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This work studies the following question: can plays in a Mufiame be stopped after a finite number
of moves and a winner be declared. A criterion to do this isidatiPlayer 0 wins an infinite-duration
Muller game if and only if she wins the finite-duration versioA sound criterion is presented that
stops a play after at mosf'3noves, where is the size of the arena. This improves the bound
(n! +1)" obtained by McNaughton and the boumid+ 1 derived from a reduction to parity games.

1 Introduction

In an infinite game, two players move a token through a finispgrthereby building an infinite path.
The winner is determined by a partition of the infinite pathotigh the arena into the paths that are
winning for Player 0 or winning for Player 1, respectively.alWy winning conditions in the literature
depend on the vertices that are visited infinitely often, tlee winner of a play cannot be determined
after any finite number of steps. We are interested in theiatig question: is it nevertheless possible to
give a criterion to define a finite-duration variant of an iftérgame. Such a criterion has to stop a play
after a finite number of steps and then declare a winner bas#tedinite play constructed thus far. It is
sound if Player 0 has a winning strategy for the infinite-tioragame if and only if she has a winning
strategy for the finite-duration game.

McNaughton considered the problem of playing infinite gainefnite time from a different per-
spective. His motivation was to make infinite games suitédnlécasual living room recreation’[8]. As
human players cannot play infinitely long, he envisions arexf that stops a play at a certain time and
declares a winner. The justification for declaring a winsethat “if the play were to continue with each
[player] playing forever as he has so far, then the playeladed to be the winner would be the winner
of the infinite play of the game?]8].

Besides this recreational aspect of infinite games therseueral interesting theoretical questions
that motivate investigating this problem. If there existsoaind criterion to stop a play after at most
steps, this yields a simple algorithm to determine the wirgighe infinite game: the finite-duration
game can be seen as a reachability game on a finite tree of deptbstn that is won by the same
player that wins the infinite-duration game. There exist@and efficient algorithms to determine the
winner in reachability games on trees. Furthermore, aigesanswer to the question whether a winning
strategy for the reachability game can be turned into a (dindk-state) winning strategy should yield
better results in the average (although not in the worst)dase game reductions, which ignore the
structure of the arena.

Consider the following criterion: the players move the tolerough the arena until a vertex is visited
for the second time. An infinite play can then be obtained Isyiaing that the players continue to play
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the cycle that they have constructed. Then, the winner oftfirdte play is declared to be the winner of
the finite play. If the game is determined with positionahttgies for both players, then this procedure
is correct: if a player has a winning strategy for the infigjigane, which can be assumed to be positional,
then she can use the same strategy to win the finite versidre gfame and vice versa.

Therefore, McNaughton proposes that we should consideegdinat are in general not positionally
determined. Here, the first loop of a play is typically not adicator of how the infinite play evolves,
as the memory allows a player to make different decisionsveheertex is seen again. Therefore, the
players have to play longer before the play can be stoppedmalgized.

McNaughton considers Muller games, which are games of tme (&, .%y,.%1), whereG is a finite
arena and.%o,.#1) is a partition of the set of vertices. Playiewins a play, if the set of vertices visited
infinitely often by this play is in%;. Muller winning conditions allow us to express all other wniimg
conditions that depend only in the infinity set of a play (eBiichi, co-Biichi, parity, Rabin, and Streett
conditions).

To give a sound criterion for Muller games, McNaughton defifoe every set of vertices a scoring
function S¢ that keeps track of the number of times thefsetas visited entirely since the last visit of a
vertex that is not irF-. In an infinite play, the set of vertices seen infinitely oftethe unique sef such
that Sg will tend to infinity with being reset to 0 only finitely often.

=Hs@sl]=

Figure 1: The aren&.

Let G be the arena in Figuld 1 (Player O’s vertices are shown aesiend Player 1's vertices are
shown as squares) and the Muller gathe- (G, %y, %1) with %y = {{0,1,2},{0},{2}}. In the play
100122121 we have that the score for the{deR} is 3, as it was seen thrice (i.e., with the infixes 12,
21, and 21). Note that the order of the visits to the elemehEs is irrelevant and that it is not required
to close a loop in the arena. The following winning strategriyRlayer O bounds the scores of Player 1
by 2: arriving from 0 at 1 move to 2 and vice versa. Howevery&® cannot avoid a score of 2 for her
opponent, as either the play prefix 1001 or 1221 is consistightevery winning strategy.

By using finite-state determinacy of Muller games, McNaoghsuggests that the criterion should
stop a play after a score (¥ |! 4+ 1 for some seF is reached. He shows that picking the winner to be the
Playeri such thafF € .%; is indeed sound.

Applying finite-state determinacy one can also show thataamesoundly declare a winner after at
most|G|! + 1 steps, as a repetition of a memory state has occurred aftemiany steps. Note that for
large setsF, it could take far more thaG|! + 1 steps to reach a score|&f|! 4- 1, as scores can increase
slowly or can even be reset to 0. However, to decide whetheemary state repetition has occurred,
it might be necessary to compute the complete memory steuétu the given game, which is of size
|G|!. Keeping track of scores is much simpler, as they can be atedpon the fly while the play is being
played. Also, there are at mg€¥| setsF with non-zero score.

Our contribution.  We show that declaring the winner of a play as soon as the 8dem@ached for the
first time is a sound criterion. We complement this by provimgt a score of 3 is reached after at most
3¢l steps. Hence, we obtain a better bound ti@&{h-+ 1, which was derived from waiting for repetitions
of memory states.
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Our results are obtained by using Zielonka’s algorithm [Bjeinterpretation of an earlier algorithm
by McNaughton[[]) for computing winning regions in Mulleaiges. We carefully define a winning
strategy that bounds the scores of the opponent by 2. In tim@e above, the winning player cannot
avoid a score of 2 for the opponent. Hence, in this sense euttiis optimal.

