,...,n} upon reading the
letter j the state (P \ {1, . . . , j− 1})∪{j} is reached if j /∈ P , otherwise this
is the second occurrence of j in a bad j-pair. Thus, a j-pair can be identified
using O(2n) states. When a bad j-pair has been found, the output slave pro-
duces an output block of length d beginning with j (in a single computation
step) and ignores the remaining input.

There are no conditions for subsequent output blocks, in this case the
output slave simply copies the input letter by letter until the first $ occurs
and ignores the remaining input.

Thus, the size of an output slave is O(2n); the size of a transition slave is
constant since it just distinguishes whether the first output block has already
been produced. All in all, the constructed succinct transducer is of sizeO(2n).

6.2. Upper Bounds
After these two examples showing how succinct transducers can indeed

be smaller than explicit transducers, we prove that they do not have to be
larger than explicit ones (when measured in the size of the domains of the
transition and output function).

Theorem 3. Let τO be a delay-aware finite-state strategy for a block game Γd(L)
with L ⊆ (ΣI × ΣO)ω.

1. If τO is implementable by an explicit transducer with n states, then also
by a succinct transducer with O(n · |ΣI |2d) states.

2. If τO is implementable by a succinct transducer with n master states,
then also by an explicit transducer with n states.

Proof. 1.) Let T = (Q,ΣI , qI , δ,ΣO, λ) be the explicit transducer implement-
ing τO, i.e., δ : Q × Σd

I → Q maps a state and a block in Σd
I to a new state

and λ : Q × Σd
I × Σd

I → Σd
O maps a state and two blocks in Σd

I to a block
in Σd

O. The strategy is implemented by a succinct transducer over the same
set of master states Q, with the same initial state qI , and where δ and λ are
implemented by slaves ∆ and Λ defined below.

The transition slave has states of the form (q, w) ∈ Q × Σ≤dI to store
an input block, an initialization function mapping a state q ∈ Q of T to
(q, ε), and a transition function mapping a state (q, w) and a letter a ∈ ΣI to
(q, wa), if |w| < d. Otherwise, it is mapped to (q, w). This is sufficient, as ∆
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is only used to process words of length d. Finally, the output function of the
transition slave is defined such that it maps each state (q, w) with |w| = d to
δ(q, w). All other outputs are irrelevant. Then, it is straightforward to prove
that the function computed by ∆ (restricted to inputs from Σd

I) is equal to
δ.

The construction of the output slave Λ is analogous: here, we use states
of the form (q, w) ∈ Q × Σ≤2d

I . Again, the initialization function maps q
to (q, ε) and a transition processing a non-$ input letter appends it to the
word stored in the state as long as possible. Furthermore, $’s are ignored
and transitions from states in Σ2d

I can be defined arbitrarily. Transitions
processing a $ from a state of the form (q, a0a1) output λ(q, a0, a1), while
all other transitions have an empty output. Again, it is straightforward to
show that the function computed by Λ coincides with λ on inputs of the
form (q, a0, a1).

Hence, the succinct transducer constructed using ∆ and Λ computes the
same function as T and has indeed O(n · |ΣI |2d) states.

2.) Now, let (Q,ΣI , qI ,∆,ΣO,Λ) be a succinct transducer implementing
τO. Then, τO is also implemented by the explicit transducer (Q,ΣI , qI , δ,ΣO, λ)
where δ(q, a) is equal to the output of ∆ on a when initialized with q, and
where λ(q, a0, a1) is the output of Λ on a0$a1$ when initialized with q.

Thus, we can obtain a succinct transducer by constructing it starting
with an explicit one. This explicit one would typically be obtained by the
reduction to Gale-Stewart games presented in Section 4. Next, we show
how to turn a finite-state strategy for the Gale-Stewart game into a succinct
transducer without the detour via explicit transducers, which yields a smaller
transducer.

Theorem 4. Let A, M, B, and d be as in Theorem 1 or as in Theorem 2.
If Player O has a finite-state winning strategy for the game Γ(L(B)) with

n states, then she has a finite-state winning strategy for Γd(L(A)) imple-
mented by a succinct transducer of size O(n · |ΣI |d · d).

