
Easy to Win, Hard to Master:
Optimal Strategies in Parity Games with Costs∗

Alexander Weinert1 and Martin Zimmermann2

1 Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany
weinert@react.uni-saarland.de

2 Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany
zimmermann@react.uni-saarland.de

Abstract
The winning condition of a parity game with costs requires an arbitrary, but fixed bound on the
distance between occurrences of odd colors and the next occurrence of a larger even one. Such
games quantitatively extend parity games while retaining most of their attractive properties, i.e,
determining the winner is in NP and co-NP and one player has positional winning strategies.

We show that the characteristics of parity games with costs are vastly different when asking
for strategies realizing the minimal such bound: the solution problem becomes PSPACE-complete
and exponential memory is both necessary in general and always sufficient. Thus, playing parity
games with costs optimally is harder than just winning them. Moreover, we show that the
tradeoff between the memory size and the realized bound is gradual in general.

1998 ACM Subject Classification D.2.4 Software/Program Verification.

Keywords and phrases Parity Games with Costs, Optimal Strategies, Memory Requirements,
Tradeoffs

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Recently, the focus of research into infinite games for the synthesis of reactive systems moved
from studying qualitative winning conditions to quantitative ones. This paradigm shift
entails novel research questions, as quantitative conditions induce a (partial) ordering of
winning strategies. In particular, there is a notion of semantic optimality for strategies which
does not appear in the qualitative setting. Thus, in the quantitative setting, one can ask
whether computing optimal strategies is harder than computing arbitrary ones, whether
optimal strategies are necessarily larger than arbitrary ones, and whether there are tradeoffs
between different quality measures for strategies, e.g., between the size of the strategy and
its semantic quality (in terms of satisfaction of the winning condition).

As an introductory example consider the classical (max)-parity condition, which is defined
for an infinite sequence drawn from a finite subset of the natural numbers, so-called colors.
The parity condition is satisfied if almost all occurrences of an odd color are answered by a
later occurrence of a larger even color, e.g., the sequence

π = 1 0 2 1 0 0 2 1 0 0 0 2 1 0 0 0 0 2 1 0 0 0 0 0 2 1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 2 · · ·

satisfies the parity condition, as every 1 is eventually answered by a 2.

∗ Supported by the project “TriCS” (ZI 1516/1-1) of the German Research Foundation (DFG).

© Alexander Weinert and Martin Zimmermann;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Optimal Strategies in Parity Games with Costs

The finitary parity condition [9] is obtained by additionally requiring the existence of a
bound b such that almost every odd color is answered within at most b steps, i.e., π does not
satisfy the finitary parity condition, as the length of the zero-blocks is unbounded. Thus,
solving a finitary parity game is a boundedness problem: in order to satisfy the condition, an
arbitrary, but fixed bound has to be met. In particular, winning strategies for finitary parity
games are naturally ordered by the minimal bound they realize along all consistent plays.
Thus, finitary parity games induce an optimization problem: compute an optimal winning
strategy, i.e., one that guarantees the smallest possible bound.

Other examples for such quantitative winning conditions include mean payoff [12, 34] and
energy [3, 5] conditions and their combinations and extensions, request-response conditions [19,
31], finitary parity [9] and parity with costs [16], and parameterized extensions of Linear
Temporal Logic (LTL) [1, 14, 21, 32, 33]. Often, these conditions are obtained by interpreting
a classical qualitative winning condition quantitatively, e.g., the finitary parity condition.

Often, the best known algorithms for solving such boundedness conditions are as fast as
the best ones for their respective qualitative variant, while the fastest known algorithms for
the optimization problem are worse. For example, solving games with winning conditions
in Prompt-LTL, a quantitative variant of LTL, is 2ExpTime-complete [21] (i.e., as hard
as solving classical LTL games [26]), while computing optimal strategies is only known to
be in 3ExpTime [32]. The same is true for the sizes of strategies, which jumps from tight
doubly-exponential bounds to triply-exponential upper bounds. The situation is similar for
other winning conditions as well, e.g., request-response conditions [19]. These examples all
have in common that there are no known lower bounds on the complexity and the memory
requirements in the optimization variant, except for the trivial ones for the qualitative case.
A notable exception are finitary parity games, which are solvable in polynomial time [9] and
thus simpler than parity games (according to the state-of-the-art).

In this work, we study optimal strategies in parity games with costs, a generalization of
finitary parity games. In this setting, we are able to show that computing optimal strategies
is indeed harder than computing arbitrary strategies, and that optimal strategies have
exponentially larger memory requirements in general. A parity game with costs is played
in a finite directed graph whose vertices are partitioned into the positions of Player 0 and
the positions of Player 1. Starting at an initial vertex, the players move a token through
the graph: if it is placed at a vertex of Player i, then this player has to move it to some
successor. Thus, after ω rounds, the players have produced an infinite path through the graph,
a so-called play. The vertices of the graph are colored by natural numbers and the edges
are labeled by a cost (encoded in unary). These two labelings induce the parity condition
with costs: there has to be a bound b such that almost all odd colors are followed by a larger
even color such that the cost between these two positions is at most b. Thus, the sequence π
from above satisfies the parity condition with costs, if the cost of the zero-blocks is bounded.
Note that the finitary parity condition is the special case where every edge has cost one and
the parity condition is the special case where every edge has cost zero.

Thus, to win a parity game with costs, Player 0 has to bound the cost between requests
and their responses along all plays. If Player 0 has any such strategy, then she has a positional
strategy [16], i.e., a strategy that determines the next move based only on the vertex the
token is currently at, oblivious to the history of the play. If we let n denote the number
of vertices of the graph the game is played in, then such a strategy uniformly bounds the
costs to some bound b ≤ n [16], which we refer to as the cost of the strategy. Furthermore,
Mogavero et al. showed that the winner of a parity game with costs can be determined in
UP ∩ co-UP [23]. All previous work on parity games with costs was concerned with the

A. Weinert and M. Zimmermann 23:3

boundedness variant, i.e., the problems ask to find some bound, not necessarily the best one.
Here, in contrast, we study optimal strategies in parity games with costs.

1.1 Our Contribution

Our first result shows that determining whether Player 0 has a strategy whose cost is smaller
than a given bound b is PSpace-complete. Thus, computing the bound of an optimal
strategy is strictly harder than just deciding whether or not some bound exists (unless
PSpace ⊆ UP ∩ co-UP). The hardness result is shown by a reduction from QBF and uses
the bound b to require Player 0’s strategy to implement a satisfying Skolem function for
the formula, where picking truth values is encoded by requests of odd colors. The lower
bound is complemented by a polynomial space algorithm that is obtained from an alternating
polynomial time Turing machine that simulates a finite-duration variant of parity games
with costs that is won by Player 0 if and only if she can enforce a cost of at most b in the
original game. To obtain the necessary polynomial upper bound on the play length we rely
on the upper bound n on the optimal bound and on pumping arguments to deal with the
costs along the play, and on a first-cycle variant of parity games [2] to capture the parity
condition in parts of the graph where all edges have cost zero.

Our second result concerns memory requirements of optimal strategies. A corollary of
the correctness of the finite-duration game yields exponential upper bounds: if Player 0 has
a strategy of cost b, then also one of cost b and of size (b+ 2)d · (n+ 1) = 2d log(b+2) · (n+ 1),
where d is the number of odd colors in the game.

As a third result, we show that this bound is in general tight: we present a family Gd of
parity games with costs such that Gd has d odd colors and Player 0 requires strategies of
size 2d − 2 to play optimally in each Gd. This result is based on using the bound b to require
Player 0 to store which odd colors have an open request and in which order they were posed.
Our result improves a linear bound presented by Chatterjee and Fijalkow [8].

Finally, we study the tradeoff between memory size and cost of a strategy witnessed by
the results above: arbitrary winning strategies are as small as possible, i.e., positional, but
in general have cost n. In contrast, optimal strategies realize a smaller bound, but might
have exponential size. Hence, one can trade cost for memory and vice versa.

Our fourth result shows that this tradeoff is gradual in the games Gd: there are strate-
gies σ1, σ2, . . . , σd such that 1 = |σ1| < |σ2| < · · · < |σd| = 2d − 2 and b1 > b2 > · · · > bd,
where bj is the cost of σj . Furthermore, we show that the strategy σj has minimal size
among all strategies of cost bj . Equivalently, the strategy σj has minimal cost among all
strategies whose size is not larger than σj ’s size.

Both lower bounds we prove and the tradeoff result already hold for the special case of
finitary parity games, which can even be solved in polynomial time [9]. Hence, in this case,
the gap between just winning and playing optimally is even larger. Also, our results are
straightforwardly extendable to both bounded variants, i.e., bounded parity games [9] and
bounded parity games with costs [16].

All proofs omitted due to space restrictions can be found in the full version [29].

1.2 Related Work

Tradeoffs in infinite games have been studied before, e.g., in stochastic and timed games, one
can trade memory for randomness, i.e., randomized strategies are smaller than deterministic
ones [7, 11]. A detailed overview of more recent results in this direction and of tradeoffs in

CVIT 2016

23:4 Optimal Strategies in Parity Games with Costs

multi-dimensional winning conditions is given in the thesis of Randour [27]. The nature of
these results is quite different from ours.

Lang investigated optimal strategies in the resource reachability problem on pushdown
graphs [22], where there exist a finite number of counters, which may be increased and
reset, but not read during a play. He shows that in order to keep the values of the counters
minimal during the play, exponential memory in the number of counters is both necessary
and sufficient for Player 0. While the author shows the corresponding decision problem to be
decidable, he does not provide a complexity analysis of the problem. Furthermore, the setting
of the problem is quite different to the model considered in this work: he considers infinite
graphs and multiple counters, but only reachability conditions, while we consider finite graphs
and implicit counters tied to the acceptance condition, which is a general parity condition.

Also, Fijalkow et al. proved the non-existence of a certain tradeoff between size and
quality of strategies in boundedness games [15], which refuted a conjecture with important
implications for automata theory and logics. Such games are similar to those considered by
Lang in that they are played in potentially infinite arenas and have multiple counters.

Finally, our results have been recently rephrased in terms of window-parity games [4],
another quantitative variant of parity games.

