
Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

OPTIMAL STRATEGY SYNTHESIS FOR

REQUEST-RESPONSE GAMES ∗

Florian Horn1, Wolfgang Thomas2, Nico Wallmeier2 and
Martin Zimmermann3

Abstract. We show the existence and effective computability of op-
timal winning strategies for request-response games in case the quality
of a play is measured by the limit superior of the mean accumulated
waiting times between requests and their responses.

1991 Mathematics Subject Classification. 68Q45.

1. Introduction

Request-response (RR) conditions are ubiquitous in the formal verification of re-
active systems, e.g., every request to access a shared resource is eventually granted.
Formally, such a condition is expressed as a pair (Q,P) of state properties, the
first one representing the requests and the second one representing the responses.
The corresponding request-response condition is satisfied if each time a state in Q
is visited, then at this or a later time a state in P is visited, i.e., every request is
answered by a response. In linear temporal logic, this requirement is formalized
as G(Q → FP). A natural case are conjunctions of request-response conditions
which occur in conjunction with safety conditions. In the following, we assume

Keywords and phrases: Request-response games, optimal strategies, mean-payoff games

∗ Research partially supported by ANR AVERISS, by the DFG Research Training Group
1298 “AlgoSyn”, by the “CASSTING” project funded by the European Commission’s 7th

Framework Programme, and by the DFG projects “TriCS” (ZI 1516/1-1) and “AVACS”

(SFB/TR 14).
1 LIAFA, Université Denis Diderot - Paris 7, 75205 Paris CEDEX 13, France; e-mail:

florian.horn@liafa.jussieu.fr
2 Lehrstuhl für Informatik 7, RWTH Aachen University, 52056 Aachen, Germany; e-mail:

thomas@automata.rwth-aachen.de & wallmeier@informatik.rwth-aachen.de
3 Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany; e-mail:
zimmermann@react.uni-saarland.de

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

(w.l.o.g.) the state space to be restricted to those states satisfying the safety con-
ditions. Alternatively, one can encode a safety condition as a request-response
condition with empty set of responses.

Synthesis for RR conditions was investigated in a series of works [7, 18, 19]
considering request-response games. The winning condition of such a game is
a conjunction of request-response conditions, i.e., it is given by a finite fam-
ily (Qj , Pj)j∈[k] of k request-response pairs. Player 0 wins a play (an infinite path
through the finite game graph) if the request-reponse condition (Qj , Pj) is satisfied
for every j. Wallmeier et al. [18] presented a reduction from RR to Büchi games
using an exponentially-sized memory structure and thereby gave an Exptime-
algorithm and an exponential upper bound on the memory requirements for both
players. Furthermore, they proved an exponential lower bound on the memory
requirements for Player 0. These results where complemented by Chatterjee et
al. [7] who proved Exptime-completeness of solving RR games and tight expo-
nential lower bounds on the memory requirements for both players.

In request-response games, there is an intuitive notion of the waiting time be-
tween a request and its earliest response, which can be used to measure the quality
of plays and strategies (from Player 0’s point of view). There are several ways to
aggregate the waiting times of a play to measure the quality of this play. A simple
one is to take the maximal waiting time reached during the play and measure the
quality of a strategy in terms of the maximal waiting time it allows during a play
that is consistent with the strategy. It is straightforward to show that a finite-state
winning strategy of size s bounds the waiting times by ns, where n is the number
of vertices of the game graph. Thus, the exponential upper bound on memory re-
quirements in RR games also yields an exponential upper bound on the maximal
waiting time during plays consistent with this strategy. On the other hand, there
are games witnessing matching exponential lower bounds on the maximal waiting
time allowed by winning strategies. These results are presented in Section 3.

However, our main result pertains to a more sophisticated way of aggregating
waiting times along a play: the value of a play is defined to be the limit superior of
the mean accumulated waiting times of the play. In turn, the value of a strategy
is the supremum over the values of all plays that are consistent with it. These
considerations add a quantitative aspect to the synthesis problem that goes beyond
the mere satisfaction of the winning condition and deciding whether there is a
bound on the waiting time, by asking for an optimal winning strategy. Our main
result states that an optimal strategy always exists, can be presented as a finite-
state strategy, and can be effectively computed. To show this, we first prove
an upper bound on the value of optimal strategies. Then, we show that for every
strategy whose value is smaller than the bound (in particular optimal ones) there is
a strategy of smaller or equal value that bounds the waiting times by some doubly-
exponential bound. Thus, the search space for an optimal winning strategy is finite
and the problem of finding one can be reduced to computing an optimal strategy
for a mean-payoff game of doubly-exponential size which encodes the search space.

Our result fits into a larger series of works which aim at extending synthe-
sis from a decision problem to an optimization problem by asking for optimal

TITLE WILL BE SET BY THE PUBLISHER 3

winning strategies according to a given quality measure for the winning condition
under consideration, e.g., the use of mean-payoff objectives and weighted automata
to model quantitative aspects in the winning condition [2, 4, 8] and quantitative
strengthenings of parity and Streett conditions [6,14]. In another line of research,
linear temporal logic is extended by parameterized operators [1,13,16,21] equipped
with variables that bound their scope, e.g., the formula G(Q → F≤xP) of para-
metric linear temporal logic (PLTL) is satisfied, if there is some value α(x) such
that every request is answered within α(x) steps. Thus, measuring the quality of
plays and strategies in RR games using the maximal waiting time is expressible in
PLTL. Asking whether there exists a variable valuation and a winning strategy for
Player 0 in a game with a PLTL winning condition is 2Exptime-complete, while
optimal winning strategies can be computed in triply-exponential time [20].

Finally, there has been a lot of interest in so-called energy games, whose win-
ning conditions ask for the existence of an initial amount of energy such that a
positive energy level is maintained throughout the play, where energy is consumed
or recharged while traversing edges of the game graph. Solving energy games with
multiple resources is in general intractable [12] while so-called consumption games,
a subclass of energy games, are shown to be tractable in [3]. Energy parity games,
whose winning conditions are a conjunction of a (single resource) energy and a
parity condition, can be solved in NP ∩ co-NP and one player (the spoiling one)
has positional winning strategies while the other needs exponential memory [5].

The paper is structured as follows: in Section 2, we introduce basic defini-
tions about infinite games. In Section 3, we introduce RR games, define waiting
times and the induced quality measure and prove some preliminary results. In
Section 4, we show that for every strategy of small value there is a strategy of
smaller or equal value that additionally bounds the waiting times by some doubly-
exponential bound. To this end, we give a quantitive version of Dickson’s Lemma
in Subsection 4.1 and use this to obtain an upper bound in Subsection 4.2. Us-
ing this upper bound, we are able to construct a mean-payoff game whose optimal
strategy induces an optimal strategy for the RR game. This reduction is presented
in Section 5. We conclude in Section 6 with a discussion and some open questions.

The present paper is a revised version with simplified proofs of results an-
nounced in the conference paper [15], which in turn extended results of the third
author’s dissertation [17].

2. Definitions

We denote the set of non-negative integers by N. For every k ∈ N we define
[k] = {1, . . . , k}, so in particular [0] = ∅. The power set of a set S is denoted by
2S . The last letter of a finite non-empty word w is denoted by Last(w).

An arena A = (V, V0, V1, E) consists of a finite, directed graph (V,E), V0 ⊆ V
and V1 = V \V0, where Vi denotes the vertices of Player i. In examples, we denote
the vertices of Player 0 by circles and the vertices of Player 1 by squares. We
require every vertex to have an outgoing edge to avoid having to deal with finite

4 TITLE WILL BE SET BY THE PUBLISHER

plays. The size |A| of A is the cardinality of V . A play in A starting in v ∈ V is
an infinite sequence ρ = ρ0ρ1ρ2 · · · with ρ0 = v and (ρn, ρn+1) ∈ E for all n ∈ N.

A game G = (A,Win) consists of an arena A and a set Win ⊆ V ω of winning
plays for Player 0, which is often defined implicitly. The set of winning plays for
Player 1 is V ω \Win.

A strategy for Player i is a mapping σ : V ∗Vi → V such that (v, σ(wv)) ∈ E for
all wv ∈ V ∗Vi. We say that σ is positional if σ(wv) = σ(v) for every wv ∈ V ∗Vi. A
play ρ0ρ1ρ2 · · · is consistent with σ if ρn+1 = σ(ρ0 · · · ρn) for every n with ρn ∈ Vi.
Given a set W ⊆ V , we denote by Beh(W,σ) the behavior of σ from W , i.e., the
set of plays that start in W and are consistent with σ. A strategy σ for Player i is
a winning strategy from W if every play in Beh(W,σ) is winning for Player i. The
winning region Wi(G) of Player i in G contains all vertices from which Player i
has a winning strategy. We always have W0(G) ∩W1(G) = ∅ and G is determined
if W0(G)∪W1(G) = V . A winning strategy for Player i is uniform, if it is winning
from Wi(G).

