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Abstract

We introduce Parametric Linear Dynamic Logic (PLDL), which extends Linear
Dynamic Logic (LDL) by adding temporal operators equipped with parameters
that bound their scope. LDL itself was proposed as an extension of Linear
Temporal Logic (LTL) that is able to express all ω-regular specifications while
still maintaining many of LTL’s desirable properties like intuitive syntax and se-
mantics and a translation into non-deterministic Büchi automata of exponential
size. However, LDL lacks capabilities to express timing constraints. By adding
parameterized operators to LDL, we obtain a logic which is able to express all
ω-regular properties and which subsumes parameterized extensions of LTL like
Parametric LTL and PROMPT-LTL.

Our main technical contribution is a translation of PLDL formulas into non-
deterministic Büchi automata of exponential size via alternating automata. This
yields polynomial space algorithms for model checking and assume-guarantee
model checking and a realizability algorithm with doubly-exponential running
time. All three problems are also shown to be complete for these complexity
classes. Moreover, we give tight upper and lower bounds on optimal parameter
values for model checking and realizability. Using these bounds, we present a
polynomial space procedure for model checking optimization and an algorithm
with triply-exponential running time for realizability optimization. Our results
show that PLDL model checking, assume-guarantee model checking, and real-
izability are no harder than their respective (parametric) LTL counterparts.
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1. Introduction

Linear Temporal Logic (LTL) [2] is a popular specification language for the
verification and synthesis of reactive systems and provides semantic foundations
for industrial logics like PSL [3]. LTL has a number of desirable properties con-
tributing to its ongoing popularity: it does not rely on the use of variables, it
has an intuitive syntax and semantics and thus gives a way for practitioners
to write declarative and concise specifications. Furthermore, it is expressively
equivalent to first-order logic over the natural numbers with successor and or-
der [4] and enjoys an exponential compilation property: one can efficiently con-
struct a language-equivalent non-deterministic Büchi automaton of exponential
size in the size of the specification. The exponential compilation property yields
a polynomial space model checking algorithm and a doubly-exponential time al-
gorithm for realizability. Both problems are complete for the respective classes.

Model checking of properties described in LTL or its practical descendants
is routinely applied in industrial-sized applications, especially for hardware sys-
tems [3, 5]. Due to its complexity, realizability has not reached industrial accep-
tance (yet). First approaches relied on determinization of ω-automata, which is
notoriously hard to implement efficiently [6]. More recent algorithms for realiz-
ability follow a safraless construction [7, 8], which avoids explicitly constructing
the deterministic automaton, and show promise on small examples.

Despite the desirable properties, two drawbacks of LTL remain and are tack-
led by different approaches in the literature: first, LTL is not able to express all
ω-regular properties. For example, the property “p holds on every even step”
(but may or may not hold on odd steps) is not expressible in LTL, but is easily
expressible by an ω-regular expression. This drawback is a serious one, since
the combination of regular properties and linear-time operators is common in
hardware verification languages to express modular verification properties, as in
ForSpec [5]. Several extensions of LTL with regular expressions, finite automata,
or grammar operators [9, 10, 11] have been proposed as a remedy.

A second drawback of classic temporal logics like LTL is the inability to na-
tively express timing constraints. The standard semantics are unable to enforce
the fulfillment of eventualities within finite time bounds, e.g., it is impossible to
require that requests are granted within a fixed, but arbitrary, amount of time.
While it is possible to unroll an a-priori fixed bound for an eventuality into LTL,
this requires prior knowledge of the system’s granularity and incurs a blow-up
when translated to automata, and is thus considered impractical. A more prac-
tical way of fixing this drawback is the purpose of a long line of work in para-
metric temporal logics, e.g., parametric LTL (PLTL) [12], PROMPT–LTL [13]
and parametric MITL [14]. These logics feature parameterized temporal oper-
ators to express time bounds, and either test the existence of a global bound,
like PROMPT–LTL, or of individual bounds on the parameters, like PLTL.

Recently, the first drawback was revisited by De Giacomo and Vardi [15, 16]
by introducing an extension of LTL called linear dynamic logic (LDL), which is
as expressive as ω-regular languages. The syntax of LDL is inspired by proposi-
tional dynamic logic (PDL) [17], but the semantics follow linear-time logics. In
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PDL and LDL, systems are expressed by regular expressions r with tests, and
temporal requirements are specified by two basic modalities:

• 〈r〉ϕ, stating that ϕ should hold at some position where r matches, and

• [r ]ϕ, stating that ϕ should hold at all positions where r matches.

The operators to build regular expressions from propositional formulas are
as follows: sequential composition (r1 ; r2), non-deterministic choice (r1 + r2),
repetition (r∗), and test (ϕ?) of a temporal formula. On the level of the temporal
operators, conjunction and disjunction are allowed. The tests allow to check
temporal properties within regular expressions, and are used to encode LTL
into LDL.

For example, the program “while q do a” with property p holding after
termination of the loop is expressed in PDL/LDL as follows:

[(q? ; a)∗ ;¬q?] p .

Intuitively, the loop condition q is tested on every loop entry, the loop body a is
executed/consumed until ¬q holds, and then the post-condition p has to hold.

A request-response property (every request should eventually be responded
to) can be formalized as follows:

[tt∗ ] (req → 〈tt∗〉 resp) .

Both aforementioned drawbacks of LTL, the inability to express all ω-regular
properties and the missing capability to specify timing constraints, have been
tackled individually in a successful way in previous work, but not at the same
time. Here, we propose a logic called PLDL that combines the expressivity of
LDL with the parametricity of PLTL.

In PLDL, we are for example able to parameterize the eventuality of the
request-response condition, denoted as

[tt∗ ] (req → 〈tt∗〉≤x resp) ,

which states that every request has to be followed by a response within x steps.
Finally, the aforementioned property that is not expressible in LTL, (“p

holds on every even step”) can be expressed in PLDL as

[(tt ; tt)∗ ] p .

Using the parameterized request-response property as the specification for
a model checking problem entails determining whether there exists a valuation
α(x) for x such that all paths of a given system respond to requests within α(x)
steps.

If we take the property as a specification for the PLDL realizability problem,
and define req as input, resp as output, we compute whether there exists a
winning strategy that adheres to a valuation α(x) and therefore ensures the
delivery of responses to requests in a timely manner.
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The main result of this paper is the translation of PLDL into alternating
Büchi automata of linear size. Using these automata and a generalization of the
alternating color technique of [13], we obtain the following results.

First, we prove that PLDL model checking is PSpace-complete by construct-
ing a non-deterministic Büchi automaton of exponential size and using a modi-
fied on-the-fly non-emptiness test to obtain membership in PSpace. PSpace-
hardness follows from the conversion of LTL to PLDL. Furthermore, we give a
tight exponential bound on the satisfying valuation for model checking.

Second, we consider the PLDL assume-guarantee model checking problem
and show it to be PSpace-complete as well by extending the techniques used
to show the similar result for model checking.

Third, we prove that PLDL realizability is 2ExpTime-complete. Hardness
again follows from the ability to express LTL, while membership is proven by
solving a parity game constructed from a deterministic parity automaton of
doubly-exponential size. Additionally, we give a tight doubly-exponential bound
on the satisfying valuation for realizability.

Thus, the model checking, the assume-guarantee model checking, and the re-
alizability problem are no harder than their corresponding variants for LTL. All
three solutions to these problems are extensions of the ones for PROMPT–LTL [13].

Fourth, we investigate optimization problems for PLDL, i.e., determining
the optimal valuation for a formula and a system or the tightest guarantee for
realizability. While the model checking optimization problem is still solvable
in polynomial space, we provide a triply-exponential time algorithm for the
realizability optimization problem. This leaves an exponential gap to the deci-
sion variant, as for PLTL [18]. Both algorithms are based on exhaustive search
through the bounded solution space induced by the upper bounds mentioned
above.