Related work. Usually, the quality of a strategy is measured in terms of orgmeeded to implement

it. However, there are other natural quality measures ofinin strategies. In[2], the authors study
a strengthening of parity (and Streett) objectives, whiduire that there is some bound between the
occurrences of even colors. Another application of thisceph appears in work on request response
gamesl[B6[_11], where waiting times between requests ancgegubst responses are used to define the
value of a play. There it is shown that time-optimal winnitigategies can be computed effectively.

The maximal score achieved by the opponent in a play can loktaseeasure the quality of winning
plays in a Muller game. Player 0 prefers plays in which theexof her opponent aremall This
corresponds to not spending a prolonged amount of time irt af¢he opponent, but visiting every
vertex that is seen infinitely often without large gaps.

This paper is structured as follows. Sectidn 2 containschdeiinitions and fixes our notation. In
SectiorB, we introduce the scoring functions, prove soropesties about scoring and define finite-time
Muller games. In Sectiofll 4, we present Zielonka’s algoritivhiich is used in Sectioll 5 to prove the
main result. Sectiofll 6 ends the paper with a conclusion ama gwinters to further research.

2 Definitions

The power set of a s&is denoted by 2andN denotes the non-negative integers. The prefix relation on
words is denoted biZ, its strict version by—. Given a wordw = xy, definex 1w =y andwy ! = x.

An arenaG = (V,Vp,V1,E) consists of a finite, directed gragh,E) of vertices and a partition
(Mo,V1) of V denoting the positions of Player O (drawn as circles) angd?ld (drawn as squares).
We require that every vertex has at least one outgoing edget’A C V induces the subarer@[X] =
VNXVonX,ViNX,EN(X x X)), if every vertex inX has at least one successoXinA Muller game
¢ = (G, .%,.71) consists of an aren@ and a partition.%,.#1) of 2V.

Aplay in G starting inv € V is an infinite sequenge = pop1p2 . .. such thapg = vand(pn, pni1) € E
for all n e N. The occurrence set Oge) and infinity set Infp) of p are given by Oc) ={veV |3Ine
N such thatp, = v} and Inf(p) = {v € V | 3*n € N such thafp, = v}. We will also use the occurrence
set of a finite playw. A play p in a Muller game is winning for Playerf Inf (p) € .%;.

A strategy for Player is a functiono: V*V;, — V satisfying(s,o(ws)) € E for all wse V*V;. The
play p is consistent witto if pn 1= 0(po...pn) for everyn € N with p, € V. The set of strategies for
Playeri is denoted byTl;. A strategy is called finite-state, if it can be implementgdb automaton with
output that reads finite plays and outputs the vertex to mav@/e will say that a finite-state strategy is
of sizen, if there exists an automaton withstates that implements it.

A strategyo for Playeri is a winning strategy from a vertaxc V, if every play that starts ir and
is consistent witto is won by Playei. The strategy is a winning strategy for a set of verticésC V,
if every play that starts in somec W and is consistent witlr is won by Playeii. The winning region
W of Playeri contains all vertices, from which she has a winning stratéggame is determined W\
andWj form a partition ofV.

Theorem 1 ([, 8, [4]). Muller games are determined with finite-state strategiesiné n n!, where n
denotes the size of the arena.
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Let G = (V,Vo,V1,E) be an arena and let C V be a set that induces a subarena. The attractor for
Playeri of a setF CV in X is AttrX(F) = V!

_oAn WhereAg = F N X and
Ani1=AU{veVinX |3V € Aysuchthatv,V) € E}
U{veVi_inX|wW e Xwith (v,W)eE:V € Ay} .

A X CV is a trap for Player, if all outgoing edges of the vertices AN X lead toX and at least one
successor of every vertexVh_jN X isin X.

Lemma 2. Let G= (V,Vp,V41,E) be an arena and X C V.
1. For every « AttrX(F) Player i has a positional strategy to bring the play into F.
2. The set \X Attr*(F) induces a subarena and is a trap for Player i in G.

3 The Scoring Functions and Finite-time Muller Games

This section introduces the notions that are required tmédly define finite-time Muller games. In his
study of these games, McNaughton introduced the conceptsobi@. For every set of verticéswe
define the score of a finite playto be the number of times th&thas been visited entirely singelast
visited a vertex iV \ F.

Definition 3 (Score) For every FCV we defineSg-: V* — N as
Sq(w) =max{k € N |3xy,...,% € VT such thatOcqx) = F for all i and x; - - - X« is a suffix of w.

We extend this notion by introducing the concept of an acdatou For every sdt, the accumulator
measures the progress that has been made towards the rmrexnstease ofF .
Definition 4 (Accumulator) For every FC V we defineAcce : V© — 27 by Accr (w) = Ocqx), where
x is the longest suffix of w such trad- (w) = Sa- (wy 1) for every suffix y of x, an@cqx) C F.

Finally we define the maximum score function. This functioaps a subse# C 2V and a playp to
the highest score that is reached durinfpr a set contained i1#.
Definition 5 (MaxScore) For every.Z C 2V we defineMlaxScz: VFUV® — NU{»} byMaxScz (p) =
maX: .z MaXyzp SG (W).

McNaughton proposes that scores should be used to decidérther in a finite-time Muller game.
As soon as a threshold scoreldfor some seF is reached, the play is stopped and Playisrdeclared
the winner, ifF € .%. The next lemma shows that this condition is sufficient tauemghat the game
terminates after a finite number of steps.

