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This work studies the following question: can plays in a Muller game be stopped after a finite number
of moves and a winner be declared. A criterion to do this is sound if Player 0 wins an infinite-duration
Muller game if and only if she wins the finite-duration version. A sound criterion is presented that
stops a play after at most 3n moves, wheren is the size of the arena. This improves the bound
(n! +1)n obtained by McNaughton and the boundn! +1 derived from a reduction to parity games.

1 Introduction

In an infinite game, two players move a token through a finite graph thereby building an infinite path.
The winner is determined by a partition of the infinite paths through the arena into the paths that are
winning for Player 0 or winning for Player 1, respectively. Many winning conditions in the literature
depend on the vertices that are visited infinitely often, i.e., the winner of a play cannot be determined
after any finite number of steps. We are interested in the following question: is it nevertheless possible to
give a criterion to define a finite-duration variant of an infinite game. Such a criterion has to stop a play
after a finite number of steps and then declare a winner based on the finite play constructed thus far. It is
sound if Player 0 has a winning strategy for the infinite-duration game if and only if she has a winning
strategy for the finite-duration game.

McNaughton considered the problem of playing infinite gamesin finite time from a different per-
spective. His motivation was to make infinite games suitablefor “casual living room recreation” [8]. As
human players cannot play infinitely long, he envisions a referee that stops a play at a certain time and
declares a winner. The justification for declaring a winner is that “if the play were to continue with each
[player] playing forever as he has so far, then the player declared to be the winner would be the winner
of the infinite play of the game” [8].

Besides this recreational aspect of infinite games there areseveral interesting theoretical questions
that motivate investigating this problem. If there exists asound criterion to stop a play after at mostn
steps, this yields a simple algorithm to determine the winner of the infinite game: the finite-duration
game can be seen as a reachability game on a finite tree of depthat mostn that is won by the same
player that wins the infinite-duration game. There exist simple and efficient algorithms to determine the
winner in reachability games on trees. Furthermore, a positive answer to the question whether a winning
strategy for the reachability game can be turned into a (small finite-state) winning strategy should yield
better results in the average (although not in the worst case) than game reductions, which ignore the
structure of the arena.

Consider the following criterion: the players move the token through the arena until a vertex is visited
for the second time. An infinite play can then be obtained by assuming that the players continue to play
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the cycle that they have constructed. Then, the winner of theinfinite play is declared to be the winner of
the finite play. If the game is determined with positional strategies for both players, then this procedure
is correct: if a player has a winning strategy for the infinitegame, which can be assumed to be positional,
then she can use the same strategy to win the finite version of the game and vice versa.

Therefore, McNaughton proposes that we should consider games that are in general not positionally
determined. Here, the first loop of a play is typically not an indicator of how the infinite play evolves,
as the memory allows a player to make different decisions when a vertex is seen again. Therefore, the
players have to play longer before the play can be stopped andanalyzed.

McNaughton considers Muller games, which are games of the form (G,F0,F1), whereG is a finite
arena and(F0,F1) is a partition of the set of vertices. Playeri wins a play, if the set of vertices visited
infinitely often by this play is inFi . Muller winning conditions allow us to express all other winning
conditions that depend only in the infinity set of a play (e.g., Büchi, co-Büchi, parity, Rabin, and Streett
conditions).

To give a sound criterion for Muller games, McNaughton defines for every set of verticesF a scoring
function ScF that keeps track of the number of times the setF was visited entirely since the last visit of a
vertex that is not inF. In an infinite play, the set of vertices seen infinitely oftenis the unique setF such
that ScF will tend to infinity with being reset to 0 only finitely often.

0 1 2

Figure 1: The arenaG.

Let G be the arena in Figure 1 (Player 0’s vertices are shown as circles and Player 1’s vertices are
shown as squares) and the Muller gameG = (G,F0,F1) with F0 = {{0,1,2},{0},{2}}. In the play
100122121 we have that the score for the set{1,2} is 3, as it was seen thrice (i.e., with the infixes 12,
21, and 21). Note that the order of the visits to the elements of F is irrelevant and that it is not required
to close a loop in the arena. The following winning strategy for Player 0 bounds the scores of Player 1
by 2: arriving from 0 at 1 move to 2 and vice versa. However, Player 0 cannot avoid a score of 2 for her
opponent, as either the play prefix 1001 or 1221 is consistentwith every winning strategy.

By using finite-state determinacy of Muller games, McNaughton suggests that the criterion should
stop a play after a score of|F |! +1 for some setF is reached. He shows that picking the winner to be the
Playeri such thatF ∈ Fi is indeed sound.

Applying finite-state determinacy one can also show that onecan soundly declare a winner after at
most|G|! + 1 steps, as a repetition of a memory state has occurred after that many steps. Note that for
large setsF, it could take far more than|G|! +1 steps to reach a score of|F|! +1, as scores can increase
slowly or can even be reset to 0. However, to decide whether a memory state repetition has occurred,
it might be necessary to compute the complete memory structure for the given game, which is of size
|G|!. Keeping track of scores is much simpler, as they can be computed on the fly while the play is being
played. Also, there are at most|G| setsF with non-zero score.

Our contribution. We show that declaring the winner of a play as soon as the score3 is reached for the
first time is a sound criterion. We complement this by provingthat a score of 3 is reached after at most
3|G| steps. Hence, we obtain a better bound than|G|! +1, which was derived from waiting for repetitions
of memory states.
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Our results are obtained by using Zielonka’s algorithm [10](a reinterpretation of an earlier algorithm
by McNaughton [7]) for computing winning regions in Muller games. We carefully define a winning
strategy that bounds the scores of the opponent by 2. In the example above, the winning player cannot
avoid a score of 2 for the opponent. Hence, in this sense our result is optimal.

Related work. Usually, the quality of a strategy is measured in terms of memory needed to implement
it. However, there are other natural quality measures of winning strategies. In [2], the authors study
a strengthening of parity (and Streett) objectives, which require that there is some bound between the
occurrences of even colors. Another application of this concept appears in work on request response
games [6, 11], where waiting times between requests and subsequent responses are used to define the
value of a play. There it is shown that time-optimal winning strategies can be computed effectively.