Our translation into alternating automata is also applicable to LDL on in-
finite traces, while De Giacomo and Vardi [15] only considered LDL on finite
traces. Furthermore, our construction differs conceptually, since we present a
bottom-up procedure, while they gave a top-down construction.

2. PLDL

Let V be a set of variables and let us fix a finite set P of atomic propositions
which we use to build formulas and to label transition systems. For a subset
A ∈ 2P and a propositional formula φ over P , we write A |= φ, if the variable
valuation mapping elements in A to true and elements not in A to false satisfies
φ. The formulas of PLDL are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈r〉ϕ | [r ]ϕ | 〈r〉≤z ϕ | [r ]≤z ϕ

r ::=φ | ϕ? | r + r | r ; r | r∗

where p ∈ P , z ∈ V, and where φ stands for arbitrary propositional formulas
over P . We use the abbreviations tt = p∨¬p and ff = p∧¬p for some atomic
proposition p. The regular expressions have two types of atoms: propositional
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formulas φ over the atomic propositions and tests ϕ?, where ϕ is again a PLDL
formula. Note that the semantics of the propositional atom φ differ from the
semantics of the test φ?: the former consumes an input letter, while tests do
not. This is why both types of atoms are allowed.

The set of subformulas of ϕ is denoted by cl(ϕ). Regular expressions are
not subformulas, but the formulas appearing in the tests are, e.g., we have
cl(〈p? ; q〉≤x p′) = {p, p′, 〈p? ; q〉≤x p′}. The size |ϕ| of ϕ is the sum of |cl(ϕ)| and
the sum of the lengths of the regular expressions appearing in ϕ (counted with
multiplicity).

We define var3(ϕ) = {z ∈ V | 〈r〉≤z ψ ∈ cl(ϕ)} to be the set of variables
parameterizing diamond-operators in ϕ, var2(ϕ) = {z ∈ V | [r ]≤z ψ ∈ cl(ϕ)}
to be the set of variables parameterizing box-operators in ϕ, and set var(ϕ) =
var3(ϕ) ∪ var2(ϕ). Usually, we will denote variables in var3(ϕ) by x and vari-
ables in var2(ϕ) by y, if ϕ is clear from the context. A formula ϕ is variable-free,
if var(ϕ) = ∅.

The semantics of PLDL is defined inductively with respect to w = w0w1w2 · · · ∈
(2P )ω, a position n ∈ N, and a variable valuation α : V → N via

• (w, n, α) |= p if p ∈ wn,

• (w, n, α) |= ¬p if p /∈ wn,

• (w, n, α) |= ϕ0 ∧ ϕ1 if (w, n, α) |= ϕ0 and (w, n, α) |= ϕ1,

• (w, n, α) |= ϕ0 ∨ ϕ1 if (w, n, α) |= ϕ0 or (w, n, α) |= ϕ1,

• (w, n, α) |= 〈r〉ϕ if there exists j ∈ N s.t. (n, n + j) ∈ R(r, w, α) and
(w, n+ j, α) |= ϕ,

• (w, n, α) |= [r ]ϕ if for all j ∈ N with (n, n + j) ∈ R(r, w, α) we have
(w, n+ j, α) |= ϕ,

• (w, n, α) |= 〈r〉≤z ϕ if there exists 0 ≤ j ≤ α(z) s.t. (n, n+ j) ∈ R(r, w, α)
and (w, n+ j, α) |= ϕ, and

• (w, n, α) |= [r ]≤z ϕ if for all 0 ≤ j ≤ α(z) with (n, n+ j) ∈ R(r, w, α) we
have (w, n+ j, α) |= ϕ.

The relation R(r, w, α) ⊆ N×N contains all pairs (m,n) such that wm · · ·wn−1

matches r and is defined inductively by

• R(φ,w, α) = {(n, n+ 1) | wn |= φ} for propositional φ,

• R(θ?, w, α) = {(n, n) | (w, n, α) |= θ},

• R(r0 + r1, w, α) = R(r0, w, α) ∪R(r1, w, α),

• R(r0 ; r1, w, α) = {(n0, n2) | ∃n1 s.t. (n0, n1) ∈ R(r0, w, α) and (n1, n2) ∈
R(r1, w, α)}, and
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• R(r∗, w, α) = {(n, n) | n ∈ N} ∪ {(n0, nk+1) | ∃n1, . . . , nk s.t. (nj , nj+1) ∈
R(r, w, α) for all 0 ≤ j ≤ k}.

We write (w,α) |= ϕ for (w, 0, α) |= ϕ and say that w is a model of ϕ with
respect to α.

Example 1.

• The formula χ∞p :=[tt∗ ] 〈tt∗〉 p expresses that p holds true infinitely of-
ten.

• In general, every PLTL formula [12] (and thus every LTL formula) can
be translated into PLDL, e.g., F≤x p is expressible as 〈tt∗〉≤x p and pU q
as 〈p∗〉 q or 〈p∗q〉 tt.

• The formula [tt∗ ] (req → 〈(tt ; tt)∗〉 resp) requires that every request (a
position where req holds) is followed by a response (a position where resp
holds) after an even number of steps. Note that the implication is not part
of PLDL, but it can (here) be replaced by a disjunction.

As usual for parameterized temporal logics, the use of variables has to be
restricted: bounding diamond- and box-operators by the same variable leads to
an undecidable satisfiability problem (cf. [12]).

Definition 1. A PLDL formula ϕ is well-formed, if var3(ϕ) ∩ var2(ϕ) = ∅.

In the following, we only consider well-formed formulas and drop the qualifier
“well-formed” whenever possible.

Note that we define PLDL formulas to be in negation normal form. Never-
theless, we can define the negation of a formula using dualities.

Lemma 1. For every PLDL formula ϕ there exists an efficiently constructible
(not necessarily well-formed) PLDL formula ¬ϕ s.t.

1. (w, n, α) |= ϕ if and only if (w, n, α) 6|= ¬ϕ, and

2. |¬ϕ| = |ϕ|.

Proof. We construct ¬ϕ by structural induction over ϕ using the dualities of
the operators:

• ¬(p) = ¬p

• ¬(ϕ0 ∧ ϕ1) = (¬ϕ0) ∨ (¬ϕ1)

• ¬(〈r〉ϕ) = [r ]¬ϕ

• ¬(〈r〉≤x ϕ) = [r ]≤x ¬ϕ

• ¬(¬p) = p

• ¬(ϕ0 ∨ ϕ1) = (¬ϕ0) ∧ (¬ϕ1)

• ¬([r ]ϕ) = 〈r〉 ¬ϕ

• ¬([r ]≤y ϕ) = 〈r〉≤y ¬ϕ

The latter claim of Lemma 1 follows from the definition of ¬ϕ while the first
one can be shown by a straightforward structural induction over ϕ.
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Note that negation does not necessarily preserve well-formedness, e.g., the
negation of the well-formed formula ϕ� = [([p]≤x p)?]

≤x
p is 〈([p]≤x p)?〉≤x ¬p,

which is not well-formed.
We consider the following fragments of PLDL. Let ϕ be a PLDL formula:

• ϕ is an LDL formula [15], if ϕ is variable-free,

• ϕ is a PLDL3 formula, if var2(ϕ) = ∅, and

• ϕ is a PLDL2 formula, if var3(ϕ) = ∅ and if ¬ϕ is a PLDL3 formula1.
Note that this implies that a PLDL2 formula cannot have parameterized
subformulas in a test.

Every LDL, PLDL3, and PLDL2 formula is well-formed by definition. As
satisfaction of LDL formulas is independent of valuations, we write (w, n) |= ϕ
and w |= ϕ instead of (w, n, α) |= ϕ and (w,α) |= ϕ, respectively, if ϕ is an LDL
formula.

LDL is as expressive as ω-regular languages, which can be proven by a
straightforward translation of ETLf [10], which expresses exactly the ω-regular
languages, into LDL, and by a translation of LDL into Büchi automata.