A memory structure M = (M, Init,Upd) for an arena (V, V0, V1, E) consists
of a finite set M of memory states, an initialization function Init : V → M , and
an update function Upd: M × V → M . The update function can be extended
to Upd∗ : V + → M by defining Upd∗(ρ0) = Init(ρ0) and Upd∗(ρ0 · · · ρnρn+1) =
Upd(Upd∗(ρ0 · · · ρn), ρn+1). A next-move function (for Player i) Nxt: Vi×M → V
has to satisfy (v,Nxt(v,m)) ∈ E for all v ∈ Vi and m ∈ M . The next-move
function induces a strategy σ for Player i with memory M via the definition
σ(ρ0 · · · ρn) = Nxt(ρn,Upd∗(ρ0 · · · ρn)). The size of M (and, slightly abusive, σ) is
|M |. A strategy σ is finite-state if it can be implemented with a memory structure.

An arena A = (V, V0, V1, E) and a memory structure M = (M, Init,Upd) for
A induce the expanded arena A × M = (V × M,V0 × M,V1 × M,E′) where
we have ((v,m), (v′,m′)) ∈ E′ if and only if (v, v′) ∈ E and Upd(m, v′) = m′.
Furthermore, every play ρ = ρ0ρ1ρ2 · · · in the original arena A has a unique
extended play ext(ρ) = (ρ0,m0)(ρ1,m1)(ρ2,m2) · · · in A ×M defined by m0 =
Init(ρ0) and mn+1 = Upd(mn, ρn+1), i.e., we have mn = Upd∗(ρ0 · · · ρn). Dually,
every play ρ = (ρ0,m0)(ρ1,m1)(ρ2,m2) · · · inA×M has a projected play proj(ρ) =
ρ0ρ1ρ2 · · · in A. Note that we have proj(ext(ρ)) = ρ, but ext(proj(ρ′)) = ρ′ is only
true if ρ′ starts in a vertex of the form (v, Init(v)).

A game G = (A,Win) is reducible to G′ = (A′,Win′) via M, written G ≤M G′,
if A′ = A×M and every play ρ in G is won by the player who wins the extended
play ext(ρ) in G′, i.e., ρ ∈Win if and only if ext(ρ) ∈Win′.

Lemma 2.1. Let G be a game with vertex set V and W ⊆ V . If G ≤M G′ and
Player i has a positional winning strategy for G′ from {(v, Init(v)) | v ∈W}, then
she has a winning strategy with memory M for G from W .

So in particular, if a player has a uniform positional winning strategy for G′,
then she has a uniform finite-state winning strategy with memory M for G.

TITLE WILL BE SET BY THE PUBLISHER 5

3. Request-Response Games

A request-response game (RR game for short) is denoted by (A, (Qj , Pj)j∈[k])
where A is an arena and Qj and Pj are subsets of the set of A’s vertices. A vertex
in Qj is referred to as a request of the j-th condition, while a vertex in Pj is
a response for the j-th condition. Intuitively, Player 0’s goal is to answer every
request by a later visit to a corresponding response. Formally, a play ρ0ρ1ρ2 · · · is
winning for Player 0, if for every j ∈ [k] and every n, if ρn ∈ Qj , then there exists
an n′ ≥ n such that ρn′ ∈ Pj . We say that a request of condition j is open after a
play prefix w, if w contains a vertex in Qj that is not followed by a vertex in Pj .

Example 3.1. Consider the RR game in Figure 1. At vertex q Player 1 can
request either condition 1 and/or condition 2, while at vertex p, Player 0 can
either answer condition 1 or condition 2 or none of them. Alternatingly answering
condition 1 and 2 is a uniform winning strategy for Player 0 from every vertex.

q

Q1

Q2

Q1, Q2

p

P1

P2

Figure 1. The RR game for Example 3.1 and Example 3.3.

There is an intuitive notion of the waiting time between a request and its
(earliest) response, which we formalize in the following. The waiting times are then
aggregated to measure the quality of a play and the quality of a strategy (both
from Player 0’s point of view). First, we define the waiting time for condition j,
denoted by wtj : V ∗ → N, inductively via wtj(ε) = 0, and

wtj(wv) =


0 if wtj(w) = 0 and v /∈ Qj \ Pj ,
1 if wtj(w) = 0 and v ∈ Qj \ Pj ,
0 if wtj(w) > 0 and v ∈ Pj ,
wtj(w) + 1 if wtj(w) > 0 and v /∈ Pj .

Note that while a request of condition j is open, additional requests of condi-
tion j are ignored, i.e., we are only interested in the waiting time of the earliest
request that is open, but not in the number of requests (of a single condition) that

6 TITLE WILL BE SET BY THE PUBLISHER

are open. In [19] an extension of RR games is investigated, where the waiting
times take the number of open requests into account as well.

Remark 3.2. If wtj(x) ≤ wtj(y), then wtj(xz) ≤ wtj(yz) for every z ∈ V ∗.

We summarize the waiting times of a play prefix w in its waiting time vec-
tor wt(w) = (wt1(w), . . . ,wtk(w)) ∈ Nk and compare such vectors component-
wise, i.e., wt(x) ≤ wt(y) if wtj(x) ≤ wtj(y) for every j.

We say that a strategy σ for Player 0 (uniformly) bounds the waiting times for
condition j by b ∈ N, if every play prefix w that starts in W0(G) and is consistent
with σ satisfies wtj(w) ≤ b. If σ bounds the waiting times for every condition,
then it is a uniform winning strategy.

Now, we use the waiting times to define the quality of plays and strategies
from Player 0’s point of view: for every j we fix a strictly increasing penalty
function fj : N → N (which implies that fj is unbounded) and define the penalty
of a play prefix w for the j-th condition by pj(w) = fj(wtj(w)) and the overall
penalty of w by p(w) =

∑
j∈[k] pj(w). We aggregate the penalties of an infinite

play ρ to the value of this play by taking the limit superior of the mean accumulated
penalties, i.e., we define

val(ρ) = lim sup
n→∞

1

n

n−1∑
`=0

p(ρ0 · · · ρ`).

Finally, the value of a strategy σ from a vertex v is

val(σ, v) = supρ∈Beh(v,σ) val(ρ).

Note that we do not parameterize the functions pj , p, and val with the penalty
functions fj , although they depend on them. This is done to improve readability.
In the following, we will always ensure that the penalty functions are clear from
the context.

Example 3.3. Using the identity function as penalty functions fj , the uniform
winning strategy described in Example 3.1 has value 56

10 from every vertex, which
is witnessed by Player 1 always requesting both conditions every time when at
vertex q. Every play consistent with this strategy and the alternating-response
strategy for Player 0 ends up in a loop of length 10, in which the sum of the
waiting times (which are also the penalties) is 56. The value of this play is equal
to the length of the loop divided by its length, hence 56

10 . Every other play has

a smaller or equal value. Thus, the value of the strategy is also equal to 56
10 ,

independently of the initial vertex.

It is important to note that we still consider the game as a zero-sum one; we just
associate values to plays and strategies and are interested in optimal strategies, i.e.,
a winning strategy σ such that every other winning strategy σ′ satisfies val(σ′, v) ≥
val(σ, v) for every vertex v. Note that it is a priori not even clear whether an
optimal strategy exists.

TITLE WILL BE SET BY THE PUBLISHER 7

The sum of penalties
∑n+n′

`=n p(ρ0 · · · ρ`) for a play infix ρn · · · ρn+n′ with an
open request grows (at least) quadratically in n′, since the penalty functions fj are
strictly increasing. Our result on the existence of optimal finite-state strategies
relies on this growth, as evidenced by the following example, which shows that
optimal finite-state strategies do not necessarily exist if we allow constant penalty
functions.

Example 3.4. Assume we use constant penalty functions (e.g., fj(0) = 0 and
fj(n) = 1 for every n > 0) to measure the quality of plays and consider the RR
game depicted in Figure 2. Player 0 wins from every vertex by traversing both
loops infinitely often, which is also necessary to win.

v

Q1, Q2

P1

P2

Figure 2. The RR game for Example 3.4.

In the following, we only consider plays starting in v. As it is Player 0’s turn
at every vertex, we can identify strategies and plays (and their values are equal).