Lemma 6. Let G be an arena with vertex set V. Evergw * with |w| > kIV/ satisfiesMaxSey (w) > k.

Proof. We will show by induction ovefV| that every wordv € V* with |w| > kIVI contains an infixx
that can be decomposedas: x; - - - X Where every; is a non-empty word with O¢g;) = Ocdx). This
will imply MaxScyv (w) > k.

The claim holds trivially forV| = 1 by choosingk to be the prefix ofv of lengthk andx; = s for the
single vertexs € V. For the induction step, consider a Setwvith n+ 1 vertices. Ifw contains an infix
of lengthk" which contains at most distinct vertices, then we can apply the inductive hypathasd
obtain a decomposition of an infix gfwith the desired properties. Otherwise, every ixfof w of length
k" contains every vertex of at least once. Let be the prefix of lengthk™! of w and letx = x; - - - X be
the decomposition af such that eacl; is of lengthk". Then, we have O¢g;) = Ocax) =V for all i.
Therefore, the decomposition has the desired properties. O
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Lemmal® implies that a finite-time Muller game with threshklthust end after at mo&t¥! steps.
We can also show that this bound is tight. For eviery O we give an inductive definition of a word
over the alphabeX, = {1,...,n} by wy 1) = 1T andwy n) = (Wn—1)n) W n1). Clearly, the word
W(kn) has lengttk" — 1, and it can also be shown that MaxS¢éw) < k.

Finally, to declare a unique winner in every finite-time Mulgame we must exclude the case where
there are two sets such that both sets hit skakethe same time. McNaughton observed thatkfor 2
the first set to hit scork will be unique. Before we reprove this, we will first show a fuseuxiliary
result that will also be used later in the paper.

Lemma 7 (cf. Theorem 4.2 of([8]) Let we V*. The sets F witt8c(w) > 1 together with the sets
Accg (w) for some F form a chain with respect to the subset relation.

Proof. It suffices to show that all such sets are pairwise compardbteF and F’ be two sets such
that either Sg(w) > 1 or F = Accy (w) for someH C V and either Se(w) > 1 or F’' = Accyy (w) for
someH’ C V. Then, there exist two decompositions= wow; andw = wyw; with Ocqw;) = F and
Ocaw;) = F’. Now, eitherw; is a suffix ofw] or vice versa. In the first case, we hdve_ F’ and in the
second case’ C F. O

Note that Lemma&l7 implies that there are at any time at f\jstets with non-zero scores.

Lemma 8 ([8]). Letk| > 2, let FF' CV, letwe V* and ve V such thatSa:-(w) < k andSg:=(w) < .
If S¢=(wv) = k andSg(wv) =1, then F=F'.

Proof. Towards a contradiction assure# F’. By Lemma¥ we can assunfe C F, i.e., there exists

someg € F\ F’. Then, Sg(wv) = k and Sg/(wv) = | imply the existence of decompositiomss =

Wows - - - Wi and wv = wpWj - --wj such that Ocewv;) = F and Oc¢w)) = F' for alli > 1. Asq¢ F/,

W; ---W is a proper suffix ofw. Furthermore, as $¢w) < k, we havev ¢ Ocqwgv—1). However, we

havev € F’ and hencer € Ocqw,_,), which is an infix ofwv~1. This yields the desired contradiction.
O

We are now in a position to define a finite-time Muller game. ISacgame¥ = (G, %y, %1,K)
consists of an aren@ = (V, Vo, V1, E), a partition(.%,.%1) of 2V, and a thresholé > 2. By Lemmd®b
we have that every infinite play must reach schri®r some se¥ after a bounded number of steps.
Therefore, we define a play for the finite-time Muller game @ @ finite pathw = wg---w, with
MaxSev (Wo- - -Wn) = k, but MaxSev (wp---wWnh_1) < k. Due to Lemmdl8, there is a uniqieC V
such that Se(w) = k. Player O wins the plaw if F € %, and Player 1 wins otherwise. The definitions
of strategies, plays, and winning sets can be redefined édirihe games.

Zermelo [9] has shown that a game in which every play is fisitdgtermined. Therefore, it imme-
diately follows that finite Muller games are determined.

Lemma 9. Finite-time Muller games are determined.

In fact, McNaughton considered a slightly different deforitof a finite-time Muller game. Rather
than stopping the play when the score of a set reaches thal glowbsholdk, his version stops the play
when the score of a sétreachegF|! + 1.

Theorem 10([B]). If W is the winning region of Player i in a Muller gam&, %o, .%#1), and W is the
winning region of Player i in McNaughton’s finite-time Muligame, then \W=W/'.
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4 Zielonka'’s Algorithm For Muller Games

This section presents Zielonka’s algorithm for Muller ganiBl], a reinterpretation of an earlier algo-
rithm due to McNaughtorn [7]. Our notation mostly followd i, We will use the internal structure
of the winning regions as computed by the algorithm to defisgategy that bounds the scores of the
losing player by 2.

As we consider uncolored arenas, we have to deal with Muleres wheré.%,,.%1) is a partition
of 2¥' for some finite se¥’ DV, as the algorithm makes recursive calls for such games. diigs not
change the semantics of Muller games, as we hay@)nf V for every infinite playp.

We begin by introducing Zielonka trees, a representatiowiohing conditions(.%,.%#1). Given a
family of sets.# C 2V andX CV’, we defineZ | X = {F € .Z | F C X}. Given a partition(.%o, .%1)
of 2¥', we define(.%,.%1) | X = (%o | X,.Z1 | X). Note thatZ | X C.7.