Theorem 1 ([16]). Let L ⊆ (2P )ω. The following are effectively equivalent:

1. L is ω-regular.

2. There exists an LDL formula ϕ such that L = {w ∈ (2P )ω | w |= ϕ}.

A simple, but very useful property of PLDL is the monotonicity of the param-
eterized operators: increasing (decreasing) the values of parameters bounding
diamond-operators (box-operators) preserves satisfaction.

Lemma 2. Let ϕ be a PLDL formula and let α and β be variable valuations
satisfying β(x) ≥ α(x) for every x ∈ var3(ϕ) and β(y) ≤ α(y) for every y ∈
var2(ϕ). If (w,α) |= ϕ, then (w, β) |= ϕ.

The previous lemma allows us to eliminate parameterized box-operators
when asking for the existence of a variable valuation satisfying a formula.

Lemma 3. For every PLDL formula ϕ there is an efficiently constructible
PLDL3 formula ϕ′ whose size is at most the size of ϕ such that

1. for every α there is an α′ such that for all w: (w,α) |= ϕ implies (w,α′) |=
ϕ′, and

2. for every β′ there is a β such that for all w: (w, β′) |= ϕ′ implies (w, β) |=
ϕ.

1The definition of PLDL2 in the conference version [1] is slightly too inclusive, because it
contains the formula ϕ�. This is problematic, as we have to require the negation of a PLDL2

formula to be a PLDL3 formula.
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Proof. For each r, we construct a test r̂ such that R(r, w, α) ∩ {(n, n) | n ∈
N} = R(r̂, w, α) for every w and every α. Then, [r ]≤y ψ and [ r̂ ]ψ are equivalent,
provided we have α(y) = 0, which in combination with monotonicity is sufficient
to prove our claim. We apply the following rewriting rules (in the given order)
to r:

1. Replace every subexpression r′∗ by tt?, until no longer applicable.

2. Replace every subexpression φ ; r′ or r′ ;φ by ff? and replace every subex-
pression φ + r′ or r′ + φ by r′, where φ is a propositional formula, until
no longer applicable.

3. Replace every subexpression θ0? + θ1? by (θ0 ∨ θ1)? and replace every
subexpression θ0? ; θ1? by (θ0 ∧ θ1)?, until no longer applicable.

After step 2, r contains no iterations and no propositional atoms unless the
expression itself is one. In the former case, applying the last two rules yields a
regular expression, which is a single test, denoted by r̂. In the latter case, we
define r̂ = ff?.

Each rewriting step preserves the intersection R(r, w, α) ∩ {(n, n) | n ∈ N}.
As r̂ is a test, we conclude R(r, w, α) ∩ {(n, n) | n ∈ N} = R(r̂, w, α) for every
w and every α. Note that r̂ can be efficiently computed from r and its size is
at most the size of r. Now, replace every subformula [r ]≤y ψ of ϕ by [ r̂ ]ψ and
denote the formula obtained by ϕ′, which is a PLDL3 formula that is efficiently
constructible and has the desired size.

Given an α, we define α′ by α′(z) = 0 if z ∈ var2(ϕ), and α′(z) = α(z)
otherwise. If (w,α) |= ϕ, then (w,α′) |= ϕ due to monotonicity. By construction
of ϕ′, we also have (w,α′) |= ϕ′. On the other hand, if (w, β′) |= ϕ′ for some
β′, then (w, β) |= ϕ′ as well, where β(z) = 0, if z ∈ var2(ϕ), and β(z) = β′(z)
otherwise. By construction of ϕ′, we conclude (w, β) |= ϕ.

2.1. The Alternating Color Technique and LDLcp
In this subsection, we repeat the alternating color technique [13], which was

introduced by Kupferman et al. to solve the model checking and the realizability
problem for PROMPT–LTL, amongst others. Let p /∈ P be a fresh proposition
and define P ′ = P ∪ {p}. We think of words in (2P

′
)ω as colorings of words in

(2P )ω, i.e., w′ ∈ (2P
′
)ω is a coloring of w ∈ (2P )ω, if we have wn

′ ∩ P = wn for
every position n. Furthermore, n is a changepoint, if n = 0 or if the truth value
of p differs at positions n−1 and n. A block is a maximal infix that has exactly
one changepoint, which is at the first position of the infix. By maximality, this
implies that the first position after a block is a changepoint. Let k ≥ 1. We say
that w′ is k-bounded, if every block has length at most k, which implies that
w′ has infinitely many changepoints. Dually, w′ is k-spaced, if it has infinitely
many changepoints and every block has length at least k.

The alternating color technique replaces every parameterized diamond-oper-
ator 〈r〉≤x ψ by an unparameterized one that requires the formula ψ to be satis-
fied within at most one color change. To this end, we introduce a changepoint-
bounded variant 〈·〉cp of the diamond-operator. Since we need the dual opera-
tor [ · ]cp to allow for negation via dualization, we introduce it here as well:
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• (w, n, α) |= 〈r〉cp ψ if there exists a j ∈ N s.t. (n, n + j) ∈ R(r, w, α),
wn · · ·wn+j−1 contains at most one changepoint, and (w, n + j, α) |= ψ,
and

• (w, n, α) |= [r ]cp ψ if for all j ∈ N with (n, n+ j) ∈ R(r, w, α) and where
wn · · ·wn+j−1 contains at most one changepoint we have (w, n+j, α) |= ψ.

We denote the logic obtained by disallowing parameterized operators, but
allowing changepoint-bounded operators, by LDLcp. Note that the semantics of
LDLcp formulas are independent of variable valuations. Hence, we drop them
from our notation for the satisfaction relation |= and the relation R. Also,
Lemma 1 can be extended to LDLcp by adding the rules ¬(〈r〉cp ψ) = [r ]cp ¬ψ
and ¬([r ]cp ψ) = 〈r〉cp ¬ψ to the proof.

Now, we are ready to introduce the alternating color technique. Given a
PLDL3 formula ϕ, let rel(ϕ) be the formula obtained by inductively replacing
every subformula 〈r〉≤x ψ by 〈rel(r)〉cp rel(ψ), i.e., we replace the parameterized
diamond-operator by a changepoint-bounded one. Note that this replacement
is also performed in the regular expressions, i.e., rel(r) is the regular expression
obtained by applying the replacement to every test θ? in r.

Given a PLDL3 formula ϕ let c(ϕ) = rel(ϕ) ∧ χ∞p ∧ χ∞¬p (cf. Example 1),
which is an LDLcp formula and only linearly larger than ϕ. On k-bounded and
k-spaced colorings of w (for a suitable k) there is an equivalence between ϕ and
c(ϕ). The proof is similar to the original one for PROMPT–LTL [13].

Lemma 4 (cf. Lemma 2.1 of [13]). Let ϕ be a PLDL3 formula and let w ∈
(2P )ω.

1. If (w,α) |= ϕ, then w′ |= c(ϕ) for every k-spaced coloring w′ of w, where
k = maxx∈var(ϕ) α(x).

2. Let k ∈ N. If w′ is a k-bounded coloring of w with w′ |= c(ϕ), then
(w,α) |= ϕ, where α(x) = 2k for every x.

3. From LDLcp to Alternating Büchi Automata

In this section, we show how to translate LDLcp formulas into alternating
Büchi word automata with linearly many states, but possibly with an exponen-
tial number of transitions, using an inductive bottom-up approach. These au-
tomata allow us to use automata-based constructions to solve the model check-
ing and the realizability problem for PLDL via the alternating color technique
which links PLDL and LDLcp. Since these problems are shown to be complete
for the complexity classes PSpace and 2ExpTime, which allow us to construct
the automata (on-the-fly), the potentially exponential number of transitions is
not an issue.