If a strategy is finite-state, then its play is ultimately periodic, i.e., of the form
ρ = ρ0 · · · ρm−1(ρm · · · ρn)ω, where we assume w.l.o.g. ρm = v. Then, val(ρ) is
equal to the number of positions of the period ρm · · · ρn where condition 1 is open
plus the number of positions of ρm · · · ρn where condition 1 is open.

Now, consider the play infix ρ′m · · · ρ′n obtained from the period by replacing
every visit to the left loop by two visits to the right loop. The value of the play
ρ′ = ρ0 · · · ρm−1(ρm · · · ρnρ′m · · · ρ′n)ω is strictly smaller than the value of ρ, since
visiting the left loop is more costly than visiting the right one twice.

As ρ′ can also be generated by a finite-state strategy, we have shown that there
is no optimal finite-state strategy when considering constant penalty functions.

The values val(ρ) and val(σ, v) measure the quality of a play and a strategy from
Player 0’s point of view. However, it is not true that a play (a strategy) is winning
for Player 0 if, and only if, it has a finite value. One direction holds, as claimed in
the next lemma, while the other one can shown to be false by considering a play
in which Player 0 allows herself more and more time to answer the requests.

Lemma 3.5. Let v be a vertex, let ρ be a play, and let σ be a strategy for Player 0.

(1) If val(ρ) <∞, then ρ is a winning play for Player 0.
(2) If val(σ, v) <∞, then σ is a winning strategy for Player 0 from v.
(3) If v ∈W1(G), then val(σ, v) =∞.

8 TITLE WILL BE SET BY THE PUBLISHER

Proof. (1) Consider the contraposition: let ρ = ρ0ρ1ρ2 · · · be winning for Player 1.
Then, some condition j is requested at some position n, but never answered after-
wards. Thus, pj(ρ0 · · · ρn+n′) ≥ fj(n

′) ≥ n′ for every n′ (recall that fj is strictly
increasing) and therefore

1

n+ n′

n+n′−1∑
`=0

p(ρ0 · · · ρ`) ≥
1

n+ n′
n′(n′ − 1)

2
=

n′ − 1

2
(
n
n′ + 1

)
for all n′, which diverges to infinity when n′ tends to infinity. Thus, val(ρ) =∞.

(2) Again, we consider the contraposition: let σ not be a winning strategy from
v. Then, there exists a play ρ ∈ Beh(v, σ) that is winning for Player 1. Thus,
val(ρ) =∞ as we have just shown and val(σ, v) =∞, too.

(3) Let τ be a winning strategy for Player 1 from v and consider the unique
play ρ that starts in v and is consistent with σ and τ . We have val(ρ) =∞, as τ is
a winning strategy for Player 1, and therefore val(σ, v) =∞, as ρ is also consistent
with σ and starts in v. �

To conclude this introductory section on RR games, we recall the proof of finite-
state determinacy of RR games, which proceeds by a reduction to Büchi games.
The strategy obtained by this reduction yields a first upper bound on the value of
an optimal strategy in an RR game.

The winning condition of a Büchi game is a set F of vertices and Player 0 wins a
play if it visits F infinitely often. Alternatively, one can define a Büchi game to be
an RR game with a single condition of the form (V \F, F) which is satisfied if and
only if F is visited infinitely often. As Büchi games are positionally determined,
such a reduction suffices to prove the following result.

Theorem 3.6 ([18]). RR games are determined with finite-state strategies of
size k2k+1, where k denotes the number of RR conditions.

Proof. Let G = (A, (Qj , Pj)j∈[k]) be an RR game with (w.l.o.g.) k > 1 conditions.

Consider the memory structure M = (M, Init,Upd) with M = 2[k] × [k]× {0, 1},
Init(v) = ({j | v ∈ Qj \ Pj}, 1, 0), and Upd(R, c, f) = (R′, c′, f ′) where

• R′ = (R ∪ {j | v ∈ Qj}) \ {j | v ∈ Pj},
• c′ = c if c ∈ R ∩R′, and c′ = (c mod k) + 1 otherwise, and
• f = 1 if c′ 6= c, and f = 0, otherwise.

So, R keeps track of open requests, c is a cyclic counter over [k] that is incremented
every time its current value is not an open request, and the flag f is equal to 1
if and only if c has changed its value. So, there is an unanswered request if and
only if f is equal to 0 from some point onwards. Thus, consider the set F =
V × (2[k] × [k] × {1}). Then, we have G ≤M (A ×M, F), i.e., the result follows
from Lemma 2.1. �

The upper bound on the memory requirements was slightly lowered and (al-
most) matching lower bounds were proven in [7]. However, for our purposes, the

TITLE WILL BE SET BY THE PUBLISHER 9

simple bound presented here is sufficient to obtain an upper bound on the value
of an optimal strategy.

Corollary 3.7. In every RR game G, Player 0 has a winning strategy σ with
val(σ, v) ≤

∑
j∈[k] fj(sk2k) for every v ∈ W0(G), where s denotes the size of the

arena and k the number of RR conditions.

Proof. Let M be the memory structure defined in the proof of Lemma 3.6 and let
σ be a uniform winning strategy σ for G with memory M. We show that σ has
the desired properties. To this end, we prove that σ bounds the waiting time of
every condition by sk2k. Then, we have

val(ρ) = lim sup
n→∞

1

n

n−1∑
`=0

∑
j∈[k]

fj(wtj(ρ0 · · · ρ`))

≤ lim sup
n→∞

1

n

n−1∑
`=0

∑
j∈[k]

fj(sk2k) ≤
∑
j∈[k]

fj(sk2k).

for all ρ starting in W0(G) that are consistent with σ, which implies our claim.
Towards a contradiction, assume we have wtj(ρ0 · · · ρn) > sk2k. Then, j is

in the first component (which keeps track of open requests) of the last sk2k + 1
memory states reached during ρ0 · · · ρn. But there are only k2k memory states
that contain j in the first component. Hence, there are positions m < m′ in this
interval such that ρm = ρm′ and Upd∗(ρ0 · · · ρm) = Upd∗(ρ0 · · · ρm′).

Now, consider the play ρ′ = ρ0 · · · ρm−1(ρm · · · ρm′−1)ω obtained by repeating
the loop between positions m and m′, which is also in Beh(W0(G), σ). But ρ′

contains an unanswered request, since condition j is open at ρm and never answered
during ρm · · · ρm′−1. This contradicts the fact that σ is winning from W0(G). �

The exponential upper bound on the waiting times used in the proof of Corol-
lary 3.7 gives a correction to a claim of [15,19] where the bound sk is used. Next,
we give an example showing a matching exponential lower bound.

Example 3.8. Consider the RR game depicted in Figure 3. We consider plays
starting at vertex i, where all four RR conditions are requested. From there, the
only move leads to the hub vertex h, where Player 0 has to move into one of the
four blades, each one of them associated with one of the RR conditions. The first
vertex of the blade for condition j ∈ [4] (cj in the figure) is in Pj , i.e., condition j is
responded to. From this vertex, Player 1 can either move to a sink vertex (called
sj) where every condition with index larger than j is answered, too, or he can
move to a vertex (called vj) where all conditions with index smaller than j are
requested again. From this vertex, the only move leads back to the hub. Due to
the existence of the former move, Player 1 can win if the j-th blade is entered
while a request of a condition with smaller index is open.

Player 0 has a winning strategy for this RR game from vertex i by always
moving to the blade of the smallest open condition. This strategy takes 24 − 1

10 TITLE WILL BE SET BY THE PUBLISHER

h

i Q1, Q2, Q3, Q4

c1P1

s1P2, P3, P4

v1

c2 P2

s2 P3, P4

v2 Q1

c3 P3

s3 P4

v3 Q1, Q2

c4P4

s4

v4Q1, Q2, Q3

Figure 3. An RR game with exponential waiting times.

visits to the hub to answer the request of condition 4, since every smaller condition
is requested after answering the smallest open condition. Once all requests are
answered, Player 0 can always move to the first blade, which does not generate
new requests. Deviating from this strategy either generates additional requests (if
moving to a blade of a condition with smaller index than the currently smallest
open one) and thereby prolongs the time it takes to answer condition 4, or allows
Player 1 to move to a sink vertex where he wins (if moving to a blade of a condition
with larger index than the currently smallest open one). Thus, every winning
strategy from vertex i for Player 0 in this game takes at least 24 − 1 visits to the
hub before condition 4 is answered.

This game can be generalized by having k conditions and k blades. Then, it
takes at least 2k − 1 visits to the hub to answer the request of condition k. Thus,
the waiting time for condition k is larger than 2k before it is eventually answered.