The maximal score achieved by the opponent in a play can be used to measure the quality of winning
plays in a Muller game. Player 0 prefers plays in which the scores of her opponent aresmall. This
corresponds to not spending a prolonged amount of time in a set of the opponent, but visiting every
vertex that is seen infinitely often without large gaps.

This paper is structured as follows. Section 2 contains basic definitions and fixes our notation. In
Section 3, we introduce the scoring functions, prove some properties about scoring and define finite-time
Muller games. In Section 4, we present Zielonka’s algorithmwhich is used in Section 5 to prove the
main result. Section 6 ends the paper with a conclusion and some pointers to further research.

2 Definitions

The power set of a setS is denoted by 2S andN denotes the non-negative integers. The prefix relation on
words is denoted by⊑, its strict version by⊏. Given a wordw = xy, definex−1w = y andwy−1 = x.

An arenaG = (V,V0,V1,E) consists of a finite, directed graph(V,E) of vertices and a partition
(V0,V1) of V denoting the positions of Player 0 (drawn as circles) and Player 1 (drawn as squares).
We require that every vertex has at least one outgoing edge. AsetX ⊆V induces the subarenaG[X] =
(V ∩X,V0∩X,V1∩X,E∩ (X×X)), if every vertex inX has at least one successor inX. A Muller game
G = (G,F0,F1) consists of an arenaG and a partition(F0,F1) of 2V .

A play in G starting inv∈V is an infinite sequenceρ = ρ0ρ1ρ2 . . . such thatρ0 = vand(ρn,ρn+1)∈E
for all n∈N. The occurrence set Occ(ρ) and infinity set Inf(ρ) of ρ are given by Occ(ρ) = {v∈V | ∃n∈
N such thatρn = v} and Inf(ρ) = {v∈V | ∃ωn∈ N such thatρn = v}. We will also use the occurrence
set of a finite playw. A play ρ in a Muller game is winning for Playeri if Inf (ρ) ∈ Fi .

A strategy for Playeri is a functionσ : V∗Vi → V satisfying(s,σ(ws)) ∈ E for all ws∈V∗Vi . The
play ρ is consistent withσ if ρn+1 = σ(ρ0 . . .ρn) for everyn∈ N with ρn ∈Vi . The set of strategies for
Playeri is denoted byΠi. A strategy is called finite-state, if it can be implemented by an automaton with
output that reads finite plays and outputs the vertex to move to. We will say that a finite-state strategy is
of sizen, if there exists an automaton withn states that implements it.

A strategyσ for Playeri is a winning strategy from a vertexv∈V, if every play that starts inv and
is consistent withσ is won by Playeri. The strategyσ is a winning strategy for a set of verticesW ⊆V,
if every play that starts in somev∈W and is consistent withσ is won by Playeri. The winning region
Wi of Playeri contains all vertices, from which she has a winning strategy. A game is determined ifW0

andW1 form a partition ofV.

Theorem 1 ([1, 5, 7]). Muller games are determined with finite-state strategies ofsize n·n!, where n
denotes the size of the arena.
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Let G = (V,V0,V1,E) be an arena and letX ⊆V be a set that induces a subarena. The attractor for

Playeri of a setF ⊆V in X is AttrX
i (F) =

⋃|V|
n=0An whereA0 = F ∩X and

An+1 = An∪{v∈Vi ∩X | ∃v′ ∈ An such that(v,v′) ∈ E}

∪{v∈V1−i ∩X | ∀v′ ∈ X with (v,v′) ∈ E : v′ ∈ An} .

A X ⊆V is a trap for Playeri, if all outgoing edges of the vertices inVi ∩X lead toX and at least one
successor of every vertex inV1−i ∩X is in X.

Lemma 2. Let G= (V,V0,V1,E) be an arena and F,X ⊆V.

1. For every v∈ AttrX
i (F) Player i has a positional strategy to bring the play into F.

2. The set V\AttrX
i (F) induces a subarena and is a trap for Player i in G.

3 The Scoring Functions and Finite-time Muller Games

This section introduces the notions that are required to formally define finite-time Muller games. In his
study of these games, McNaughton introduced the concept of ascore. For every set of verticesF we
define the score of a finite playw to be the number of times thatF has been visited entirely sincew last
visited a vertex inV \F .

Definition 3 (Score). For every F⊆V we defineScF : V+ → N as

ScF(w) = max{k∈ N | ∃x1, . . . ,xk ∈V+ such thatOcc(xi) = F for all i and x1 · · ·xk is a suffix of w}.

We extend this notion by introducing the concept of an accumulator. For every setF, the accumulator
measures the progress that has been made towards the next score increase ofF .

Definition 4 (Accumulator). For every F⊆V we defineAccF : V+ → 2F by AccF(w) = Occ(x), where
x is the longest suffix of w such thatScF(w) = ScF(wy−1) for every suffix y of x, andOcc(x) ⊆ F.

Finally we define the maximum score function. This function maps a subsetF ⊆ 2V and a playρ to
the highest score that is reached duringρ for a set contained inF .

Definition 5 (MaxScore). For everyF ⊆ 2V we defineMaxScF : V+∪Vω →N∪{∞} byMaxScF (ρ) =
maxF∈F maxw⊑ρ ScF(w).

McNaughton proposes that scores should be used to decide thewinner in a finite-time Muller game.
As soon as a threshold score ofk for some setF is reached, the play is stopped and Playeri is declared
the winner, ifF ∈ Fi . The next lemma shows that this condition is sufficient to ensure that the game
terminates after a finite number of steps.

Lemma 6. Let G be an arena with vertex set V . Every w∈V∗ with |w| ≥ k|V| satisfiesMaxSc2V (w) ≥ k.

Proof. We will show by induction over|V| that every wordw ∈ V∗ with |w| ≥ k|V| contains an infixx
that can be decomposed asx= x1 · · ·xk where everyxi is a non-empty word with Occ(xi) = Occ(x). This
will imply MaxSc2V (w) ≥ k.