An alternating Büchi automaton A = (Q,Σ, q0, δ, F ) consists of a finite set Q
of states, an alphabet Σ, an initial state q0 ∈ Q, a transition function δ : Q×Σ→
B+(Q), and a set F ⊆ Q of accepting states. Here, B+(Q) denotes the set of
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positive boolean combinations over Q, which contains in particular the formulas
tt (true) and ff (false).

A run of A on w = w0w1w2 · · · ∈ Σω is a directed graph ρ = (V,E) where
V ⊆ Q× N and ((q, n), (q′, n′)) ∈ E implies n′ = n+ 1 such that the following
two conditions are satisfied: (q0, 0) ∈ V and for all (q, n) ∈ V : Succρ(q, n) |=
δ(q, wn). Here Succρ(q, n) denotes the set of successors of (q, n) in ρ projected
to Q. A run ρ is accepting if all infinite paths (projected to Q) through ρ visit F
infinitely often. The language L(A) contains all w ∈ Σω that have an accepting
run of A.

Theorem 2. For every LDLcp formula ϕ, there is an alternating Büchi automa-

ton Aϕ with linearly many states (in |ϕ|) and L(Aϕ) = {w ∈ (2P
′
)ω | w |= ϕ}.

To prove the theorem, we inductively construct automata Aψ for every sub-

formula ψ ∈ cl(ϕ) satisfying L(Aψ) = {w ∈ (2P
′
)ω | w |= ψ}.

The automata for atomic formulas are straightforward and depicted in Fig-
ures 1(a) and (b). To improve readability, we allow propositional formulas over
P ′ as transition labels: a formula φ stands for all sets A ∈ 2P

′
with A |= φ.

Furthermore, given automata Aψ0
and Aψ1

, using a standard construction,
we can build the automaton Aψ0∨ψ1

by taking the disjoint union of the two au-
tomata, adding a new initial state q0 with δ(q0, A) = δ0(q0

0 , A) ∨ δ1(q1
0 , A).

Here, qi0 is the initial state and δi is the transition function of Aψi . The
automaton Aψ0∧ψ1

is defined similarly, the only difference being δ(q0, A) =
δ0(q0

0 , A) ∧ δ1(q1
0 , A).

(a) (b) (c)

ff

tt

¬p

p

ff

tt

p

¬p p

¬p

p ¬p

¬p

p

p¬p

¬p

p
tt

Figure 1: The automata Ap (a), A¬p (b), and Acp (c), which tracks changepoints.

It remains to consider temporal formulas, e.g., 〈r〉ψ. First, we turn the
regular expression r into an automaton Ar. Recall that tests do not process
input letters. Hence, we disregard the tests when defining the transition func-
tion, but we label states at which the test has to be executed, by this test.
We adapt the Thompson construction [19] to turn r into Ar, i.e., we obtain
an ε-NFA. Then, we show how to combine Ar with the automaton Aψ and the
automata Aθ1 , . . . ,Aθk , where θ1?, . . . , θk? are the tests occurring in r. The
ε-transitions introduced by the Thompson construction are removed during the
construction, since alternating automata do not allow them. During this con-
struction, we also ensure that the transition relation takes tests into account by
introducing universal transitions that lead from a state marked with θj? into
the corresponding automaton Aθj .

10



An ε-NFA with markings A = (Q,Σ, q0, δ, C,m) consists of a finite set Q
of states, an alphabet Σ, an initial state q0 ∈ Q, a transition function δ : Q ×
Σ ∪ {ε} → 2Q, a set C of final states (C, since we use them to concatenate
automata), and a partial marking functionm, which assigns to some states q ∈ Q
an LDLcp formula m(q). We write q

a−→ q′, if q′ ∈ δ(q, a) for a ∈ Σ ∪ {ε}. An
ε-path π from q to q′ in A is a sequence π = q1 · · · qk of k ≥ 1 states with
q = q1

ε−→ · · · ε−→ qk = q′. The set of all ε-paths from q to q′ is denoted by
Π(q, q′) and m(π) = {m(qi) | 1 ≤ i ≤ k} is the set of markings visited by π.

A run of A on w0 · · ·wn−1 ∈ Σ∗ is a sequence q0q1 · · · qn of states such that
for every i in the range 0 ≤ i ≤ n − 1 there is a state q′i reachable from qi
via an ε-path πi and with qi+1 ∈ δ(q′i, wi). The run is accepting if there is a
q′n ∈ C reachable from qn via an ε-path πn. This slightly unusual definition
(but equivalent to the standard one) simplifies our reasoning below. Also, the
definition is oblivious to the marking.

We begin by defining the automaton Ar by induction over the structure of r
as depicted in Figure 2. Note that the automata we construct have no outgoing
edges leaving the unique final state and that we mark some states with tests θj?
(denoted by labeling states with the test).

Aφ:

Aθ?:

Ar0+r1 :

Ar0;r1 :

Ar∗0 :

φ

θ?

Ar0

Ar1

ε

ε

ε

ε

Ar0

Ar1

ε

ε

ε

Ar0

ε

ε

ε ε

Figure 2: The inductive definition of Ar via the Thompson construction.

Lemma 5. Let w = w0w1w2 · · · ∈ (2P
′
)ω and let w0 · · ·wn−1 be a (possibly

empty, if n = 0) prefix of w. The following two statements are equivalent:

1. Ar has an accepting run on w0 · · ·wn−1 with ε-paths π0, . . . , πn such that
wiwi+1wi+2 · · · |=

∧
m(πi) for every i in the range 0 ≤ i ≤ n .

2. (0, n) ∈ R(r, w).

Fix ψ and r (with tests θ1?, . . . , θk?) and let Ar = (Qr, 2P
′
, qr0, δ

r, Cr,m),
Aψ = (Q′, 2P

′
, q′0, δ

′, F ′), and Aθj = (Qj , 2P
′
, qj0, δ

j , F j) for j = 1, . . . , k be
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the corresponding automata, which we assume to have pairwise disjoint sets of
states. Next, we show how to construct A〈r〉ψ, A[r ]ψ, A〈r〉cp ψ

, and A[r ]cp ψ
.

We begin with 〈r〉ψ and define

A〈r〉ψ = (Qr ∪Q′ ∪Q1 ∪ · · · ∪Qk, 2P
′
, qr0, δ, F

′ ∪ F 1 ∪ · · · ∪ F k)

with

δ(q, A) =



δ′(q, A) if q ∈ Q′,
δj(q, A) if q ∈ Qj ,∨
q′∈Qr\Cr

∨
π∈Π(q,q′)

∨
p∈δr(q′,A)(p ∧

∧
θj∈m(π) δ

j(qj0, A))

∨ if q ∈ Qr.∨
q′∈Cr

∨
π∈Π(q,q′)(δ

′(q′0, A) ∧
∧
θj∈m(π) δ

j(qj0, A))

So, A〈r〉ψ is the union of the automata for the regular expression, the tests, and
for ψ with a modified transition function. The transitions of the automata Aψ
and Aθj are left unchanged and the transition function for states in Qr is ob-
tained by removing ε-transitions. First consider the upper disjunct: it ranges
disjunctively over all states p that are reachable via an initial ε-path and an A-
transition in the end. To account for the tests visited during the ε-path (but not
the test at p), we conjunctively add transitions that lead into the corresponding
automata. The lower disjunct is similar, but ranges over ε-paths that end in a
final state, which requires the A to be processed in Aψ. Since we concatenate
the automaton Ar with the automaton Aψ, all edges leading into final states
of Ar are rerouted to the successors of the initial state of Aψ. The tests along
the ε-paths are accounted for as in the first case. Finally, note that Qr does
not contain any (Büchi) accepting states, i.e., every accepting run on w has to
leave Qr after a finite number of transitions. Since this requires transitions that
would lead Ar into a final state, we ensure the existence of a position n such
that (0, n) ∈ R(r, w).