4. Bounding the Waiting Times in RR Games

In this section, we show that for every strategy whose value is small from every
vertex in W0(G) there is a strategy with smaller or equal values that additionally
bounds the waiting times by some bound b, which only depends on the size of the
arena and the number of RR conditions. This restricts the search space for optimal
strategies to a finite one (in terms of possible waiting time vectors). In the next
section, this space is turned into an arena for a mean-payoff game. Intuitively, the
arena tracks plays of the RR game and their waiting times up to the threshold b.

TITLE WILL BE SET BY THE PUBLISHER 11

The value of a play in the mean-payoff game is the value of the tracked play in
the original game. Thus, an optimal strategy for Player 0 in the mean-payoff
game (which can be effectively computed) can be turned into an optimal winning
strategy for Player 0 in the RR game.

We proceed as follows: in Subsection 4.1, we derive the bound b and in Subsec-
tion 4.2 we show that we can turn every strategy of small value into a strategy of
smaller or equal value whose waiting times are bounded by b.

4.1. Dickson’s Lemma for Waiting Times

Given a strategy σ with small values for W0(G) we need to construct a strategy
with smaller or equal values that also bounds the waiting times by a constant
that only depends on the number of vertices and RR conditions and the penalty
functions. We achieve this by removing loops from plays in which the waiting
time is high for some condition. However, this might have an effect on the waiting
times for other conditions as well: in the worst case we might remove an answer
to a request, thereby increasing the waiting time or even generating a losing play.
To avoid this, we only remove a loop if the waiting time vector at the end of the
loop is larger than at the beginning.

This removal process is iterated until ad infinitum, i.e., in the limit there are
no more such loops. Hence, our bound b has to be an upper bound on the length
of play infixes without such a loop. We derive b in this subsection by giving a
quantitative version of Dickson’s Lemma [10], which states that there is no infinite
play prefix without such a loop. However, the lemma does not give an explicit
bound on the length of a play without such a loop. Indeed, if we allow arbitrary
vectors of natural numbers (this is the setting of Dickson’s Lemma), there are
arbitrarily long sequences. But by exploiting the simple update-rule of the waiting
times – increment or reset – we are able to obtain a doubly-exponential bound b.

Let ρ be a play of the RR game G. We say that a pair of positions (n1, n2) of ρ
with n1 < n2 is dickson, if we have ρn1 = ρn2 and wt(ρ0 · · · ρn1) ≤ wt(ρ0 · · · ρn2).
Note that the notion is defined with respect to the whole play prefix ρ0 · · · ρn2 ,
since the waiting times are computed starting at the first position of ρ. An infix
is dickson, if it contains a dickson pair of positions, otherwise it is non-dickson.

The goal of this section is to define a function b : N×N→ N such the following
is true for every RR game with s vertices and k RR conditions: every play infix
of length at least b(s, k) has a dickson pair. Note that this implies that we have
to deal with arbitrarily high waiting times at the beginning of the infix.

We define b by induction over k, the number of RR conditions. For k = 0,
we have b(s, k) = s + 1, since every state repetition yields a dickson pair. Now,
consider a game with k > 0 RR conditions. We begin by stating a lemma that
restricts the combinations of values that can appear in waiting time vectors in
a non-dickson infix: intuitively, not too many waiting times can be large at the
same time, since this would imply the existence of a dickson pair in the remaining
conditions. This is also a dickson pair for all conditions, since the large values only
increase between these two positions.

12 TITLE WILL BE SET BY THE PUBLISHER

Lemma 4.1. Let ρm · · · ρm+` be a non-dickson play infix of a play ρ in an RR
game with s vertices and k RR conditions. For every j in the range 0 ≤ j ≤ k− 1
and every n in the range b(s, k − (j + 1)) ≤ n ≤ `, wt(ρ0 · · · ρm+n) contains at
most j entries that are larger than b(s, k − (j + 1)).

Proof. Towards a contradiction, assume there is a j such that wt(ρ0 · · · ρm+n)
contains j+1 entries that are larger than b(s, k− (j+1)), where b(s, k− (j+1)) ≤
n ≤ m + `. We denote the set of coordinates of these entries in the waiting time
vectors by J , i.e., J ⊆ [k]. The entries at the coordinates in J are updated by
increasing them during the last b(s, k− (j + 1)) positions before m+ n, which are
all positions contained in the infix.

Now, consider the projection to the k − (j + 1) coordinates not in J : there is
a dickson pair in the infix ρm+n+1−b(s,k−(j+1)) · · · ρm+n, as it has length b(s, k −
(j + 1)). This is also a dickson pair when considering all coordinates, since the
values at the coordinates in J are strictly increasing during this infix. This yields
the desired contradiction. �

Due to the previous lemma, after b(s, k − 1) positions in a non-dickson infix,
every vector has no entry larger than b(s, k − 1), at most one entry larger than
b(s, k − 2), at most two entries larger than b(s, k − 3), and in general, at most j
entries larger than d(s, k−(j+1)) for every j ∈ {0, . . . , k−1}. Rephrasing this, we
obtain that every such vector contains an entry smaller than b(s, 0), another entry
smaller than b(s, 1), another entry smaller than b(s, 2), and so on. The number of

such vectors is bounded by k!
∏k−1
j=0 b(s, j). So, we can define for k > 0

b(s, k) =

b(s, k − 1) + sk!

k−1∏
j=0

b(s, j)

+ 1.

The first summand is due to the fact that the bounds only hold after b(s, k − 1)
steps, and the factor s in the second summand takes account of the fact that we
need a state repetition in a dickson-pair as well.

Lemma 4.2. Let G be an RR game with s vertices and k RR conditions.

(1) Every play infix of length b(s, k) has a dickson pair.

(2) We have b(s, k) ∈ O(22
s·k+2

).

Proof. (1) This follows directly from Lemma 4.1 and from the arguments presented
after it.

(2) We show b(s, k) ≤ 22
k−1

(s + 1)2
k

k!
∏k−1
j=1 (j!)2

k−(j+1)

for every k > 0, which
implies the claim. Throughout the proof we use the following upper bound

b(s, k) =

b(s, k − 1) + sk!

k−1∏
j=0

b(s, j)

+ 1 ≤ 2(s+ 1)k!

k−1∏
j=0

b(s, j)

TITLE WILL BE SET BY THE PUBLISHER 13

for k > 0, which also proves our claim for k = 1. Now, consider k > 1. We have

b(s, k) ≤ 2(s+ 1)k!

k−1∏
j=0

b(s, j)

= 2(s+ 1)2k!

k−1∏
j=1

b(s, j)

≤ 2(s+ 1)2k!

k−1∏
j=1

22
j−1

(s+ 1)2
j

j!

 j−1∏
j′=1

(j′!)2
j−(j′+1)


= 21+

∑k−1
j=1 2j−1

· (s+ 1)2+
∑k−1

j=1 2j · k!

k−1∏
j=1

j!

j−1∏
j′=1

(j′!)2
j−(j′+1)

= 21+
∑k−2

j=0 2j · (s+ 1)1+
∑k−1

j=0 2j · k!

k−1∏
j=1

(j!)2
k−(j+1)

= 22
k−1

· (s+ 1)2
k

· k!

k−1∏
j=1

(j!)2
k−(j+1)

.

The equality
∏k−1
j=1 j!

∏j−1
j′=1(j′!)2

j−(j′+1)

=
∏k−1
j=1 (j!)2

k−(j+1)

used in the second-to-
last equality can be shown by a straightforward induction. �

Recently, Czerwiński et al. complemented our doubly-exponential upper bound

by proving a doubly-exponential lower bound of 22
k/2

[9].

4.2. Strategies with Small Values and Bounded Waiting Times

In this subsection, we show how to turn a strategy with small values from every
vertex in W0(G) into a strategy of smaller or equal values whose waiting times
are bounded. To this end, we remove loops of plays in which the waiting time for
some condition j is large. By doing this ad infinitum, we obtain a limit strategy
with the desired properties.

Throughout this subsection, we fix an RR game G = (A, (Qj , Pj)j∈[k]) with
A = (V, V0, V1, E) and |V | = s as well as a penalty function fj for every condition j.
The goal of this section is to prove the following lemma, which shows that for every
strategy of small value there is a strategy of smaller or equal value that additionally
bounds the waiting times. In particular, the result applies to the uniform winning
strategy for Player 0 from Corollary 3.7 which satisfies

val(σ, v) ≤
∑
j∈[k]

fj(sk2k) =: valG

14 TITLE WILL BE SET BY THE PUBLISHER

for every v ∈W0(G).

