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Abstract We determine the complexity of counting models of bounded size
of specifications expressed in Linear-time Temporal Logic.

Counting word-models is #P-complete, if the bound is given in unary,
and as hard as counting accepting runs of nondeterministic polynomial space
Turing machines, if the bound is given in binary.

Counting tree-models is as hard as counting accepting runs of nondeter-
ministic exponential time Turing machines, if the bound is given in unary. For
a binary encoding of the bound, the problem is at least as hard as counting ac-
cepting runs of nondeterministic exponential space Turing machines, and not
harder than counting accepting runs of nondeterministic doubly-exponential
time Turing machines.

Finally, counting arbitrary transition systems satisfying a formula is #P-
hard and not harder than counting accepting runs of nondeterministic poly-
nomial time Turing machines with a PSPACE oracle, if the bound is given in
unary. If the bound is given in binary, then counting arbitrary models is as
hard as counting accepting runs of nondeterministic exponential time Turing
machines.

Keywords Model Counting · Temporal Logic · Model Checking · Counting
Complexity

1 Introduction

Model counting, the problem of computing the number of models of a logical
formula, generalizes the satisfiability problem and has diverse applications:

This work was partially supported by the German Research Foundation (DFG) by the
Transregional Collaborative Research Center “AVACS” (SFB/TR 14) and by the project
“TriCS” (ZI 1516/1–1) as well as by the Deutsche Telekom Foundation.

Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany
E-mail: {torfah, zimmermann}@react.uni-saarland.de



2 Hazem Torfah, Martin Zimmermann

many probabilistic inference problems, such as Bayesian net reasoning [15], and
planning problems, such as computing the robustness of plans in incomplete
domains [17], can be formulated as model counting problems of propositional
logic. Model counting for Linear-time Temporal Logic (LTL) has been recently
introduced in [9]. LTL is the most commonly used specification logic for reac-
tive systems [18] and the standard input language for model checking [3,6] and
synthesis tools [4,5,7]. LTL model counting asks for computing the number
of transition systems that satisfy a given LTL formula. As such a formula has
either zero or infinitely many models one considers models of bounded size: for
a formula ϕ and a bound k, the problem is to count the number of models of
ϕ of size k. This is motivated by applications like bounded model checking [3]
and bounded synthesis [8], where one looks for short error paths and small im-
plementations, respectively, by iteratively increasing a bound on the size of the
model. Just like propositional model counting generalizes satisfiability, by con-
sidering two types of bounded models, namely, word-models (of length k) and
tree-models (of height k), the authors of [9] introduced quantitative extensions
of model checking and synthesis.

Word-models are ultimately periodic words of the form u.vω of length k =
|u.v|, which are used to model computations of a system. Counting word-
models can be used in model checking to determine not only the existence
of computations that violate the specification, but also the number of such
violations. To this end, one turns the model checking problem into an LTL
satisfiability problem by encoding the transition system and the negation of
the specification into a single LTL formula. Its models represent erroneous
computations of the system, i.e., counting them gives a quantitative notion of
satisfaction.

Tree-models are finite trees (of fixed out-degree) of height k with back-
edges at the leaves, i.e., tree-models can be exponentially-sized in the bound.
They are used to describe implementations of the input-output behavior of
reactive systems (see, e.g., [8]), namely the edges of a tree-model represent the
input behavior of the environment and the nodes represent the corresponding
output behavior of the system. In synthesis, counting tree-models can be used
to determine not only the existence of an implementation that satisfies the
specification, but also the number of such implementations. This number is
a helpful metric to understand how much room for implementation choices is
left by a given specification, and to estimate the impact of new requirements
on the remaining design space.

For safety LTL specifications [20], algorithms solving the word- and the
tree-model counting problem were presented in [9]. The running time of the
algorithms is linear in the bound and doubly-exponential respectively triply-
exponential in the length of the formula. The high complexity in the length of
formula is, however, not a major concern in practice, since specifications are
typically small while models are large (cf. the state-space explosion problem).

Here, we complement these algorithms by analyzing the computational
complexity of the model counting problems for full LTL by placing the prob-
lems into counting complexity classes. These classes are based on counting ac-
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cepting runs of nondeterministic Turing machines. In his seminal paper on the
complexity of computing the permanent [22], Valiant introduced the class #P
of counting problems associated with counting accepting runs of nondetermin-
istic polynomial time Turing machines: a function f : Σ∗ → N is in #P if there
is a nondeterministic polynomial time Turing machine M such that f(w) is
equal to the number of accepting runs of M on w. Furthermore, for a class C
of decision problems, he defined #oC to be the class of counting problems
induced by counting accepting runs of a nondeterministic polynomial time
Turing machine with an oracle from C.1

A nondeterministic polynomial time Turing machine M (with or without
oracle) has at most O(2p(n)) different runs on inputs of length n for some poly-
nomial p. This means that there is an exponential upper bound on functions
in #P and in #oC for every C. However, an LTL tautology has exponentially
many word-models of length k and more than doubly-exponentially many tree-
models of height k. This means, that no function in any of the counting classes
defined above can capture all the counting problems for LTL, in particular if
the bound k is encoded in binary.

To overcome this, we consider counting classes obtained by lifting the re-
striction on considering only nondeterministic polynomial time (oracle) ma-
chines: a function f : Σ∗ → N is in #Pspace, if there is a nondeterministic
polynomial space Turing machine M such that f(w) is equal to the num-
ber of accepting runs of M on w.2 The classes #Exptime, #Expspace, and
#2Exptime are defined analogously.3 Some of these classes appeared in the
literature, e.g., #Pspace was shown to be equal to FPspace [13] (if the output
is encoded in binary). Also, computing a specific entry of a matrix power An

is in #Pspace, if A is represented succinctly and n in binary [16]. Another
problem in #Pspace is counting the number of Skolem functions satisfying a
QBF formula [2]. Finally, counting self-avoiding walks in succinctly represented
hypercubes is complete for #Exptime [14] under right-bit-shift reductions.

We place the LTL model counting problems in these classes. Unsurpris-
ingly, the encoding of the bound k is crucial: for unary bounds, we show
counting word-models to be #P-complete and show counting tree-models to
be #Exptime-complete. For binary bounds, the word-model counting prob-
lem is #Pspace-complete and counting tree-models is #Expspace-hard and
in #2Exptime. Our proofs of these results also have implications for the gen-
eral model counting problem for LTL, where one is interested in computing
the number of transition systems of a given size that satisfy a given formula.
We show this problem to be #P-hard and in #oPspace for unary bounds and
#Exptime-complete for binary bounds.

1 Valiant originally used the notation #C, but we added the subscript to distinguish the
oracle-based classes from the classes introduced below.

2 In an unpublished note [23], Williams has another definition of #Pspace which he shows
to be equal to #P.

3 Following the “satanic” [10] tradition of naming counting classes, we drop the N (stand-
ing for nondeterministic) in the names of the classes, just as it is done for #P.
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Our upper bounds hold for full LTL while the formulas for the lower bounds
define safety properties (using only the temporal operators next and release).
Thus, the lower bounds already hold for the fragment considered in [9].