The claim holds trivially for|V| = 1 by choosingx to be the prefix ofw of lengthk andxi = s for the
single vertexs∈V. For the induction step, consider a setV with n+1 vertices. Ifw contains an infixx
of lengthkn which contains at mostn distinct vertices, then we can apply the inductive hypothesis and
obtain a decomposition of an infix ofv with the desired properties. Otherwise, every infixx of w of length
kn contains every vertex ofV at least once. Letx be the prefix of lengthkn+1 of w and letx = x1 · · ·xk be
the decomposition ofx such that eachxi is of lengthkn. Then, we have Occ(xi) = Occ(x) = V for all i.
Therefore, the decomposition has the desired properties.
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Lemma 6 implies that a finite-time Muller game with thresholdk must end after at mostk|V| steps.
We can also show that this bound is tight. For everyk > 0 we give an inductive definition of a word
over the alphabetΣn = {1, . . . ,n} by w(k,1) = 1k−1 andw(k,n) = (w(k,n−1)n)k−1w(k,n−1). Clearly, the word
w(k,n) has lengthkn−1, and it can also be shown that MaxSc2Σn(w) < k.

Finally, to declare a unique winner in every finite-time Muller game we must exclude the case where
there are two sets such that both sets hit scorek at the same time. McNaughton observed that fork≥ 2
the first set to hit scorek will be unique. Before we reprove this, we will first show a useful auxiliary
result that will also be used later in the paper.

Lemma 7 (cf. Theorem 4.2 of [8]). Let w∈ V+. The sets F withScF(w) ≥ 1 together with the sets
AccF(w) for some F form a chain with respect to the subset relation.

Proof. It suffices to show that all such sets are pairwise comparable: let F and F ′ be two sets such
that either ScF(w) ≥ 1 or F = AccH(w) for someH ⊆V and either ScF ′(w) ≥ 1 or F ′ = AccH′(w) for
someH ′ ⊆ V. Then, there exist two decompositionsw = w0w1 andw = w′

0w′
1 with Occ(w1) = F and

Occ(w′
1) = F ′. Now, eitherw1 is a suffix ofw′

1 or vice versa. In the first case, we haveF ⊆ F ′ and in the
second caseF ′ ⊆ F.

Note that Lemma 7 implies that there are at any time at most|V| sets with non-zero scores.

Lemma 8 ([8]). Let k, l ≥ 2, let F,F ′ ⊆V, let w∈V∗ and v∈V such thatScF(w) < k andScF ′(w) < l.
If ScF(wv) = k andScF ′(wv) = l, then F= F ′.

Proof. Towards a contradiction assumeF 6= F ′. By Lemma 7 we can assumeF ′ ⊂ F, i.e., there exists
someq ∈ F \F ′. Then, ScF(wv) = k and ScF ′(wv) = l imply the existence of decompositionswv =
w0w1 · · ·wk and wv = w′

0w
′
1 · · ·w

′
l such that Occ(wi) = F and Occ(w′

i) = F ′ for all i ≥ 1. As q /∈ F ′,
w′

1 · · ·w
′
l is a proper suffix ofwk. Furthermore, as ScF(w) < k, we havev /∈ Occ(wkv−1). However, we

havev∈ F ′ and hencev∈ Occ(w′
k−1), which is an infix ofwkv−1. This yields the desired contradiction.

We are now in a position to define a finite-time Muller game. Such a gameG = (G,F0,F1,k)
consists of an arenaG = (V,V0,V1,E), a partition(F0,F1) of 2V , and a thresholdk ≥ 2. By Lemma 6
we have that every infinite play must reach scorek for some setF after a bounded number of steps.
Therefore, we define a play for the finite-time Muller game to be a finite pathw = w0 · · ·wn with
MaxSc2V (w0 · · ·wn) = k, but MaxSc2V (w0 · · ·wn−1) < k. Due to Lemma 8, there is a uniqueF ⊆ V
such that ScF(w) = k. Player 0 wins the playw if F ∈ F0 and Player 1 wins otherwise. The definitions
of strategies, plays, and winning sets can be redefined for the finite games.

Zermelo [9] has shown that a game in which every play is finite is determined. Therefore, it imme-
diately follows that finite Muller games are determined.

Lemma 9. Finite-time Muller games are determined.

In fact, McNaughton considered a slightly different definition of a finite-time Muller game. Rather
than stopping the play when the score of a set reaches the global thresholdk, his version stops the play
when the score of a setF reaches|F|! +1.

Theorem 10([8]). If Wi is the winning region of Player i in a Muller game(G,F0,F1), and W′
i is the

winning region of Player i in McNaughton’s finite-time Muller game, then Wi = W′
i .
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4 Zielonka’s Algorithm For Muller Games

This section presents Zielonka’s algorithm for Muller games [10], a reinterpretation of an earlier algo-
rithm due to McNaughton [7]. Our notation mostly follows [3,4]. We will use the internal structure
of the winning regions as computed by the algorithm to define astrategy that bounds the scores of the
losing player by 2.

As we consider uncolored arenas, we have to deal with Muller games where(F0,F1) is a partition
of 2V ′

for some finite setV ′ ⊇V, as the algorithm makes recursive calls for such games. Thisdoes not
change the semantics of Muller games, as we have Inf(ρ) ⊆V for every infinite playρ .

We begin by introducing Zielonka trees, a representation ofwinning conditions(F0,F1). Given a
family of setsF ⊆ 2V ′

andX ⊆V ′, we defineF ↾ X = {F ∈ F | F ⊆ X}. Given a partition(F0,F1)
of 2V ′

, we define(F0,F1) ↾ X = (F0 ↾ X,F1 ↾ X). Note thatF ↾ X ⊆ F .
Definition 11 (Zielonka tree). For every winning condition(F0,F1) defined over a set V′, its Zielonka
treeZF0,F1 is defined as follows: suppose that V′ ∈ Fi and let V′0,V

′
1, . . . ,V

′
k−1 be the⊆-maximal sets

in F1−i . The treeZF0,F1 consists of a root vertex labelled by V′ with k children which are defined by
Z(F0,F1)↾V′

0
, . . . ,Z(F0,F1)↾V ′

k−1
.

For every Zielonka treeT, we define RtLbl(T) to be the label of the root inT, we define BrnchFctr(T)
to be the number of children that the root has inT, and we define Chld(T, j) for 0≤ j < BrnchFctr(T) to
be thej-th child of the root inT. Here, we assume that the children of every vertex are ordered by some
fixed linear order.

The input of Zielonka’s algorithm (see Algorithm 1) is a finite arenaG with vertex setV and the
Zielonka tree of a partition(F0,F1) of 2V ′

for some finite setV ′ ⊇ V. The algorithm computes the
winning regions of the players by successively removing parts of Player 0’s winning region (the sets
U0,U1,U2, . . .). By doing this, the algorithm computes an internal structure of the winning regions that
will be crucial to proving our results in the next section.