Proof. Let QA be the state space of A and letM be the set of memory states
of M. Furthermore, let T = (QT, R, q

T
I , δT, QA × M⊥, λT) be a transducer

implementing a winning strategy for Player O in Γ(L(B)).
Recall the proof of Item 2 of Theorem 1: there, we turn a finite-state

winning strategy for Γ(L(B)) into a delay-aware finite-state winning strategy
for Γd(L(A)) using a simulation: In Γ(L(B)), Player I picks equivalence
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classes from R while Player O picks pairs containing a state of A and a
memory state ofM. On the other hand, in Γd(L(A)), both players pick blocks
of letters over their respective alphabet. Now, each block of Player I induces
an equivalence class (see Item 1 of Remark 2). For the other direction, we
use completions as guaranteed by Remark 1 to translate moves of Player O
in Γ(L(B)) into moves of her in Γd(L(A)).

Formally, we define a succinct transducer Ts = (QT,ΣI , q
T
I ,∆,ΣO,Λ) sim-

ulating T. To this end, we just need to specify the slaves ∆ and Λ.
Intuitively, ∆ computes the transition summary of its input, which repre-

sents an equivalence class of R, provided the input is long enough. Formally,
we define ∆ = (Q∆,ΣI , q

∆
I , δ∆, QT, λ∆) where

• Q∆ = QT × (2QA×M⊥)QA ,

• q∆
I (q) = (q, q∗ 7→ {(q∗,⊥)}) for q ∈ QT and q∗ ∈ QA, and

• δ∆((q, r), a) = (q, r′) with r′(q∗) = δP (r(q∗), a) for every q∗ ∈ QA, where
δP is defined as in Section 4 on Page 17.

Thus, we have δ∗∆(q∆
I (q), w) = (q, rw). Note that [a]≡ is an element of R

for every block a (due to |a| = d and Item 1 of Remark 2). Hence, we
can define λ∆(q, r) = δT(q, [w]≡) for some w such that rw = r, if such a w
exists. If one does exist, then this definition is independent of the choice of
w. Otherwise, we define λ∆(q, r) arbitrarily. Then, ∆ indeed simulates the
transition function δT of T.

It remains to define the output slave Λ. Note that we need to determine
a completion of an input block to simulate the strategy implemented by T.
The right completion depends on the block to be completed, not only on its
equivalence class. Hence, Λ needs to store the first block in its input using
its state space. For the second block, it suffices to determine its equivalence
class, which is implemented as in ∆.

Formally, we define Λ = (QΛ,ΣI , q
Λ
I , EΛ,ΣO) with

• QΛ = QT × Σ≤dI × (2QA×M⊥)QA ,

• qΛ
I (q) = (q, ε, q∗ 7→ {(q∗,⊥)}) for q ∈ QT and q∗ ∈ QA, and

• where EΛ is defined such that on inputs of the form w$w′ with |w| = d
the state (q, w, rw′) is reached when initializing the run with q; on all
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other inputs an arbitrary state is reached. All these edges have an
empty output.

The only non-empty output happens on transitions processing a sec-
ond $ from a state of the form (q, w, r) with |w| = d and with r = rw′ ∈
R for some w′. If this is the case, let (q0,m0) = λT(δT(q, [w]≡)) and
(q1,m1) = λT(δT(δT(q, [w]≡), [w′]≡)). Then, the output of the transition
processing $ from (q, w, r) is some (q0, q1,m1)-completion of w. If such
a w′ does exist, then this definition is independent of the choice of w′.

Then, Λ indeed simulates the output function λT of T.
Altogether, a straightforward induction as in the proof of Item 2 of The-

orem 1 shows that Ts indeed implements a winning strategy for the block
game.

6.3. Lower Bounds
After considering upper bounds in the previous two theorems, we now

turn our attention to lower bounds showing that the upper bounds are tight
for winning conditions recognized by reachability automata. In this case, an
exponential lookahead is sufficient and in general necessary [7]. The following
construction is an adaption of the lower bound proof for the lookahead, and
again based on bad j-pairs.