Definition 11 (Zielonka tree) For every winning conditiof.%y,.%1) defined over a set"its Zielonka
tree Zz, #, is defined as follows: suppose that&.% and let \},V/,...,V,_; be theC-maximal sets
in #1_;. The treeZz, # consists of a root vertex labelled by With k children which are defined by
L Fo )N+ Z(Fo, Fr)VL_y

For every Zielonka tre&, we define RtLK(T) to be the label of the root ilfi, we define BrnchFctiT )
to be the number of children that the root ha3 irand we define Chid, j) for 0 < j < BrnchFct(T) to
be thej-th child of the root inT. Here, we assume that the children of every vertex are aldgrsome
fixed linear order.

The input of Zielonka’s algorithm (see Algorithbh 1) is a faniarenaG with vertex setv and the
Zielonka tree of a partitiorf.%o,.%1) of 2V° for some finite se¥’ D V. The algorithm computes the
winning regions of the players by successively removingspaf Player Q’s winning region (the sets
Up,U1,U,,...). By doing this, the algorithm computes an internal strrestof the winning regions that
will be crucial to proving our results in the next section.

For the rest of this paper we will refer to the sets of vert@ed the subtrees ¥z, #, as computed
by the algorithm.

Figurel2 depicts the situation in timeth iteration of the algorithm. The verticesli_; have already
been removed and belong\ ;. Then, all vertices in thél — i)-attractor ofU,,_; also belong taV; ;.
After removing these vertices from the arena, the algoritfiso removes the vertices in thattractor of
RtLbl(Tn). The remaining vertices form a subarena whose vertex setlibset of RtLK[T,). Hence, the
algorithm can recursively compute the winning regitv$ in this subarena with Zielonka trég. By
construction, the winning regiofV] ; is also a subset &_;. This is repeated until the setils converge
toWy_;. All remaining vertices belong t34.

Furthermore, we have the following properties that will [sedi in the next section. Letdenote
the index at which Zielonka's algorithm terminated. Theswffi for j < n are obviously disjoint.

However, the setwi”_j for j in the rangen — k < j < n might overlap. Player can confine a play in

V\/i”_j until Player 1—i decides to leave this set. However, his only choice is to ntova vertex in

AttriX”*j (V\RtLbI(Tn—j)), as he can neither move to a vertexdin= A,_j (Xn = Xn_j is a trap for him)

nor to a vertex inlvlr':ij = 0. This implies that Playeir can force the play to visW¥ \ RtLbl(T,_;), if
Player 1—i decides to leave]" .
Theorem 12 ([10]). Algorithm[1 terminates with a partitiof\Wp, W), where Player0 has a winning
strategy for W and Playerl has a winning strategy for W

Zielonka’s winning strategies are defined inductively:yelal—i plays an attractor strategy t, 1
onA,\Un_1 and on each\]' ; according to the winning strategy computed recursivelylay ponsistent
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Algorithm 1 ZielonkaG, Z#, 7, ).
i := The indexj such that RtLblZ z, #,) € %
k:= BrnchFct{ 2z, #,)
if The root of 'z, 7z, has no childrenthen

W=V;W_; =0
return (Wop, W)
end if
U =0;n:=0
repeat
n:=n+1
Ay = AttrY (Un_1)
Xn =V \ A,

Tn = Chld(Z#, #,,n modk)
Yo i= Xn \ Attr(V \ RELbI(T,))
(WL W) := Zielonka(G[Yn), Tn)
Un = Ay UW]

until Uy =Up_1=--- =Un_k

W =V \Un; Wi_j = Up

return (Wp, W)

with this strategy will from some point onwards be consisteith one of the winning strategies for some
W' ;, hence it is winning for Player 4 i.

Playeri plays using a cyclic counter. suppose = j. In Wlnfj, she plays according to the winning
strategy computed recursively. If Player-1 chooses to Iea\)elln_‘, then she starts playing an attractor
strategy to reack’ \ RtLbl(T,_j). Once she has reached this set she increnemsdulok and begins
again. There are two possibilities for a play consistenhlhis strategy: if it stays from some point
onwards in somWi”_‘, then it is winning by the inductive hypothesis. Otherwiseyill visit infinitely
many vertices itV \ RtLbI(Chld(Z#, #, ])) for everyj in the range &< j < BrnchFct( %z, # ), which
implies that the infinity set of the play is not a subset of atytflR Chld(Z 7, #, j)). Hence, itis in%;
and the play is indeed winning for Playier

We conclude this section by showing that the winning stiagefpr Muller games as defined (n10]
do not bound the score of the opponent by a constant.

Attry (Un-1) Wy wp

Attr(V \ RtLbI(Ty,))

V \ RtLbI(Ty)

Figure 2: The sets computed by Zielonka’'s algorithm.
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Lemma 13. There exists a family of Muller gamé§ = (G, #(, #7') with |Gp| =n+1and|.%]| =1
such thatMaxSczp (Play(v, 0, 7)) = n whereo is Zielonka's strategy, € V, andt € ;.

Figure 3: The aren&, for LemmdaIB.

Proof. Let G, = (Vi, Vi, 0,Ep) with Vi, = {0,...,n}, E, = {(i+1,i) | i <n}U{(0,n),(1,n)} (see Fig-
ureld), and%§ = {Wi}. The Zielonka tree for the winning conditiqt#{,.#') has a root labeled by,
andn+ 1 children that are leaves and are labeled/py {i} for everyi € V,,. Assume, the children are
ordered as followsV, \ {0} < --- <VWh\ {n}. Zielonka’s strategy fo#,, which depends on the ordering
of the children, can be described as follows. Initialize argerc := 0 and repeat the following:

1. Use an attractor strategy to move to vertex
2. Increment modulon+ 1.
3. Gotdl.

Now assume a play consistent with this strategy has judedi€l. Then, it visits all vertices,1.,nin
this order by cycling through the loap...,1 ntimes. Hence, the score for the $ét ... n} is infinitely
oftenn. O

By contrast, Player 0 has a positional winning strategy4pothat bounds the opponents scores by 2.
The reason the strategy described above allows a high swoRddyer 1 is that it ignores the fact that,
while it attracts the play to the vertex 0, it visits all othvartices. In the next section we will construct a
strategy that recognizes such visits. Thereby, the siyasegple to bound the opponent’s scores by 2.