For the rest of this paper we will refer to the sets of verticesand the subtrees ofZF0,F1 as computed
by the algorithm.

Figure 2 depicts the situation in then-th iteration of the algorithm. The vertices inUn−1 have already
been removed and belong toW1−i . Then, all vertices in the(1− i)-attractor ofUn−1 also belong toW1−i .
After removing these vertices from the arena, the algorithmalso removes the vertices in thei-attractor of
RtLbl(Tn). The remaining vertices form a subarena whose vertex set is asubset of RtLbl(Tn). Hence, the
algorithm can recursively compute the winning regionsWn

i in this subarena with Zielonka treeTn. By
construction, the winning regionWn

1−i is also a subset ofW1−i . This is repeated until the setsUn converge
to W1−i . All remaining vertices belong toWi .

Furthermore, we have the following properties that will be used in the next section. Letn denote
the index at which Zielonka’s algorithm terminated. The sets W j

1−i for j ≤ n are obviously disjoint.

However, the setsWn− j
i for j in the rangen− k < j ≤ n might overlap. Playeri can confine a play in

Wn− j
i until Player 1− i decides to leave this set. However, his only choice is to moveto a vertex in

Attr
Xn− j
i (V \RtLbl(Tn− j)), as he can neither move to a vertex inAn = An− j (Xn = Xn− j is a trap for him)

nor to a vertex inWn− j
1−i = /0. This implies that Playeri can force the play to visitV \RtLbl(Tn− j), if

Player 1− i decides to leaveWn− j
1 .

Theorem 12 ([10]). Algorithm 1 terminates with a partition(W0,W1), where Player0 has a winning
strategy for W0 and Player1 has a winning strategy for W1.

Zielonka’s winning strategies are defined inductively: Player 1− i plays an attractor strategy toUn−1

onAn\Un−1 and on eachWn
1−i according to the winning strategy computed recursively. A play consistent
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Algorithm 1 Zielonka(G,ZF0,F1).

i := The index j such that RtLbl(ZF0,F1) ∈ F j

k := BrnchFctr(ZF0,F1)
if The root ofZF0,F1 has no childrenthen

Wi = V; W1−i = /0
return (W0,W1)

end if
U1 := /0; n := 0
repeat

n := n+1
An := AttrV

1−i(Un−1)
Xn := V \An

Tn := Chld(ZF0,F1,n modk)
Yn := Xn\AttrXn

i (V \RtLbl(Tn))
(Wn

0 ,Wn
1 ) := Zielonka(G[Yn],Tn)

Un := An∪Wn
1−i

until Un = Un−1 = · · · = Un−k

Wi = V \Un; W1−i = Un

return (W0,W1)

with this strategy will from some point onwards be consistent with one of the winning strategies for some
Wn

1−i , hence it is winning for Player 1− i.

Playeri plays using a cyclic counterc: supposec = j. In Wn− j
1 , she plays according to the winning

strategy computed recursively. If Player 1− i chooses to leaveWn− j
1 , then she starts playing an attractor

strategy to reachV \RtLbl(Tn− j). Once she has reached this set she incrementsc modulok and begins
again. There are two possibilities for a play consistent with this strategy: if it stays from some point
onwards in someWn− j

i , then it is winning by the inductive hypothesis. Otherwise,it will visit infinitely
many vertices inV \RtLbl(Chld(ZF0,F1, j)) for every j in the range 0≤ j < BrnchFctr(ZF0,F1), which
implies that the infinity set of the play is not a subset of any RtLbl(Chld(ZF0,F1, j)). Hence, it is inFi

and the play is indeed winning for Playeri.
We conclude this section by showing that the winning strategies for Muller games as defined in [10]

do not bound the score of the opponent by a constant.

Un−1

AttrV
1−i(Un−1)

V \RtLbl(Tn)

AttrXn
i (V \RtLbl(Tn))

Wn
0 Wn

1

Figure 2: The sets computed by Zielonka’s algorithm.
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Lemma 13. There exists a family of Muller gamesGn = (Gn,F
n
0 ,F n

1 ) with |Gn| = n+1 and |F n
0 | = 1

such thatMaxScF n
1
(Play(v,σ ,τ)) = n whereσ is Zielonka’s strategy, v∈V, andτ ∈ Π1.

0 1 2 · · · n−1 n

Figure 3: The arenaGn for Lemma 13.

Proof. Let Gn = (Vn,Vn, /0,En) with Vn = {0, . . . ,n}, En = {(i + 1, i) | i < n}∪ {(0,n),(1,n)} (see Fig-
ure 3), andF n

0 = {Vn}. The Zielonka tree for the winning condition(F n
0 ,F n

1 ) has a root labeled byVn

andn+ 1 children that are leaves and are labeled byVn \{i} for everyi ∈Vn. Assume, the children are
ordered as follows:Vn\{0} < · · · < Vn\{n}. Zielonka’s strategy forGn, which depends on the ordering
of the children, can be described as follows. Initialize a counterc := 0 and repeat the following:

1. Use an attractor strategy to move to vertexc.

2. Incrementc modulon+1.

3. Go to 1.

Now assume a play consistent with this strategy has just visited 0. Then, it visits all vertices 1, . . . ,n in
this order by cycling through the loopn, . . . ,1 n times. Hence, the score for the set{1, . . . ,n} is infinitely
oftenn.

By contrast, Player 0 has a positional winning strategy forGn that bounds the opponents scores by 2.
The reason the strategy described above allows a high score for Player 1 is that it ignores the fact that,
while it attracts the play to the vertex 0, it visits all othervertices. In the next section we will construct a
strategy that recognizes such visits. Thereby, the strategy is able to bound the opponent’s scores by 2.

5 Bounding the Scores in a Muller Game

In this section, we prove our main result: the finite-time Muller game with threshold 3 is equivalent to a
Muller game.

Theorem 14. If Wi is the winning region of Player i in a Muller game(G,F0,F1), and W′
i is the winning

region of Player i in the finite-time Muller game(G,F0,F1,3), then Wi = W′
i .