Example 7. Consider the reachability automaton An, for n > 1, over the
alphabet ΣI×ΣO = ({1, . . . , n}×Bn)×({1, . . . , n}×B) depicted in Figure 3.
The automaton accepts an ω-word

α
β1
...
βn
γ
β


∈ (ΣI × ΣO)ω

with α, γ ∈ {1, . . . , n}ω and β1, · · · , βn, β ∈ Bω if, and only if, it has the
following form: there is an m such that α(1) · · ·α(m) contains a bad j-
pair for j = γ(0), α(1) · · ·α(m − 1) contains no bad j-pair (which implies
α(m) = j), and βj(0) · · · βj(m) = β(0) · · · β(m). Intuitively, Player O has to
identify a j such that the α-component of the input contains a bad j-pair
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and additionally has to copy the jth β-component up to the end of the first
j-pair. Notice that the first letter of the α-component of the input is again
ignored when it comes to finding a bad j-pair.

An

G1

Gn

...



∗
b1
...
bn
1
b1





∗
b1
...
bn
n
bn





1
b1
...
bn
∗
b1





n
b1
...
bn
∗
bn



(
ΣI

ΣO

)

Gj



j
b1
...
bn
∗
bj



6= j
b1
...
bn
∗
bj





< j
b1
...
bn
∗
bj



> j
b1
...
bn
∗
bj



Figure 3: The automaton An (left) contains gadgets G1, . . . ,Gn (right). Transitions not
depicted lead to a sink state, which is not drawn. The only accepting state is the rightmost
state, which is drawn circled. Here, ΣI and ΣO denote an arbitrary letter from the
respective alphabet.

Using this example, we can prove the following theorem.

Theorem 5. For every n > 1, there is a language Ln recognized by a reach-
ability automaton An with O(n) states such that

• Player O has a finite-state winning strategy in the block game Γd(Ln)
for every d > 2n/2, and

• every succinct transducer that implements a winning strategy for Player O
in the block game Γd(Ln) for some d has an output slave with at least
O(2n·2

n
) states.

Proof. Consider the reachability automaton An given in Example 7, let Ln =
L(An). To begin with, we argue that Player O has a finite-state winning
strategy in the block game Γd(Ln) for every d > 2n/2. As already mentioned
in Example 6, every word over {1, . . . , n} of length 2n contains a bad j-
pair for some j. A block size of at least 2n/2 + 1 allows for a lookahead of
at least 2n + 1 symbols, thus Player O can correctly identify a bad j-pair
by remembering the first two input blocks (recall that the first input letter
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is ignored). This observation suffices to implement a finite-state winning
strategy adapting the ideas presented in Example 6.

On the other hand, there is a word xn ∈ {1, . . . , n}∗ of length 2n− 1 that
has no bad j-pair for every j ∈ {1, . . . , n} [7]. This allows us to prove that
Player O does not win Γd(Ln) for any d ≤ 2n/2: Player I can make the first
move in the block game using (a prefix, if necessary, of) the word 1xn in the
α-component and any bits in the β-components. Then, Player O has to pick
a first letter j∗ with her first move (all other choices by her are irrelevant to
our argument and thusly ignored). In order to win, she has to pick this j∗ so
that the input has a bad j∗-pair. However, since by completing xn and then
playing some j 6= j∗ ad infinitum, the outcome does not have a bad j∗-pair
in its α-component, i.e., Player I wins. For more details, we refer to [7].

We use a generalization of this argument to prove the lower bound on the
size of the output slave of a finite-state winning strategy for Γd(Ln). Hence,
let T = (Q,ΣI , qI ,∆,ΣO,Λ) be a succinct transducer that implements a win-
ning strategy in Γd(Ln). As argued above, we can assume d > 2n/2. Towards
a contradiction, assume that the output slave Λ = (QΛ,ΣI , q

Λ
I , E,ΣO) has

fewer than 2n·2
n states.