5 Bounding the Scores in a Muller Game

In this section, we prove our main result: the finite-time Mubame with threshold 3 is equivalent to a
Muller game.

Theorem 14. If W; is the winning region of Player i in a Muller gan&, .%,.%1), and W is the winning
region of Player i in the finite-time Muller gam&, .%o, .#1,3), then W=W'.

To prove Theorerfi 14 we use the following approach. If MaxS¢p) < 2 for an infinite playp, then
there exists a prefiw of p that is winning for Player in the finite-time Muller game with threshold 3.
Hence, if a winning strategy for Playkein the Muller game bounds the scores of her opponent by 2, then
this strategy is also winning for the finite-time Muller gamih threshold 3. We will show that such a
winning strategy exists. Theordml 14 then follows by deteamy of Muller games. Therefore, the rest
of this section will be dedicated to proving the followingrima.

Lemma 15. Player i has a winning strategy for her winning region Win a Muller game¥ =
(G, %o,.#1) such thatMaxScz, ;(Play(v,o,T)) < 2 for every vertex ¥ W, and everyr € N;_;.
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We will use the internal structure of the winning regions amputed by Zielonka’s algorithm to
give an inductive proof of this claim. Traditionally, Ziglka's strategies forget the history of the play
every time they switch between an attractor strategy andwsiely computed winning strategy. For
example, suppose that a playspends some time Wln_J before Player 0 decides to move out of the set
Wlnfl. Player 1 responds to this by playing the attractor strategfie set \ RtLbI(T,—;) in order to
reach some vertexe V \ RtLbl(T,_;). If ve W, /"1, then Player 1 will play the winning strategy for
the set\)" '™ starting at the vertex.

Note that the playv may have spent a significant number of stepA/lﬂ'T (while playing according
to the attractor strategy) before Player 1 begins to playihaing strategy for that set. Yet in Zielonka’s
strategy, Player 1 will behave as if the first vertex visiuaeld\,{l”*J+l is v. In other words, the suffix ofv
that is contained irdvf*”l is effectively forgotten by the strategy.

This fact is irrelevant if we are only concerned with consting a winning strategy, but when we
want to construct strategies that guarantee certain sacedsounded by 2, the entire suffixwimust be
retained in this kind of situation. This motivates the fallng definition of a play. A play begins with a
finite prefix over which the players have no control, and thamtioues as a normal play would. The key
difference is that the strategies may base their decisinnbeproperties of the prefix.

j+1

Definition 16 (Play) For a non-empty finite path w wp---w, and strategiess € N, 7 € My_;, we
define the infinite plalay(w, 0, T) = pop1p2- - - inductively byp; = w; for 0 < j <nand for j> n by

_Jolpo--pj-1) ifpjaeM
J T(po--pj-1) if pj_1€Vii

In fact, the finite paths that are passed to our strategidshaiilbe totally arbitrary. As described
previously, these paths arise out of decisions made bédfergttategy was recursively applied. Therefore,
we have some control over the form that these paths take. Weamistruct our strategy so that every
path passed to a recursive strategy has the following proper

Definition 17 (Burden) Let.Z C 2¥'. A finite path w is anZ-burden ifMaxScz (w) < 2 and for every
F € .7 eitherSag=(w) = 0 or Sg=(w) = 1 andAcce (w) = 0.

We are now ready to prove by induction over the height of thedafika tree that both players have
a strategy to bound their opponent’s scores by 2 on theirinmgnregions, even if the play starts with a
burden. We begin by considering the base case, which is viigeBielonka tree is a leaf. For the rest of
this section we will assume RtL{¥ %, #,) € .#1. Otherwise, swap the roles of Player 0 and 1 below.

Lemma 18. Let (G, .%o,.#1) be a Muller game with vertex set V such thé#t;, # is a leaf. Then,
Player 1 has a strategyr such thatMaxScz,(Play(wv, 0, 1)) < 2 for every strategy < Ny and every
Fo-burden wv with\ve V.

Proof. As Zz, #, is a leaf and RtLWlZ 7, # ) € %1 by assumption, we hav&, = 0. Hence, any
strategyr for Player 1 guarantees MaxggPlay(w,0,1)) < 2. O

We now move on to the inductive step of the proof. We will gwe tversions of the inductive step,
one case will be for the s and the other will be for the s&¥;. We will consider the case for the set
W first.

The situation in this case is shown in Figlile 4. Our stratemytliis case will be the same as
Zielonka’s strategy, but it must also deal with the finitehp#iat has been passed to it. We denote
the attractor strategy for Player 0 #q\Un_1 by o4 and we denote the recursively computed strategy
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Figure 4: The structure &fp. The dashed line indicates a play.

for Player 0 orG[W}'] asoX. We can assume thaf satisfies the inductive hypothesis, which means that
MaxScz, jwy (Play(wy, oR, 1)) < 2 for every strategy for Player 1 inG[W{] and everyZ; | W{-burden
wv with ve Wy'. We define the following strategy* for Wo:

o*(wv) =

oR(wv) if ve W) andw is the longest suffix ofv with Ocow’) C W'
ohMv) ifve Ap\Up1 '

Our strategy chooses to usg® or g4 precisely when Zielonka's strategy chooses to do so. The
difference is that our strategy is careful to pass the apfaiapfinite path to the recursively computed
strategyo?.