2 Preliminaries

We denote the non-negative integers by N and define [n] = {0, 1, . . . , n− 1} for every n ≥ 1.
An arena A = (V, V0, V1, E, vI) consists of a finite, directed graph (V,E), a parti-

tion {V0, V1} of V into the positions of Player 0 (drawn as circles) and Player 1 (drawn as
rectangles), and an initial vertex vI ∈ V . A play in A is an infinite path ρ = v0v1v2 · · ·
through (V,E) starting in vI . To rule out finite plays, we require every vertex to be non-
terminal. A game G = (A,Win) consists of an arena A with vertex set V and a set Win ⊆ V ω
of winning plays for Player 0. The set of winning plays for Player 1 is V ω \Win.

A strategy for Player i is a mapping σ : V ∗Vi → V where (v, σ(wv)) ∈ E for all wv ∈ V ∗Vi.
We say that σ is positional if σ(wv) = σ(v) for every wv ∈ V ∗Vi. We often view positional
strategies as a mapping σ : Vi → V . A play v0v1v2 · · · is consistent with a strategy σ for
Player i, if vj+1 = σ(v0 · · · vj) for every j with vj ∈ Vi. A strategy σ for Player i is a winning
strategy for G if every play that is consistent with σ is won by Player i. If Player i has a
winning strategy, then we say she wins G. Solving a game amounts to determining its winner.

A memory structure M = (M,mI ,Upd) for an arena (V, V0, V1, E, vI) consists of a finite
setM of memory states, an initial memory state mI ∈M , and an update function Upd: M×
E → M . The update function can be extended to finite play prefixes in the usual way:
Upd+(m, v) = m and Upd+(m,wvv′) = Upd(Upd+(m,wv), (v, v′)) for w ∈ V ∗ and (v, v′) ∈
E. A next-move function for Player i Nxt: Vi ×M → V has to satisfy (v,Nxt(v,m)) ∈ E
for all v ∈ Vi and all m ∈ M . It induces a strategy σ for Player i with memory M via
σ(v0 · · · vn) = Nxt(vn,Upd+(mI , v0 · · · vn)). A strategy is called finite-state if it can be
implemented by a memory structure. We define |M| = |M |. The size of a finite-state
strategy is the size of a smallest memory structure implementing it.

An arena A = (V, V0, V1, E, vI) and a memory structureM = (M,mI ,Upd) for A induce
the expanded arena A×M = (V ×M,V0×M,V1×M,E′, (vI ,mI)) where ((v,m), (v′,m′)) ∈
E′ if and only if (v, v′) ∈ E and Upd(m, (v, v′)) = m′. Every play ρ = v0v1v2 · · · in A has a
unique extended play ext(ρ) = (v0,m0)(v1,m1)(v2,m2) · · · in A×M defined by m0 = mI

and mn+1 = Upd(mn, (vn, vn+1)), i.e., mn = Upd+(mI , v0 · · · vn). The extended play of a
finite play prefix in A is defined similarly.

A. Weinert and M. Zimmermann 23:5

1 0 2i

i

i

i

1 0 2i

ε

i

i

Figure 1 Two parity games with costs. Player 1 only has a winning strategy in the left game.

3 Parity Games with Costs

In this section, we introduce the parity condition with costs [16]. Fix an arena A =
(V, V0, V1, E, vI). A cost function for A is an edge-labeling Cst: E → {ε, i}. 1 Edges labeled
with i are called increment-edges while edges labeled with ε are called ε-edges. We extend
the edge-labeling to a cost function over plays obtained by counting the number of increment-
edges traversed during the play, i.e., Cst(ρ) ∈ N ∪ {∞}. The cost of a finite path is defined
analogously. Also, fix a coloring Ω: V → N of A’s vertices and let Ans(c) = {c′ ∈ N | c′ ≥
c and c′ is even} be the set of colors that answer a request of color c.

Let ρ = v0v1v2 · · · be a play. We define the cost-of-response at position k ∈ N of ρ by

Cor(ρ, k) = min{Cst(vk · · · vk′) | k′ ≥ k and Ω(vk′) ∈ Ans(Ω(vk))} ,

where we use min ∅ =∞, i.e., Cor(ρ, k) is the cost of the infix of ρ from position k to its first
answer, and ∞ if there is no answer.

We say that a request at position k is answered with cost b, if Cor(ρ, k) = b. Consequently,
a request at a position k with an even color is answered with cost zero. Furthermore, we say
that a request at position k is unanswered with cost ∞, if there is no position k′ ≥ k such
that Ω(vk′) ∈ Ans(Ω(vk)) and we have Cst(vkvk+1vk+2 · · ·) = ∞, i.e., there are infinitely
many increment-edges after position k, but no answer. There is a third alternative: a request
can be unanswered with finite cost, i.e., in case it is not answered, but the play ρ contains
only finitely many increment-edges. Still, the cost-of-response is infinite in this case.

The parity condition with costs is defined as

CostParity(Ω,Cst) = {ρ ∈ V ω | lim supk→∞ Cor(ρ, k) <∞} ,

i.e., ρ satisfies the condition, if there exists a bound b ∈ N such that all but finitely many
requests are answered with cost less than b. In particular, only finitely many requests may
be unanswered, even with finite cost. Note that the bound b depends on the play ρ.

A game G = (A,CostParity(Ω,Cst)) is called a parity game with costs. If Cst assigns
ε to every edge, then CostParity(Ω,Cst) is a classical (max-) parity condition, denoted
by Parity(Ω). Dually, if Cst assigns i to every edge, then CostParity(Ω,Cst) is equal to
the finitary parity condition over Ω, as introduced by Chatterjee et al. [9] and denoted by
FinParity(Ω). In these cases, we refer to G as a parity or a finitary parity game, respectively.

Player 1 has two ways of winning a parity game with costs: Either he violates the classical
parity condition, or he delays answers to requests arbitrarily. Consider the two parity games
with costs shown in Figure 1. In the game on the left-hand side, Player 1 has a winning
strategy, by taking the self-loop of the node labeled with 0 n times upon the n-th visit to it.

1 Note that using the abstract costs ε and i essentially entails a unary encoding of weights. We discuss
the case of a binary encoding of arbitrary weights in Section 7.

CVIT 2016

23:6 Optimal Strategies in Parity Games with Costs

Thus, he delays answers to the request for 1 arbitrarily and wins by the second condition. In
the game on the right-hand side, however, Player 1 does not have a winning strategy. If he
eventually remains in the node labeled with 0, then there are only finitely many requests,
only one of which is unanswered. Thus, the cost of the play is 0, i.e., it is won by Player 0.
If he, on the other hand, always leaves the node labeled with 0 eventually, then each request
is answered with cost 2, hence Player 0 wins as well.

I Theorem 1.
1. Solving parity games is in UP∩co-UP. The winner has a positional winning strategy [13,

20, 24].
2. Solving finitary parity games is in PTime. If Player 0 wins, then she has a positional

winning strategy, but Player 1 has in general no finite-state winning strategy [9].
3. Solving parity games with costs is in UP ∩ co-UP. If Player 0 wins, then she has a

positional winning strategy, but Player 1 has in general no finite-state winning strategy [16].

A winning strategy for Player 0 in a parity game with costs does not have to realize a
uniform bound b on the value lim supk→∞ Cor(ρ, k) among all plays ρ that are consistent
with σ, but the bound may depend on the play. To capture the cost of a strategy, we first
define the cost of a play ρ as Cst(ρ) = lim supk→∞Cor(ρ, k) and the cost of a strategy σ
as Cst(σ) = supρ Cst(ρ), where the supremum ranges over all plays ρ that are consistent
with σ. A strategy is optimal for G if it has minimal cost among all strategies for G.

A corollary of Theorem 1.3 yields an upper bound on the cost of an optimal strategy: a
straightforward pumping argument shows that a positional winning strategy, which always
exists if there exists any winning strategy, realizes a uniform bound b ≤ n for every play,
where n is the number of vertices of the game [16].

I Corollary 2. Let G be a parity game with costs with n vertices. If Player 0 wins G, then
she has a strategy σ with Cst(σ) ≤ n, i.e., an optimal strategy has cost at most n.

4 The Complexity of Solving Parity Games with Costs Optimally

In this section we study the complexity of determining the cost of an optimal strategy for a
parity game with costs. Recall that solving such games is in UP ∩ co-UP (and therefore
unlikely to be NP-complete or co-NP-complete) while solving the special case of finitary
parity games is in PTime. Our main result of this section shows that checking whether
a strategy of cost at most b exists is PSpace-complete, where hardness already holds for
finitary parity games. Therefore, this decision problem is harder than just solving the game
(unless PSpace ⊆ UP ∩ co-UP, respectively PSpace ⊆ PTime).

I Theorem 3. The following problem is PSpace-complete: “Given a parity game with
costs G and a bound b ∈ N, does Player 0 have a strategy σ for G with Cst(σ) ≤ b?”

The proof of this theorem is split into two lemmas, Lemma 4 showing membership and
Lemma 7 showing hardness, which are presented in Section 4.1 and Section 4.2, respectively.

4.1 Playing Parity Games with Costs Optimally is in PSPACE
In this section we establish PSpace-membership of the previously defined decision problem.

I Lemma 4. The following problem is in PSpace: “Given a parity game with costs G and
a bound b ∈ N, does Player 0 have a strategy σ for G with Cst(σ) ≤ b?”

A. Weinert and M. Zimmermann 23:7

The remainder of this section is dedicated to the proof of Lemma 4. To this end, we
fix a parity game with costs G = (A,CostParity(Ω,Cst)) with A = (V, V0, V1, E, vI) and a
bound b. Let n = |V |. First, let us remark that we can assume w.l.o.g. b ≤ n: If b > n,
then, due to Corollary 2, we just have to check whether Player 0 wins G. This is possible in
PSpace due to Theorem 1.3.