To prove Theorem 14 we use the following approach. If MaxScF1−i (ρ)≤ 2 for an infinite playρ , then
there exists a prefixw of ρ that is winning for Playeri in the finite-time Muller game with threshold 3.
Hence, if a winning strategy for Playeri in the Muller game bounds the scores of her opponent by 2, then
this strategy is also winning for the finite-time Muller gamewith threshold 3. We will show that such a
winning strategy exists. Theorem 14 then follows by determinacy of Muller games. Therefore, the rest
of this section will be dedicated to proving the following lemma.

Lemma 15. Player i has a winning strategyσ for her winning region Wi in a Muller gameG =
(G,F0,F1) such thatMaxScF1−i (Play(v,σ ,τ)) ≤ 2 for every vertex v∈Wi and everyτ ∈ Π1−i .



J. Fearnley & M. Zimmermann 9

We will use the internal structure of the winning regions as computed by Zielonka’s algorithm to
give an inductive proof of this claim. Traditionally, Zielonka’s strategies forget the history of the play
every time they switch between an attractor strategy and a recursively computed winning strategy. For
example, suppose that a playw spends some time inWn− j

1 before Player 0 decides to move out of the set
Wn− j

1 . Player 1 responds to this by playing the attractor strategyto the setV \RtLbl(Tn− j) in order to
reach some vertexv∈V \RtLbl(Tn− j). If v∈Wn− j+1

1 , then Player 1 will play the winning strategy for
the setWn− j+1

1 starting at the vertexv.
Note that the playw may have spent a significant number of steps inWn− j+1

1 (while playing according
to the attractor strategy) before Player 1 begins to play thewinning strategy for that set. Yet in Zielonka’s
strategy, Player 1 will behave as if the first vertex visited in Wn− j+1

1 is v. In other words, the suffix ofw
that is contained inWn− j+1

1 is effectively forgotten by the strategy.
This fact is irrelevant if we are only concerned with constructing a winning strategy, but when we

want to construct strategies that guarantee certain scoresare bounded by 2, the entire suffix ofw must be
retained in this kind of situation. This motivates the following definition of a play. A play begins with a
finite prefix over which the players have no control, and then continues as a normal play would. The key
difference is that the strategies may base their decisions on the properties of the prefix.

Definition 16 (Play). For a non-empty finite path w= w0 · · ·wn and strategiesσ ∈ Πi , τ ∈ Π1−i, we
define the infinite playPlay(w,σ ,τ) = ρ0ρ1ρ2 · · · inductively byρ j = w j for 0≤ j ≤ n and for j> n by

ρ j =

{

σ(ρ0 · · ·ρ j−1) if ρ j−1 ∈Vi

τ(ρ0 · · ·ρ j−1) if ρ j−1 ∈V1−i
.

In fact, the finite paths that are passed to our strategies will not be totally arbitrary. As described
previously, these paths arise out of decisions made before the strategy was recursively applied. Therefore,
we have some control over the form that these paths take. We will construct our strategy so that every
path passed to a recursive strategy has the following property.

Definition 17 (Burden). LetF ⊆ 2V ′
. A finite path w is anF -burden ifMaxScF (w) ≤ 2 and for every

F ∈ F eitherScF(w) = 0 or ScF(w) = 1 andAccF(w) = /0.

We are now ready to prove by induction over the height of the Zielonka tree that both players have
a strategy to bound their opponent’s scores by 2 on their winning regions, even if the play starts with a
burden. We begin by considering the base case, which is when the Zielonka tree is a leaf. For the rest of
this section we will assume RtLbl(ZF0,F1) ∈ F1. Otherwise, swap the roles of Player 0 and 1 below.

Lemma 18. Let (G,F0,F1) be a Muller game with vertex set V such thatZF0,F1 is a leaf. Then,
Player 1 has a strategyτ such thatMaxScF0(Play(wv,σ ,τ)) ≤ 2 for every strategyσ ∈ Π0 and every
F0-burden wv with v∈V.

Proof. As ZF0,F1 is a leaf and RtLbl(ZF0,F1) ∈ F1 by assumption, we haveF0 = /0. Hence, any
strategyτ for Player 1 guarantees MaxScF0(Play(w,σ ,τ)) ≤ 2.

We now move on to the inductive step of the proof. We will give two versions of the inductive step,
one case will be for the setW0 and the other will be for the setW1. We will consider the case for the set
W0 first.

The situation in this case is shown in Figure 4. Our strategy for this case will be the same as
Zielonka’s strategy, but it must also deal with the finite path that has been passed to it. We denote
the attractor strategy for Player 0 onAn \Un−1 by σA

n and we denote the recursively computed strategy
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W1
0 A2\U1 W2

0 A3\U2 W3
0

Figure 4: The structure ofW0. The dashed line indicates a play.

for Player 0 onG[Wn
0 ] asσR

n . We can assume thatσR
n satisfies the inductive hypothesis, which means that

MaxScF1↾Wn
0
(Play(wv,σR

n ,τ)) ≤ 2 for every strategyτ for Player 1 inG[Wn
0 ] and everyF1 ↾ Wn

0 -burden
wvwith v∈Wn

0 . We define the following strategyσ ∗ for W0:

σ ∗(wv) =

{

σR
n (w′v) if v∈Wn

0 andw′ is the longest suffix ofw with Occ(w′) ⊆Wn
0

σA
n (v) if v∈ An\Un−1

.

Our strategy chooses to useσR
n or σA

n precisely when Zielonka’s strategy chooses to do so. The
difference is that our strategy is careful to pass the appropriate finite path to the recursively computed
strategyσR

n .
The setsU j form a sequence of nested traps for Player 1. Therefore, if Player 1 chooses to leave

someU j \U j−1 and Player 0 plays according toσ ∗, the play can never return toU j \U j−1. This implies
that a play that has left someW j

0 will never return. Also, every vertex inA j \U j−1 can be seen at most
once, asσ ∗ behaves like an attractor strategy on these vertices. The next lemma will be used to deal with
cases that arise from these observations.

Lemma 19. Let w be an{F}-burden, let v,v′ ∈ F.

1. Letρ be an infinite play in which v appears at most once. Then,MaxSc{F}(wρ) ≤ 2.

2. Letρ be an infinite play such that v is never visited after v′ was visited for the first time. Then,
MaxSc{F}(wρ) ≤ 2.