The definition of A[r ]ψ is dual, which requires us to consider the negation

of the tests: let A¬θj = (Qj , 2P
′
, qj0, δ

j , F j) for j = 1, . . . , k be automata for the
negation of the tests θ1?, . . . , θk? appearing in r. Recall that ¬θj always refers
to the formula obtained by propagating the negation according to Lemma 1, and
thus the automata for the negated tests can be obtained without using automata
complementation. Furthermore, to construct A[r ]ψ, we remove ε-paths of Ar in
a universal manner to account for the fact that the box-operator quantifies over
all matches with r.

Formally, we define

A[r ]ψ = (Qr ∪Q′ ∪Q1 ∪ · · · ∪Qk, 2P
′
, qr0, δ, Q

r ∪ F ′ ∪ F 1 ∪ · · · ∪ F k)
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where

δ(q,A) =



δ′(q, A) if q ∈ Q′,
δj(q, A) if q ∈ Qj ,∧
q′∈Qr\Cr

∧
π∈Π(q,q′)

∧
p∈δr(q′,A)(p ∨

∨
θj∈m(π) δ

j(qj0, A))

∧ if q ∈ Qr.∧
q′∈Cr

∧
π∈Π(q,q′)(δ

′(q′0, A) ∨
∨
θj∈m(π) δ

j(qj0, A))

Note that we add Qr to the (Büchi) accepting states, since a path of a run on
w might stay in Qr forever, as it has to consider all n with (0, n) ∈ R(r, w).

For the changepoint-bounded operators, we have to modify Ar to make it
count color changes. Let Acp = (Qcp, 2P

′
, qcp0 , δ

cp, Ccp) be the DFA depicted in
Figure 1(c). We define the product of Ar and Acp as

Âr = (Q̂r, 2P
′
, q̂r0, δ̂

r, Ĉr, m̂)

where

• Q̂r = Qr ×Qcp,

• q̂r0 = (qr0, q
cp
0 ),

• δ̂r((q, q′), A) = {(p, δcp(q′, A)) | p ∈ δr(q, A)} if A 6= ε, and δ̂r((q, q′), ε) =
{(p, q′) | p ∈ δr(q, A)},

• Ĉr = Cr × Ccp, and

• m̂(q, q′) = m(q).

Using this, we define A〈r〉cp ψ
as we defined A〈r〉ψ, but using Âr instead of Ar.

Similarly, A[r ]cp ψ
is defined as A[r ]ψ, but using Âr instead of Ar, which restricts

the matches with r recognized by Ar to those that are within at most one
changepoint.

It remains to prove that the construction is correct.

Proof of Theorem 2. First, we determine the size of Aϕ. Boolean operations add
one state while a temporal operator with regular expression r adds a number
of states that is linear in the size of r (which is its length), even when we take
the intersection with the automaton checking for color changes. Note that we
do not need to complement the automata Aθj to obtain the A¬θj , instead we
rely on Lemma 1. Hence, the size of Aϕ is linear in the size of ϕ.

Thus, it remains to prove that Aϕ recognizes the models of ϕ. We proceed by
induction over the structure of ϕ. The induction starts for atomic formulas and
the induction steps for disjunction and conjunction are trivial, hence it suffices
to consider the temporal operators.

First, consider a subformula of the form 〈r〉ψ. If w |= 〈r〉ψ, then there
exists a position n such that wnwn+1wn+2 · · · |= ψ and (0, n) ∈ R(r, w). Hence,
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due to Lemma 5, there is an accepting run of Ar on w0 · · ·wn−1 such that the
tests visited during the run are satisfied by the appropriate suffixes of w. Thus,
applying the induction hypothesis yields accepting runs of the test automata
on these suffixes. Also, there is an accepting run of Aψ on wnwn+1wn+2 · · · ,
again by induction hypothesis. These runs can be “glued” together to obtain
an accepting run of A〈r〉ψ on w.

For the other direction, let ρ be an accepting run of A〈r〉ψ on w. Let n ≥
0 be the last level of ρ that contains a state from Qr. Such a level has to
exist since states in Qr are not accepting and they have no incoming edges
from states of the automata Aψ and Aθj (the θj are the tests in r), but the
initial state of A〈r〉ψ is in Qr. Furthermore, A〈r〉ψ is non-deterministic when
restricted to states in Qr \ Cr. Hence, we can extract an accepting run of Ar
from ρ on w0 · · ·wn−1 that additionally satisfies the requirements formulated
in Statement 1 of Lemma 5, due to the transitions into the test automata and
applications of the induction hypothesis. Hence, we have (0, n) ∈ R(r, w).
Also, from the remainder of ρ (levels greater or equal to n) we can extract
an accepting run of Aψ on wnwn+1wn+2 · · · . Hence, wnwn+1wn+2 · · · |= ψ by
induction hypothesis. So, we conclude w |= 〈r〉ψ.

The case for [r ]ψ is dual to the one for 〈r〉ψ, while the cases for the change-
point-bounded operators 〈r〉cp ψ and [r ]cp ψ are analogous, using the fact that
Acp accepts words which have at most one changepoint.

The number of states of Aϕ is linear in |ϕ|, but it is not clear that Aϕ can
be computed in polynomial time in |ϕ|, since, e.g., the transition functions of
sub-automata of the form A〈r〉ψ contain disjunctions that range over the set
of ε-paths. Here, it suffices to consider simple paths, but even this restriction
still allows for an exponential number of different paths. Fortunately, we do not
need to compute Aϕ in polynomial time. It suffices to construct it on-the-fly
in polynomial space, as this is sufficient for our applications, which is clearly
possible.

Furthermore, using standard constructions (e.g., [20, 21]), we can turn the
alternating Büchi automaton Aϕ into a non-deterministic Büchi automaton of
exponential size and a deterministic parity automaton2 of doubly-exponential
size with exponentially many colors.

Finally, the automata we construct are weak [22], i.e., every strongly con-
nected component either has only accepting or only non-accepting states, which
allows for improved translations into non-deterministic automata: the automata
for the atomic formulas are weak and taking the union or intersection of two
weak automata preserves weakness. Thus, consider the automata constructed
for the temporal operators: the states of the automaton for r are either all
accepting or all rejecting, and once this set of states is left to some automa-
ton checking a subformula, it is never reentered. Hence, as these sub-automata

2The states of a parity automaton are colored by Ω: Q→ N. It accepts a word w, if it has
a run q0q1q2 · · · on w such that max{Ω(q) | qi = q for infinitely many i} is even.
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are weak, the whole automaton is weak as well. However, our automata are not
very weak [23, 24] (also known as linear), i.e., the automaton only has self-loops,
but no non-trivial cycles, as the automata checking matches with r might have
cycles of arbitrary length.

4. Model Checking

In this section, we consider the PLDL model checking problem. A (P -
labeled) transition system S = (S, s0, E, `) consists of a finite set S of states, an
initial state s0, a left-total edge relation E ⊆ S × S, and a labeling ` : S → 2P .
An initial path through S is a sequence π = s0s1s2 · · · of states satisfying
(sn, sn+1) ∈ E for every n. Its trace is defined as tr(π) = `(s0)`(s1)`(s2) · · · . We
say that S satisfies a PLDL formula ϕ with respect to a variable valuation α, if
we have (tr(π), α) |= ϕ for every initial path π of S. The model checking problem
asks, given a transition system S and a formula ϕ, to determine whether there
exists a variable valuation α for which S satisfies ϕ.

Theorem 3. The PLDL model checking problem is PSpace-complete.

To solve the PLDL model checking problem, we first notice that we can
restrict ourselves to PLDL3 formulas. Let ϕ and ϕ′ be defined as in Lemma 3.
Then, S satisfies ϕ with respect to some α if and only if S satisfies ϕ′ with
respect to some α′.