To obtain a polynomial space algorithm, we first turn the quantitative game G into a
qualitative parity game G′ in which the cost of open requests is explicitly tracked up to the
bound b . To this end, we use functions r mapping odd colors to {⊥} ∪ [b + 1], where ⊥
encodes that no open request of this color is pending. Additionally, whenever the bound b
is exceeded for some request, all open requests are reset and a so-called overflow counter
is increased, up to value n. This accounts for a bounded number of unanswered requests,
which are allowed by the parity condition with costs. Intuitively, Player 1 wins G′ if he either
exceeds the upper bound b at least n times, or if he enforces an infinite play of finite cost
with infinitely many unanswered requests. If he wins by the former condition, this implies
that he can also enforce infinitely many excesses of b via a pumping argument. The latter
condition accounts for plays in which Player 1 wins without violating the bound b repeatedly,
but by violating the classical parity condition. We show that Player 0 has a strategy σ in G
with Cst(σ) ≤ b if and only if Player 0 wins G′ from its initial vertex v′I = (vI , r0, 0). Here,
r0 encodes the open requests of the play prefix vI .

The resulting game G′ is of exponential size in the number of odd colors and can therefore
in general not be solved in polynomial space in n. Thus, in a second step, we construct a
finite-duration variant G′f of G′, which is played on the same arena as G′, but each play is
stopped after a polynomial number of moves. We show that Player 0 wins G′ if and only if
she wins G′f .

To conclude, we show how to simulate G′f on the fly on an alternating Turing machine
in polynomial time in n, which yields a polynomial space algorithm by removing the
alternation [6].

We begin by defining G′. Let R = ({⊥} ∪ [b+ 1])D be the set of request functions, where
D is the set of odd colors occurring in G. Here, r(c) = ⊥ denotes that there is no open
request for the color c, while r(c) 6= ⊥ encodes that the oldest open request of c has incurred
cost r(c). Using these functions, we define the memory structureM = (R× [n+ 1],mI ,Upd),
where the second component [n+ 1] = {0, . . . , n} implements the overflow counter. It suffices
to bound this counter by n, since, if Player 1 can enforce n overflows in G, then, by a pumping
argument, he can also enforce infinitely many.

The initial memory state mI is the pair (rI , 0), where rI is the function mapping all odd
colors to ⊥, if Ω(vI) is even. If Ω(vI) is odd, however, rI maps Ω(v) to 0, and all other
odd colors to ⊥. The update function Upd(m, e) is defined such that traversing an edge
e = (v, v′) updates m = (r, o) to m′ = (r′, o′) by performing the following steps in order:

If e is an increment-edge, then for each c with r(c) 6= ⊥, r(c) is increased by one.
If there exists a color c such that r(c) > b, then reset all open requests to ⊥ and set o to
the minimum of o+ 1 and n.
If Ω(v′) is even, reset all requests for colors c′ with c′ ≤ Ω(v′) to ⊥.
If Ω(v′) is odd, then set r′(Ω(v′)) to the maximum of r(Ω(v′)) and 0, with max{⊥, 0} = 0.

The resulting function r′ is an element of R and the resulting o′ is at most n.
The evolution of the memory states on a play prefix is depicted in Figure 2. The prefix and

the sequence of memory states for b = 2 are shown in the upper and lower row, respectively.
The request functions r are given in vector notation, where the upper and the lower entry
denote r(1) and r(3), respectively.

CVIT 2016

23:8 Optimal Strategies in Parity Games with Costs

3 0 1 1 2 4 1 0(
⊥
0

)
, 0

(
⊥
0

)
, 0

(
0
1

)
, 0

(
1
2

)
, 0

(
⊥
2

)
, 0

(
⊥
⊥

)
, 1

(
0
⊥

)
, 1

(
1
⊥

)
, 1 . . .

. . .ε i i ε i i i

Figure 2 Example of the evolution of the request-functions during a play for the bound b = 2.

We define the parity game G′ = (A×M,Parity(Ω′)), with Ω′(v, r, o) = Ω(v) for o < n

and Ω′(v, r, n) = 1. Note that every play that encounters a vertex of the form (v, r, n) at
some point is winning for Player 1. Although G′ has no cost function, we say that an edge
((v,m), (v′,m′)) of G′ is an increment-edge, if (v, v′) is an increment-edge in G, otherwise it
is an ε-edge.

It suffices to solve G′ to determine whether Player 0 can bound the cost in G by b.

I Proposition 5. There exists a strategy σ for Player 0 in G with Cst(σ) ≤ b if and only if
Player 0 wins G′.

The parity game G′ is of exponential size, since the number of possible request functions
is exponential. Hence, explicitly constructing and solving G′ using standard methods does
not yield a polynomial space algorithm. Rather, we now show that it suffices to consider a
finite-duration variant G′f of G′, in which each play ends after a polynomial number of steps.
The winner of G′f can then be determined by simulating G′f on the fly on an alternating
polynomial time Turing machine.

We say that a play prefix (v0, r0, o0) · · · (vj , rj , oj) of G′ is settled (for Player 1), if
oj = n or if its projection v0 · · · vj contains a cycle of cost zero whose maximal color is
odd. Note that a cycle with odd maximal color that contains an increment-edge does
not settle the play, as its existence does not imply the existence of a cycle in G′. Fix
` = 3(n+ 1)5. We construct the finite duration variant G′f = (A×M,Win`) of G′, where a
play ρ = (v0, r0, o0)(v1, r1, o1)(v2, r2, o2) · · · is winning for Player 0 if and only if the prefix
(v0, r0, o0) · · · (v`, r`, o`) of length `+ 1 is not settled. Note that G′f is indeed a game of finite
duration, as the winner is certain after ` moves. Hence, G′f is determined [30].

I Proposition 6. Player 0 wins G′ if and only if she wins G′f .

Combining Propositions 5 and 6 implies that Player 0 has a strategy σ for G with
Cst(σ) ≤ b if and only if she wins G′f . Thus it remains to show that we can simulate G′f on
an alternating Turing machine in polynomial time.

We show how to simulate a play of the finite-duration game G′f on an alternating
polynomial time Turing machine using the game semantics of such machines, i.e., two players
construct a single path of a run of the machine. The existential player takes the role of
Player 0, the universal one the role of Player 1. The Turing machine keeps track of the
current vertex of the simulated play of G′f , whether a settling cycle has been encountered, and
of the number of moves already simulated. Once ` moves have been simulated, the machine
terminates and accepts if and only if the play constructed during the run is not settled.
To check for zero cycles with odd maximal color, the machine uses the latest-appearance
data structure (see, e.g., [17]), which can be updated in linear time and is reset every
time an increment-edge is traversed. Note that this algorithm involves neither the explicit
construction of G′ nor that of G′f .

Thus, the Turing machine accepts G and b if and only if Player 0 wins G′f . Hence,
APTime = PSpace [6] completes the proof.

A. Weinert and M. Zimmermann 23:9

4.2 Playing Parity Games with Costs Optimally is PSPACE-hard
Next, we turn our attention to proving a matching lower bound, which already holds for
finitary parity games, i.e., parity games with costs in which every edge is an increment-edge.
The result is proven by a reduction from the canonical PSpace-hard problem QBF: given
a quantified boolean formula ϕ = Q1x1Q2x2 . . . Qnxnψ with Qi ∈ {∃,∀} and where ψ is a
boolean formula over the variables x1, x2, . . . , xn, determine whether ϕ evaluates to true.
We assume w.l.o.g. that ψ is in conjunctive normal form such that every conjunct has
exactly three literals, i.e., ψ =

∧m
j=1(`j,1 ∨ `j,2 ∨ `j,3), where every `j,k is either xi or xi for

some i. We call each `j,k for k ∈ {1, 2, 3} a literal and each conjunct of three literals a clause.
Furthermore, we assume w.l.o.g. that the quantifiers Qi are alternating with Q1 = Qn = ∃.

I Lemma 7. The following problem is PSpace-hard: “Given a finitary parity game G and
a bound b ∈ N, does Player 0 have a strategy σ for G with Cst(σ) ≤ b?”

Proof. Let ϕ = Q1x1Q2x2 . . . Qnxnψ be a quantified boolean formula with ψ =
∧m
j=1 Cj

and Cj = (`j,1 ∨ `j,2 ∨ `j,3), where every `j,k is either xi or xi for some i. We construct a
finitary parity game Gϕ such that Player 0 has a strategy σ for Gϕ with CstGϕ(σ) = 3n+ 5 if
and only if the formula ϕ evaluates to true. The arena consists of three parts: In the first
part, which begins with the initial vertex v, Player 0 and Player 1 determine an assignment
for the variables x1 through xn, where Player 0 and Player 1 pick values for the existentially
and universally quantified variables, respectively. Each choice of a truth value by either
player incurs a request. In the second part, Player 1 first picks a clause, after which Player 0
picks a literal from that clause. In the last part, the play then proceeds without any choice
by the players and checks whether or not that literal was set to true in the first part of the
arena. If it was set to true, then its corresponding request is answered with cost 3n + 5.
Otherwise, its corresponding request is answered with cost 3n+ 6. Furthermore, all other
potentially open requests are answered with cost at most 3n+ 5 and the play returns to the
initial vertex v. Thus, all these gadgets are traversed infinitely often and the traversals are
independent of each other.

If ϕ evaluates to true, then Player 0 can always enforce a play in which all requests
are answered with cost at most 3n+ 5. Hence, there exists a strategy σ for Player 0 with
CstGϕ

(σ) ≤ 3n+ 5. If ϕ evaluates to false, however, then Player 1 can enforce requests that
remain unanswered for at least 3n+ 6 steps. Thus, there exists no strategy σ for Player 0
with CstGϕ

(σ) ≤ 3n+ 5. We begin by constructing the arena A together with its coloring Ω.
The left-hand side of Figure 3 shows the gadgets that assign a truth-value to variable xj .

The vertex aj belongs to Player 0 if xj is existentially quantified, and to Player 1 if xj is
universally quantified. The dashed edges indicate the connections to the pre- and succeeding
gadget, respectively. We construct the first part of A out of n copies of this gadget. Moreover,
the vertex a1 has an incoming edge from the end of A, in order to allow for infinite plays,
and is the initial vertex v of the arena. In the remainder of this proof, let cxj

= 4j + 3 and
cxj

= 4j + 1 be the colors associated with assigning true or false to xj , respectively.
The second part of the arena starts with a vertex ψ of Player 1, from which he picks

a clause by moving to a vertex Cj of Player 0. Each vertex Cj is connected to three
gadgets, one for each of the three literals contained in Cj . We show this construction in the
right-hand side of Figure 3. Note that the distance between a vertex of color cxj

and the
vertex ψ is 3(n− j) + 1, whereas the distance between a vertex of color cxj

and the vertex ψ
is 3(n− j) + 2.