The algorithms we present to prove the upper bounds are not practical
since they are based on guessing a word (tree) and then model checking it.
Hence, a deterministic variant of these algorithms would enumerate all words
(trees) of length (height) k and then run a model checking algorithm on them.
In particular, the running time of the algorithms is exponential (or worse) in
the bound k, which is in stark contrast to the practical algorithms [9]. Our
lower bounds are reductions from the problem of counting accepting runs of
a Turing machine. For the word counting problem, the reductions are slight
strengthenings of the reduction proving Pspace-hardness of the LTL model
checking problem [19]. However, the reductions in the tree case are more in-
volved (and to the best of our knowledge new), since we have to deal with
exponential time respectively exponential space Turing machines. The main
technical difficulties are to encode runs of exponential length and with config-
urations of exponential size into tree-models of “small” LTL formulas and to
ensure that there is a one-to-one correspondence between accepting runs and
models of the constructed formula.

This paper is an extended version of the conference publication [21], and
contains all proofs omitted there due to space restrictions and a new section
about the general model counting problem.

2 Preliminaries

We represent models as labeled transition systems. For a given finite set Υ of
directions and a finite set Σ of labels, a Σ-labeled Υ -transition system is a
tuple S = (S, s0, τ, o), consisting of a finite set of states S, an initial state
s0 ∈ S, a transition function τ : S×Υ → S, and a labeling function o : S → Σ.
A path in S is a sequence π : N→ S×Υ of states and directions that follows the
transition function, i.e., for all i ∈ N if π(i) = (si, ei) and π(i+1) = (si+1, ei+1),
then si+1 = τ(si, ei). We call the path initial if it starts with the initial state:
π(0) = (s0, e) for some e ∈ Υ .

We use Linear-time Temporal Logic (LTL) [18], with the usual temporal
operators Next , Until U , Release V, and the derived operators Eventually
and Globally . We use i to refer to i nested next operators. LTL formulas
are defined over a set of atomic propositions AP = I ∪O, which is partitioned
into a set I of input propositions and a set O of output propositions. We
denote the satisfaction of an LTL formula ϕ by an infinite sequence σ : N →
2AP of valuations of the atomic propositions by σ |= ϕ. A 2O-labeled 2I -
transition system S = (S, s0, τ, o) satisfies ϕ, if for every initial path π the
sequence σπ : i 7→ o(π(i)), where o(s, e) = (o(s) ∪ e), satisfies ϕ. Then S is a
model of ϕ.

A k-word-model of an LTL formula ϕ over AP is a pair (u, v) of finite
words over 2AP such that |u.v| = k and u.vω |= ϕ. We call u the prefix and v
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Fig. 1 A word-model of length three, a tree-model of height one and a graph-model of size
three for the formula (b→ a) .

the period of (u, v). Note that an ultimately periodic word might be induced
by more than one k-word-model, i.e., {a}ω is induced by the 2-word-models
({a}, {a}) and (ε, {a}{a}).

A k-tree-model of an LTL formula ϕ over AP = I ∪ O is a 2O-labeled 2I -
transition system that forms a tree (whose root is the initial state) of height k
with added back-edges from the leaves (for each leaf and direction, there is an
edge to a state on the branch leading to the leaf) that satisfies ϕ. For the sake
of simplicity, we refer to trees with back-edges as trees. As for word-models,
two different tree-models might induce the same infinite unrolled tree.

Finally, a k-graph-model of an LTL formula ϕ over AP = I ∪ O is a 2O-
labeled 2I -transition system with k states that satisfies ϕ, where every state
is reachable from the initial one (this avoids counting graph-models with un-
reachable states, which are already accounted for for some smaller k′).

Figure 1 shows a word-model of length three, a tree-model of height one
and a graph-model of size three for the formula (b→ a).

Fix AP = I ∪ O. For a formula ϕ and k ∈ N, the k-word counting prob-
lem asks to compute the number of k-word-models of ϕ over AP. The k-tree
counting problem and the k-graph counting problem are defined analogously,
but only count k-tree-models and k-graph-models, respectively, up to isomor-
phism.

3 Counting Complexity Classes

We use nondeterministic Turing machines with or without oracle access to de-
fine counting complexity classes, which we assume (without loss of generality)
to terminate on every input. For background on (oracle) Turing machines and
counting complexity we refer to [1].

A function f : Σ∗ → N is in the class #P [22] if there is a nondeterministic
polynomial time Turing machine M such that f(w) is equal to the number
of accepting runs of M on w. Similarly, for a given complexity class C of
decision problems, a function f is in #oC [22,10] if there is a nondeterministic
polynomial time oracle Turing machine M with oracle in C such that f(w)
is equal to the number of accepting runs of M on w. As a nondeterministic
polynomial time Turing machine M (with or without oracle) has at most
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O(2p(n)) runs on inputs of length n for some polynomial p (that only depends
on M), we obtain an exponential upper bound on functions in #P and #oC
for every C, which explains the need for larger counting classes to characterize
the model counting problems for LTL.

A function f : Σ∗ → N is in #Pspace, if there is a nondeterministic polyno-
mial space Turing machineM such that f(w) is equal to the number of accept-
ing runs of M on w. The classes #Exptime, #Expspace, and #2Exptime
are defined by counting accepting runs of nondeterministic exponential time,
exponential space, and doubly-exponential time machines.

Proposition 1

1. #P ⊆ #oPspace ⊆ #oExptime ⊆ #oNExptime ⊆ #oExpspace ⊆
#o2Exptime.

2. #Pspace ⊆ #Exptime ( #Expspace ⊆ #2Exptime.

3. f ∈ #Exptime implies f(w) ∈ O(22
p(|w|)

) for a polynomial p.

4. f ∈ #2Exptime implies f(w) ∈ O(22
2p(|w|)

) for a polynomial p.

5. w 7→ 22
|w|

is in #Pspace

6. w 7→ 22
2|w|

is in #Expspace.

We continue by relating the oracle-based and the generalized classes in-
troduced above, e.g., we show that #oPspace is a strict subset of #Pspace.
Recall that #oPspace is based on nondeterministic polynomial time Turing
machines with access to a Pspace oracle. Such an oracle can be decided by a
deterministic polynomial space Turing machine. The determinism is crucial for
obtaining our result. On the other hand, the class #Pspace is based on non-
deterministic polynomial space Turing machines, which are able to simulate
the machine deciding the oracle.

Lemma 1 #oC ( #C for C ∈ {Pspace,Exptime,Expspace, 2Exptime}.

Proof We show #oPspace ( #Pspace, the other claims are proven analo-
gously. Let f ∈ #oPspace, i.e., there is a nondeterministic polynomial time
Turing machine M with oracle A ∈ Pspace such that f(w) is equal to
the number of accepting runs of M on w. Note that all oracle queries are
polynomially-sized in the length |w| of the input to M, since M is polyno-
mially time-bounded. Hence, in nondeterministic polynomial space one can
simulateM and evaluate the oracle calls explicitly by running a deterministic
machine deciding A in polynomial space. Since the oracle queries are evaluated
deterministically, the simulation has as many accepting runs asM has. Thus,
f ∈ #Pspace.