Our algorithm is similar to the one presented for PROMPT–LTL in [13]
and uses the alternating color technique. Recall that p /∈ P is the fresh atomic
proposition used to specify the coloring and induces the blocks, maximal infixes
with its unique changepoint at the first position. Let G = (V,E, v0, `, F ) denote
a colored Büchi graph consisting of a finite directed graph (V,E), an initial
vertex v0, a coloring function ` : V → 2{p} labeling vertices by p or not, and a set
F ⊆ V of accepting vertices. A path v0v1v2 · · · through G is pumpable, if all its
blocks have at least one vertex that appears twice in this block. Furthermore,
the path is fair, if it visits F infinitely often. The pumpable non-emptiness
problem asks, given a colored Büchi graph G, whether it has a pumpable fair
path starting in the initial vertex.

Theorem 4 ([13]). The pumpable non-emptiness problem for colored Büchi
graphs is NLogSpace-complete.

The following lemma reduces the PLDL3 model checking problem to the
pumpable non-emptiness problem for colored Büchi graphs of exponential size.
Given a non-deterministic Büchi automaton A = (Q, 2P

′
, q0, δ, F ) recognizing

the models of ¬rel(ϕ)∧χ∞p∧χ∞¬p (note that rel(ϕ) is negated) and a transition
system S = (S, s0, E, `), define the product A×S to be the colored Büchi graph

A× S = (Q× S × 2{p}, E′, (q0, s0, ∅), `′, F × S × 2{p})

where
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• ((q, s, C), (q′, s′, C ′)) ∈ E′ if and only if (s, s′) ∈ E and q′ ∈ δ(q, `(s)∪C),
and

• `′(q, s, C) = C.

Each initial path (q0, s0, C0)(q1, s1, C1)(q2, s2, C2) · · · through A×S induces
a coloring (`(s0)∪C0)(`(s1)∪C1)(`(s2)∪C2) · · · of the trace of the path s0s1s2 · · ·
through S. Furthermore, q0q1q2 · · · is a run of A on the coloring.

Lemma 6 (cf. Theorem 4.2 of [13]). S does not satisfy ϕ with respect to any α
if and only if A× S has a pumpable fair path.

Proof. Let ϕ not be satisfied by S with respect to any α, i.e., for every α there
exists an initial path π through S such that (tr(π), α) 6|= ϕ. Pick α∗ such that
α∗(z) = 2·|Q|·|S|+2 for every z and let π∗ be the corresponding path. Applying
Item 2 of Lemma 4 yields w 6|= c(ϕ) for every |Q| · |S|+ 1-bounded coloring w of
tr(π∗). Now, consider the unique |Q| · |S|+ 1-bounded and |Q| · |S|+ 1-spaced
coloring w of tr(π∗) that starts with p not holding true in the first position. As
argued above, w 6|= c(ϕ), and we have w |= χ∞p∧χ∞¬p, as w is bounded. Hence,
w |= ¬rel(ϕ) ∧ χ∞p ∧ χ∞¬p, i.e., there is an accepting run q0q1q2 · · · of A in w.
This suffices to show that (q0, π

∗
0 , w0∩{p})(q1, π

∗
1 , w1∩{p})(q2, π

∗
2 , w2∩{p}) · · ·

is a pumpable fair path through A×S, since every block has length |Q| · |S|+ 1.
This implies the existence of a repeated vertex in every block, since there are
exactly |Q| · |S| vertices of each color.

We now consider the other direction. Thus, assume A × S contains a
pumpable fair path (q0, s0, C0)(q1, s1, C1)(q2, s2, C2) · · · , fix some arbitrary α,
and define k = maxx∈var3(ϕ) α(x). There is a repetition of a vertex of A × S
in every block, each of which can be pumped k times. This path is still fair
and induces a coloring w′k of a trace wk of an initial path of S. Since the run
encoded in the first components is an accepting one on w′k, we conclude that
the coloring w′k satisfies ¬rel(ϕ). Furthermore, w′k is k-spaced, since we pumped
each repetition k times.

Towards a contradiction assume we have (wk, α) |= ϕ. Applying Item 1 of
Lemma 4 yields w′k |= c(ϕ), which contradicts w′k |= ¬rel(ϕ). Hence, for every
α we have constructed a path of S whose trace does not satisfy ϕ with respect
to α, i.e., S does not satisfy ϕ with respect to any α.

We can deduce an upper bound on valuations that satisfy a formula in a
given transition system.

Corollary 1. If there is a valuation such that S satisfies a PLDL3 formula ϕ,
then there is also one that is bounded exponentially in |ϕ| and linearly in |S|.

Proof. Let S satisfy ϕ with respect to α, but not with the valuation α∗ with
α∗(x) = 2 · |Q| · |S| + 2 for all x. In the preceding proof, we constructed a
pumpable fair path in A × S starting from this assumption. This contradicts
Lemma 6, since S satisfying ϕ with respect to α is equivalent to A × S not
having a pumpable fair path. Since 2 · |Q| · |S| + 2 is exponential in |ϕ| and
linear in |S|, the result follows.
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A matching lower bound of 2n can be proven by implementing a binary
counter with n bits using a formula of polynomial size in n. This already holds
true for PROMPT–LTL, as noted in [13].

Now, we are able to prove the main result of this section: PLDL model
checking is PSpace-complete.

Proof of Theorem 3. PSpace-hardness follows directly from the PSpace-hard-
ness of the LTL model checking problem [25], as LTL is a fragment of PLDL.

The following is a polynomial space algorithm, which is correct due to
Lemma 6: construct A×S on-the-fly and check whether it contains a pumpable
fair path. Since the search for such a path can be implemented on-the-fly with-
out having to construct the full product [13], it can be implemented using poly-
nomial space.

To conclude, we prove the dual of Corollary 1 for PLDL2 formulas, which
will be useful when we consider the model checking optimization problem.

Lemma 7. Let ϕ be a PLDL2 formula and let S be a transition system. There
is a variable valuation α∗ that is bounded exponentially in |ϕ| and linearly in
|S| such that if S satisfies ϕ with respect to α∗, then S satisfies ϕ with respect
to every valuation.

Proof. We begin by defining α∗: let A be a Büchi automaton recognizing the
models of c(¬ϕ), which is of exponential size in |ϕ|. Define k∗ = 4 · |A| · |S|+ 2
and let α∗ be the variable valuation mapping every variable to k∗. Now, we
consider the contrapositive and show: if there is an α such that S does not
satisfy ϕ with respect to α, then S does not satisfy ϕ with respect to α∗.

Thus, assume there is an α and a path π such that (tr(π), α) |= ¬ϕ. Note
that ¬ϕ is a PLDL3-formula. Due to monotonicity, we can assume w.l.o.g. that
α maps all variables to the same value, call it k.

We denote by tr(π)′ the unique k-bounded and k-spaced p-coloring of tr(π)
that starts with p not holding true in the first position. Applying Item 1 of
Lemma 4 shows that tr(π)′ satisfies c(¬ϕ). Fix some accepting run of A on
tr(π)′ and consider an arbitrary block of tr(π)′: if the run does not visit an
accepting state during the block, we remove infixes of the block and the run
where the run reaches the same state before and after the infix and where the
state of S at the beginning and the end of the infix are the same, until the block
has length at most |A| · |S|.

On the other hand, assume the run visits at least one accepting state during
the block. Fix one such position. Then, we can remove infixes as above between
the beginning of the block and the position before the accepting state is visited
and between the position after the accepting state is reached and before the end
of the block. What remains is a block of length at most 2 · |A| · |S|+ 1, at most
|A| · |S| many positions before the designated position, this position itself, and
at most |A| · |S| many after the designated position.

Thus, we have constructed a 2 · |A| · |S| + 1-bounded coloring tr(π̂)′ of a
trace tr(π̂) for some path π̂ of S, as well as an accepting run of A on tr(π̂)′.
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Hence, tr(π̂)′ is a model of c(¬ϕ) and applying Item 2 of Lemma 4 shows that
tr(π̂) is a model of ¬ϕ with respect to the variable valuation mapping every
variable to 2 · (2 · |A| · |S|+1) = k∗. Therefore, S does not satisfy ϕ with respect
to α∗.