Proof. For both statements, it suffices to show that ScF(wx)≤ 2 for every prefixx of ρ . Letw= w0 · · ·wn.
We consider the two cases given by the definition of a burden:

• ScF(w) = 1. As AccF(w) = /0, we have ScF(w0 · · ·wn−1) = 0. Hence, the suffixwk · · ·wn of w
witnessing ScF(w) = 1 is minimal.

1. Aswk · · ·wn is minimal and asv occurs at most once inρ , we conclude that the score forF
increases at most once after the prefixw.

2. As the suffix is minimal, the score ofF can increase to 2 only by or after visitingv′ for the
first time. Butv is then never visited again. Hence, the score forF is bounded by 2.

• ScF(w) = 0. Lety be the shortest prefix ofρ such that ScF(wy) = 1. If such a prefix does not exist,
then we are done.

1. Otherwise,y−1ρ does containv at most once. Hence, the score forF increases at most once
after the prefixwy.

2. Again, if such a prefix exists, then the score forF can reach 2 only by or after visitingv′ for
the first time afterwy. But v is then never visited again. Hence, the score forF is bounded
by 2.
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We are now able to prove the inductive step for Player 0, by applying the the observations formalized
in Lemma 19 to the structure ofW0.

Lemma 20. We haveMaxScF1↾W0(Play(wv,σ ∗,τ)) ≤ 2 for every strategyτ ∈ Π1 and everyF1 ↾ W0-
burden wv with v∈W0.

Proof. Let ρ = ρ0ρ1ρ2 · · · = w−1Play(wv,σ ∗,τ). Note thatρ0 = v, which is the first vertex where the
players get to choose a successor. Assumeρ enters someAn\Un−1. Then, it will afterwards enterUn−1

while seeing every vertex inAn\Un−1 at most once, asAn is an attractor andσ ∗ behaves like an attractor
strategy onAn\Un−1. Now assumeρ enters someWn

0 . Then, it will stay inWn
0 until Player 1 decides to

leave. However, his only choices are vertices inAn−1, asWn
0 is a trap for him inV \An−1. Hence, once a

setAn\Un−1 or Wn
0 is left, it will never be entered again.

As wρ0 is anF1 ↾ W1-burden, it suffices to show ScF(wρ0 · · ·ρn) ≤ 2 for everyn > 0 and every
F ∈F1 ↾W1. We will consider several cases forF: remember that either ScF(wρ0) = 0 or ScF(wρ0) = 1
and AccF(wρ0) = /0.

• F ∩
(⋃

n≥1(An\Un−1)
)
6= /0: Every vertex in

⋃

n≥1(An\Un−1) occurs at most once inρ . Hence,
ScF(wρ0 · · ·ρn) ≤ 2 for everyn > 0 by Lemma 19.1.

• F ⊆
⋃

n≥1Wn
0 with F ∩Wi

0 6= /0 andF ∩W j
0 6= /0 for i < j: ρ cannot visitWj after it has visitedWi .

Thus, ScF(wρ0 · · ·ρn) ≤ 2 for everyn > 0 by Lemma 19.2.

• F ⊆W j
0 for some j: If ρ never visitsW j

0 , then ScF(wρ0 · · ·ρn) = 0 for everyn > 0. So, assumeρ
entersW j

0 at positionρm for somem≥ 0.

Supposem= 0: wρ0 is also anF1 ↾ W j
0 -burden andwρ0ρ1ρ2 · · · is played according toσR

j until

Player 1 decides to leaveW j
0 at some positionp > m. Applying the inductive hypothesis yields

thatσR
j guarantees ScF(wρ0 · · ·ρn) ≤ 2 for everyn in the rangem≤ n≤ p. Should the play leave

W j
0 , then ScF is reset to 0 and stays 0, asW j

0 cannot be visited again. If Player 1 never leavesW j
0 ,

then the scores are bounded by 2 throughout the whole play.

If m> 0, then ScF(wρ0 · · ·ρn) = 0 for everyn < m. Also, the playρmρm+1ρm+2 · · · in W j
0 starts

with theF1 ↾W j
0 -burdenwρ0 · · ·ρm, (asρm−1 /∈W j

0 ) and the inductive hypothesis onσR
j guarantees

ScF(wρ0 · · ·ρn) ≤ 2 until W j
0 is left, from which point onwards ScF is always 0.

We now turn our attention to the strategy for Player 1. For therest of this sectionn will be the index at
which Zielonka’s algorithm terminated, andk = BrnchFctr(ZF0,F1). The situation for Player 1 consists
of k overlapping instances, one for each child, of the situationdepicted in Figure 5.

Wn− j
1

Attr
Xn− j

1 (V \RtLbl(Tn− j))

(V \RtLbl(Tn− j))∩Xn− j

Figure 5: The structure ofW1 with respect toTn− j . The dashed line indicates a part of a play between
two change points.



12 Playing Muller Games in a Hurry

For the sake of convenience we defineZ j = Xj \RtLbl(Tj) for every j in the rangen−k < j ≤ n. For

every j in the rangen−k < j ≤ n, we have an attractor strategy for Player 1 on Attr
Xj

1 (Z j)\Z j which we
call τA

j , and we have a recursively computed winning strategyτR
j for Player 1 onG[W j

1 ]. Once again, we
can assume the inductive hypothesis holds for the strategyτR

j , which means that MaxSc
F0↾W

j
1
(Play(wv,σ ,τR

j )≤

2 for every strategyσ of Player 0 inG[W j
1 ] and everyF0 ↾ W j

1 -burdenwvwith v∈W j
1 .

Our strategy improves the strategy given by Zielonka in the sense that it uses a different method for
choosing a new child of the root. Zielonka’s strategy works through the children in a cyclic order, which
means that when the play enters the setV \RtLbl(Tj) the strategy will then move on to the childTj+1,
and begin playing eitherτA

j+1 or τR
j+1. By contrast, we will use a more careful method for picking the

next child of the root that will be considered.
Our method for picking the next child will make its decision based on which sets of the opponent

have either non-zero score or a non-empty accumulator. For this purpose, we define the indicator function
of a play Ind:V+ → 2V as

Ind(w) =
⋃

F∈F0 :
ScF (w)>0

F ∪
⋃

F∈F0 :
AccF (w) 6= /0

AccF(w) .