Lemma 4.3. Let σ be a strategy such that val(σ, v) ≤ valG for every v ∈ W0(G).
There is a strategy σ′ with val(σ′, v) ≤ val(σ, v) for every v ∈ V that uniformly
bounds the waiting times for every condition j by f−1j (valG) + b(s, k − 1).

Note that val(σ′, v) ≤ val(σ, v) ≤ valG for every v ∈ W0(G) implies that σ and
σ′ are uniform winning strategies.

In this subsection, it is convenient to view a strategy as the set of play prefixes
that are consistent with it. This representation simplifies the process of removing
loops from the plays which are consistent with the strategy. Also, we only consider
plays starting in W0(G) since we need to bound the waiting times for such plays,
the waiting times for plays starting in W1(G) cannot be bounded and are ignored.

Formally, a strategy tree is a prefix-closed language t ⊆ V ∗ such that the
following conditions are satisfied:

(1) For every w0 · · ·wn ∈ t we have w0 ∈ W0(G) and (wn′ , wn′+1) ∈ E for
every n′ < n (only play prefixes starting in W0(G) are in t).

(2) t∩V = W0(G) (every initial vertex from W0(G) is in t, but no initial vertex
from W1(G)).

(3) For every w0 · · ·wn ∈ t with wn ∈ V0 there is a unique v ∈ V such that
w0 · · ·wnv ∈ t (there is a unique successor in t for play prefixes ending in
V0).

(4) For every w0 · · ·wn ∈ t with wn ∈ V1 and every successor v of wn in A we
have w0 · · ·wnv ∈ t (all successors are in t for play prefixes ending in V1).

Every strategy σ can be turned into a strategy tree t(σ) containing exactly
the prefixes (including the empty prefix ε) of plays that start in W0(G) and are
consistent with σ. Vice versa, every strategy tree t defines a strategy σ(t) mapping
w ending in V0 to the unique vertex v with wv ∈ t. Note that this strategy is only
defined for play prefixes starting in Player 0’s winning region that are consistent
with σ. However, this is sufficient for our purposes, since σ(t)(w) can be defined
arbitrarily for every other w.

Given a strategy tree t and w ∈ t, define

Sj(t, w) = {ww′ ∈ t | w′ ∈ (V \ Pj)∗}

to be the set of continuations of w in which no vertex from Pj is visited, i.e.,
condition j is not responded to.

Remark 4.4. Let t be a strategy tree such that σ(t) is a uniform winning strategy,
and let w ∈ t with wtj(w) > 0. Then, Sj(t, w) is finite.

Proof. Assume Sj(t, w) is infinite. Then, König’s Lemma implies the existence of
an infinite play wρ whose prefixes are all in t, in which a request of condition j
is open after w (as the waiting time is non-zero), but ρ contains no answer. As
such a play is consistent with σ(t) this contradicts the fact that σ(t) is a winning
strategy. �

TITLE WILL BE SET BY THE PUBLISHER 15

We now formalize the removal of loops, which turns a strategy tree t into a new
one denoted by t′. Fix some condition j ∈ [k] for which we want to remove loops
with large waiting times and fix a strategy tree t such that val(σ(t), v) ≤ valG
for every v ∈ W0(G). Next, we define the tree t′ ⊆ V ∗ and a mapping h : t′ → t
satisfying Last(h(w)) = Last(w) for every w ∈ t′ \ {ε}.

We have ε ∈ t′ and W0(G) ⊆ t′ and define h(ε) = ε and h(v) = v for every v ∈
W0(G). Now, consider some w ∈ t′: we have h(w) ∈ t with Last(h(w)) = Last(w).
For every h(w)v ∈ t we add wv to t′ and it remains to define h(wv). Here, we
consider two cases:

(1) If wtj(h(w)v) ≤ f−1j (valG), then h(wv) = h(w)v.

(2) If wtj(h(w)v) > f−1j (valG), then consider the set Sj(t, h(w)v). As it

is finite we can pick a longest element1 x from Sj(t, h(w)v) satisfying
wt(h(w)v) ≤ wt(x) and Last(x) = v. Such an element always exists, since
h(w)v ∈ Sj(t, h(w)v) satisfies both requirements. We define h(wv) = x.

Note that the property Last(h(w)) = Last(w) is satisfied in both cases of the
definition. We begin by listing some straightforward properties of the function h
we use to show that t′ is also a strategy tree.

Remark 4.5. Let w = w0 · · ·wn ∈ t′.
(1) h(w) = w0s0w1s1 · · · sn−1wn for some s0, . . . , sn−1 ∈ V ∗.
(2) h(w0 · · ·wn′) is a proper prefix of h(w0 · · ·wn) for every n′ < n.
(3) h is injective.
(4) If h(w) = w, then h(w0 · · ·wn′) = w0 · · ·wn′ for every n′ < n.
(5) Let w′ ∈ t. If there is no w ∈ t′ with h(w) = w′ then wtj(w

′) > f−1j (valG).

Now, we prove that t′ is a strategy tree if t is one, and that transforming t into
t′ preserves waiting time bounds and does not increase the values of the strategy.

Lemma 4.6. Let t be a strategy tree such that val(σ(t), v) ≤ valG for every v ∈
W0(G), let t′ be constructed as described above, and let h : t′ → t be the function
defined in the construction.

(1) t′ is a strategy tree.
(2) wt(w) ≤ wt(h(w)) for every w ∈ t′.
(3) If σ(t) bounds the waiting times for condition j′ by b, then so does σ(t′).
(4) val(σ(t′), v) ≤ val(σ(t), v) for every v ∈W0(G).

Proof. (1) Prefix-closure and the first requirement on a strategy tree can be proven
by a straightforward induction over the length of w ∈ t′ while the second require-
ment is satisfied by construction. Now, consider w0 · · ·wn ∈ t′ with wn ∈ V0.
We have Last(h(w0 · · ·wn)) = wn, i.e., there is a unique successor v of wn with
h(w0 · · ·wn)v ∈ t. By construction, w0 · · ·wnv is added to t′, but no w0 · · ·wnv′
for v 6= v′. Hence, there is a unique v such that w0 · · ·wnv ∈ t′, i.e., the third
requirement is satisfied. The reasoning for the fourth requirement is dual.

1Using the lexicographic order w.r.t. some fixed ordering of V to break ties.

16 TITLE WILL BE SET BY THE PUBLISHER

(2) By induction over |w|. The claim is trivially true for |w| ≤ 1. Thus, consider
w = w′v ∈ t. If h(w′v) = h(w′)v then

wt(w) = wt(w′v) ≤ wt(h(w′)v) = wt(h(w′v)),

where the inequality follows from an application of Remark 3.2 to the induction
hypothesis wt(w′) ≤ wt(h(w′)). On the other hand, if h(w′v) = x for some x
satisfying wt(h(w′)v) ≤ wt(x) then

wt(w) = wt(w′v) ≤ wt(h(w′)v) ≤ wt(x) = wt(h(w′v)),

where the first inequality again follows from an application of Remark 3.2 to the
induction hypothesis.

(3) This follows directly from Item (2).
(4) Let ρ = ρ0ρ1ρ2 · · · be consistent with σ(t′) and consider the sequence

h(ρ0), h(ρ0ρ1), h(ρ0ρ1ρ2), . . .

of elements from t, which is an increasing chain in the (strict) prefix relation. Thus,
the sequence has a unique limit h(ρ) = ρ′0ρ

′
1ρ
′
2 · · · ∈ V ω such that h(ρ0 · · · ρn) is a

prefix of h(ρ) for every n, which is the play from which ρ is obtained by removing
loops. The limit is consistent with σ(t) as it is a path through t.

Let

R = {` ∈ N | there is no n with h(ρ0 · · · ρn) = ρ′0 · · · ρ′`}

be the positions of vertices of h(ρ) that are removed. Due to Remark 4.5(5), we
have wtj(ρ

′
0 · · · ρ′`) > f−1j (valG) for every ` ∈ R and therefore

p(ρ′0 · · · ρ′`) ≥ fj(wtj(ρ
′
0 · · · ρ′`)) > valG ≥ val(σ(t), ρ′0) ≥ val(h(ρ)).

Thus,

lim sup
n→∞

1

n

n−1∑
`=0

p(h(ρ0 · · · ρ`)) ≤ val(h(ρ)), (1)

since the average (and therefore also the limit superior of the averages) only de-
creases when we omit summands which are larger than the limit superior of the
averages, i.e., those for ρ0 · · · ρ` with ` ∈ R. Furthermore, we have wt(ρ0 · · · ρ`) ≤
wt(h(ρ0 · · · ρ`)) for every ` due to Item (2), and therefore

1

n

n−1∑
`=0

p(ρ0 · · · ρ`) ≤
1

n

n−1∑
`=0

p(h(ρ0 · · · ρ`)).