The last part of the arena consists of one gadget for each literal x1, x1 through xn, xn
occurring in ϕ. These gadgets check whether or not the literal picked in the middle part was

CVIT 2016

23:10 Optimal Strategies in Parity Games with Costs

0

0

4j + 1

4j + 3

0

00

aj

xj

xj

aj+1 / ψ

0

0

4j + 1

4j + 3

0

00

aj

xj

xj

aj+1

0ψ

0C1

0

C2

0

Cm−1

0Cm

...

`1,1?`1,1?

`1,2?`1,2?

`1,3?`1,3?

`m,1?`m,1?

`m,2?`m,2?

`m,3?`m,3?

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 3 The gadget for existentially and universally quantified variables (left, from top to
bottom), and the middle part of the arena (right).

4j . . . 4j 4j 4j + 4 4(n+ 1)

xj? xj,1! xj,2! xj,3!

4j . . . 4j 4j + 2 4j + 2 4(n+ 1)

xj? xj,1! xj,2! xj,3!

a1

3j + 1 vertices

Figure 4 Gadgets checking the assignment of true (top) or false (bottom) to xj .

actually set to true in the first part of the arena. We show them in Figure 4. Neither player
has any control over the play in these gadgets.

Instead, it is determined by their structure. The play proceeds by first answering requests
for all colors smaller than cxj

and cxj
. It then either grants the request for color cxj

after
3j+ 2 steps, or the request for color cxj

after 3j+ 1 steps, both counted from the vertices xj?
and xj?, respectively. Since traversing the middle part of the arena incurs a constant cost of
2, a request for color cxj

has incurred a cost of 3(n− j) + 3 at xj? and xj?, while a request for
color cxj

has incurred a cost of 3(n− j) + 4 at these vertices. Hence, the total cost incurred
by the request for color cxj

is (3(n− j) + 3) + (3j + 2) in the gadget corresponding to xj ,
and (3(n− j) + 3) + (3j + 3) in the gadget corresponding to xj . The dual reasoning holds
true for requests for color cxj

. Hence, the bound of 3n + 5 is only achieved if the request
corresponding to the chosen literal was posed in the initial part of the arena.

After traversing this last gadget, all requests are answered and the game resets to the
initial state via an edge to a1.

The size of A is polynomial in the size of ϕ: The first part consists of one constant-
size gadget for each variable, while the second part is of linear size in the number of
clauses in ϕ. The final part contains a gadget of size O(n) for each literal occurring in
ϕ. Thus, the size of the arena is in O(n2 + m). It remains to argue that Player 0 has a
strategy σ with CstGϕ(σ) = 3n + 5 if and only if ϕ evaluates to true. For any quantifier-
free boolean formula ψ that contains variables x1 through xn and any partial assignment
α : {x1, . . . , xn} 99K {true, false} we denote by α(ψ) the formula resulting from replacing the

A. Weinert and M. Zimmermann 23:11

variables in α’s domain with their respective truth values.
It suffices to argue about finite plays that begin and end in a1, as all plays start in a1,

visit a1 infinitely often, and all requests are answered before moving back to a1. Hence, for
the remainder of this proof, we only consider a finite play infix ρ starting and ending in a1.

First assume that ϕ evaluates to true. We construct a strategy σ for Player 0 with the
properties described above. Pick j as some index such that xj is existentially quantified
and consider the play prefix ρ′ of ρ up to, but not including aj . We associate ρ′ with an
assignment αj−1 : {x1, . . . , xj−1} → {true, false}, where αj−1(xk) = true if there is an infix
akxk in ρ′, and αj−1(xk) = false if there is an infix akxk in ρ′. Due to the structure of the
arena exactly one of these cases holds true, hence αj−1 is well-defined.

For j = 1, ∃xj · · ·Qnxnαj−1(ψ) evaluates to true by assumption. Let t ∈ {true, false} such
that ∀xj+1 · · ·Qnxn(αj−1[xj 7→ t])(ψ) evaluates to true as well, where αj−1[xj 7→ t] denotes
the mapping αj−1 augmented by the mapping xj 7→ t. Moreover, we define σ(waj) = xj if
t = true, and σ(waj) = xj otherwise. We proceed inductively, constructing σ(waj) for all
existentially quantified variables xj according to the boolean values that satisfy the formulas
∃xjQj+1xj+1 . . . Qnxnαj−1(ψ), until we reach the vertex ψ.

At this point, the analysis of the play prefix so far yields an assignment αn, which is
a total function mapping each variable of x1 through xn to either true or false, such that
αn(ψ) evaluates to true. We define α = αn.

At vertex ψ there exist n open requests. As previously argued, if α(xj) = true, then there
is an open request for cxj with cost 3(n− j) + 1. Otherwise, there is an open request for cxj

with cost 3(n− j) + 2. At vertex ψ, Player 1 picks a clause Cj by moving to its vertex. Since
α(ψ) ≡ true, there must exist a k ∈ {1, 2, 3} with α(`j,k) = true. We pick σ(wCj) = `j,k?.

If `j,k = xl, then α(xl) = true and hence, there is an open request for cxj
. As argued

previously, this request is then answered with cost 3n + 5, since we picked the gadget
corresponding to xj . Similarly, if `j,k = xl, then α(xl) = false and thus there is an open
request for xxj

, which is answered with cost 3n + 5 as well. All other open requests are
answered with cost at most 3n+ 5, as argued previously.

After this traversal of the final gadget, all requests are answered, and the play automatically
moves to vertex a1 to begin anew. The same reasoning then applies ad infinitum. Thus,
Player 0 is able to answer all requests with a cost of at most 3n+ 5.

Now assume that ϕ evaluates to false. Then, irrespective of the choices made by Player 0
when constructing α in the first part of the arena, Player 1 can construct an α such that
α(ψ) ≡ false and then pick a clause Cj with α(Cj) ≡ false. Hence, Player 0 has to pick some
`j,k with α(`j,k) = false. If `j,k = xl, then there is an open request for cxj

at xl,1!, which is
answered with cost 3n+ 6. Similarly, if `j,k = xl, then α(xl) = true, hence there is an open
request for cxj

, which is also answered with cost 3n+ 6. Thus, in each round Player 1 can
open a request that is answered with cost at least 3n+ 6, i.e., Player 0 has no strategy with
cost 3n+ 5.

J

5 Memory Requirements of Optimal Strategies in Parity Games with
Costs

Next, we study the memory requirements of optimal strategies in parity games with costs.
Recall that Player 0 always has a positional winning strategy if she wins the game. In
contrast, our main result of this section shows that the memory requirements of optimal
strategies are exponential, i.e., playing optimally comes at a price in terms of memory,

CVIT 2016

23:12 Optimal Strategies in Parity Games with Costs

0

1

0

0

3

0

0

2d− 1

0

. . .

. . .

. . .

0

2

0

0

4

0

0

2d

0

. . .

. . .

. . .

Figure 5 The gadgets for Player 1 (left) and Player 0 (right).

too. Our lower bound is obtained by a generalization of a construction of Chatterjee and
Fijalkow [8] which yielded a linear lower bound.

First, however, let us state a corollary of the construction of the parity game G′ in the
proof of Lemma 4, which gives an exponential upper bound on the necessary memory states.
Recall that the memory structure used in that proof has one counter with a range of size
b+ 2 for each odd color. Furthermore, it has an additional counter that is bounded by n,
which counts the number of times the bound b is exceeded.

I Corollary 8. Let G be a parity game with costs. If Player 0 has a strategy σ for G with
CstG(σ) = b, then she also has a strategy σ′ with CstG(σ′) ≤ b and |σ′| = (b+ 2)d · (n+ 1),
where n is the number of vertices and d the number of odd colors in G.

Using similar techniques to [16], it is possible to remove the overflow counter, since it
is the goal of Player 0 to avoid excesses of the bound b. Hence, she can play assuming the
largest value for this counter that still allows her to win. Again, our matching lower bound
already holds for finitary parity games, i.e., parity games with costs in which all edges are
increment-edges.

I Theorem 9. For every d > 1, there exists a finitary parity game Gd such that
Gd has d odd colors and |Gd| ∈ O(d2), and
every optimal strategy for Player 0 in Gd has at least size 2d − 2.

Proof. Let d > 1. We construct a finitary parity game Gd that has the stated properties.
To this end, we first construct an optimal strategy for Player 0 and argue that every such
strategy has cost d2 + 2d, followed by the proof that every optimal strategy has at least size
2d − 2.

The game Gd is played in rounds. In each round, which starts at the initial vertex of
Gd, Player 1 poses d requests for odd colors in the range 1 through 2d − 1. Subsequently,
Player 0 gives d answers using colors in the range 2 through 2d. After each round, the play
returns to the initial vertex in order to allow for infinite plays.

The arena A consists of gadgets that allow exactly one request or response to be made.
Moreover, each path through a gadget has the same length. However, low-priority requests
and responses must be made earlier in the traversal of such a gadget than high-priority ones.
We show both gadgets in Figure 5. The dashed lines show the connection to the pre- and
succeeding gadget and the connection between the final and the initial gadget. As the owner
of the succeeding vertex depends on the succeeding gadget’s owner, we draw it as a diamond.

The arena A consists of d repetitions of the gadget for Player 1, followed by d repetitions
of the gadget for Player 0. The initial vertex v of the arena is the top-left node of the first
gadget for Player 1. Moreover, the final gadget of Player 0 has a single back-edge to the
initial vertex. Clearly, A satisfies the first statement of the theorem.

A. Weinert and M. Zimmermann 23:13

Similarly to the proof of Lemma 7, it suffices to consider finite plays infixes. Even though
the requests are not necessarily all answered after each round, we argue that Player 0 can
always do so while playing optimally.