The setdJ; form a sequence of nested traps for Player 1. ThereforeaifePl1 chooses to leave
someU; \Uj_1 and Player 0 plays according &J, the play can never return t; \ U;_1. This implies
that a play that has left sonvé] will never return. Also, every vertex iAj \U;_; can be seen at most
once, aw* behaves like an attractor strategy on these vertices. Thidamema will be used to deal with
cases that arise from these observations.

Lemma 19. Let w be an{F }-burden, letw € F.
1. Letp be aninfinite play in which v appears at most once. ThéaxSgr, (wp) < 2.

2. Letp be an infinite play such that v is never visited aftemas visited for the first time. Then,
MaxSqg) (wp) <2

Proof. For both statements, it suffices to show that @e«x) < 2 for every prefixx of p. Letw=wp- - - Wj.
We consider the two cases given by the definition of a burden:
e Sg(w) =1. As Acg(w) =0, we have Se(wp---W,_1) = 0. Hence, the suffixv---w, of w
witnessing Sg(w) = 1 is minimal.
1. Asw---W, is minimal and a¥ occurs at most once in, we conclude that the score fBr
increases at most once after the preafix
2. As the suffix is minimal, the score &f can increase to 2 only by or after visitingfor the
first time. Butv is then never visited again. Hence, the score<as bounded by 2.

e Sag-(w) =0. Lety be the shortest prefix @f such that Se(wy) = 1. If such a prefix does not exist,
then we are done.

1. Otherwisey 'p does contaiv at most once. Hence, the score Foincreases at most once
after the prefixwvy.

2. Again, if such a prefix exists, then the scoreFocan reach 2 only by or after visiting for
the first time aftewy. Butv is then never visited again. Hence, the scoreHads bounded
by 2. O
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We are now able to prove the inductive step for Player 0, byyappthe the observations formalized
in LemmdI® to the structure w.

Lemma 20. We haveMaxScz, jw, (Play(wy, 0%, 1)) < 2 for every strategyr € I, and every.#; [ Wo-
burden wv with v& Wp.

Proof. Let p = pop1p2--- = w Play(wv,c*, T). Note thatpy = v, which is the first vertex where the
players get to choose a successor. Asspreaters somé\y, \ U,_1. Then, it will afterwards ented,,_;
while seeing every vertex iA, \ U,_1 at most once, a8, is an attractor and™* behaves like an attractor
strategy o, \ Uy_1. Now assume enters som&\;'. Then, it will stay inWy' until Player 1 decides to
leave. However, his only choices are vertice#\in, as\W' is a trap for him iV \ A,_;. Hence, once a
setA, \Un_1 or W' is left, it will never be entered again.
As wpg is an.#; [ Wi-burden, it suffices to show §6wpg---pn) < 2 for everyn > 0 and every

F € %1 | Wi. We will consider several cases fler remember that either $6wpp) = 0 or S¢(wpp) =1

and Acg (wpg) = 0.

e FN (Un>1(An\Un-1)) # 0: Every vertex inJ;-1 (An\Un-1) Occurs at most once ip. Hence,
SG (Wpo- -+ pn) < 2 for everyn > 0 by LemmdTITI1.

o F C Un=1WY with F NW # 0 andF ﬁWOj # 0 fori < j: p cannot visitw; after it has visited\.
Thus, Se(wpg---pn) < 2 for everyn > 0 by LemmdTHI2.

o F gWoj for somej: If p never visits\Ng, then Se¢ (wpg--- pn) = O for everyn > 0. So, assump
enters\ at positionpm, for somem > 0.
Supposen = 0: wpg is also ang; [Woj-burden andvpgp102- - is played according tU'jR until
Player 1 decides to Iea\XNg at some positiorp > m. Applying the inductive hypothesis yields
thatcrjR guarantees $¢wpo - - - pn) < 2 for everyn in the rangen < n < p. Should the play leave
W, then Sg is reset to 0 and stays 0, 4§ cannot be visited again. If Player 1 never leaws
then the scores are bounded by 2 throughout the whole play.
If m> 0, then Sg(wpo---pn) = 0 for everyn < m. Also, the playpmpm:1Pm+2--- in Wg starts
with the .71 rwg—burdenwpo- - Pm, (BSPm-1 ¢ Wc{) and the inductive hypothesis mﬁ* guarantees
S (Wpp---pn) <2 untiIWOJ is left, from which point onwards $ds always 0. O

We now turn our attention to the strategy for Player 1. Fordstof this sectiom will be the index at
which Zielonka’s algorithm terminated, akd= BrnchFct( 2z, 7 ). The situation for Player 1 consists
of k overlapping instances, one for each child, of the situatiepicted in Figur€l5.

At (V \ RtLbI(Ty_))

. (VARLLbI(Ty—j)) N Xn—j

Figure 5: The structure &V, with respect tol,_j. The dashed line indicates a part of a play between
two change points.
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For the sake of convenience we defifje= X; \ RtLbl(T;j) for everyj in the rangen—k < j < n. For
everyj in the rangen— k < j < n, we have an attractor strategy for Player 1 on?&(ﬂj) \ Z; which we
call TJA, and we have a recursively computed winning stratq@;or Player 1 orG[le]. Once again, we
can assume the inductive hypothesis holds for the strag%gyhich means that Max%[wlj (Play(wv, g, TR) <

2 for every strategy of Player 0 inG)W,'] and everyZ, | W, -burdenwvwith v e W,

Our strategy improves the strategy given by Zielonka in #vese that it uses a different method for
choosing a new child of the root. Zielonka'’s strategy wotketigh the children in a cyclic order, which
means that when the play enters the\6&tRtLblI(T;) the strategy will then move on to the chilg, 1,
and begin playing eitherjAJrl or TJR+1. By contrast, we will use a more careful method for picking th
next child of the root that will be considered.