Now, consider the function |w| 7→ 22
|w|

, which is in #Pspace, but not in
#oPspace. ut

The inclusions between the complexity classes stated in Proposition 1 and
Lemma 1 are visualized in Figure 2.
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Fig. 2 Inclusions between the complexity classes.

We use parsimonious reductions to define hardness and completeness, i.e.,
the most restrictive notion of reduction for counting problems. A counting
problem f is #P-hard, if for every f ′ ∈ #P there is a polynomial time com-
putable function r such that f ′(x) = f(r(x)) for all inputs x. In particular,
if f ′ is induced by counting the accepting runs of M, then r depends on M
(and possibly on its time-bound p(n)). Furthermore, f is #P-complete, if f
is #P-hard and f ∈ #P. Hardness and completeness for the other classes are
defined analogously.

4 Counting Word-Models

In this section, we provide matching lower and upper bounds for the complexity
of counting k-word-models of an LTL specification.

Our hardness proofs are based on constructing an LTL formula ϕwM for a
given Turing machine M and an input w that encodes the accepting runs of
M on w. Constructing such an LTL formula is straightforward and can be
done in polynomial time for Turing machines with polynomially-sized configu-
rations [19]. However, the challenge is to construct ϕwM such that the number
of accepting runs on w is equal to the number of k-word-models of ϕwM for a
fixed bound k. To this end, we have to enforce that each accepting run is rep-
resented by a unique k-word-model, i.e., by a unique prefix and period of total
length k. We choose k such that a run on w of maximal length can be encoded
in k − 1 symbols and define ϕwM such that it has only k-word-models whose
period has length one. If a run of M is shorter than the maximal-length run
we repeat the final configuration until reaching the maximal length, which is
achieved by accompanying the configurations in the encoding with consecutive
id’s.

For the upper bounds we show that there are appropriate nondeterministic
Turing machines that guess an ultimately-periodic word and model check it
against ϕ, i.e., the number of accepting runs on k and ϕ is equal to the number
of k-word-models of ϕ.

4.1 The Case of Unary Encodings.

First, we consider the word-model counting problem for unary bounds: the
problem is #P-complete. We start by proving the upper bound.

Lemma 2 The following problem is in #P: Given an LTL formula ϕ and a
bound k (in unary), how many k-word-models does ϕ have?
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Proof To show that the problem is in #P we define a nondeterministic poly-
nomial time Turing machineM as follows. The machineM guesses a prefix u
and a period v of an ultimately periodic word u.vω with |u.v| = k, and checks
deterministically in polynomial time [12], whether u.vω satisfies ϕ. Hence, for
each k-word-model (u, v) of ϕ there is exactly one accepting run of M. Thus,
counting the k-word-models of ϕ can be done by counting the accepting runs
of M on the input (k, ϕ). ut

The matching #P lower bound follows trivially from the #P-hardness of
the model counting problem for propositional formulas [22] by interpreting
variables as atomic propositions and considering models of length one. Alto-
gether, we obtain the following result.

Theorem 1 The following problem is #P-complete: Given an LTL formula ϕ
and a bound k (in unary), how many k-word-models does ϕ have?

4.2 The Case of Binary Encodings.

Now, we consider the word counting problem for binary bounds. As the input
is more compact, we have to deal with a larger complexity class, i.e., we show
the problem to be complete for #Pspace. We begin with the upper bound.

Lemma 3 The following problem is in #Pspace: Given an LTL formula ϕ
and a bound k (in binary), how many k-word-models does ϕ have?

Proof For the proof of the upper bound we cannot just guess a k-model in
polynomial space as in Lemma 2, since the bound k is encoded in binary. In-
stead, we guess and verify the model on-the-fly relying on standard techniques
for LTL model checking.

Formally, we construct a nondeterministic polynomial space Turing ma-
chineM which guesses a k-word-model (u, v) by guessing u$v = w(0) · · ·w(i−
1)$ w(i) · · ·w(k − 1) symbol by symbol in a backwards fashion. Here, $ is a
fresh symbol to denote the beginning of the period. To meet the space require-
ment, M only stores the currently guessed symbol w(j), discards previously
guessed symbols, and uses a binary counter to guess exactly k symbols.

To verify whether u.vω satisfies ϕ, M also creates for every j in the
range 0 ≤ j < k a set Cj of subformulas of ϕ with the intention of Cj con-
taining exactly the subformulas which are satisfied in position j of u.vω. Due
to space requirements, M only stores the set Ck−1 as well as the sets Cj and
Cj+1, if w(j) is the currently guessed symbol. The set Ck−1 is guessed by M
and the sets Cj for j < k − 1 are uniquely determined by the following rules:

– The membership of atomic propositions in Cj is determined by w(j), i.e.,
Cj ∩AP = w(j).

– Conjunctions, disjunctions, and negations can be checked locally for con-
sistency, e.g., ¬ψ ∈ Cj if and only if ψ /∈ Cj .
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– -formulas are propagated backwards using the following equivalence:
ψ ∈ Cj if and only if ψ ∈ Cj+1 (recall that M stores Cj and Cj+1).

– U-formulas are propagated backwards using the following equivalence:
ψ0Uψ1 ∈ Cj if and only if ψ1 ∈ Cj or ψ0 ∈ Cj and ψ0Uψ1 ∈ Cj+1.

– V-formulas can be rewritten into U-formulas.

Once M has guessed the complete period v = w(i) · · ·w(k − 1) it also checks
that the guess of Ck−1 is correct (recall that Ck−1 is not discarded), which is
the case if the following two requirements are met:

– For every subformula ψ we have ψ ∈ Ck−1 if and only if ψ ∈ Ci.
– For every subformula ψ0Uψ1 we have ψ0Uψ1 ∈ Ck−1 if and only if ψ1 ∈
Ck−1 or ψ0 ∈ Ck−1 and ψ0Uψ1 ∈ Ci. Furthermore, we have to require that
ψ0Uψ1 ∈ Cj for some j in the range i ≤ j < k implies ψ1 ∈ Cj′ for some
j′ in the range i ≤ j′ < k. The latter condition can be checked on-the-fly
while computing the Cj ’s.

A straightforward structural induction over the construction of ϕ shows that
we have ψ ∈ Cj if and only if w(j)w(j + 1) · · ·w(k − 1)vω |= ψ for every
subformula ψ of ϕ. Hence, u.vω is a model of ϕ if and only if ϕ ∈ C0. Thus,
M accepts if this is the case. ut

Next, we complement the #Pspace upper bound with a matching lower
bound.

Lemma 4 The following problem is #Pspace-hard: Given an LTL formula ϕ
and a bound k (in binary), how many k-word-models does ϕ have?