Thus, the value of ρ, the limit superior of the left-hand side of the inequality
is smaller or equal to the limit superior of the right-hand side, which in turn is

TITLE WILL BE SET BY THE PUBLISHER 17

smaller or equal to the value of h(ρ), as shown in Equation (1). Thus, we have
val(ρ) ≤ val(h(ρ)).

Now, we can lift this upper bound to the values of the strategies: we have

val(σ(t′), v) = sup
ρ∈Beh(v,σ(t′))

val(ρ) ≤ sup
ρ∈Beh(v,σ(t′))

val(h(ρ))

≤ sup
ρ∈Beh(v,σ(t))

val(ρ) = val(σ(t), v),

where the first inequality is the one just proven above and the second one due to
the fact that h(ρ) is consistent with σ(t). �

From now on denote the tree t′ by Ij(t) as it is obtained by removing loops
w.r.t. condition j from t. Note that we have not claimed that Ij(t) bounds the
waiting times for condition j. We will now apply Ij infinitely often and show
that the limit of the trees obtained this way does indeed bound the waiting times.
Whether applying Ij once suffices to achieve this is an open question.

Formally, given a strategy tree t we define an infinite sequence of trees via
t0 = t and tn+1 = Ij(tn). Furthermore, for n > 0 let hn : tn → tn−1 be the
function constructed in the definition of tn. We define the limit tω of the tn as
follows: w ∈ tω if and only if hn(w) = w for almost all n, i.e., for all but finitely
many n. Note that hn(w) = w implies w ∈ tn ∩ tn−1.

Lemma 4.7. Let t be a strategy tree such that val(σ(t), v) ≤ valG for every v ∈
W0(G) and let tω be constructed as described above.

(1) tω is a strategy tree.
(2) σ(tω) bounds the waiting times for condition j to f−1j (valG) + b(s, k − 1).

(3) If σ(t) bounds the waiting times for condition j′ by b, then so does σ(tω).
(4) val(σ(tω), v) ≤ val(σ(t), v) for every v ∈W0(G).

Proof. (1) Prefix-closure of tω follows from Remark 4.5.(4): let w ∈ tω, i.e., we
have hn(w) = w for almost all n. Then, we have hn(w′) = w′ for the same n and
all prefixes w′ of w. Hence, w′ ∈ tω.

Furthermore, w satisfies the first requirement on a strategy tree, since w is in
some tn, for which the first requirement holds due to Lemma 4.6.(1). Furthermore,
the second requirement is satisfied by construction: every tn contains W0(G) and
we have hn(v) = v for every v ∈ W0(G). Hence, it remains to prove the last two
properties.

For the third requirement, consider w ∈ tω with Last(w) ∈ V0. We have to
show that there is a unique v with wv ∈ tω. Let nw be such that hn(w) = w for
every n ≥ nw, which implies w ∈ tn for every n ≥ nw − 1.

As every tn is a strategy tree, there is a unique vn with wvn ∈ tn for every
n ≥ nw − 1. We claim vn = vnw−1 for every n ≥ nw − 1. The induction start
n = nw − 1 is trivial, so consider some n > nw − 1: wvn is in tn, since hn(w)vn =
wvn is in tn−1. Now, this implies vn = vn−1, as vn−1 is the unique vertex v with
wv ∈ tn−1. An application of the induction hypothesis vn−1 = vnw−1 yields the
desired result.

18 TITLE WILL BE SET BY THE PUBLISHER

From now on we denote vnw−1 by v. We have to show hn(wv) = wv for almost
all n. As a first case, assume we have wtj(wv) ≤ f−1j (valG). Then, we have

hn(wv) = wv for every n ≥ nw − 1, as we are in case (1) of the definition of
hn(wv). Now, assume we have wtj(wv) > f−1j (valG). We claim

|Sj(tn, wv)| ≥ |Sj(tn+1, wv)|

for every n ≥ nw − 1. Every element in Sj(tn+1, wv) is mapped by hn+1 to an
element in Sj(tn, wv). Hence, finiteness of the sets and injectivity of hn+1 proves
our claim. Furthermore, we have equality

|Sj(tn, wv)| = |Sj(tn+1, wv)|

only in case hn+1(wv) = wv: if hn+1(wv) 6= wv, then there is no element in
Sj(tn+1, wv) that is mapped to wv ∈ Sj(tn, wv), due to Remark 4.5.(1).

Thus, the sequence (Sj(tn, wv))n≥nw−1 gets stationary and from that point
onwards, we have hn(wv) = wv. Thus, wv ∈ tω. Furthermore, v is unique since
wv′ ∈ tω with v′ 6= v implies that there is an n with wv ∈ tn and wv′ ∈ tn, which
contradicts the fact that tn is a strategy tree.

The fourth and final requirement on tω can be proven dually: let w ∈ tω with
Last(w) ∈ V1. We have to show that wv ∈ tω for every successor v of Last(w).
Again, every such wv is in every tn for n ≥ nw−1. Now, using the same reasoning
as for the third requirement, one can show wv ∈ tω for every v.

(2) Assume there is a w = w0 · · ·wm ∈ tω with wtj(w) > f−1j (valG)+b(s, k−1).

Let w′ = w0 · · ·wm−b(s,k−1). Thus, we have wtj(w
′) > f−1j (valG).

Now, consider the infix wm−b(s,k−1)+1 · · ·wm of length b(s, k − 1). It contains
a dickson pair (m0,m1) with m− b(s, k − 1) + 1 ≤ m0 < m1 ≤ m by definition of
b(s, k − 1). Here, the parameter k − 1 stems from the fact that the waiting times
for condition j increase throughout the infix, i.e., there are only k − 1 conditions
we have to consider to obtain a dickson pair.

Now, consider an index n with hn(w) = w, which implies hn(w0 · · ·wm0) =
w0 · · ·wm0 , too. Since we have wtj(w0 · · ·wm0) > f−1j (valG), we are in the sec-

ond case of the definition of hn(w0 · · ·wm0
) and the existence of w0 · · ·wm1

∈
Sj(tn−1, w0 · · ·wm0

) with wm0
= wm1

and wt(w0 · · ·wm0
) ≤ wt(w0 · · ·wm1

) im-
plies hn(w0 · · ·wm0

) 6= w0 · · ·wm0
, i.e., we have derived the desired contradiction.

(3) For every w ∈ tω there is an nw ∈ N such that hn(w) = w for every n ≥ nw.
Furthermore, due to Remark 4.5.(4) we can pick the nw in way that they satisfy
nw′ ≤ nw for every w,w′ such that w′ is a prefix of w.

Now, define hω : tω → t via

hω(w) = h1(h2(· · ·hnw−2(hnw−1(w)) · · ·)).

Applying Lemma 4.6.(3) inductively yields wt(w) ≤ wt(hω(w)) for every w ∈ tω.
The result follows.

(4) The proof is analogous to the one for Lemma 4.6.(4), we just have to replace
h by hω. �

TITLE WILL BE SET BY THE PUBLISHER 19

We denote the limit tω of the applications of Ij to t by Ij,ω(t). Now, we are
ready to prove the main result of this subsection.

Proof of Lemma 4.3. Consider the strategy tree t′ = Ik,ω(· · · I2,ω(I1,ω(t(σ))) · · ·)
and the resulting strategy σ′ = σ(t′). An inductive application of Lemma 4.7 yields
that σ′ bounds the waiting times for every condition j by f−1j (valG) + b(s, k − 1)

and satisfies val(σ′, v) ≤ val(σ, v) for every v ∈ V . �

The construction presented here gives a correction to the one presented in [15]
where each loop removal operator Ij is applied only once.

5. Computing Optimal Strategies for RR Games

In this section, we prove our main result: Player 0 has optimal finite-state
winning strategies in RR games, which are effectively computable. To this end,
we construct a mean-payoff game in an arena which keeps track of the waiting
times up to the bounds f−1j (valG) + b(s, k− 1) and whose weight function reflects
the penalty functions.

Then, we prove that an optimal strategy for the mean-payoff game, which always
exists, induces an optimal winning strategy for the RR game. This approach is
complete due to the fact that in an RR game an optimal strategy can be assumed
to have bounded waiting times. We begin by introducing mean-payoff games in
Subsection 5.1 and then prove our main result in Subsection 5.2.