We now construct an optimal strategy from v for Player 0. In order to play optimally,
Player 0 needs to track the requests made by Player 1 in the first part of each round. Instead
of tracking each request precisely, however, it suffices to only store those requests that are of
higher priority than all previous ones in the current round. Moreover, by defaulting to visiting
the vertex of color 2d after having answered all requests, it suffices to store at most d− 1
requests. If there is a repetition in the requests made, then the final request will be answered
by an answer previous to the final one. If there is no repetition, the final request is for 2d− 1
and will be answered by the default answer of 2d. We define the set of strictly increasing
odd sequences IncSeqd = {(c1, . . . , ck) | 1 ≤ c1 < · · · < ck ≤ 2d− 1, all ci are odd} and use
the set of memory states Md = IncSeqd \ {(), (1, 3, . . . , 2d− 1)}. Note that |Md| = 2d − 2.

Each round starts with Player 0 observing the requests of Player 1. While the first request
of Player 1 replaces the entry of the initial memory state (1), subsequent requests are only
appended if they are larger than the last element of the current memory state. During her
turn, Player 0 then pops the first element of the sequence, call it c, in each of her gadgets
and answers that request by moving to c+ 1. After popping the final request in her memory
state, Player 0 pushes a request for 2d− 1 and answers with 2d for the remainder of her turn.

Now consider a play in which Player 0 plays according to this strategy and consider
the request for color c made by Player 1 in his j-th gadget. If Player 1 has posed strictly
increasing requests up to j, then Player 0 answers the j-th request from Player 1 in her j-th
gadget. The cost of this request then consists of three components. First, the play has to
leave Player 1’s j-th gadget, incurring a cost of (2d− 1− c)/2 + 2. Then, the play passes
through d− 1 gadgets, each incurring a cost of d+ 2. Finally, moving to c+ 1 in Player 0’s
gadget incurs a cost of (c − 1)/2 + 1 Hence, answering Player 1’s request incurs a cost of
d2 + 2d. If Player 1 has, however, not posed requests in strictly increasing order up to j,
then the request will be answered in some gadget j′ < j of Player 0. Hence, Player 0 answers
the request with cost at most (d− 1)(d+ 2) < d2 + 2d.

This cost is indeed optimal. Consider the play in which Player 1 always requests 2d− 1.
Even if Player 0 answers this request in her first gadget, it still incurs a cost of d2 + 2d.

It remains to show that no optimal strategy of size less than |Md| exists. We associate
with each s ∈Md the partial play req(s), which starts in the initial vertex, where Player 1
requests the colors occurring in s in order. Subsequently, he requests the final color of s until
the end of his turn. Hence, for s 6= s′ ∈Md, we have req(s) 6= req(s′).

Pick a strategy σ for Player 0 that is implemented byM = (M,mI ,Upd) with |M | <
|Md|. Let m ∈ M . Due to the pigeon-hole principle, there exist s 6= s′ ∈ Md, such that
Upd+(m, req(s)) = Upd+(m, req(s′)). Hence, Player 0 answers both sequences of requests in
the same way. Since req(s) 6= req(s′), there exists a gadget of Player 1 in which the requests
posed during req(s) and req(s′) differ. Pick j as the minimal index of such gadgets and
assume that in his j-th gadget, Player 1 requests color c during req(s), and color c′ during
req(s′), where, w.l.o.g., c < c′. If Player 0 has already answered either the request for c or
the request for c′ before her j-th gadget, then some earlier request is not answered optimally.
Thus, assume that neither request has been answered upon entering Player 0’s j-th gadget.
If she visits some color c′′ < c′ in this gadget, she will only answer c′ in some later gadget,
thereby incurring a cost of at least (d+ 1)(d+ 2). If she visits some color c′′ > c′, then she
does not answer the request for c optimally, thus incurring a cost of at least d2 + 2d+ c′ − c.
Hence, one of the sequences of requests s or s′ leads to Player 0 answering at least one

CVIT 2016

23:14 Optimal Strategies in Parity Games with Costs

request non-optimally. As there exist such sequences s and s′ for each m ∈M , Player 1 can
force such a costly request in each round. Thus, Cst(σ) > d2 + 2d, i.e., σ is not optimal. J

6 Tradeoffs Between Time and Memory

In the previous section, we have shown that an optimal strategy for Player 0 in a parity game
with costs requires exponential memory in general. In contrast, minimal winning strategies
for Player 0 in parity games with costs are known to be positional [16]. Here we show that,
in general, there exists a gradual tradeoff between the size and the cost of a strategy.

I Theorem 10. Fix some d > 1 and let the game Gd be as defined in the proof of Theorem 9.
For every i with 1 ≤ i ≤ d there exists a strategy σi for Player 0 in Gd such that
d2 + 3d− 1 = CstGd

(σ1) > CstGd
(σ2) > · · · > CstGd

(σd) = d2 + 2d, and
1 = |σ1| < |σ2| < · · · < |σd| = 2d − 2.

Also, for every strategy σ′ for Player 0 in Gd with CstGd
(σ′) ≤ CstGd

(σi) we have |σ′| ≥ |σi|.

Proof. Recall that we defined the set of strictly increasing odd sequences IncSeqd in Theo-
rem 9 and showed that a memory structure using IncSeqd \ {(), (1, 3, . . . , 2d− 1)} as memory
states implements an optimal strategy with cost d2 + 2d. Intuitively, such a strategy stores
up to d − 1 requests made by Player 1 in his part of each round. The idea behind the
construction of the strategies σi is to restrict the memory of Player 0 such that she can only
store up to i requests. In the extremal cases of i = 1 and i = d this implements a positional
strategy and the strategy from the proof of Theorem 9, respectively.

We implement σi by again using strictly increasing odd sequences, where we restrict the
maximal length, but not the maximal value of entries in the memory states for Player 0. In
strategy σi, Player 0 stores at most i− 1 requests, using sequences of length at most i− 1.

To this end, we define the length-restricted set of strictly increasing odd sequences
IncSeqid = {s ∈ IncSeqd | |s| < i}, where |s| denotes the number of elements contained in the
sequence s. If i > 1, then we may remove the empty sequence from the set of memory states,
since Player 1 has to pose at least one request in each of his turns.

Otherwise, Player 0’s memory consists only of the empty sequence.
Hence, we pick M i

d = IncSeqid \ {()} for i > 1. For i = 1, however, we define M1
d =

IncSeq1
d = {()}. Note that Md

d = Md as defined in the proof of Theorem 9. Clearly, the
claim about the size of the σj holds true, since |M1

d | < |M2
d | and M i

d (M i+1
d for each

d > 1, i > 1. The initial memory state, the update function, and the next-move function for
Player 0 are defined similarly to those from the proof of Theorem 9 in order to obtain the
memory structureMi implementing σi. In particular, after answering all requests stored in
her memory state, Player 0 defaults to visiting 2d repeatedly in order to answer any requests
by Player 1 that were not stored in her memory.

It remains to show that each strategy σj realizes a cost of d2 + 3d− i and that each σi is
minimal for its respective cost. To this end, we fix some i with 1 ≤ i ≤ d for the remainder
of this proof. First, we show that Player 1 can enforce a cost of d2 + 3d− i if Player 0 plays
consistently with σi. Intuitively, Player 1 fills the memory of Player 0 as quickly as possible,
and requests the minimal color that has not yet been requested repeatedly afterwards. Thus,
he maximizes the gap between the smallest unstored request and the default answer of 2d.

More precisely, in each turn Player 1 requests the colors 1, 3, . . . , 2i− 3, 2i− 1, 2i− 1,
Playing consistently with σi, Player 0 answers these requests with 2, 4, . . . , 2i− 2, 2d, 2d,
In general,the cost of the resulting play is the cost incurred by answering a request for 2i− 1
in the i-th gadget of Player 1 with 2d in the i-th gadget of Player 0. As argued in the proof

A. Weinert and M. Zimmermann 23:15

of Theorem 9, the cost incurred by such a request-response-pair amounts to

[(2d− 1− (2i− 1))/2 + 2] + [(d− 1)(d+ 2)] + [(2d− 2)/2 + 1] = d2 + 3d− i.

As the game restarts after Player 0’s turn, Player 1 can enforce this cost infinitely often.
Hence, CstGd

(σi) ≥ d2 + 3d− i.
This sequence of requests is indeed optimal for Player 1, i.e., he cannot enforce a higher

cost. Assume that Player 1 does not pose requests as specified above, but poses the requests
c1, . . . , cd. Then either there exist some j and j′ with j < j′, such that cj ≥ cj′ , or there
exists a j with 2i − 1 < cj ≤ 2d − 1. In the former case, after encountering the first such
j′, Player 0 can answer all remaining requests with costs at most (d− 1)(d+ 2), as she can
ignore the request for cj′ . In the latter case, Player 0 answers that request with cost at most
d2 + 2d + (2d − 1 − cj)/2 ≤ d2 + 3d − i, independent of whether she was able to store it.
Hence, there exists no play ρ consistent with σi and Cst(ρ) > d2 + 3d− i.

In general,the cost of the resulting play is the cost incurred by answering a request for
2i− 1 in the i-th gadget of Player 1 with 2d in the i-th gadget of Player 0. As argued in the
proof of Theorem 9, the cost incurred by such a request-response-pair amounts to

[(2d− 1− (2i− 1))/2 + 2] + [(d− 1)(d+ 2)] + [(2d− 2)/2 + 1] = d2 + 3d− i.

As the game restarts after Player 0’s turn, Player 1 can enforce this cost infinitely often.
Hence, CstGd

(σi) ≥ d2 + 3d− i.
This sequence of requests is indeed optimal for Player 1, i.e., he cannot enforce a higher

cost. Assume that Player 1 does not pose requests as specified above, but poses the requests
c1, . . . , cd. Then either there exist some j and j′ with j < j′, such that cj ≥ cj′ , or there
exists a j with 2i − 1 < cj ≤ 2d − 1. In the former case, after encountering the first such
j′, Player 0 can answer all remaining requests with costs at most (d− 1)(d+ 2), as she can
ignore the request for cj′ . In the latter case, Player 0 answers that request with cost at most
d2 + 2d + (2d − 1 − cj)/2 ≤ d2 + 3d − i, independent of whether she was able to store it.
Hence, there exists no play ρ consistent with σi and Cst(ρ) > d2 + 3d− i.