Proof Let M = (Q, qι, QF , Σ, δ) be a one-tape nondeterministic polynomial
space Turing machine, where Q is the set of states, qι is the initial state, QF
is the set of accepting states, Σ is the alphabet, and δ : (Q \ QF ) × Σ →
2Q×Σ×{−1,1} is the transition function, where -1 and 1 encode the directions
of the head. Note that the accepting states are terminal and that M rejects
by terminating in a nonaccepting state. Let M be p(n)-space bounded for
some polynomial p, and let w = w0 · · ·wn−1 be an input to M. Let p′(n) be
a polynomial (which only depends onM) such thatM terminates in at most
2p
′(n) steps on inputs of length n. We construct an LTL formula ϕwM and define

a bound k, which are polynomial and exponential (using polynomially many
bits) in |w| and |M|, respectively, such that the number of accepting runs of
M on w is equal to the number of k-word-models of ϕwM.

A run ofM on w is encoded by a finite alternating sequence of id’s idi and
configurations ci that is followed by an infinite repetition of a dummy symbol:

$ id0 # c0 $ id1 # c1 $ id2 # c2 $ · · · $ id2lc # c2lc (⊥)ω (1)

for some suitable lc to be defined later. Note that the period of the word-model
is of the form ⊥` for some ` > 0. We define k such that maximal-length runs of
M on w can be encoded in the prefix, and such that the only possible period
has length one by ensuring that exactly 2lc configurations are encoded (by
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repeating the final configuration if necessary). This ensures that an accepting
run is encoded by exactly one k-word-model.

Let lr = p(n) be the maximal size of a configuration of M on w. For
the id’s we use an encoding of a binary counter with lc = p′(n) many bits.
Let AP = (Q ∪ Σ) ·∪{b1, . . . , blc , $,#,⊥} be the set of atomic propositions.
The atomic propositions in Q ∪ Σ are used to encode the configurations of
M by encoding the tape contents, the state of the machine, and the head
position. The atomic propositions b1, . . . , blc represent the bit values of an id.
The symbols $ and # are used as separators between id’s and configurations,
and ⊥ is a dummy symbol for the model’s period. The distance between two $
symbols and also between two # symbols in the encoding is given by d = lr+3
(see (1)). Then, ϕwM is the conjunction of the following formulas:

– Id encodes the id’s of the configurations. It uses a formula Inc(b1, . . . , blc , d)
that asserts that the number encoded by the bits bj after d steps is obtained
by incrementing the number encoded at the current position. This formula
is reused in the tree case.

– Init asserts that the run of M starts with the initial configuration.
– Accept asserts that the run must reach an accepting configuration.
– Config declares the consistency of two successive configurations with the

transition relation ofM. Here, we use d many next operators to relate the
encoding of the two configurations.

– Repeat asserts that the encoding of an accepting configuration is repeated
until the maximal id is reached

– Loop defines the period of the word-model, which may only contain ⊥.

We show that all these properties can be expressed with polynomially-sized
formulas. Furthermore, we need a formula to specify technical details: atomic
propositions encoding the id’s are not allowed to appear in the configurations
and vice versa, symbols such as $ and # only appear as separators, each
separator appears 2p

′(n) times every d positions, configuration encodings are
represented by singleton sets of letters in Σ with the exception of one set that
contains a symbol from Q to determine the head position and the state ofM,
etc.

We start with the formula Id, which uses the formula Inc that enforces an
increment of a binary counter. For later reuse, Inc is parameterized by the
propositions b1, . . . , b` encoding the bits (b1 being the most significant one)
and the distance d between the two positions to be compared. Intuitively, the
different subformulas distinguish whether the increment ripples through to the
current bit bi or not. Note that the increment property only has to hold if there
is no overflow of the counter.

Inc(b1, . . . , b`, d) = (
∨

0<i≤`

¬bi)→
∧

0<i≤`

[
((¬bi ∧

∧
i<j≤`

bj)→ d bi)

∧((¬bi ∧ ¬
∧

i<j≤`

bj)→ d ¬bi)
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∧(( bi ∧
∧

i<j≤`

bj)→ d ¬bi)

∧(( bi ∧ ¬
∧

i<j≤`

bj)→ d bi)
]

Now, the formula Id is defined by initializing the counter to zero and always
requiring an increment after a $-separator:

Id = $ ∧ (
∧

0<j≤lc

¬bj) ∧ ($→ Inc(b1, . . . , blc , d))

We continue with the formula Init. In the initial configuration the tape of
M contains the input word w, the head is on the first cell, and M is in its
initial state:

Init = 2(# ∧ qι ∧ (
∧

0≤j<n

j wj) ∧ (
∧

n≤j≤lr

j ) )

The symbol refers to the blank cells of the tape.
The formula Accept considers the maximal id and checks whether it is

followed by an accepting configuration:

Accept = ($ ∧ (
∧

0<j≤lc

bj) →
∨
q∈QF

∨
0<j≤lr

j+2 q)

For atomic propositions q ∈ Q \ QF and α ∈ Σ a formula configq,α asserts
the relation between the states, the head positions, and the content of the cell
where the head is pointing to in two successive configurations:

configq,α = ( q ∧ α→
∨

(q′,β,dir)∈δ(q,α)

d β ∧ d+dir q′ )

Another formula configα asserts the relation of the other tape cells of successive
configurations; the content of these cells is copied, unless the id is maximal:4

configα = ($ ∧ (
∨

0<j≤lc

¬bj)→
∧

0<j≤lr

j+2((
∧

q∈Q\QF

¬q) ∧ α→ d α))

Config is the conjunction of all formulas configα and configq,α.
The formula Repeat requires an accepting configuration to be repeated if

the id is not yet maximal. The repetition of the letters is taken care of by the
formulas configα. Hence, Repeat only requires to copy the state and the head
position.

Repeat = ($ ∧ (
∨

0<j≤lc

¬bj)→
∧

qf∈QF

∧
0<j≤lr

j+2

(qf → d qf ))

4 Note that this is not necessary for configq,α since the machine terminates in at most
p(n) steps
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Finally, the period of the model is fixed by the formula Loop which requires the
symbol ⊥ to be repeated after reaching the configuration with the maximal
id:

Loop = ($ ∧ (
∧

0<j≤lc

bj)→ lr+3 ⊥)

Now, let us prove that the formula has the desired properties: For k = 2lc ·
(lr + 3) + 1, each accepting run ofM on w corresponds to exactly one k-word-
model of ϕwM that encodes the run in its prefix. Thus, the number of k-word-
models is equal to the number of accepting runs ofM on w. The formula ϕwM
can be obtained in polynomial time in |w| + |M|, and k is exponential in |w|
so it can be encoded in binary with polynomially many bits. ut

Lemma 3 and Lemma 4 show that the word-model counting problem for
binary bounds is indeed #Pspace-complete.

Theorem 2 The following problem is #Pspace-complete: Given an LTL for-
mula ϕ and a bound k (in binary), how many k-word-models does ϕ have?

5 Counting Tree-Models

In this section, we consider the tree counting problem for unary and binary
bounds. There are at least doubly-exponentially many trees of height k. Hence,
if k is encoded in binary, there are at least triply-exponentially many (in the
size of the encoding of k) k-tree-models of a tautology. In order to capture
these cardinalities using counting classes, we have to consider machines with
that many runs, i.e., exponential time and exponential space machines.