Recall that Λ processes words of the form x1$x2$ where x1, x2 ∈ Σd
I are

input blocks. Let X be the set of words of the form α(0) · · ·α(2n − 1)
β1(0) · · ·β1(2n − 1)

...
βn(0) · · ·βn(2n − 1)

 ∈ Σ2n

I

with α(1) · · ·α(2n − 1) = xn. We have |X| ≥ 2n·2
n .

Hence, there are two words in X that lead Λ to the same state (when
converted into the correct input format for Λ) starting in q0 = qΛ

I (qI), which
is the initial state used to process the first two blocks. Assume Λ produces
an output during these runs. Then, using arguments as above, one can show
that it does not implement a winning strategy, as both words do not contain
a bad j-pair for any j.

Hence, both runs end in the same state and have not yet produced any
output. Thus, if both words are extended by the same suffix, Λ produces the
same output for both inputs. Now, let j∗ be such that the two words differ in
their βj∗-entry at some position. Consider the extension of the two words by
picking j∗ in the α-component and arbitrary bits in the β-components, until
words of length 2d are obtained. As both inputs only have bad j-pairs for
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j = j∗, the automaton has to copy the βj∗-component. However, it cannot
achieve this for both inputs, as it is not able to distinguish the different
prefixes. Hence, the automaton does not implement a winning strategy.

A note on the size of the automaton An for Ln. The number of states is
in O(n), but its alphabet is in O(2n). To reduce the size of the alphabet we
can consider a variant of Ln defined as follows. We call this variant L′n, let
ΣI = ΣO = {1, . . . , n, t, f}, we use t and f in place of B to distinguish it from
{1, . . . , n}. We are interested in pairs

(
α
β

)
in which the α-component is of the

form a0a1w1a2w2 · · · , where a0, a1, . . . ∈ {1, . . . , n} and w1, w2, . . . ∈ {t, f}n.
Meaning, instead of vertical n-bit vectors as before, we use horizontal n-
bit vectors. If α is not of this form, then every β is allowed in the second
component. If α is of this form, then

(
α
β

)
∈ L′n if, and only if, β is of the

form b0b1x1b2x2 · · · , where b0, b1, b2 . . . ∈ {1, . . . , n} and x0, x1, . . . ∈ {t, f}n
such that if a1 · · · ai is the smallest prefix of a1a2 · · · that contains a bad
j-pair for j = b0, and additionally the first letter of xk is the jth letter of wk
for 1 ≤ k ≤ i.

A reachability automaton Ãn for L′n can be constructed with polynomial
size in n. The idea is to use an automaton similar to the automaton An, and
additionally have a ring counter up to n to compare the first bit of xk with
the jth bit of wk.

As before, the block game Γd(L(Ãn)) can be won by Player O for any
d that allows enough lookahead to identify a bad j-pair for some j. Since
every word over {1, . . . , n} of length at least 2n contains such a pair, every
prefix (in the correct format) of length greater than 2n · (n+ 1) contains such
a pair. With the same reasoning as above, a transducer implementing (the
output function of) a winning strategy must store every n-bit vector until an
occurrence of a bad j-pair for some j has been witnessed. Thus, the state
space of such a transducer is in O(2n·2

n
).

6.4. Tradeoff Between Block Size and Memory
Finally, we consider another promising facet of finite-state strategies in

delay games: lookahead can be traded for memory and vice versa. Such
tradeoffs have previously been presented between lookahead and the seman-
tic quality of winning strategies in games with quantitative winning con-
ditions [1], and between memory size and the semantic quality of winning
strategies [37]. With the definition of finite-state strategies, one can add
another dimension to the study of tradeoffs in infinite games.
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Theorem 6. For every even k > 0, there is a language LRk recognized by a
safety automaton Ak such that

• Player O has a finite-state winning strategy in the block game Γd(LRk )
for every d ≥ k/2,

• there exists a succinct transducer T = (Q,ΣI , qI ,∆,ΣO,Λ) implement-
ing a winning strategy in Γd(LRk ) with |∆| ∈ O(2k−d) and |Λ| ∈ O(2d)
for every d ∈ {k/2, . . . , k}, and

• there exists an explicit transducer T = (Q,ΣI , qI , δ,ΣO, λ) implement-
ing a winning strategy in Γd(LRk ) with |T| ∈ O(2k−d) for every d ∈
{k/2, . . . , k}.