As the final part of the proof, we observe that there exists no strategy σ′ with |σ′| < |σi|
and CstGd

(σ′) ≤ CstGd
(σi). The argument is nearly identical to the argument of minimality

of the strategy constructed in the proof of Theorem 9 and can in fact be obtained by replacing
all occurrences of 2d − 2 and d2 + 2d by |σi| and d2 + 3d − i, respectively, and by having
Player 1 request 2i− 1 instead of the final entry of s after requesting all colors in s in that
proof. Hence, the strategies σi are minimal for their respective cost. J

7 Conclusion

In this work we have shown that playing parity games with costs optimally is harder than
just winning them, both in terms of computational complexity as well as in terms of memory
requirements of strategies. We proved checking an upper bound on the value of an optimal
strategy to be complete for polynomial space. Moreover, we have shown that optimal
strategies in general require exponential memory, but also that exponential memory is always
sufficient to implement optimal strategies. Finally, we have shown that, in general, there
exists a gradual tradeoff between the size and the cost of strategies.

All these results also hold true for the case of bounded parity games and bounded parity
games with costs [9, 16]. While the parity condition with costs only restricts the cost-of-
response in the limit, the bounded parity condition prohibits any unanswered request with
cost ∞ (but still allows finitely many unanswered requests with finite cost).

CVIT 2016

23:16 Optimal Strategies in Parity Games with Costs

There are at least two directions in which these results can be extended, namely towards
Streett conditions (finitary or with costs) [9, 16] and towards a binary weights.

In current work, we investigate the former extension. Our lower bounds carry over
trivially, as every parity condition is a Streett condition of polynomial size. On contrast, the
upper bounds are more involved, since solving the boundedness question for finitary Streett
games is already ExpTime-complete and exponential memory is necessary for Player 0 (see
[16] for a discussion).

Throughout this work, we have only considered unary weights, i.e., cost functions that
assign the abstract costs ε and i. Allowing arbitrary non-negative costs would constitute
an extension of the model considered here, i.e., the PSpace-hardness result as well as
the necessity of exponential memory remain true without any modifications. Again, the
upper bounds are non-trivial, as the upper bound on the cost of an optimal strategy is now
exponential in the size of the game and its largest weight. Thus, e.g., there is a blowup
in the size of G′ as constructed in the proof of Theorem 4 and in the play length of its
finite-duration variant G′f . We are currently investigating whether these can be avoided.

References
1 Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron Peled. Parametric temporal

logic for “model measuring”. ACM Trans. Comput. Log., 2(3):388–407, 2001.
2 Benjamin Aminof and Sasha Rubin. First cycle games. In Fabio Mogavero, Aniello Murano,

and Moshe Y. Vardi, editors, SR 2014, volume 146 of EPTCS, pages 83–90, 2014.
3 Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey, and Jirí Srba.

Infinite runs in weighted timed automata with energy constraints. In Franck Cassez and
Claude Jard, editors, FORMATS 2008, volume 5215 of LNCS, pages 33–47. Springer, 2008.

4 Véronique Bruyère, Quentin Hautem, and Mickael Randour. Window parity games: an
alternative approach toward parity games with time bounds. arXiv, 1606.01831, 2016.

5 Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Re-
source interfaces. In Rajeev Alur and Insup Lee, editors, EMSOFT 2003, volume 2855 of
LNCS, pages 117–133. Springer, 2003.

6 Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

7 Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Trading memory for
randomness. In Gethin Norman and William Sanders, editors, QEST 2004, pages 206–217.
IEEE, 2004.

8 Krishnendu Chatterjee and Nathanaël Fijalkow. Infinite-state games with finitary condi-
tions. arXiv, 1301.2661, 2013.

9 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in
ω-regular games. ACM Trans. Comput. Log., 11(1), 2009.

10 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. The complexity of
request-response games. In Adrian-Horia Dediu, Shunsuke Inenaga, and Carlos Martín-
Vide, editors, LATA 2011, pages 227–237. Springer, 2011. URL: http://dx.doi.org/10.
1007/978-3-642-21254-3_17.

11 Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu. Trading infinite
memory for uniform randomness in timed games. In Magnus Egerstedt and Bud Mishra,
editors, HSCC 2008, volume 4981 of LNCS, pages 87–100. Springer, 2008.

12 Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. Int.
J. Game Theory, 8:109–113, 1979.

13 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In FOCS 1991, pages 368–377. IEEE, 1991.

http://dx.doi.org/10.1007/978-3-642-21254-3_17
http://dx.doi.org/10.1007/978-3-642-21254-3_17

A. Weinert and M. Zimmermann 23:17

14 Peter Faymonville and Martin Zimmermann. Parametric linear dynamic logic. In Adriano
Peron and Carla Piazza, editors, GandALF 2014, volume 161 of EPTCS, pages 60–73, 2014.

15 Nathanaël Fijalkow, Florian Horn, Denis Kuperberg, and Michal Skrzypczak. Trading
bounds for memory in games with counters. In Magnús M. Halldórsson, Kazuo Iwama,
Naoki Kobayashi, and Bettina Speckmann, editors, ICALP 2015, Part II, volume 9135 of
LNCS, pages 197–208. Springer, 2015.

16 Nathanaël Fijalkow and Martin Zimmermann. Parity and Streett Games with Costs. LMCS,
10(2), 2014.

17 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002.

18 Florian Horn. Streett games on finite arenas. In GDV 2005, 2005.
19 Florian Horn, Wolfgang Thomas, Nico Wallmeier, and Martin Zimmermann. Optimal

strategy synthesis for request-response games. RAIRO - Theor. Inf. and Applic., 49(3):179–
203, 2015.

20 Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett., 68(3):119–124, 1998.

21 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness. Form.
Met. in Sys. Des., 34(2):83–103, 2009.

22 Martin Lang. Resource reachability games on pushdown graphs. In Anca Muscholl, editor,
FOSSACS 14, volume 8412 of LNCS, pages 195–209. Springer, 2014.

23 Fabio Mogavero, Aniello Murano, and Loredana Sorrentino. On promptness in parity games.
Fundam. Inform., 139(3):277–305, 2015.

24 Andrzej Mostowski. Games with forbidden positions. Technical Report 78, University of
Gdańsk, 1991.

25 Nir Piterman and Amir Pnueli. Faster solutions of rabin and streett games. In LICS 2006,
pages 275 – 284. IEEE, 2006.

26 Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In
Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona Ronchi Della Rocca, editors,
ICALP 1989, volume 372 of LNCS, pages 652–671. Springer, 1989.

27 Mickael Randour. Synthesis in Multi-Criteria Quantitative Games. PhD thesis, University
of Mons, 2014.

28 Robert S. Streett. Propositional dynamic logic of looping and converse. In STOC 1981,
pages 375 – 383. ACM, 1981.

29 Alexander Weinert and Martin Zimmermann. Easy to win, hard to master: Optimal
strategies in parity games with costs. arXiv, 1604.05543, 2016.

30 Ernst Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels.
In Proc. Fifth Congress of Mathematicians, Vol. 2, pages 501–504. Cambridge Press, 1913.

31 Martin Zimmermann. Time-optimal winning strategies for poset games. In Sebastian
Maneth, editor, CIAA 2009, volume 5642 of LNCS, pages 217–226. Springer, 2009.

32 Martin Zimmermann. Optimal Bounds in Parametric LTL Games. Theoret. Comput. Sci.,
493(0):30 – 45, 2013.

33 Martin Zimmermann. Parameterized linear temporal logics meet costs: Still not costlier
than LTL. In Javier Esparza and Enrico Tronci, editors, GandALF 2015, volume 193 of
EPTCS, pages 144–157, 2015.

34 Uri Zwick and Mike Paterson. The complexity of mean payoff games. In Ding-Zhu Du and
Ming Li, editors, COCOON 1995, volume 959 of LNCS, pages 1–10. Springer, 1995.

CVIT 2016

23:18 Optimal Strategies in Parity Games with Costs

A Appendix

Here, we present the proofs omitted in the main part showing
the equivalence of the parity game with costs G with respect to the bound b and the
parity game G′ (Proposition 5), and
and the equivalence of G′ and its finite-duration variant G′f (Proposition 6).

To simplify the proofs, we introduce some notation. Recall that both G′ and G′f are
played in the arena A×M. To simplify our notation, let A×M = (V ′, V ′0 , V ′1 , E′, v′I), in
particular V ′ = V ×M and V ′i = Vi ×M .

Furthermore, if Upd((r, o), e) = (r′, o′) for some memory state (r, o) and some edge e,
then we define Updr((r, o), e) = r′ and Updo((r, o), e) = o′.

Moreover, we define the request function rv for some v ∈ V as rv(c) = 0, if Ω(v) = c, and
⊥ otherwise. In particular, rvI

is the request function of the initial vertex of G′ as defined
above, i.e., mI = (rvI

, 0).
Finally, let (v0, r0, o0)(v1, r1, o1)(v2, r2, o2) · · · be a finite or infinite play in A′. An

overflow position is a j such that either j = 0 or oj = oj−1 + 1. Note that we have rj = rvj

for every overflow position, i.e., the request function is reset at each such position.

A.1 Proof of Proposition 5
Recall that we have to show that there exists a strategy σ for Player 0 in G with Cst(σ) ≤ b
if and only if Player 0 wins G′.

Proof. First, let Player 0 win G′, i.e., let σ′ : V ′0 → V ′ be a positional winning strategy for
her from v′I in G′. We define the finite-state strategy σ for Player 0 in G usingM and the
next-move function Nxt with Nxt(v,m) = v′, if σ′(v,m) = (v′,m′). Let ρ = v0v1v2 · · · be a
play that is consistent with σ. A straightforward induction shows that the unique extended
play ext(ρ) = (v0, r0, o0)(v1, r1, o1)(v2, r2, o2) · · · in G′ is consistent with σ′ and therefore
winning for Player 0. Hence, there is a position j such that oj′ = oj < n for every j′ > j.

We claim Cor(ρ, k) ≤ b for every k > j, which finishes this direction of the proof. Assume
towards a contradiction that a request at some position after j is unanswered for b + 1
increment-edges and let k be such a position. We have rk(Ω(vk)) ≥ 0 and during every
increment-edge, this counter is increased by one and not reset until b+ 1 increment-edges are
traversed, which triggers an overflow. This contradicts the choice of k > j. Thus, if ρ has
infinitely many increment-edges, then almost every request is answered with cost at most b,
i.e., Cst(ρ) ≤ b.