5.1. Mean-Payoff Games

A mean-payoff game G = (A, w) consists of an arena A with set E of edges
and a weight function w : E → {−W, . . . ,W} for some W ∈ N. Given a play
ρ = ρ0ρ1ρ2 · · · we define its value for Player 0 as

ν0(ρ) = lim sup
n→∞

1

n

n∑
`=1

w(ρ`−1, ρ`),

and its value for Player 1 as

ν1(ρ) = lim inf
n→∞

1

n

n∑
`=1

w(ρ`−1, ρ`).

Intuitively, Player 0 wants to minimize ν0(ρ) while Player 1 wants to maximize
ν1(ρ). Note that we always have −W ≤ ν1(ρ) ≤ ν0(ρ) ≤ W . For notational
convenience we have swapped the roles of the players, i.e., classically Player 0’s
value is the lim inf and Player 1’s value is the lim sup of the mean weights.

Theorem 5.1 ([11,22]). For every mean-payoff game there exist positional strate-
gies σopt for Player 0 and τopt for Player 1 and values ν(v) for every vertex v such
that

20 TITLE WILL BE SET BY THE PUBLISHER

(1) every play ρ ∈ Beh(v, σopt) satisfies ν0(ρ) ≤ ν(v), and
(2) every play ρ ∈ Beh(v, τopt) satisfies ν1(ρ) ≥ ν(v).

The strategies and values are computable in pseudo-polynomial time (i.e., in poly-
nomial time in the size of the arena and in the maximal weight of an edge).

Especially, the unique play ρ ∈ Beh(v, σopt) ∩ Beh(v, τopt) satisfies ν0(ρ) =
ν1(ρ) = ν(v). The strategy σopt is optimal in the sense that there is no strategy
for Player 0 that guarantees a strictly smaller value than ν(v) when starting from
v. The analogous statement is true for τopt.

5.2. Computing Optimal Strategies for RR Games via Mean-Payoff
Games

In this subsection, we prove our main theorem: optimal strategies for RR games
exist and can be effectively computed via the solution of a single mean-payoff game.

Theorem 5.2. In every RR game, Player 0 has an optimal finite-state winning
strategy, which is effectively computable.

Proof. Let G = (A, (Qj , Pj)j∈[k]) be an RR game with s vertices and k RR condi-
tions and let fj be a strictly increasing penalty function for every j. Define

tmaxj = f−1j (valG) + b(s, k − 1),

which satisfies tmaxj
≥ 1. Now, let M = (M, Init,Upd) where

M =

∏
j∈[k]

{0, . . . , tmaxj
}

 ∪ {⊥}
is the set of all waiting time vectors whose values are bounded by tmaxj

in coor-
dinate j with an additional element ⊥ denoting that the bound tmaxj

is exceeded
for some j. Furthermore, we define Init(v) = (t1, . . . , tk) with

tj =

{
1 if v ∈ Qj \ Pj ,
0 otherwise,

and Upd(⊥, v) = ⊥. It remains to define Upd((t1, . . . , tk), v): if there is a j such
that tj = tmaxj

and v /∈ Pj , then we define Upd((t1, . . . , tk), v) = ⊥. Otherwise,
we have Upd((t1, . . . , tk), v) = (t′1, . . . , t

′
k) with (cf. the definition of the waiting

time wt)

t′j =


0 if tj = 0 and v /∈ Qj \ Pj ,
1 if tj = 0 and v ∈ Qj \ Pj ,
0 if tj > 0 and v ∈ Pj ,
tj + 1 if tj > 0 and v /∈ Pj .

TITLE WILL BE SET BY THE PUBLISHER 21

Each t′j is again bounded by tmaxj
. Intuitively, the memory keeps track of the

waiting times of play prefixes up to the thresholds tmaxj
. If a threshold is exceeded,

a sink state is reached.
We define the mean-payoff game G′ = (A×M, w) by

w((v, (t1, . . . , tk)), (v′,m)) =
∑
j∈[k]

fj(tj)

for every memory state m ∈M and w((v,⊥), (v′,⊥)) = 1 +
∑
j∈[k] fj(tmaxj). Due

to fj being strictly increasing, the maximal edge weight in G′ is 1+
∑
j∈[k] fj(tmaxj

),

which appears only on the edges between vertices of the form (v,⊥). We continue
by stating some simple connections between plays in G and their extended plays
in G′.

Remark 5.3. Let ρ = ρ0ρ1ρ2 · · · be a play in G and ext(ρ) its extended play
in G′.

(1) If Upd∗(ρ0 · · · ρn) 6= ⊥, then Upd∗(ρ0 · · · ρn) = wt(ρ0 · · · ρn).
(2) If Upd∗(ρ0 · · · ρn) = ⊥, then there is a prefix ρ0 · · · ρp of ρ0 · · · ρn and an

index j such that wtj(ρ0 · · · ρp) > tmaxj and every suffix ρ0 · · · ρp · · · ρs of
ρ0 · · · ρp satisfies Upd∗(ρ0 · · · ρp · · · ρs) = ⊥.

(3) If ext(ρ) does not visit the memory state ⊥, then val(ρ) = ν0(ext(ρ)) <
1 +

∑
j∈[k] fj(tmaxj), i.e., the value of the play ρ in the RR game and

the value of its extended play ext(ρ) in the mean-payoff game are equal
(and smaller than the weight of the edges between the sink states with
memory ⊥) if the waiting times are bounded by tmaxj .

(4) If ext(ρ) visits the memory state ⊥, then ν0(ext(ρ)) = 1+
∑
j∈[k] fj(tmaxj

).

Now, we can begin with the actual proof of Theorem 5.2, in which we have
to deal with several strategies for Player 0. Throughout the proof, we denote
strategies for G without a prime and strategies for G′ with a prime. These strategies
always come in pairs, one for the RR game G and one for the mean-payoff game G′.
Their roles in the following proof are as follows:

σ and σ′: σ will uniformly bound the waiting times in G. This strategy will
be turned into σ′ for G′ which never reaches the memory state ⊥. This
bounds the values ν(v) of the game G′.

σopt and σ′
opt: σ

′
opt will be an optimal strategy for G′, which will be turned

into a strategy σopt for G. Due to the properties of σ′, we know that σ′opt
never reaches the memory state ⊥, which in turn bounds the waiting times
of σopt. Then, we show that σopt is indeed optimal.

σ̂opt and σ̂′
opt: To this end, we will assume it is not optimal, i.e., there is

a better strategy σ̂opt. This will be turned into a strategy σ̂′opt for G′,
which is strictly better than the optimal strategy σ′opt. This contradiction
finishes the proof.

Due to Corollary 3.7 and Lemma 4.3, there is a strategy σ for Player 0 for G such
that val(σ, v) ≤

∑
j∈[k] fj(sk2k) for every v ∈W0(G) and such that wtj(w) ≤ tmaxj

22 TITLE WILL BE SET BY THE PUBLISHER

for every play prefix w that is consistent with σ and starts in W0(G). First, we
turn σ into a strategy σ′ for G′ and use Remark 5.3 to relate their values. To this
end, let

σ′((v0,m0) · · · (vn,mn)) = (σ(v0 · · · vn),Upd(mn, σ(v0 · · · vn)), (2)

i.e., we mimic the behavior of σ in the first component and update the memory
state in the second component accordingly. Let ρ′ = (v0,m0)(v1,m1)(v2,m2) · · ·
be consistent with σ′. A straightforward induction shows that proj(ρ′) = v0v1v2 · · ·
is consistent with σ. Also, if (v0,m0) = (v0, Init(v0)) then ρ′ = ext(proj(ρ′)). If
additionally v0 ∈W0(G) then an application of Remark 5.3(3) yields

val(proj(ρ′)) = ν0(ρ′) < 1 +
∑
j∈[k]

fj(tmaxj).

The following is now immediate.

Remark 5.4. If v ∈W0(G), then ν(v, Init(v)) < 1 +
∑
j∈[k] fj(tmaxj

).

Now, consider an optimal strategy σ′opt for Player 0 in G′ as guaranteed by The-
orem 5.1. Due Remark 5.4, every play that starts in a vertex of the form (v, Init(v))
for some v ∈W0(G) never visits the memory state ⊥. Now, let σopt be the strategy
for G induced by σ′opt with memory M. Formally, we define it by giving a next-
move function via Nxt(v,m) = v′ in case we have σ′opt(v,m) = (v′,m′) for some m′.
Let ρ be a play in G that is consistent with σopt and starts in W0(G). A straight-
forward induction shows that ext(ρ) (which starts in (v, Init(v))) is consistent with
σ′opt. Thus, the memory state ⊥ is never reached and we have val(ρ) = ν0(ext(ρ)).