Our method for picking the next child will make its decisioasked on which sets of the opponent
have either non-zero score or a non-empty accumulatorhisoptirpose, we define the indicator function
ofaplay Ind:Vt — 2V as

Indw)= |J Fu |J Accr(w) .
FeZo: FeFo:
Sa=(w)>0 Accr (W) #0

Recall that Lemma&l7 implies that the sets we are consideonm & chain in the subset relation.
This implies that the indicator function always gives sombsgt of a set that belongs to the opponent.
Therefore, we can argue that there must always exist a chifttt@oot whose label contains the indicator
set.

Lemma 21. For every w, there is some j in the range-tk < j < n such thatnd(w) C RtLbI(Tj).

Proof. LemmalT implies that there is a maximal &such that Ingw) = G, with either Sg(w) > 0 or
Acce (w) = G for someF € .%, with G C F. Hence, Indw) C F for someF € .%,, and, by definition of
Z7,.7, there is some child of the root labeled by Rt(T) such thaF C RtLbI(T;). O

When a new child must be chosen, our strategy will choose shiftewhose label contains the value
of the indicator function for the play up to that point. It is@critically important that this condition is
used when picking the child in the first step. This is the pathe strategy where the finite initial path
can have an effect on the decisions that the strategy makes.

We can now formally define this strategy. We begin by definingaxiliary function that specifies
which child the strategy is currently considering. We detin&/; — {n—k+1,....n, L} asc(e) =L
and

c(w) if ve RtLbI(Tgy,))

J if v & RtLbI(Tey) ), Ind(wv) # 0 andj minimal with Ind(wv) C RtLbI(Tj)

j if vi¢ RtLbI(Ty)), Ind(wv) = 0 andj minimal withv € RtLbI(Tj) '
1 if V& Un—ke<j<n RELDI(T))

c(wv) =

Now we can defing* for W; as

TJR(WV) if c(wv) = j,ve le andw is the longest suffix ofv with Ocaw') C le
T(wv)* = ThH(v)  if c(wv) = j,v e RtLbI(Tj) \W/

X if c(wv) = L wherex € Wy with (v,x) € E
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We will now prove that this strategy has the required praeertOur proof will use the concept of
a change point, which is a position in a play wheredlienction changes. More formally, suppose that
P = Pop1P2--- =W LPlay(wy, o, T*) for someZy-burdenwvwith v € Wy ando € M. Note thatog = v,
which is the first vertex at which the players get to choosestloeessor. We say that a positioaof p is
a change point, if =0 or if c(wpg- - pr—1) # c(WpPg - - - Pr)-

Let x be a finite prefix of an infinite play that is consistent witsuch that the last position iis a
change point. Moreover, assume tkattisfies the burden property. Our strategy will pick sondexy
such that In@x) C RtLbI(Tj). The play will then remain in the s&¢ until Player 0 chooses to leave the
setW;, at which point the strategy attracts to the $&tRtLbI(T;). Once such a vertex is reached, the
scores for all sets € %y with Sa=(x) > 0 are reset to 0 and the accumulator fors empty for every
F € %o with Accr (x) # 0. While attracting the play t¥' \ RtLbI(T;) the scores for other seksc %
might rise and the accumulators fill up. However, as evertexen the attractor is seen at most one, we
are able to show the following: if the play up to a change pisirst.#o-burden, then the play up to the
next change point is also a burden. Ag7-burden bounds the scores of Player 0 be 2, this suffices to
prove thatt* bounds Player 0’s scores by 2.

Lemma 22. Letp be as above and let« s be two change-points such that there exists no change point
twithr <t <s. Ifwpg---pr is an%g | Wi-burden, then so ispg - - - Ps.

Proof. From the definition of a change point we g&€po---pt) = c(po---pr) for everyt in the range
r<t<s.

If c(wpo---pr) = L, thenpr & Un_k<j<nRILDI(Tj), which impliesp; ¢ F for everyF € .%,. Hence,
we have Sg(wpg---p) = 0 for everyr <t < s and everyF € %,. Furthermore, we have either
S (Wpo---ps) =0, if F # {ps} and S¢ (wpp---ps) = 1 and Acg (wpg - - - ps) = 0 otherwise.

Now, assume(wpp - -- pr) = ] for somej in the rangen — k < j < n. Then, there exists amin the
ranger <u<ssuchthap,---py_1is inW1‘, Pu-Ps_1isin Attr>l<j (Zj)\ Zj, and we haves ¢ RtLbI(Tj).
Note that both parts could be empty. The situation is degictd=igure[® (cf. also Figurd 5).

. X
W Atry) (Z))\Z) ¢ RtLbI(Tj)
| | i |
p| i | '
r u S

Figure 6: A part of a play between two change points.

Furthermore, at positionisn the range <i < u-—1, Player 1 plays according 11(}? and positions
in the rangau < i < s— 1, he plays according tuﬁ. This implies that every vertex in Aﬁi"r(zj) \Zjis
seen at most once in betwegnandps, i.e., in the infixpy - - - Ps_1.

Finally, let Indwpo---pr) = G. If G# 0, thenG C RtLbl(T;j); otherwise,p; € RtLbI(Tj), both by
definition ofc.