Proof. We start by describing the language LRk over the alphabet ΣI ×ΣO =
B2. A pair

(
α
β

)
is part of the language if, and only if, β(i) = α((k − 1) − i)

for 0 ≤ i ≤ k − 1, that is, the first block of length k has to be reversed by
Player O.

A safety automaton Ak recognizing LRk is build as follows. Initially, Ak

stores the first sequence of length k/2 in its state space starting from (ε, ↑)
and from a state

((
a1···ai
b1···ai

)
, ↑
)
upon reading the next letter

(
bi+1

ai+1

)
it goes to((

a1···ai+1

b1···bi+1

)
, ↑
)
for 0 ≤ i ≤ k/2 − 1. Say Ak has reached

((
a1···ak/2
b1···bk/2

)
, ↑
)
, then

upon reading the letter
(
ak/2
bk/2

)
it goes to the state

((
a1···ak/2−1

b1···bk/2−1

)
, ↓
)
; and to a

rejecting sink with any other letter. Subsequently, it has to check whether
the next sequence of length k/2− 1 is equal to

(
bk/2−1···b1
ak/2−1···a1

)
. This can be done

checking that in a state
((

a1···ai
b1···bi

)
, ↓
)

the next read letter is
(
bi
ai

)
and going

to
((

a1···ai−1

b1···bi−1

)
, ↓
)
for 1 ≤ i ≤ k/2 − 1. After reaching (ε, ↓), any sequence is

valid.
It is easy to see that Player O can win the block game for every d ≥ k/2.

Now, for d ∈ {k/2, . . . , k}, we show that there exists a succinct transducer
T = (Q,ΣI , qI ,∆,ΣO,Λ) implementing a winning strategy for Player O in
Γd(LRk ) with |∆| ∈ O(2k−d) and |Λ| ∈ O(2d). Let xγ ∈ Σω

I with x =
a1 · · · ak ∈ Σk

I denote the input sequence that Player I plays in the block
game Γd(LRk ). The first output block that must be produced by Player O is
ak · · · ak−d−1. This sequence is part of the first lookahead, the output slave
Λ of a succinct transducer T has to store this sequence completely to reverse
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it, thus |Λ| ∈ O(2d). The next output block that has to be produced must
begin with ak−d · · · a1. This sequence is not part of the next lookahead, it is
part of the first input block (the first k − d letters to be precise), the next
lookahead is the second and third input block. Thus, is must be stored by
the transition slave ∆ of T so that this sequence can be passed on to Λ which
has to output it. Hence, ∆ has to memorize the first k − d input letters,
resulting in |∆| ∈ O(2k−d).

Regarding explicit transducers, the same reasoning can be applied. Thus,
in order to implement a winning strategy in the block game Γd(LRk ), an
explicit transducer T = (Q,ΣI , qI , δ,ΣO, λ) has to memorize the first k − d
input letters, resulting in a state space of size O(2k−d). Recall, |Q| is defined
as the size of T, hence |T| ∈ O(2k−d).

Taking a look at the special cases of d = k/2 and d = k, the above result
yields that an explicit transducer T needs memory of O(2k/2) and in the
latter case no memory to win the block game Γd(LRk ). Generally, for some
d between k/2 and k, an explicit transducer T needs memory of O(2k−d) to
implement a winning strategy in the block game Γd(LRk ). Let us analyze this
result; increasing the block size by one halves the number of memory states
an explicit transducer needs, thus the tradeoff between the block size and
the necessary memory is gradual.