Recall that Lemma 7 implies that the sets we are considering form a chain in the subset relation.
This implies that the indicator function always gives some subset of a set that belongs to the opponent.
Therefore, we can argue that there must always exist a child of the root whose label contains the indicator
set.

Lemma 21. For every w, there is some j in the range n−k < j ≤ n such thatInd(w) ⊆ RtLbl(Tj).

Proof. Lemma 7 implies that there is a maximal setG such that Ind(w) = G, with either ScG(w) > 0 or
AccF(w) = G for someF ∈ F0 with G⊆ F. Hence, Ind(w) ⊆ F for someF ∈ F0, and, by definition of
ZF0,F1, there is some child of the root labeled by RtLbl(Tj) such thatF ⊆ RtLbl(Tj).

When a new child must be chosen, our strategy will choose somechild whose label contains the value
of the indicator function for the play up to that point. It is also critically important that this condition is
used when picking the child in the first step. This is the part of the strategy where the finite initial path
can have an effect on the decisions that the strategy makes.

We can now formally define this strategy. We begin by defining an auxiliary function that specifies
which child the strategy is currently considering. We definec : W∗

1 → {n−k+1, . . . ,n,⊥} asc(ε) = ⊥
and

c(wv) =







c(w) if v∈ RtLbl(Tc(w))

j if v /∈ RtLbl(Tc(w)), Ind(wv) 6= /0 and j minimal with Ind(wv) ⊆ RtLbl(Tj)

j if v /∈ RtLbl(Tc(w)), Ind(wv) = /0 and j minimal with v∈ RtLbl(Tj)

⊥ if v 6∈
⋃

n−k< j≤nRtLbl(Tj)

.

Now we can defineτ∗ for W1 as

τ(wv)∗ =







τR
j (wv) if c(wv) = j,v∈W j

1 andw′ is the longest suffix ofw with Occ(w′) ⊆W j
1

τA
j (v) if c(wv) = j,v∈ RtLbl(Tj)\W j

1

x if c(wv) = ⊥ wherex∈W1 with (v,x) ∈ E

.
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We will now prove that this strategy has the required properties. Our proof will use the concept of
a change point, which is a position in a play where thec function changes. More formally, suppose that
ρ = ρ0ρ1ρ2 · · ·= w−1Play(wv,σ ,τ∗) for someF0-burdenwvwith v∈W1 andσ ∈ Π0. Note thatρ0 = v,
which is the first vertex at which the players get to choose thesuccessor. We say that a positionr of ρ is
a change point, ifr = 0 or if c(wρ0 · · ·ρr−1) 6= c(wρ0 · · ·ρr).

Let x be a finite prefix of an infinite play that is consistent withτ such that the last position inx is a
change point. Moreover, assume thatx satisfies the burden property. Our strategy will pick some index j
such that Ind(x) ⊆ RtLbl(Tj). The play will then remain in the setW j

1 until Player 0 chooses to leave the
setW j

1 , at which point the strategy attracts to the setV \RtLbl(Tj). Once such a vertex is reached, the
scores for all setsF ∈ F0 with ScF(x) > 0 are reset to 0 and the accumulator forF is empty for every
F ∈ F0 with AccF(x) 6= /0. While attracting the play toV \RtLbl(Tj) the scores for other setsF ∈ F0

might rise and the accumulators fill up. However, as every vertex in the attractor is seen at most one, we
are able to show the following: if the play up to a change pointis aF0-burden, then the play up to the
next change point is also a burden. As aF0-burden bounds the scores of Player 0 be 2, this suffices to
prove thatτ∗ bounds Player 0’s scores by 2.

Lemma 22. Let ρ be as above and let r< s be two change-points such that there exists no change point
t with r < t < s. If wρ0 · · ·ρr is anF0 ↾ W1-burden, then so is wρ0 · · ·ρs.

Proof. From the definition of a change point we getc(ρ0 · · ·ρt) = c(ρ0 · · ·ρr) for every t in the range
r < t < s.

If c(wρ0 · · ·ρr) = ⊥, thenρt 6∈
⋃

n−k< j≤nRtLbl(Tj), which impliesρt /∈ F for everyF ∈ F0. Hence,
we have ScF(wρ0 · · ·ρt) = 0 for every r ≤ t < s and everyF ∈ F0. Furthermore, we have either
ScF(wρ0 · · ·ρs) = 0, if F 6= {ρs} and ScF(wρ0 · · ·ρs) = 1 and AccF(wρ0 · · ·ρs) = /0 otherwise.

Now, assumec(wρ0 · · ·ρr) = j for some j in the rangen− k < j ≤ n. Then, there exists anu in the
ranger ≤ u≤ ssuch thatρr · · ·ρu−1 is inW j

1 , ρu · · ·ρs−1 is in Attr
Xj

1 (Z j)\Z j , and we haveρs /∈RtLbl(Tj).
Note that both parts could be empty. The situation is depicted in Figure 6 (cf. also Figure 5).

ρ
r su

W j
1

︷ ︸︸ ︷
Attr

Xj
1 (Z j )\Z j

︷ ︸︸ ︷
/∈ RtLbl(Tj)

Figure 6: A part of a play between two change points.

Furthermore, at positionsi in the ranger ≤ i ≤ u−1, Player 1 plays according toτR
j and positionsi

in the rangeu≤ i ≤ s−1, he plays according toτA
j . This implies that every vertex in Attr

Xj

1 (Z j) \Z j is
seen at most once in betweenρr andρs, i.e., in the infixρu · · ·ρs−1.

Finally, let Ind(wρ0 · · ·ρr) = G. If G 6= /0, thenG⊆ RtLbl(Tj); otherwise,ρr ∈ RtLbl(Tj), both by
definition ofc.

It suffices to show for everyF ∈ F0 ↾ W1:

1. If ScF(wρ0 · · ·ρr) = 1 and AccF(wρ0 · · ·ρr) = /0, then ScF(wρ0 · · ·ρt) ≤ 2 for all r < t < s and
ScF(wρ0 · · ·ρs) = 0.

2. If ScF(wρ0 · · ·ρr) = 0, then ScF(wρ0 · · ·ρt)≤ 2 for all r < t < sand either ScF(wρ0 · · ·ρs) = 1 and
AccF(wρ0 · · ·ρs) = /0 or ScF(wρ0 · · ·ρs) = 0.