We claim that σopt has the desired properties: it is finite-state and effectively
computable. Hence, it remains to show that it is optimal. Assume it is not.
Then, there exists a vertex v and a strategy σ̂opt for Player 0 in G such that
val(σ̂opt, v) < val(σopt, v) ≤ valG . Due to Lemma 4.3, we can assume that σ̂opt
bounds the waiting times for every condition j by tmaxj

. Now, using the same
definition as in (2), we turn σ̂opt into a strategy σ̂′opt for Player 0 in G′.

As above, for every play ρ′ = (v0,m0)(v1,m1)(v2,m2) · · · that is consistent
with σ̂′opt the projected play v0v1v2 · · · is consistent with σ̂opt. Furthermore, if
(v0,m0) = (v0, Init(v0)), then ρ′ = ext(proj(ρ′)) and ν0(ρ′) = val(proj(ρ′)).

Recall that v is the vertex of G from which σ̂opt is better than σopt. Now,
consider the optimal strategy τ ′opt for Player 1 in G′ (as in Theorem 5.1) and let
ρ′ be the unique play in G′ that starts in (v, Init(v)) and is consistent with both
σ̂′opt and τ ′opt. We have

ν0(ρ′) = val(proj(ρ′)) ≤ val(σ̂opt, v) < val(σopt, v) ≤ ν(v, Init(v)) ≤ ν1(ρ′),

which yields the desired contradiction to the fact that we have ν0(ρ′) ≥ ν1(ρ′) by
definition. Here, the inequality val(σopt, v) ≤ ν(v, Init(v)) follows from the fact
that every play that contributes to val(σopt, v) has an extended play in G′ that

TITLE WILL BE SET BY THE PUBLISHER 23

starts in (v, Init(v)), is consistent with σ′opt, and has the same value (for Player 0),
which is smaller than ν(v, Init(v)) by Theorem 5.1. �

6. Conclusion

We have presented an algorithm that computes optimal winning strategies for
RR games in case the quality of a play is measured by the limit superior of the mean
accumulated penalties on the waiting times between requests and their responses.
To this end, we proved that the waiting times of strategies with small value can
be assumed to be bounded by some doubly-exponential bound. Thus, the search
space for an optimal winning strategy is finite and the problem of finding one can
be reduced to computing an optimal strategy for a mean-payoff game.

The reduction presented here is also applicable to a more general winning con-
dition, the so-called poset condition [19], where a request has to be answered by
a partially ordered set of events. In such games, the waiting times are used to
measure the time between a request and the occurrence of the last event required
in its response. Here, unlike in RR games, we measure the waiting time for every
request, even if there is currently an open one. This is necessary since a new
request might appear while an old request is already partially answered, i.e., satis-
fying the remaining events that answer the old request does not suffice to answer
the new one. This situation cannot occur in RR games, as a response is a single
event. Thus, by viewing an RR game as a poset game, we can also compute an
optimal strategy when measuring the quality by taking all requests into account.

Unfortunately, the reduction to mean-payoff games presented here is expen-
sive in terms of running time of the algorithm and also in terms of the mem-
ory requirements of the optimal strategy: the size of the mean-payoff game is
doubly-exponential and the largest weight in this game is doubly exponential (if
the penalty functions are the identity function, otherwise these values are even
larger). The best algorithms for mean-payoff games have a polynomial running
time in these two parameters. Thus, our algorithm has a doubly-exponential run-
ning time. This has to be contrasted with the Exptime-completeness of computing
an arbitrary winning strategy for an RR game [7]. Furthermore, the size of the
memory structure implementing the optimal strategy for the RR game computed
by our algorithm is also at least of doubly-exponential size, again larger than
arbitrary winning strategies, which are of exponential size [7, 18].

As mentioned earlier, the upper bound on the waiting times is tight as shown
by [9]. Hence, to obtain a faster algorithm and smaller optimal winning strategies,
a different approach is necessary. The exact complexity of computing optimal
strategies is an open problem. Another approach to overcome the high complexity
is to consider heuristics and approximation algorithms, which compute strategies
that realize the value of an optimal strategy up to a certain factor. Finally, the
size of the optimal strategy computed here is much larger than the lower bounds
on memory requirements in RR games. This raises the question whether there is
a tradeoff between the size and the quality of a strategy.

24 TITLE WILL BE SET BY THE PUBLISHER

References

[1] Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron Peled. Parametric temporal

logic for “model measuring”. ACM Trans. Comput. Log., 2(3):388–407, 2001.
[2] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.

Better quality in synthesis through quantitative objectives. In Ahmed Bouajjani and Oded
Maler, editors, CAV, volume 5643 of LNCS, pages 140–156. Springer, 2009.

[3] Tomás Brázdil, Krishnendu Chatterjee, Antońın Kucera, and Petr Novotný. Efficient con-

troller synthesis for consumption games with multiple resource types. In P. Madhusudan
and Sanjit A. Seshia, editors, CAV, volume 7358 of LNCS, pages 23–38. Springer, 2012.

[4] Pavol C̆erný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna, and Rohit

Singh. Quantitative synthesis for concurrent programs. In Ganesh Gopalakrishnan and Shaz
Qadeer, editors, CAV, volume 6806 of LNCS, pages 243–259. Springer, 2011.

[5] Krishnendu Chatterjee and Laurent Doyen. Energy parity games. In Samson Abramsky,
Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis,

editors, ICALP (2), volume 6199 of LNCS, pages 599–610. Springer, 2010.

[6] Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in ω-
regular games. ACM Trans. Comput. Log., 11(1), 2009.

[7] Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. The complexity of request-

response games. In Adrian Horia Dediu, Shunsuke Inenaga, and Carlos Mart́ın-Vide, editors,
LATA, volume 6638 of LNCS, pages 227–237. Springer, 2011.

[8] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdziński. Mean-payoff parity

games. In LICS, pages 178–187. IEEE Computer Society, 2005.
[9] Wojciech Czerwiński, Tomasz Gogacz, and Eryk Kopczyński. Lower bound for Dickson’s

lemma in a special case, 2014. Accepted for publication in Fundamenta Informaticae. Avail-

able at arxiv.org/abs/1506.05279.
[10] Leonard E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n

distinct prime factors. Amer. Journal Math., 35(4):413–422, 1913.
[11] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International

Journal of Game Theory, 8:109–113, 1979.

[12] Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jiŕı Srba. Energy games in multiweighted
automata. In Antonio Cerone and Pekka Pihlajasaari, editors, ICTAC, volume 6916 of

LNCS, pages 95–115. Springer, 2011.

[13] Peter Faymonville and Martin Zimmermann. Parametric linear dynamic logic. In Adriano
Peron and Carla Piazza, editors, GandALF, volume 161 of EPTCS, pages 60–73, 2014. Full

version available at: arxiv.org/abs/1504.03880.

[14] Nathanaël Fijalkow and Martin Zimmermann. Cost-parity and cost-Streett games. In
Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, FSTTCS 2012,

volume 18 of LIPIcs, pages 124–135, Dagstuhl, Germany, 2012. Schloss Dagstuhl – Leibniz-

Zentrum für Informatik.
[15] Florian Horn, Wolfgang Thomas, and Nico Wallmeier. Optimal strategy synthesis in request-

response games. In Sung Deok Cha, Jin-Young Choi, Moonzoo Kim, Insup Lee, and Mahesh

Viswanathan, editors, ATVA, volume 5311 of LNCS, pages 361–373. Springer, 2008.
[16] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness. Formal

Methods in System Design, 34(2):83–103, 2009.
[17] Nico Wallmeier. Strategien in unendlichen Spielen mit Liveness-Gewinnbedingungen: Syn-

theseverfahren, Optimierung und Implementierung. PhD thesis, RWTH Aachen University,
2008.

[18] Nico Wallmeier, Patrick Hütten, and Wolfgang Thomas. Symbolic synthesis of finite-state
controllers for request-response specifications. In Oscar H. Ibarra and Zhe Dang, editors,

CIAA, volume 2759 of LNCS, pages 11–22. Springer, 2003.
[19] Martin Zimmermann. Time-optimal winning strategies for poset games. In Sebastian

Maneth, editor, CIAA, volume 5642 of LNCS, pages 217–226. Springer, 2009.

TITLE WILL BE SET BY THE PUBLISHER 25

[20] Martin Zimmermann. Optimal bounds in parametric LTL games. Theor. Comput. Sci.,

493:30–45, 2013.
[21] Martin Zimmermann. Parameterized linear temporal logics meet costs: Still not

costlier than LTL. 2015. Accepted for publication at GandALF 2015. Available at

arxiv.org/abs/1505.06953.
[22] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theor.

Comput. Sci., 158(1&2):343–359, 1996.

Communicated by (The editor will be set by the publisher).