In our hardness proofs, we again construct formulas ϕwM that encode ac-
cepting runs of M on w in trees. We choose binary trees, i.e., we consider a
singleton set I of input propositions. Recall that the power set of I is used to
(deterministically) label the edges in the tree. In the following, we identify the
two elements of 2I with the directions left and right. Note that we have to
formalize the structure of our models and have to encode the runs of the ma-
chines using LTL. The semantics require a formula to be satisfied on all paths,
which requires us to write conditional formulas of the form “if the path has a
certain form, then some property is satisfied”. We use two types of formulas:
the first type describes the structure of the tree (e.g., it is complete and the
targets of the back-edges) while the ones of the second type encode the actual
run relying on this structure. The formulas of type one often assign addresses
to nodes (sequences of bits that uniquely identify a node).

In the word case, we encoded runs of Turing machines with configurations
of polynomial length. Hence, the distance between encodings of a tape cell in
two successive configurations could be covered by a polynomial number of next-
operators. Here, configurations are of exponential size. Thus, the challenge is
to encode a run in a tree such that properties of two successive configurations
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can still be encoded by an LTL formula of polynomial size. We present two
such encodings, one for unary and one for binary bounds.

For the upper bounds we show that there are appropriate nondeterministic
machines that guess a finite tree with back-edges and model check it deter-
ministically against ϕ, i.e., the number of accepting runs on k and ϕ is equal
to the number of k-tree-models of ϕ.

5.1 The Case of Unary Encodings

First, we consider tree-model counting for unary bounds, which we show to
be #Exptime-complete. The upper bound is a straightforward application of
LTL model checking: the Turing machine guesses a tree and then model checks
it. To count up to isomorphism, we identify a node of the tree with the unique
sequence of directions in 2I leading from the root to it.

Lemma 5 The following problem is in #Exptime: Given an LTL formula ϕ
and a bound k (in unary), how many k-tree-models does ϕ have?

Proof To show that the problem is in #Exptime we define a nondeterministic
exponential time Turing machine M as follows. M guesses a tree of height k
(which is of exponential size) and checks whether it satisfies ϕ using the classi-
cal model checking algorithm: the machineM constructs the Büchi automaton
recognizing the language of ¬ϕ and checks whether the product of the tree and
the automaton has an empty language. The automaton and the product are
of exponential size and the emptiness check can be performed in deterministic
polynomial time (in the size of the product). Hence, M runs in exponential
time in k and the size of ϕ. For each k-tree-model of ϕ, there is exactly one
accepting run in M. Thus, counting the k-tree-models of ϕ can be done by
counting the accepting runs of M on the input (k, ϕ). ut

The next lemma shows #Exptime-hardness of the tree-model counting
problem for unary bounds.

Lemma 6 The following problem is #Exptime-hard: Given an LTL for-
mula ϕ and a bound k (in unary), how many k-tree-models does ϕ have?

Proof Let M = (Q, qι, QF , Σ, δ) be a one-tape nondeterministic exponential
time Turing machine. Let M be 2p(n)-time bounded for a polynomial p and
let w = w0 · · ·wn−1 be an input toM. We construct an LTL formula ϕwM and
define a bound k, both polynomial in |w| and |M|, such that the number of
accepting runs of M on w is equal to the number of k-tree-models of ϕwM.

A run of M is encoded in the leaves of a binary tree. Let lr = 2p(n) be
the maximal length of a run of M on w, which also bounds the size of a
configuration. We choose k = 2p(n) to be the height of our tree-models. By
using a formula labeling each of the first k levels of the tree by a unique
proposition we enforce that every model of height k is complete. Thus, it has
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Fig. 3 Encoding an exponentially long run in a tree-model of polynomial height. The
configurations are encoded in the lower-trees (light gray subtrees).

l2r many leaves, enough to encode a run of maximal length. Figure 3 shows the
structure of our tree-model.

Each configuration in the run is encoded in the leaves of a subtree of height
p(n), referred to as a lower -tree (depicted by the light gray trees). The lower-
trees are uniquely determined by a leaf of the upper -tree (depicted in dark
gray), which is the root of the lower-tree. By giving the leaves of the upper-tree
id’s, we also obtain unique id’s for each of the lower-trees. These id’s are used
to enumerate the configurations of the run, i.e., two neighboring lower-trees
encode two successive configurations of the run. The id’s can be determined
by a binary counter with polynomially many bits. We also provide each leaf in
a lower-tree with a unique id within this lower-tree. This is used to compare
the contents of a tape cell in two successive configurations by comparing the
labels of leaves with the same leaf id in two successive lower-trees. Thus, every
leaf stores the id encoding of the configuration it is part of and the number of
the cell it encodes.

Recall that in a tree each leaf has a back-edge for every direction. For
the direction left we require a transition to the root of the upper-tree, and
for right a transition to the root of the own lower-tree. This enables us to
compare two leaves in a lower-tree, or two leaves with the same id in two
different lower-trees, with polynomially large formulas.

The following formulas define the structure of our tree-models as explained
above and also provide the nodes of the tree with correct id’s. We begin with
Addr(root,a1, . . . , ad) which specifies a unique id for each leaf of a complete
binary tree of height d using bits a1, . . . , ad, and provides the root of the tree
with a label root. The id of a node depends on the sequence of left and
right edges on the path from the root to this node, which is encoded in the
bits a1, . . . , ad:

Addr(root, a1, . . . , ad) = root ∧
d−1∧
i=0

( i(left→ d−i ¬ai+1)∧
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i(right→ d−i ai+1) )

We use the formula Addr(upper,u1, . . . , up(n)) to address the upper-tree. This
gives each lower-tree a unique id via the id of its root. We also supply each
node in a lower-tree with the id of its root in the upper-tree:∧

p(n)≤i<k
i(
∧p(n)

j=1
(uj ↔ uj))

Furthermore, we use the formula p(n) Addr(lower, l1, . . . , lp(n)) to assign ev-
ery leaf in a lower-tree a unique id within its lower-tree which essentially
encodes the number of the tape cell it encodes. The next two formulas define
the back-edges of the lower-trees. From each leaf, the left transition leads
back to the root of the upper-tree (recall that back-edges lead from a leaf to
an ancestor), i.e., k(left→ upper), and the right transition to the root
of the lower-tree, i.e., k(right→ lower).