Now, consider the case where ρ has finitely many increment-edges. Such a play satisfies
the parity condition if and only if Cor(ρ, k) = 0 for almost all k, i.e., Cst(ρ) = 0. Thus, it
suffices to note that ρ and ext(ρ) coincide on their color sequences, as the overflow counter
does not reach value n, and that ext(ρ) satisfies the parity condition, as it is winning for
Player 0.

For the other direction, we prove the contrapositive. Assume that Player 0 does not win
G′. Then, due to determinacy of parity games, Player 1 wins G′. Thus, let τ ′ be a winning
strategy for Player 1 in G′. We construct a strategy τ for Player 1 in G that enforces a play ρ
with Cst(ρ) > b against every strategy for Player 0. Then, Cst(σ) > b for every strategy σ
for Player 0 in G.

To this end, we first construct a mapping h that simulates play prefixes in G by play
prefixes in G′. The mapping h maintains the following invariant:

A. Weinert and M. Zimmermann 23:19

For every play prefix π in G ending in a vertex v, h(π) = (v0, r0, o0) · · · (vj , rj , oj)
is a play prefix in G′ with vj = v. Furthermore, h(π) contains no two overflow
positions j0 < j1 with vj0 = vj1 .

Note that h(π) not containing two overflow positions with the same vertex implies oj < n.
For π = vI , we define h(π) = v′I , which satisfies the invariant. Now let π be some play

prefix in G ending in v and let h(π) end in (v, r, o). We fix a successor v′ of v and need to
define h(π · v′). In order to do so, we use two actions: Either we define h(π · v′) by appending
v′ and an appropriate memory state to h(π), or by cutting off a suffix of h(π). We then
define h(π · v′) based on a case analysis: Either the move to v′ at the end of h(π) does not
cause an overflow, i.e., Updo((r, o), (v, v′)) = o, or it does, i.e., Updo((r, o), (v, v′)) = o+ 1
(recall that we have o < n by assumption).

In the former case, we define h(π · v′) by concatenating h(π) and (v′,Upd((r, o), (v, v′))),
which is a successor of (v, r, o). Furthermore, as we do not introduce a new overflow position,
the second requirement of the invariant is satisfied as well. In the latter case, we again
consider two possibilities: If h(π) contains a vertex of the form (v′, rv′ , o′) at an overflow
position, which is unique by the invariant, we obtain h(π · v′) by removing all later vertices
from h(π). This satisfies the invariant, in particular the second requirement, as the invariant
is a prefix-closed property. If there is no such vertex in h(π) then we again concatenate
h(π) and (v′,Upd((r, o), (v, v′))) to obtain h(π · v′). We have to argue that this satisfies the
invariant. In particular, assume there are two overflow positions that share the same vertex
in their first component. As such a repetition did not appear in h(π) by assumption, the last
vertex (v′,Upd((r, o), (v, v′))) is part of this repetition. Hence, the first case is applicable
and we have derived the desired contradiction.

Using the mapping h we define a strategy τ for Player 1 in G by τ(π) = v, if τ ′(h(π)) =
(v, r, o). This is well-defined due to the invariant. A straightforward induction shows that if
π is consistent with τ , then h(π) is consistent with τ ′.

It remains to show Cst(ρ) > b for every play that is consistent with τ . Fix such a
play ρ = v0v1v2 · · · and define πi = v0 · · · vi for every i. First assume that there are
infinitely many positions i > 0 such that h(πi) is obtained from h(πi−1) by the removal
operation. Let i be such a position, i.e., h(πi) = (v0, r0, o0) · · · (vj′ , rj′ , oj′) is a prefix of
h(πi−1) = (v0, r0, o0) · · · (vj , rj , oj). By definition ofM, there is suffix of πi that caused the
overflow that triggers the removal operation, i.e., there is a request in this suffix that is open
for at least b+ 1 increment-edges. As there are infinitely many such positions i and as the
requests are all reset at overflow positions, there exist infinitely many such requests in ρ, and
hence Cst(ρ) > b.

Now assume that there are only finitely many πi such that h(πi) is obtained using the
removal operation and pick πi as the longest such prefix. Then, for all i′ > i, we have
h(πi′) = h(πi′−1) · (vi′ , ri′ , oi′) for some ri′ and some oi′ < n. Thus, define ρ′ to be the limit
of the h(πi′) for i < i′ →∞, which is a play in G′. Then, as every prefix of ρ′ is consistent
with τ ′, ρ′ is consistent with τ ′ and thus winning for Player 1. Also, as all oi′ are strictly
smaller than n due to the invariant of h, the coloring of ρ and the coloring of ρ′ have a
common suffix. As ρ′ violates the parity condition, ρ violates this condition as well, and
therefore also the parity condition with costs for any bound. Hence, Cst(ρ) > b. J

A.2 Proof of Proposition 6
For this proof, we need to introduce even more notation and some simple facts about it.

As usual, a cycle in A is a play infix v0 · · · vj with j > 0 and v0 = vj . The cycle is an

CVIT 2016

23:20 Optimal Strategies in Parity Games with Costs

ε-cycle, if its cost is zero, i.e., if it only contains ε-edges. We say that the cycle is even
(odd), if its maximal color is even (odd). We lift this notion to play infixes in A′ as follows:
(v0,m0, o0) · · · (vj ,mj , oj) is an even (odd) ε-cycle, if v0 · · · vj is an even (odd) ε-cycle. Note
that this is not necessarily a cycle in A′, since we allow m0 6= mj and o0 6= oj . Also note
that the existence of an odd ε-cycle settles a play.

Two request functions r0 and r1 are on par, if there is an odd color c∗ such that
r0(c∗) = r1(c∗) ≥ 0,
for every odd c > c∗: r0(c) = r1(c), and
for every odd c < c∗: either r0, r1 ∈ {⊥, 0}, or r0(c) = r1(c).

Being on par is preserved by memory updates and two request functions that are on par
have the same influence on the overflow counter.

I Remark 11. Let r0 and r1 be on par and define (r′0, o′0) = Upd((r0, o), e) and (r′1, o′1) =
Upd((r1, o), e) for some o ≤ n and some edge e. Then, r′0 and r′1 are on par and o′0 = o′1.

Now, we show that removing even ε-cycles can be captured by a pair of request functions
that are on par.

I Lemma 12. Let (v0, r0, o0) · · · (vj , rj , oj) be a play prefix in A′ such that
(vj′ , rj′ , oj′) · · · (vj , rj , oj) is an even ε-cycle, say with maximal color cm, and
rj′−1(c∗) 6= ⊥ for some c∗ > cm, i.e., a request of color c∗ is open throughout the cycle.

Then, rj′ and rj are on par and oj′ = oj.

Proof. Identify the colors c∗ in the definition of being on par and in the assumptions of the
lemma and note that an ε-cycle can only have an overflow position at its first position. J

In particular, combining Lemma 12 and an inductive application of Remark 11 shows
that removing even ε-cycles during which a request is continuously open does not influence
the overflow counter.

In the following proof it is also useful to view a strategy for Player 1 in an arbitrary
arena (V, V0, V1, E, vI) as the set of play prefixes that are consistent with it. Such a set P ⊆ V ∗
satisfies the following four properties:
1. P is prefix-closed.
2. P ∩ V = {vI}.
3. For every wv ∈ P with v ∈ V1, there is exactly one v′ ∈ V with wvv′ ∈ P , which has to

satisfy (v, v′) ∈ E.
4. For every wv ∈ P with v ∈ V0 and every v′ with (v, v′) ∈ E, we have wvv′ ∈ P .

The set of consistent play prefixes of a strategy for Player 1 satisfies these four properties
and every set satisfying these properties can be turned into a strategy for Player 1.

Now we prove Proposition 6, i.e., that Player 0 wins G′ if and only if she wins G′f .

Proof of Proposition 6. Due to determinacy of both games, it is sufficient to prove the
equivalence for Player 1, i.e., that he wins G′ if and only if he wins G′f

First, let Player 1 win G′, say with the positional winning strategy τ ′. Ideally, we would
show that every play consistent with τ ′ is settled within `+ 1 moves. While it is true that
the play is eventually settled, it is in general not settled within `+ 1 moves. The strategy
may spend some time idling around before settling the play, even though it is positional.
This is due to the fact that we have exponentially many vertices in G′, which allows even a
positional strategy to make exponentially many unproductive moves. Thus, in the following,

A. Weinert and M. Zimmermann 23:21

we show that we can transform τ ′ into a strategy τ ′f that does settle all consistent plays
quickly. Thus, τ ′f is a winning strategy for Player 1 in G′f .

Let Pτ ′ be the set of play prefixes that are consistent with τ ′. Fix one such π =
(v0, r0, o0) · · · (vi, ri, oi) ∈ Pτ ′ that is unsettled.

First we show that π contains no vertex repetition. If it does, consider the play ρ′ obtained
by reaching the induced cycle and then traversing it ad infinitum, which is consistent with
the strategy τ ′. If the maximal color on the cycle is even, then ρ′ is winning for Player 0 in
G′, which contradicts τ being a winning strategy for Player 1. Thus, assume the maximal
color on the cycle is odd. Then this cycle only contains ε-edges, which contradicts π being
unsettled: If it contains an increment-edge, then traversing the cycle sufficiently often would
incur a cost of b+ 1 for the maximal color and therefore an overflow to some value strictly
smaller than n. However, such overflow positions are not on cycles, as the overflow counter
is non-decreasing and strictly smaller than n on the cycle, as π is settled.

Now, we bound the length of π. The structure of our argument is sketched in Figure 6:
We define debt-free and request-adding positions, and then show
1. that there are at most n overflow positions in π,
2. that there are at most n debt-free positions between any two adjacent overflow positions,
3. that there are at most d request-adding positions between any two adjacent debt-free

positions,
4. that there are at most b+ 1 increment-edges between any two adjacent request-adding

positions, where d is the number of odd colors, and
5. that we can remove cycles from π such that the resulting play prefix has at most n

positions between any two adjacent increment-edges.
Aggregating these bounds shows that the play prefix resulting from the cycle removal satisfies
the desired upper bound `. Subsequently, we show how to construct the strategy τ ′f from
such play prefixes.