5. Assume-guarantee Model Checking

After having solved the PLDL model checking problem, we turn our atten-
tion to the assume-guarantee model checking problem. An instance of this prob-
lem consists of a transition system S and two specifications, an assumption ϕA
and a guarantee ϕG. Intuitively, whenever the assumption ϕA is satisfied, then
also the guarantee ϕG should be satisfied.

More formally, given two transition systems S = (S, s0, E, `) and S ′ =
(S′, s′0, E

′, `′) with `(s0) = `′(s′0), we define their parallel composition

S ‖S ′ = (S′′, s′′0 , E
′′, `′′)

where

• S′′ = {(s, s′) ∈ S × S′ | `(s) = `′(s′)},

• s′′0 = (s0, s
′
0),

• ((s, s′), (t, t′)) ∈ E′′ if and only if (s, t) ∈ E and (s′, t′) ∈ E′, and

• `′′(s, s′) = `(s) = `′(s′).

Note that parallel composition as defined here amounts to taking the intersection
of the trace languages of S and S ′. In particular, we have the following property.

Remark 1. Let (v0, v
′
0)(v1, v

′
1)(v2, v

′
2) · · · be a path through a parallel compo-

sition S ‖ S ′. Then, v0v1v2 · · · is a path through S that has the same trace as
(v0, v

′
0)(v1, v

′
1)(v2, v

′
2) · · · .

An assume-guarantee specification (ϕA, ϕG) consists of two PLDL formulas,
an assumption ϕA and a guarantee ϕG. We say that a finite transition system S
satisfies the specification, denoted by 〈ϕA〉S〈ϕG〉, if for every countably infinite3

transition system S ′, if S ‖ S ′ is a model of ϕA with respect to some α, then
S ‖S ′ is also a model of ϕG with respect to some β [26]. For LTL specifications,
this boils down to model checking the implication ϕA → ϕG, but the problem is
more complex in the presence of parameterized operators, as already noticed by
Kupferman et al. in the case of PROMPT–LTL [13]. This is due to the fact that
the variable valuation β in the problem statement above may depend on S′. In
the following, we extend Kupferman et al.’s algorithm for the PROMPT–LTL
assume-guarantee model checking problem to the PLDL one.

The main theorem of this section reads as follows.

3This is the only place where we allow infinite transition systems (see the discussion below
the proof of Lemma 8).

18



Theorem 5. The PLDL assume-guarantee model checking problem is PSpace-
complete.

To begin with, we show that we can refute such an assume-guarantee spec-
ification using a single trace per valuation β, just like in the model checking
problem where we are looking for a single counterexample. However, as we
consider the satisfaction of two formulas, we have to deal with two variable
valuations.

Lemma 8. Let S be a transition system and let (ϕA, ϕG) be a pair of PLDL
formulas. Then, 〈ϕA〉S〈ϕG〉 does not hold if and only if there is a variable
valuation α such that for every variable valuation β there is a path πβ through S
with (tr(πβ), α) |= ϕA, but (tr(πβ), β) 6|= ϕG.

Proof. Let 〈ϕA〉S〈ϕG〉 not hold, i.e., there is a transition system S ′ such that
S ‖S ′ is a model of ϕA with respect to some fixed α, but S ‖S ′ is not a model of
ϕG with respect to any β. Thus, for every β, we find an initial path π′β through
S ‖S ′ with (tr(π′β), β) 6|= ϕG. Furthermore, tr(π′β) satisfies ϕA with respect to
α, as does every trace of S ‖S ′. To conclude this direction, we apply Remark 1
to show that there exists a path πβ over S such that tr(πβ) = tr(π′β) is also a
trace of S.

Now, assume there is a variable valuation α such that for every variable val-
uation β there is a path πβ through S with (tr(πβ), α) |= ϕA, but (tr(πβ), β) 6|=
ϕG. Let S ′ be a possibly infinite transition system whose traces are exactly the
traces of the paths πβ . By construction, the set of traces of S ‖S ′ is equal to the
set of traces of S ′. Furthermore, every trace of S ‖S ′ satisfies ϕA with respect
to α. However, for every β the trace tr(πβ) of S ‖S ′ does not satisfy ϕG with
respect to β. Hence, there is no β such that S ‖S ′ satisfies ϕG with respect to
β, i.e., S ′ witnesses that 〈ϕA〉S〈ϕG〉 does not hold.

The PROMPT–LTL assume-guarantee model-checking problem as intro-
duced in [13] only considers the product of the given transition system S with
finite transition systems S ′. However, in this setting, one can easily construct
counterexamples to the analogue of Lemma 8. Indeed the transition system S ′
we construct while proving the second implication above is necessarily infinite for
the counterexamples. If one allows infinite systems S ′, then the analogue is still
correct, using the same proof as above. The decidability of assume-guarantee
model checking restricted to finite systems S ′ is an open problem.

Next, we observe that we again can restrict ourselves to considering PLDL3

formulas, both as the assumption and as the guarantee. This follows from
Lemma 3 and the fact that the variable valuations are quantified existentially
in the problem statement.

As we have to deal with two variable valuations, we have to extend the
alternating-color technique to two colors, one color p for α and one color q for
β. We say that w′ ∈ (2P∪{p,q})ω is a coloring of w ∈ (2P )ω, if w′n ∩ P = wn
for every n. Furthermore, the notions of p-changepoints, p-blocks, and the
analogues for q are defined as expected (cf. Subsection 2.1). Consequently, the
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notions of k-boundedness and k-spacedness have to explicitly refer to the color
under consideration. Lemma 4 still holds for each color separately.

The following proof extends the one for the model checking problem using
colored Büchi graphs. To this end, we have to adapt the definition of such
a graph to two colors. Formally, a colored Büchi graph of degree two is a
tuple (V,E, v0, `, F0, F1) where (V,E) is a finite directed graph, v0 ∈ V is the
initial vertex, ` : V → 2{p,q} is a vertex labeling by p and q, and F0, F1 ⊆ V are
two sets of accepting vertices.

A path v0v1v2 · · · through G is pumpable, if every q-block contains a vertex
repetition such that there is a p-changepoint in between these vertices. More
formally, we require the following condition to be satisfied: if i and i′ are two
adjacent q-changepoints, then there exist j, j′, j′′ with i ≤ j < j′ < j′′ < i′ such
that vj = vj′′ and `(vj) and `(vj′) differ in their p-label. Furthermore, the path
is fair, if both F0 and F1 are visited infinitely often.

The pumpable non-emptiness problem for G asks whether there exists a
pumpable fair path that starts in the initial vertex.

Theorem 6 ([13]). The pumpable non-emptiness problem for colored Büchi
graphs of degree two is NLogSpace-complete.

Next, we show how to reduce the PLDL assume-guarantee model checking
problem to the pumpable non-emptiness problem for colored Büchi graphs of
degree two. Fix an instance 〈ϕA〉S〈ϕG〉 of the problem with S = (S, s0, E, `)
and two PLDL3 formulas ϕA and ϕG.

Now, let AA = (Q, 2P∪{p,q}, q0, δ, F ) be a Büchi automaton recognizing the
models of χ∞p∧χ∞¬p∧rel(ϕA), and let AG = (Q′, 2P∪{p,q}, q′0, δ

′, F ′) be a Büchi
automaton recognizing the models of χ∞q ∧ χ∞¬q ∧ ¬rel(ϕG). Note that we
need to slightly adapt the construction of AG, as we interpret the changepoint-
bounded operators in ϕG w.r.t. color changes of q, not p. Hence, instead of
using the automaton Acp as depicted in Figure 1(c) with transition labels p and
¬p, we use the one with labels q and ¬q to construct AG.