After setting up the structure of the trees, it remains to show how we
encode a run in the leaves. We proceed with the same scheme as in the word
case, and use the formula ∆h(a1, . . . , am) which is satisfied, if and only if the
bits a1, . . . , am encode the number h < 2m. The formula Init encodes the
initial configuration in the lower-tree with id 0.

k
[
∆0(u1, . . . , up(n))→

(
(∆0(l1, . . . , lp(n))→ qι)

∧
∧

0≤j<n

(∆j(l1, . . . , lp(n))→ wj)

∧ ((
∧

0≤j<n

¬∆j(l1, . . . , lp(n)))→ )
)]

The formula Accept checks whether the rightmost lower-tree encodes an ac-
cepting configuration:

k((∆lr (u1, . . . , up(n)) ∧
∨

q∈Q
q)→

∨
q∈QF

q)

The formulas configq,α and configα for states q and symbols α encode the
transition relation. For a leaf with labels q and α (leaf 1 in Figure 3) and a
transition (q, α, q′, β, dir), we have to check three leaves in the next lower-
tree, namely, the leaf with the same id (leaf 2) has to be labeled with β,
and depending on dir either the successor leaf (leaf 3) or the predecessor leaf
(leaf 4) has to be labeled with q′. The premise of the following formula only
holds for paths that visit these leaves in the order given above, i.e., paths that
lead to a leaf in a lower-tree, loop back to the root of the full tree and then
lead to the same leaf id in the successor lower-tree (this takes k + 1 edges),
loop back to the root of this lower-tree and visit the leaf to the right (this
takes another p(n) + 1 edges), back to the root of this lower-tree again and
then to the leaf to the left (this takes p(n) + 1 edges more). To specify such a
path, we use the formula Inc from the proof of Lemma 4 to reach the successor
leaf and a dual formula called Dec to reach the predecessor leaf. This formula
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implements a decrement of a nonzero counter. Note that we have to require
the paths to visit the successor and predecessor leaf in the next lower-tree,
i.e., we have to check the bits uj to reach the next lower-tree and the bits lj
to reach the leaves. Thus, configq,α for q ∈ Q \QF is given by:

k
[
q ∧ α ∧ Inc(u1, . . . , up(n), k + 1) ∧

∧p(n)

i=1
li ↔ k+1 li)

∧Inc(u1, . . . , up(n), k + p(n) + 2) ∧ Inc(l1, . . . , lp(n), k + p(n) + 2)

∧Inc(u1, . . . , up(n), k + 2p(n) + 3)) ∧Dec(l1, . . . , lp(n), k + 2p(n) + 3)

→
∨

(q′,β, dir)∈δ(q,α)
( k+1 β ∧ (k+1)+cdir(p(n)+1) q′)

]
Here, we have cdir = 1, if dir = 1, and cdir = 2, if dir = −1.

The formula configα determines the relation between the other tape cells’
contents, namely where the head is not pointing to:

k(

p(n)∨
i=1

¬ui ∧ (
∧

q∈Q\QF

¬q) ∧ α ∧ Inc(u1, . . . , up(n), k + 1)

∧(

p(n)∧
i=1

li ↔ k+1 li)→ k+1 α)

The formula Repeat repeats accepting states in the next lower-tree, if the id
of the current lower-tree is not maximal. The repetition of the letters is being
taken care of by configα.

k
[( p(n)∨

i=1

¬ui ∧ Inc(u1, . . . , up(n), k + 1) ∧
p(n)∧
i=1

(li ↔ k+1 li)
)
→

( ∧
qf∈QF

qf → k+1 qf
)]

Similar to the word case we need some additional formulas to prevent
atomic propositions of configurations to appear elsewhere in the tree to guar-
antee the one-to-one relation between runs and tree-models. For example to
prevent a state label from appearing twice in a configuration we use a formula
that asserts that from a leaf in which a state is encoded, no other leaf with a
state label is reachable within p(n) + 1 steps, i.e., in the same lower-tree. This
ensures that every configuration has exactly one state. ut

Combining Lemma 5 and Lemma 6 yields the desired #Exptime-complete-
ness result.

Theorem 3 The following problem is #Exptime-complete: Given an LTL
formula ϕ and a bound k (in unary), how many k-tree-models does ϕ have?
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5.2 The Case of Binary Encodings.

In this section, we consider tree-model counting for binary bounds. Since the
bound is encoded compactly, the trees we work with have exponential height
and therefore doubly-exponential size. Unfortunately, our upper and lower
bounds do not match (see the discussion in the conclusion). We start by prov-
ing the upper bound for the problem.

Theorem 4 The following problem is in #2Exptime: Given an LTL for-
mula ϕ and a bound k (in binary), how many k-tree-models does ϕ have?

Proof The upper bound is proved using the same algorithm as in the proof
of Lemma 5. With a doubly-exponentially time bounded Turing machine we
can guess a tree with back-edges that is exponential large in the bound k and
model check it against ϕ. ut

We continue with the proof of the #Expspace lower bound.

Theorem 5 The following problem is #Expspace-hard: Given an LTL for-
mula ϕ and a bound k (in binary), how many k-tree-models does ϕ have?

Proof Let M = (Q, qι, QF , Σ, δ) be a one-tape nondeterministic exponential
space Turing machine and let w = w0 · · ·wn−1 be an input toM. Furthermore,
let lc = 2p(n)−2 be the maximal configuration length (for some polynomial p)

and let lr = 22
p′(n)

be the maximal length of a run of M on w (p′ is a
polynomial which only depends on M).

We choose k = m ·2p′(n) to be the height of our tree-models, where m is the
smallest power of two greater than p(n). Figure 4 shows the main structure of
our tree-models. We use nonbalanced binary trees that are composed of trees
of height m. We refer to the latter trees as the inner -trees. The outermost
leaves of an inner-tree are inner nodes and the others are leaves in the tree-
model. Hence, each inner-tree has two children, which are again inner-trees
rooted at the leftmost respectively the rightmost leaf.

In each inner-tree, we encode a configuration in a similar way as in the
unary case (Theorem 3), namely in the leaves (except the two leaves serving
as roots for other inner trees, which explains the −2 in the definition of lc). We
encode the configurations of a run in the tree-model such that we traverse the
inner-trees in a depth-first search manner (DFS). In Figure 4, we can see how
a run of 15 configurations can be encoded in a tree-model with four layers of
inner-trees. To encode the DFS structure, we label each root of an inner-tree
with its level (the number of inner-tree ancestors) and with its so-called right-
child-depth: the number of right-child-inner-trees visited since the last left child
to reach this tree (e.g., this value is 0 for the root C1 and all left children, for
example for C2, C3, C7; it is 1 for C5 and 3 for C15). This allows to determine
the next inner-tree in line in the DFS structure. We need a polynomial number
of bits to encode these addresses. With the right transition we allow the leaves
of an inner-tree to reach its root and we use left in the inner-tree of maximal
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Fig. 4 Tree-model with DFS structure.

level to reach the parent of the next inner-tree in DFS order. In this way, the
distance between the encoding of a tape cell in two successive configurations
is polynomial.

As the distance between an inner-tree and its successor is polynomial, the
formulas for encoding the run in the tree-model adapt the ideas of the formulas
in the unary case with slight modifications that deal with the DFS order of
inner-trees. In the following, we formalize this sketch.

The following formulas define the structure of our tree-models and also
provide them with the correct level and right-child-depth. We use propositions
ι1, . . . , ιm to give ids to the leaves of an inner-tree. For the 2p

′(n) different
levels of inner-trees in our tree-models we use propositions l1, . . . , lh, where
h = p′(n), to encode for each inner-tree its level. We also give internally for
each node in an inner-tree its depth in this tree via d1, . . . , dlog(m) (remember
that m is a power of 2). Propositions r1, . . . , rh are used to determine the inner-
tree’s r ight-child-depth. The maximum right-child-depth that can be reached
is 2p

′(n), namely for the rightmost inner-tree at the maximal level.
We start by labeling each root of an inner-tree (and no other vertices) with

the label root:

root∧[(
root ∧ ¬(

∧
0<i≤h

li) ∧ ((
∧

0≤j<m

j left) ∨ (
∧

0≤j<m

j right))
)
↔ m root)

]
The negation of the conjunction over propositions li is used to exclude inner-
trees of the last level. How the levels are defined in the tree is shown in more
detail in the formula depth.