It suffices to show for everlf € %y | Wh:

1. If So=(wpp---pr) =1 and Acg(Wpo---pr) =0, then Sg(wpg---p) <2 forallr <t < sand
SG:(Wpo-- - ps) = 0.
2. 1f Sg=(wpg---pr) =0, then Sg(wpg---pr) < 2forallr <t < sand either Se(wpp---ps) =1 and
Accg (Wpgp---Pps) = 0 or S (Wpp - - - ps) = 0.
: As 0#F C Ind(wpo---pr), we haveF C RtLbI(Tj) and hence Sqwpg---ps) = 0, asps € Z; =
X;j \ RtLbI(T;). It remains to show Sgwpo---p;) < 2 for allr <t < 's. We consider several cases for
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e FNZ;#0: as the vertices id; are not visited by - - - ps_1, the score oF cannot increase in this
interval.

o F ﬂAttr)l<j (Zj)\ Z; # 0: every vertex in the attractor is seen at most once. Hemeegbtain
Sa(wpg---pr) <2forallr <t <sby LemmdIHl.

o FC le: If pr € Attrfj (Zj)\ Zj, then Sg is reset to 0 ap, and stays O untips, hence, we have
Sa(wWpg---pr) <2forallr <t<s

So, supposer € le. Aswpg- - pr is also an% [le- burden and aF € % F_le, the inductive

hypothesis orr] guarantees $¢wpo--- pr) < 2 for everyr <t < u. As pr ¢ W, for everyt in the
rangeu <t < s, we also have Sgwpg- - - p;) = 0 for these positions.

[ LetG = Accr(wWpo---pr) C Ind(wpg---pr). Note thatG C RtLbI(Tj), but it could be the case that
F ¢ RtLbI(T;). Again, we consider several cases for

e If pseF, thenps ¢ Accr (Wpo- - - pr), as Acg (Wpg- - - pr) C RtLbI(T;) andps ¢ RtLbI(T;). Hence,
Sg stays 0 at every position betweerand (excluding)s, as the vertexps is never visited. If
Sa(Wpo---ps) =1, then Acg (Wpp - - - ps) = 0; otherwise Sgis 0 at positiors, too.

o If ps¢ F, then Sg(wpp---ps) = 0. To bound the score between the positiorends by 2, we

have to consider three subcases: eitherZ; # 0, F ﬁAttr)l<j (Zj)\Zj #0DorF C le. All cases
can be solved by analogous reasoning to these caBks in 1. O

Now, to prove the inductive step fov;, we simply need to observe that the finite path ending at the
first change point is a burden by assumption.

Lemma 23. We haveMaxScz,w; (Play(wv, o, 7*)) < 2 for every strategyo € Mg and every.%g [ W;-
burden wv with \ve W;.

Proof. Letp =w 1Play(wy,g,T*). If p contains infinitely many change points, then Lenima 22 insplie
MaxScz, (Play(wy, 0, 7*)) < 2 as the play starts with a burden, i.e., there scores arediedusy 2 inwy,

and in between any two change points, the scores are bouydeadwell. If p contains only finitely
many change points, then Leming 22 implies that the scorelapéiPO up to the last change point are
bounded by 2. From that point onwards, Rlay, o, 7*) is consistent with somel’, and the play up to
that point is a#; [Wl’—burden, as itis ar¥; | Wi-burden due to LemnfaR2. Hence, the scores for every
setF € .7 rwll are bounded by 2 from that point onwards, by the inductiveotiygsis orrll. The scores

of everyF € .7 | Wy with F & le are bounded by 1, as vertices nowj are no longer visited. [

Finally, we can prove Lemniall5, which also completes thefmybdheorenIH.

Proof. TheorenIR yields that algorithid 1 is correct, i.e. the ¥étseturned are indeed the winning
regions of the players. We prove the following strongerestant by induction over the height 8fz, #,:
letV be the vertex set db. Player i has a winning strategy for her winning region \Win G such that
MaxScz, ;iv(wv, 0, 1) < 2for every strategy € IM1_; and every#;_; [ V-burden wv in GThis implies
LemmaTb, as the finite playfor everyv € W is an.%1_; | V-burden.

For the induction start, apply Lemrial 18. In the inductiopstese the strategies obtained from the
induction hypothesis to defing* and1* as above and apply Lemral 20 respectively Lerinla 23. Both
strategies are winning, as they bound the scores of the eppby 2. O
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6 Conclusion

We have presented a criterion to stop plays in a Muller ganee affinite amount of time that preserves
winning regions. Our bound!@ on the length of a play improves the bouf@|! + 1 obtained by a
reduction to parity games. Furthermore, our techniquesvghat the winning player can bound the
scores of the opponent by 2 and that this bound 2 is tight.

However, it remains open whether a play can also be stoppedatcore of 2 is reached. As the
winning player cannot always avoid a score of 2 for the opponene has to show that the winning
player always reaches a score of 2 for one of her sets beferegbonent reaches score 2 for one of
his sets. Our approach does not seem to be suitable for thikganotion of a burden is not sufficient
for this goal. Furthermore, it is unclear how to strengthem definition while still retaining Lemmata
corresponding to LemnfaR0 and Lemina 23.

A finite-time Muller game with threshol# is a reachability game (in the unraveling of the original
arena up to depth at mosf!), which can be solved with simple algorithms. Another iagting direc-
tion for research is to find a construction which turns a wignétrategy for a finite-time Muller game
with threshold 3 (or 2, if it is equivalent) into a finite-stastrategy for the original Muller game. It is
conceivable that such a construction would yield memomycstires that are optimized for a given arena,
something which does not hold for the LAR respectively Zngda tree structures.
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