The example of the block-reversal winning condition LRk presented in
the proof of Theorem 6 allows for a tradeoff between the block size and
the necessary memory to implement a winning strategy in the block game.
However, the size of an automaton that recognizes LRk as well as the lower
bound on the block size is exponential in k, so the necessary lookahead is only
linear in the size of the automaton. It is an open question whether there is a
winning condition recognizable by an automaton of polynomial size with an
exponential lower bound on the necessary block size that allows for a tradeoff
between block size and memory.

7. Conclusion

We have presented a very general framework for analyzing delay games.
If the automaton recognizing the winning condition satisfies a certain ag-
gregation property, our framework yields upper bounds on the necessary
lookahead to win the game, an algorithm for determining the winner (under
some additional assumptions on the acceptance condition), and finite-state
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winning strategies for Player O, if she wins the game at all. These results
cover all previous results on the first two aspects (although not necessarily
with optimal complexity of determining the winner).

Thereby, we have lifted another important aspect of the theory of infinite
games to the setting with delay. However, many challenging open questions
remain, e.g., a systematic study of memory requirements in delay games is
now possible. For delay-free games, tight upper and lower bounds on these
requirements are known for almost all winning conditions.

Furthermore, in our study we focussed on the state complexity of the au-
tomata implementing the strategies, i.e., we measure the quality of a strategy
in the number of states of a transducer implementing it. However, this is not
the true size of such a machine, as this ignores the need to represent the tran-
sition function and the output function, which have an exponential domain
(in the block size) in the case of delay-aware strategies. We addressed this
issue and have proposed a succinct notion of transducers implementing delay-
aware strategies. Although we have presented examples where our succinct
notion allows for a significantly smaller representation of strategies compared
to the true size of an explicit representation, generally such a representation
cannot be smaller than an explicit one.

Another exciting question concerns the tradeoff between memory and
amount of lookahead: can one trade memory for lookahead? In other set-
tings, such tradeoffs exist, e.g., lookahead allows to improve the quality of
strategies [1]. We have presented a game where Player O can indeed trade
lookahead for memory and vice versa. Salzmann has presented further trade-
offs of this kind, e.g., linear lookahead allows exponential reductions in mem-
ory size in comparison to delay-free strategies [14]. In current work, we
investigate whether these results are inherent to his notion of finite-state
strategy, which differs subtly from the one proposed here, or whether they
exist in our setting as well.

Finite-state strategies in arena-based games are typically computed by
game reductions, which turn a game with a complex winning condition into
one in a larger arena with a simpler winning condition. In future work,
we plan to lift this approach to delay games. Note that the algorithm for
computing finite-state strategies presented here can already be understood
as a reduction, as we turn a delay game into a Gale-Stewart game. This
removes the delay, but preserves the type of winning condition. However,
it is also conceivable that staying in the realm of delay games yields better
results, i.e., by keeping the delay while simplifying the winning condition. In
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future work, we address this question.
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Appendix A. Arena-based Games vs. Gale-Stewart Games

In this short appendix, we give a formal definition of the arena-based
games mentioned in Section 3. We begin by giving a quick recap of arena-
based games to introduce our notation.

An arena A = (V, VI , VO, E, vI) consists of a finite directed graph (V,E)
without terminal vertices, a partition (VI , VO) into the positions of Player I
and Player O, and an initial vertex vI ∈ V . A play is an infinite path
through A starting in vI .

A game G = (A,Win) consists of an arena A, say with set V of vertices,
and a winning condition Win ⊆ V ω. A play is winning for Player O, if it is
in Win.

A strategy for PlayerO is a mapping σ : V ∗·VO → V such that (v, σ(wv)) ∈
E for every wv ∈ V ∗VO. A play v0v1v2 · · · is consistent with σ, if vi+1 =
σ(v0 · · · vi) for every i with vi ∈ VO. A strategy is winning, of every consis-
tent play is winning for Player O. If Player O has a winning strategy for G,
then we say she wins G.

A finite-state strategy for an arena A with set V of vertices is again
implemented by a transducer T = (Q,ΣI , qI , δ,ΣO, λ) where Q, qI , and δ are
as in Subsection 2.3, where ΣI = ΣO = V , and λ : Q×V → V . The strategy
implemented by T is defined as σ(wv) = λ(δ∗(qI , wv), v), where δ∗(qI , wv) is
the state reached by T when processing wv starting in qI . The size of T is
defined to be |Q|.