We encode a configuration in the leaves of an inner-tree in the same way
as in the unary case (Lemma 3). Therefore, we provide the leaves with unique
id’s, which enable us to compare the contents of tape cells in two successive
configurations by comparing leaves with the same id in two successive inner-
trees. To this end, we use the formula Addr, as defined in the unary case, to
equip the leaves with unique id’s within their inner-tree:

(root→ Addr(root, ι1, . . . , ιm))

The next formula uses the propositions l1, . . . , lh to supply each inner-tree
with its level, which is equal to the number of root labels visited from the
root to this inner-tree. Line (1) assigns the root of the tree-model with level 0.
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Line (2) assigns each node in an inner-tree, with the exception of the leaves
labeled with root (the outermost leaves in all levels but the last), with the
level of its inner-tree root. Line (3) gives, inductively, each root of an inner-tree
its inner-tree level.

depth =
∧

0<j≤h

¬lj (1)

∧ (root→
∧

0≤j<m

j( ¬root→
∧

0<j≤h

(lj ↔ lj)) (2)

∧ (root ∧ (
∨

0<j≤h

¬lj) ∧ m root→ Inc(l1, . . . , lh,m) (3)

If depth is satisfied then the tree contains a doubly-exponential number of
inner-trees, enough to encode a run of M on w.

The following formula gives each inner-tree its right-child-depth in the tree-
model. If we are at a root of an inner-tree we reach the root of its left and right
child in m steps via the outermost leaves. The formula counts the number of
right-children visited along the way including the visited tree (Line (3)). Every
time we visit a left-child the counter is reset (Line (4)). We again supply each
node in an inner-tree, with the exception of the outermost leaves (Line (5)),
with the right-child-depth of this tree. However the outermost leaves of all
maximal-level inner-trees are labeled with the right-child-depth of the inner-
tree.

rLevel =
∧

0<j≤h

¬rj (1)

∧ (root ∧
∨

0<j≤h

¬lj → (2)

((
∧

0<j≤m

j right)→ Inc(r1, . . . , rh,m)) (3)

∧ ((
∧

0<j≤m

j left)→
∧

0<j≤h

¬rj)) (4)

∧ (root→
∧

0≤j<m

j( ¬root→
∧

0<j≤h

rj ↔ rj))) (5)

Now that we have defined all the id’s we need we show how to route the
transitions at the leaves to the DFS positions as described earlier. To compute
the correct node we only need to compute its level, because in the definition of
our tree-models we force a back-edge to go to an ancestor node. This level can
be computed as follows. If we are at a leaf of an inner-tree in the maximal level,
reached by j many right children since the last left child the back-edge goes
to the root with level 2p

′(n)− (j+ 1) (cf. Figure 4). This can be formulated by
incrementing the right-child-depth described with bits r1, . . . , rh and inverting
the bits of the result. The propositions d1, . . . , dlog(m) are used to talk about
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the leaves of an inner-tree. If we are at a leaf in an inner-tree of maximal level
we move with direction left to the next DFS position, namely the root of the
next inner-tree in the DFS Line (computed by addNflip):

DFS =

(
∧

0<j≤log(m)

dj ∧
∧

0<j≤h

lj ∧ left→ root ∧ addNflip(l1, . . . , lh, r1, . . . , rh))

where:

addNflip(l1, . . . , lc, r1, . . . , rc) =
∧

0<i≤c

[
((¬ri ∧

∧
i<j≤c

rj)→ ¬li)

∧((¬ri ∧ ¬
∧

i<j≤c

rj)→ li)

∧(( ri ∧
∧

i<j≤c

rj)→ li)

∧(( ri ∧ ¬
∧

i<j≤c

rj)→ ¬li)

Notice that addNflip is similar to Inc with the difference of flipping the bits.
Finally, a formula that asserts that from leaves of maximal level inner-

trees a right transition goes to the root of these trees (Line (1)). For leaves
of inner-trees of nonmaximal level (the outermost leaves are not considered
leaves of the tree-model as their right and left transitions lead to subtrees),
we move with both left and right to the root of their inner-trees (Line (2)):

(
∧

0<j≤log(m)

dj ∧
∧

0<j≤h

lj ∧ right→ (root ∧
∧

0<j≤h

lj)) (1)

∧ (
∧

0<j≤log(m)

dj ∧ (
∨

0<j≤h

¬lj) ∧ ¬root→ root ∧ (
∧

0<j≤h

lj ↔ lj)) (2)

Now, we present the formulas that encode the run of the Turing machine.
Here, we again use the formula ∆h(a1, . . . , am) which is satisfied, if and only
if the bits a1, . . . , am encode the number h < 2m.

The formula Init :

Init = m((∆1(ι1, . . . , ιm)→ qι)

∧ (
∧

0≤j<n

(∆j+1(ι1, . . . , ιm)→ wj))

∧ ((
∧

0<j≤n

(¬∆j(ι1, . . . , ιm))→ )))

Note that we encode the input word w = w0 · · ·wn−1 in the leaves with id’s
1 to n. In our encoding the outermost leaves of the inner-trees do not encode
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any tape content of the Turing machine. This is due to the fact that in some
inner-trees these leaves have no back-edges from which we can directly reach
the leaves of the next inner-tree in DFS order. Thus, the content in the next
configuration is not accessible.

The formula Accept checks the last inner-tree in DFS order for an accepting
configuration. The first release formula selects the outermost right path and
stops at the root of the last inner-tree. If we arrive at this root we assert that
the state in the configuration of this inner-tree must be accepting:

(right ∧ ¬∆2h−1(l1, . . . , lh))V(∆2h−1(l1, . . . , lh) (1)

→ (right ∧ ¬∆2h−1(l1, . . . , lh))V (2)

(∆2h−1(l1, . . . , lh) ∧ m(
∨
q∈Q

q →
∨
q∈QF

q))) (3)

We define the formula Next to determine the successor inner-tree of an
inner-tree, i.e., the formula holds at a vertex on a path if after m steps on this
path the root of the next inner-tree in DFS order is reached:

Next =[(
∨

0<j≤m

¬lj) (1)

→ right ∧ (
∧

0<j≤m

j left)] (2)

∧ [(
∧

0<j≤m

lj) (3)

→ left ∧ (
∧

0<j≤m

j right)] (4)

We distinguish two cases asserted by Lines (1) and (3), namely the case of an
inner-tree in the maximal level and one in a nonmaximal level. In the second
case, the successor tree is the left child of the current inner-tree. Here, we go
up to the root of the inner-tree and traverse down the left side to the root of
the left child (Line (2)). If we are in the maximal level the successor tree is
reached via the DFS order, which means, going to the inner-tree in DFS order
and traversing down the right side to the right child (Line (4)).