1: As /0 6= F ⊆ Ind(wρ0 · · ·ρr), we haveF ⊆ RtLbl(Tj) and hence ScF(wρ0 · · ·ρs) = 0, asρs ∈ Z j =
Xj \RtLbl(Tj). It remains to show ScF(wρ0 · · ·ρt) ≤ 2 for all r < t < s. We consider several cases forF:
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• F ∩Z j 6= /0: as the vertices inZ j are not visited byρr · · ·ρs−1, the score ofF cannot increase in this
interval.

• F ∩Attr
Xj

1 (Z j) \ Z j 6= /0: every vertex in the attractor is seen at most once. Hence,we obtain
ScF(wρ0 · · ·ρt) ≤ 2 for all r < t < sby Lemma 19.1.

• F ⊆ W j
1 : If ρr ∈ Attr

Xj

1 (Z j) \Z j , then ScF is reset to 0 atρr and stays 0 untilρs, hence, we have
ScF(wρ0 · · ·ρt) ≤ 2 for all r < t < s.

So, supposeρr ∈W j
1 . As wρ0 · · ·ρr is also anF0 ↾ W j

1 - burden and asF ∈ F0 ↾ W j
1 , the inductive

hypothesis onτ j
1 guarantees ScF(wρ0 · · ·ρt) ≤ 2 for everyr < t < u. As ρt /∈W j

1 for everyt in the
rangeu≤ t < s, we also have ScF(wρ0 · · ·ρt) = 0 for these positions.

2: Let G = AccF(wρ0 · · ·ρr) ⊆ Ind(wρ0 · · ·ρr). Note thatG ⊆ RtLbl(Tj), but it could be the case that
F 6⊆ RtLbl(Tj). Again, we consider several cases forF :

• If ρs∈ F, thenρs /∈AccF(wρ0 · · ·ρr), as AccF(wρ0 · · ·ρr)⊆RtLbl(Tj) andρs /∈RtLbl(Tj). Hence,
ScF stays 0 at every position betweenr and (excluding)s, as the vertexρs is never visited. If
ScF(wρ0 · · ·ρs) = 1, then AccF(wρ0 · · ·ρs) = /0; otherwise ScF is 0 at positions, too.

• If ρs /∈ F, then ScF(wρ0 · · ·ρs) = 0. To bound the score between the positionsr ands by 2, we
have to consider three subcases: eitherF ∩Z j 6= /0, F ∩Attr

Xj

1 (Z j) \Z j 6= /0 or F ⊆W j
1 . All cases

can be solved by analogous reasoning to these cases in 1.

Now, to prove the inductive step forW1, we simply need to observe that the finite path ending at the
first change point is a burden by assumption.

Lemma 23. We haveMaxScF0↾W1(Play(wv,σ ,τ∗)) ≤ 2 for every strategyσ ∈ Π0 and everyF0 ↾ W1-
burden wv with v∈W1.

Proof. Let ρ = w−1Play(wv,σ ,τ∗). If ρ contains infinitely many change points, then Lemma 22 implies
MaxScF0(Play(wv,σ ,τ∗)) ≤ 2 as the play starts with a burden, i.e., there scores are bounded by 2 inwv,
and in between any two change points, the scores are bounded by 2 as well. Ifρ contains only finitely
many change points, then Lemma 22 implies that the scores of Player 0 up to the last change point are
bounded by 2. From that point onwards, Play(wv,σ ,τ∗) is consistent with someτ j

1, and the play up to
that point is aF1 ↾ W j

1 -burden, as it is anF1 ↾ W1-burden due to Lemma 22. Hence, the scores for every
setF ∈F1 ↾W j

1 are bounded by 2 from that point onwards, by the inductive hypothesis onτ j
1. The scores

of everyF ∈ F1 ↾ W1 with F 6⊆W j
1 are bounded by 1, as vertices not inW j

1 are no longer visited.

Finally, we can prove Lemma 15, which also completes the proof of Theorem 14.

Proof. Theorem 12 yields that algorithm 1 is correct, i.e. the setsWi returned are indeed the winning
regions of the players. We prove the following stronger statement by induction over the height ofZF0,F1:
let V be the vertex set ofG. Player i has a winning strategyσ for her winning region Wi in G such that
MaxScF1−i↾V(wv,σ ,τ) ≤ 2 for every strategyτ ∈ Π1−i and everyF1−i ↾ V-burden wv in G.This implies
Lemma 15, as the finite playv for everyv∈Wi is anF1−i ↾ V-burden.

For the induction start, apply Lemma 18. In the induction step, use the strategies obtained from the
induction hypothesis to defineσ ∗ andτ∗ as above and apply Lemma 20 respectively Lemma 23. Both
strategies are winning, as they bound the scores of the opponent by 2.
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6 Conclusion

We have presented a criterion to stop plays in a Muller game after a finite amount of time that preserves
winning regions. Our bound 3|G| on the length of a play improves the bound|G|! + 1 obtained by a
reduction to parity games. Furthermore, our techniques show that the winning player can bound the
scores of the opponent by 2 and that this bound 2 is tight.

However, it remains open whether a play can also be stopped after a score of 2 is reached. As the
winning player cannot always avoid a score of 2 for the opponent, one has to show that the winning
player always reaches a score of 2 for one of her sets before the opponent reaches score 2 for one of
his sets. Our approach does not seem to be suitable for this, as the notion of a burden is not sufficient
for this goal. Furthermore, it is unclear how to strengthen the definition while still retaining Lemmata
corresponding to Lemma 20 and Lemma 23.

A finite-time Muller game with thresholdk is a reachability game (in the unraveling of the original
arena up to depth at mostk|G|), which can be solved with simple algorithms. Another interesting direc-
tion for research is to find a construction which turns a winning strategy for a finite-time Muller game
with threshold 3 (or 2, if it is equivalent) into a finite-state strategy for the original Muller game. It is
conceivable that such a construction would yield memory structures that are optimized for a given arena,
something which does not hold for the LAR respectively Zielonka tree structures.
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[3] Stefan Dziembowski, Marcin Jurdziński & Igor Walukiewicz (1997):How Much Memory is Needed to Win
Infinite Games?In: LICS, pp. 99–110. Available athttp://www.computer.org/proceedings/lics/
7925/79250099abs.htm.
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