A strategy is finite-state if it is implemented by some finite transducer;
it is positional, if it is implemented by some transducer of size one.

Now, given a Gale-Stewart game Γ(L(A)) for some automaton A =
(Q,ΣI × ΣO, qI , δ,Acc), we define the arena-based game GA = (AA,WinA)
with AA = (V, VI , VO, E, vI) such that:

• V = VI ∪VO with VI = δ∪{vI} for some fresh initial vertex vI /∈ δ and
VO = Q× ΣI .

• E is the union of the following sets of edges:

– {(vI , (qI , a)) | a ∈ ΣI} (initial moves of Player I),
– {((q,

(
a
b

)
, q′), (q′, a′)) | (q,

(
a
b

)
, q′) ∈ V1, a

′ ∈ ΣI} (regular moves of
Player I), and

– {((q, a), (q,
(
a
b

)
, q′)) | (q, a) ∈ V0, b ∈ ΣO, q

′ = δ(q,
(
a
b

)
)} (moves of

Player O).
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• WinA = {vI(q0, a0)t0(q1, a1)t1(q2, a2)t2 · · · | t0t1t2 · · · ∈ Acc}.

The following lemma formalizes a claim from Section 3.

Lemma 4. Let Γ(L(A)) and GA be defined as above. Then, Player O wins
Γ(L(A)) if, and only if, she wins GA. Furthermore, a finite-state winning
strategy with n states for Player O in GA can be turned into a finite-state
winning strategy with |Q| · |ΣI | · n states for Player O in Γ(L(A)).

Proof. There is a bijection between play prefixes in Γ(L(A)) and in GA. By
taking limits, this bijection can be lifted to a bijection between plays that
additionally preserves the winner of plays. Using the former bijection one can
easily translate strategies between these games and use the second bijection to
prove that this transformation preserves being a winning strategy. Finally, it
is also straightforward to implement the transformation from GA to Γ(L(A))
with finite-state strategies: the transducer implementing the strategy for
Γ(L(A)) uses a product state space consisting of the states of the given
transducer for GA and Player O vertices from GA to keep track of the last
vertex of the play prefix obtained by the first bijection. This information is
sufficient to mimic the strategy for GA in Γ(L(A)).

Now, for some delay game Γf (L(A)) for some automaton A = (Q,ΣI ×
ΣO, qI , δ,Acc) with constant delay function f with f(0) = d > 0, we define
the arena-based game GA,d = (AA,d,WinA,d) with AA,d = (V, VI , VO, E, vI)
such that:

• V = VI ∪ VO with VI = δ ×Σd−1
I ∪ {vI} for some fresh initial vertex vI

and VO = Q× Σd
I .

• E is the union of the following sets of edges:

– {(vI , (qI , w)) | w ∈ Σd
I} (initial moves of Player I),

– {(((q,
(
a
b

)
, q′), w), (q′, wa′)) | ((q,

(
a
b

)
, q′), w) ∈ V1, a

′ ∈ ΣI} (regular
moves of Player I), and

– {((q, aw), (q,
(
a
b

)
, q′), w) | (q, aw) ∈ V0, b ∈ ΣO, q

′ = δ(q,
(
a
b

)
)}

(moves of Player O).

• WinA = {vI(q0, w0)(t0, w
′
0)(q1, w1)(t1, w

′
1)(q2, w2)(t2, w

′
2) · · · | t0t1t2 · · · ∈

Acc}.

Again, the following lemma formalizes a claim from Section 3.
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Lemma 5. Let Γf (L(A)) and GA,d be defined as above. Then, Player O wins
Γf (L(A)) if, and only if, she wins GA,d. Furthermore, a finite-state winning
strategy with n states for Player O in GA,d can be turned into a finite-state
winning strategy with |Q| · |ΣI |d · n states for Player O in Γf (L(A)).

Proof. Similarly to the proof of Lemma 4.
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