If we are at a leaf with symbol α ∈ Σ and state q ∈ Q\QF we move to the
root of the next inner-tree in DFS order (this is determined by the formula
Next). In this tree we have to check whether α is rewritten to the correct
symbol and whether the head moved to the correct position. This is checked
in the same way as in the proof of the unary case, namely, in three phases: we
consider a path that leads to a leaf in successor inner-tree with the same leaf
id, loops back up to the root of the inner-tree, and leads down to the same
tree and visits the leaf to the right, loops back up and down the same tree
and visits the leaf on the left (Lines (2),(3)). In Line (4), the distance 2m+ 1
results from going one step in the inner-tree and then going 2m steps down to
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the leaves of the successor tree. The distance 3m + 2 results from looping in
the same tree a second time, and 4m+ 3 from looping a third time.

Here, we again use the formulas Inc and Dec introduced above.

configq,α = (q ∧ α ∧Next ∧ (

m∧
j=1

ιj ↔ 4m+1 ιj) (1)

∧ Inc(ι1, . . . , ιm, 3m+ 2)) ∧ 2m+1(right ∧ root) (2)

∧Dec(ι1, . . . , ιm, 4m+ 3) ∧ 3m+2(right ∧ root) (3)

→ (
∨

(q′,β, dir)∈δ(q,α)

2m+1 β ∧ cdir(m+1)−1 q′) (4)

where cdir = 3 for dir = 1 and cdir = 4 for dir = −1.
The formula configα is similar:

configα = ((
∧

q∈Q\QF

¬q) ∧ α ∧Next ∧ (

m∧
j=1

ιj ↔ 2m+1 ιj)→ 2m+1 α)

Note that due to the DFS structure, we do not need to check for the configu-
ration having a nonmaximal id as in the unary case.
Finally the formula Repeat propagates all final states q to the successor tree:

Repeat = ((

h∨
j=1

¬rj) ∧Next ∧ (

m∧
j=1

ιj ↔ 2m+1 ιj)

→ (
∨
q∈QF

(q → 2m+1 q))

Again we need an additional formula that for example forces the atomic propo-
sitions to appear only in the designated node or to have only one state label
in each inner-tree, and additional ones for other technical properties. ut

6 Counting Graph-Models

In this section, we consider the graph-model counting problem and show how
the results shown in the previous sections can be transferred to this problem.
Recall that the graph-model counting problem asks to determine the number
of transitions systems (up to isomorphism) with k states that satisfy a given
LTL formula.

6.1 The Case of Unary Encodings

The following theorem shows the lower and upper bounds for the problem
of counting graph-models for unary bounds. The lower bound is shown by
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enforcing the models to look like a word-model and then applying the #P-
hardness proof for those. The upper bound we present here is #oPspace, the
only occurrence of a oracle-based complexity class. We discuss this gap in the
conclusion.

Theorem 6 The following problem is #P-hard and in #oPspace: Given an
LTL formula ϕ and a bound k (in unary), how many k-graph-models does ϕ
have?

Proof Hardness can be shown by applying the same idea of the proof of
Lemma 4 using a nondeterministic polynomial time Turing machine where
both the size of the configuration and the length of the maximal run are poly-
nomial. We add a polynomially-sized formula implementing a counter with
dlog ke bits that is satisfied if and only if the transition system is a cycle of
length k (in particular, all outgoing transitions lead to the same state). Then,
one can encode a run of a nondeterministic polynomial time Turing machine
on such a cycle as using the formula ϕwM from the proof of Lemma 4.

Membership in #oPspace is an immediate consequence of LTL model
checking being in Pspace, i.e., one can guess a transition system with k states
and then use a Pspace oracle for model-checking it. To only count models
up to isomorphism, we identify a state by the minimal path of directions in
2I leading from the initial state to it and guess the transition system in a
breadth-first manner starting at the initial state. ut

6.2 The Case of Binary Encodings

Our last result shows matching lower and upper bounds for the problem of
counting graph-models for binary bounds, which both follow from adapting
previous proofs.

Theorem 7 The following problem is #Exptime-complete: Given an LTL
formula ϕ and a bound k (in binary), how many k-graph-models does ϕ have?

Proof For binary bounds, adapting the construction presented in Lemma 6
yields #Exptime-hardness: To this end, one uses a formula of polynomial size
in dlog ke that is satisfied by a transition system if and only if it is a dlog ke-
tree. Then, one can use the formula ϕwM constructed in the proof of Lemma 6
to encode an accepting run of an exponential time Turing machine.

Finally, the problem is in #Exptime, which can be shown by adapting
the algorithm presented in the proof of Lemma 5, again making sure to count
models up to isomorphism by naming states canonically. ut

7 Discussion

We investigated the complexity of the model counting problem for specifica-
tions in linear-time temporal logic. The word-model counting problems are
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#P-complete (for unary bounds) respectively #Pspace-complete (for binary
bounds) while the tree-model counting problems are #Exptime-complete re-
spectively #Expspace-hard and in #2Exptime, i.e., the exact complexity of
the tree-model counting problem for binary bounds is open. Finally, the graph-
model counting problem is #P-hard and in #oPspace (for unary bounds) re-
spectively #Exptime-complete (for binary bounds), i.e., the exact complexity
of the unary case is open, too.

First, let us discuss the gap in the tree-case: the problem we face trying to
lower the upper bound is that we cannot guess the complete tree-model in non-
deterministic exponential space. To meet the space requirements, we have to
construct it step by step, as in the proof of the corresponding upper bound in
the word case. However, the correctness of the on-the-fly model checking proce-
dure described there relies on the fact that the model is an ultimately-periodic
word. It is open whether the technique can be extended to tree-models. On
the other hand, if we try to raise the lower bound, we have to encode nonde-
terministic doubly-exponential time Turing machines, which seems challeng-
ing using polynomially-sized LTL formulas. Deterministic doubly-exponential
time Turing machines are routinely encoded by such formulas in the context
of two-player games, where one player produces sequences of configurations
and the other one checks that he respects the transition relation. It is an in-
teresting open question whether the role of the second player can be replaced
by the tree structure of the models, which are able to encode strategies.

Finally, let us discuss the second gap in our results, in the unary case of
the graph-model counting problem: here, the #P-membership is questionable,
because of the Pspace-hardness of the model-checking problem. However, a
#P algorithm does not violate standard complexity theoretic assumptions,
as the size k is part of the input and encoded in unary. On the other hand,
showing #oPspace-hardness requires to encode computations of a decider for
the oracle in a small transition system, which seems challenging as well.
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7. Rüdiger Ehlers. Unbeast: Symbolic bounded synthesis. In Parosh Aziz Abdulla and
K. Rustan M. Leino, editors, TACAS 2011, volume 6605 of LNCS, pages 272–275.
Springer, 2011.

8. Bernd Finkbeiner and Sven Schewe. Bounded synthesis. International Journal on
Software Tools for Technology Transfer, 15(5-6):519–539, 2013.

9. Bernd Finkbeiner and Hazem Torfah. Counting models of linear-time temporal logic.
In Adrian Horia Dediu, Carlos Mart́ın-Vide, José Luis Sierra-Rodŕıguez, and Bianca
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