.π

π1

π2

π3

≤ n overflow
positions

.

< n debt-free
positions

.

≤ d request-
adding
positions

.i i i i i iε ε ε ε

≤ b+ 1
increment edges

" "

≤ n vertices ≤ n vertices

Figure 6 Bounding the length of unsettled play prefixes.

Recall that an overflow position of π is a j with j = 0 or with oj > oj−1. As π is unsettled
and the oj are non-decreasing, π has at most n overflow positions, n− 1 real increments and
the initial position. Hence, by splitting π at the overflow positions we obtain at most n+ 1
non-empty infixes of π, each without overflow positions. We say such an infix has type 1.

CVIT 2016

23:22 Optimal Strategies in Parity Games with Costs

Fix a type 1 infix π1. A debt-free position of π is a j with rj = rvj , i.e., a position that
has no other costs than those incurred by visiting vj . As all vertices of π1 share the same
overflow counter value oj , there are at most n debt-free positions in π1: n+ 1 such positions
would induce a vertex repetition, which we have ruled out above. Hence, by splitting π1
at the debt-free positions we obtain at most n + 1 non-empty infixes of π1, each without
debt-free and overflow positions. We say such an infix has type 2.

Fix a type 2 infix π2. A request-adding position of π is a j with odd Ω(vj) such that
rj−1(c) = ⊥ for all c ≥ Ω(vj). We define d as the number of odd colors assigned by Ω. We
claim that there are at most d request-adding positions in π2. Assume there are d+ 1. Then,
two request-adding positions j < j′ share a color, call it c. As j′ is request-adding, only
requests strictly smaller than c are open at position j − 1, i.e., c and all larger requests have
to be answered in between j and j′. Hence, there is a debt-free position between j and j′,
which contradicts π2 being of type 2. Hence, by splitting π2 at the request-adding positions
we obtain at most d+ 1 non-empty infixes of π2, each without request-adding, debt-free, and
overflow positions. We say such an infix has type 3.

Fix a type 3 infix π3. We show that π3 contains at most b increment-edges. First, consider
the case where there is an open request at the beginning of π3. As π3 has no request-adding
positions, no larger request occurs in π3. Thus, as π3 also has no debt-free positions, the
request is not answered during π3. Thus, b + 1 increment-edges in π3 would lead to an
overflow position. However, π3 has no overflow positions by construction. Thus, there are at
most b increment-edges in π3. The other case cannot occur: assume there is no open request
at the beginning of π3: if the color of π3’s first vertex is even, then the position is debt-free,
if it is odd, then the position is request-adding. Both types of positions do not appear in
π3. Thus, by splitting π3 at the increment-edges, we obtain a decomposition of π3 into at
most b+ 1 infixes, each without increment-edges and without request-adding, debt-free, and
overflow positions. We say such an infix has type 4.

Fix a type 4 infix π4, which might be exponentially long in the number of vertices of G,2
but not longer, as π was shown to be cycle-free. We show how to remove even ε-cycles from
type 4 infixes. First, let us note that we argued above that there is a request that is open
throughout π4.

Recall that an ε-cycle of π is not necessarily a cycle in A′, as we only require the projection
to V to form a cycle in A. Thus, it is more convenient to work with the projections of the
π ∈ Pτ ′ . This is possible, as the memory state that is projected away can be reconstructed
from the projected sequence of vertices in V ∗.

More formally, let P ⊆ V ∗ be the projections of elements in Pτ ′ . Due to the determinism of
the memory computation, the projection is a bijection between Pτ ′ and P and the function ext
yielding the extended play is its inverse. Now, fix a π ∈ P and the corresponding ext(π)
from Pτ ′ . For every type 4 infix of ext(π) we repeatedly (and until no longer applicable)
remove even ε-cycles from the corresponding infix of π, as shown in Figure 7. Let P ′ ⊆ V ∗
be the set of resulting play prefixes and let Pτ ′

f
= {ext(π) | π ∈ P ′} ⊆ (V ×M)∗ be the set

of extensions of play prefixes from P ′ to play prefixes in A′ obtained by adding the memory
states. As we have only removed cycles, Pτ ′

f
still satisfies the four properties required to

induce a strategy, call it τ ′f .
We claim that this strategy is winning for Player 1 in G′f . Let πf ∈ Pτ ′

f
be unsettled and

let π ∈ Pτ ′ be the play prefix from which πf was obtained by cycle-removal. As we only

2 It is straightforward to use open requests of k colors to implement a binary counter with k bits, i.e.,
there is an exponential lower bound on the length of π4.

A. Weinert and M. Zimmermann 23:23

π

"
"

"

even ε-cycles

ext(π)
type 4 infix type 4 infix

Figure 7 The removal of cycles from π.

remove even ε-cycles, which preserves the evolution of the overflow counter (see Lemma 12)
and the existence of odd ε-cycles, π is unsettled as well.

Thus, the following upper bounds shown above are satisfied:
π has at most n overflow positions and at most n type 1 infixes.
Every type 1 infix has at most n debt-free positions and at most n+ 1 type 2 infixes.
Every type 2 infix has at most d request-adding positions and at most d+ 1 type 3 infixes.
Every type 3 infix has at most b increment-edges and at most b+ 1 type 4 infixes.

Finally, πf is obtained from π by shortening type 4 prefixes until they have length at most n.
Hence, we can bound the length of πf by 3(n+ 1)5 = `, using the facts d ≤ n and b ≤ n.

Thus, every π ∈ P ′f of length `+ 1 is settled, which implies that τ ′f is indeed a winning
strategy for Player 1.

Now, let us prove the other direction. Let τ ′f be a winning strategy for Player 1 in
G′f . We construct a winning strategy for Player 1 in G′ by simulating a play in G′f that is
consistent with τ ′f . As this strategy is only useful for the first `+ 1 moves, we have to keep
the simulating play short. We define the simulation h : (V ×M)+ → (V ×M)+ and the new
strategy τ ′ simultaneously. The function h satisfies the following invariant:

Let π be consistent with τ ′ and end in (v, r, o) with o < n. Then, h(π) is consistent
with τ ′f , is unsettled, and ends in (v, r′, o) such that r and r′ are on par.

Note that once we have reached a vertex in G′ whose overflow counter has value n we can
stop the simulation, since the play has reached the winning sink states for Player 1.

To begin, let h(v′I) = v′I , which satisfies the invariant. Now, assume we have a play
prefix π consistent with τ ′ ending in (v, r, o) and let h(π) = (v0, r0, o0) · · · (vj , rj , oj). We
consider two cases, depending on whose turn it is at the last vertex (v, r, o) of π.

If (v, r, o) ∈ V ′1 , i.e., it is Player 1’s turn, we distinguish two subcases: if o = n, i.e.,
Player 1 has reached the winning sink states, then we define τ ′(π) to be an arbitrary successor
of (v, r, o). If o < n, then the invariant on h yields that h(π) is consistent with τ ′f and
unsettled, vj = v, and oj = o. Let τ ′f (h(π)) = (v∗,Upd((rj , oj), (vj , v∗))). We mimic the
move to v∗ to continue π by defining τ ′(π) = (v∗,Upd((r, o), (v, v∗))). This is well-defined
due to vj = v. We show that the invariant is satisfied after considering the other case.

If (v, r, o) ∈ V ′0 , i.e., it is Player 0’s turn, she moves to some successor of (v, r, o), say
(v∗,Upd((r, o), (v, v∗))) to keep the notation consistent among both cases.

Let Upd((r, o), (v, v∗)) = (r′, o′), i.e., the unique memory state m such that π can be
prolonged by a move to (v∗,m), and Upd((rj , oj), (v, v∗)) = (r′f , o′f), i.e., the unique memory
state m′ such that h(π) can be prolonged by a move to (v∗,m′).

CVIT 2016

23:24 Optimal Strategies in Parity Games with Costs

It remains to define h(π · (v∗, r′, o′)) in case o′ is smaller than n. Recall that, if o′ = n,
Player 1 has already won and we can define h(π · (v∗, r′, o′)) arbitrarily. Otherwise we
distinguish two cases: if π′ = h(π) ·(v∗, r′f , o′f) is not settled, then we define h(π ·(v∗, r′, o′)) =
π′. This satisfies the invariant due to Remark 11.

Now, assume π′ is settled. The overflow counter o′f is equal to o′ and thus smaller than
n, due to Remark 11. Thus, π′ is settled by virtue of having an odd ε-cycle, which has to be
a suffix of π′. Thus, the cycle starts in a vertex (vj′ , rj′ , oj′) with vj′ = v∗, rj′ and r′f are
on par, and oj′ = o′f = o′. We define h(π · (v∗, r′, o′)) = (v0, r0, o0) · · · (vj′ , rj′ , oj′), which
satisfies the invariant by Lemma 12.

Now, consider a play ρ that is consistent with τ ′. If the overflow counter along ρ reaches
the value n, then ρ is winning for Player 1. Thus, we consider the case where the counter is
always smaller than n.

Towards a contradiction, assume that the maximal color occurring infinitely often in ρ
is even, call it c. Let πi be the prefix of length i of ρ. As the last vertex of πi and the last
vertex of h(πi) share the same vertex from V and the same overflow counter value, which
is smaller than n by assumption, they also have the same color. Such vertices occur only
finitely often in a removed odd ε-cycle, as every such cycle has an odd color larger than c.
Thus, for every removed cycle, there is an occurrence of an odd color larger than c in ρ. By
assumption there are only finitely many such occurrences.

Thus, infinitely many vertices of color c are appended to the h(πi) and never removed.
This contradicts the h(πi) being unsettled and consistent with τ ′f , as τ ′f settles every play of
length `+ 1 and longer. J

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Parity Games with Costs
	The Complexity of Solving Parity Games with Costs Optimally
	Playing Parity Games with Costs Optimally is in PSPACE
	Playing Parity Games with Costs Optimally is PSPACE-hard

	Memory Requirements of Optimal Strategies in Parity Games with Costs
	Tradeoffs Between Time and Memory
	Conclusion
	Appendix
	Proof of Proposition 5
	Proof of Proposition 6