Next, we define the colored Büchi graph of degree two

AA × AG × S = (Q×Q′ × S × 2{p,q}, E′, (q0, q
′
0, s0, ∅), `′, F0, F1)

where

• ((q1, q2, s, C), (q′1, q
′
2, s
′, C ′)) ∈ E′ if and only if (s, s′) ∈ E, q′1 ∈ δ(q1, `(s)∪

C), and q′2 ∈ δ′(q2, `(s) ∪ C),

• `′(q1, q2, s, C) = C,

• F0 = F ×Q′ × S × 2{p,q}, and

• F1 = Q× F ′ × S × 2{p,q}.

Lemma 9 (cf. Lemma 6.2 of [13]). Let 〈ϕA〉S〈ϕG〉 and AA×AG×S be defined
as above. Then, 〈ϕA〉S〈ϕG〉 does not hold if and only if AA × AG × S has a
pumpable fair path.
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Proof. Recall that changepoint-bounded operators in ϕA are evaluated with
respect to the color p while the ones in ϕG are evaluated with respect to q.

Let 〈ϕA〉S〈ϕG〉 not hold. Then, due to Lemma 8, there is a variable valua-
tion α such that for every valuation β there is an initial path πβ of S such that
(tr(πβ), α) |= ϕA, but (tr(πβ), β) 6|= ϕG.

Define kα = maxx∈var(ϕA) α(x), kβ∗ = 2 · |Q| · |Q′| · |S| · kα + 1, and let
β∗ be such that β∗(x) = 2kβ∗ for every x. Finally, let w∗ = tr(πβ∗) be the
corresponding trace as above.

Then, (w∗, α) |= ϕA and Item 1 of Lemma 4 imply that every kα-bounded
(with respect to p) coloring w∗′ of w∗ satisfies χ∞p ∧χ∞¬p ∧ rel(ϕA). Similarly,
(w∗, β∗) 6|= ϕG and Item 2 of Lemma 4 imply that every kβ∗ -spaced (with respect
to q) coloring w∗′ of w∗ does not satisfy rel(ϕG). Hence, every such w∗′ satisfies
χ∞q ∧ χ∞¬q ∧ ¬rel(ϕG).

Now, consider the unique coloring w∗′ of w∗ that is kα-bounded and kα-
spaced with respect to p, kβ∗ -bounded and kβ∗ -spaced with respect to q, and
begins with p and q not holding true. We have w∗′ |= χ∞p ∧ χ∞¬p ∧ rel(ϕA)
and w∗′ |= χ∞q ∧ χ∞¬q ∧ ¬rel(ϕG). Hence, there are accepting runs q0q1q2 · · ·
of AA and q′0q

′
1q
′
2 · · · of AG on w∗′.

Consider the path

(q0, q
′
0, v0, w

∗
0
′ ∩ {p, q}) (q1, q

′
1, v1, w

∗
1
′ ∩ {p, q}) (q2, q

′
2, v2, w

∗
2
′ ∩ {p, q}) · · ·

through AA × AG × S. Here, w∗n
′ is the n-th letter of w∗′ and v0v1v2 · · · is the

path through S inducing the trace w∗′.
The path is fair, as the runs are both accepting. Furthermore, it is pumpable,

as the p-blocks are of size kα, but the q-blocks are of length kβ∗ = 2 · |Q| · |Q′| ·
|S| · kα + 1 and there are only 2 · |Q| · |Q′| · |S| many vertices with (and without)
color q.

Now, we consider the converse: assume there is a pumpable fair path

(q0, q
′
0, v0, C0) (q1, q

′
1, v1, C1) (q2, q

′
2, v2, C2) · · ·

in AA × AG × S. W.l.o.g., we can assume the path to be ultimately peri-
odic [13]. Hence, the maximal length of a p-block in this path, call it kα, is
well-defined. Define α via α(x) = 2kα for every x, fix some arbitrary β, and let
kβ = maxx∈var(ϕG) β(x).

Every q-block of the pumpable path contains a vertex repetition with a p-
changepoint in between. Pumping each of these repetitions kβ times yields
a new path through AA × AG × S and thereby also a path πβ through S as
well as accepting runs of AA and AG on a coloring w′ of tr(πβ). Hence, w′ |=
χ∞p ∧ χ∞¬p ∧ rel(ϕA) and w′ |= χ∞q ∧ χ∞¬q ∧ ¬rel(ϕG).

By construction, w′ is kα-bounded and kβ-spaced. Thus, applying both
directions of Lemma 4 yields (tr(πβ), α) |= ϕA and (tr(πβ), β) 6|= ϕG. Hence, for
every β we have constructed a path with the desired properties. Thus, due to
Lemma 8, 〈ϕA〉S〈ϕG〉 does not hold.
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Now, we are able prove the main result of this section: PLDL assume-guar-
antee model checking is as hard as LTL assume-guarantee model checking, i.e.,
PSpace-complete.

Proof of Theorem 5. Membership is obtained by solving the pumpable non-
emptiness problem for the product AA×AG×S, which can be done in polynomial
space on-the-fly, as the product is of exponential size and the algorithm checking
for pumpable non-emptiness runs in logarithmic space.

For the lower bound we use a reduction from the LTL model checking prob-
lem, which is PSpace-complete: given a transition system S and an LTL for-
mula ϕ, we have S |= ϕ if and only if 〈tt〉S〈ϕ〉.

The solution to the assume-guarantee model checking problem also solves
the implication problem for PLDL: given two PLDL formulas ϕ and ψ, decide
whether for every, possibly countably infinite, transition system S the following
holds: if S satisfies ϕ with respect to some α, then S satisfies ψ with respect to
some β.

Theorem 7. The PLDL implication problem is PSpace-complete.

Proof. Hardness follows from hardness of the LTL satisfiability problem [25].
To prove membership, we reduce the problem to the assume-guarantee model

checking problem: let U be a universal transition system in the sense that
it contains every trace over the propositions that appear in ϕ and ψ. It is
straightforward to show that the implication between ϕ and ψ is satisfied, if
and only if 〈ϕ〉U〈ψ〉 is satisfied, as U ‖S has exactly the traces of S. The latter
problem can be solved in PSpace, although U is of exponential size, since it
can be constructed on-the-fly.

6. Realizability

In this section, we consider the realizability problem for PLDL. Throughout
the section, we fix a partition (I,O) of the set of atomic propositions P . An
instance of the PLDL realizability problem is given by a PLDL formula ϕ (over
P ) and the problem is to decide whether Player O has a winning strategy in
the following game, played in rounds n ∈ N: in each round n, Player I picks a
subset in ⊆ I and then Player O picks a subset on ⊆ O. Player O wins the play
with respect to a variable valuation α, if ((i0 ∪ o0)(i1 ∪ o1)(i2 ∪ o2) · · · , α) |= ϕ.

Formally, a strategy for Player O is a mapping σ : (2I)+ → 2O and a play ρ =
i0o0i1o1i2o2 · · · is consistent with σ, if we have on = σ(i0 · · · in) for every n. We
call (i0∪o0)(i1∪o1)(i2∪o2) · · · the outcome of ρ, denoted by outcome(ρ). We say
that a strategy σ for Player O is winning with respect to a variable valuation α,
if we have (outcome(ρ), α) |= ϕ for every play ρ that is consistent with σ. The
PLDL realizability problem asks for a given PLDL formula ϕ, whether Player O
has a winning strategy with respect to some variable valuation, i.e., whether
there is a single α such that every outcome satisfies ϕ with respect to α. If this
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is the case, then we say that σ realizes ϕ and thus that ϕ is realizable (over
(I,O)).

It is well-known that ω-regular specifications, and thus all LDLcp specifica-
tions, are realizable by finite-state transducers (if they are realizable at all) [27].
A transducer T = (Q,Σ,Γ, q0, δ, τ) consists of a finite set Q of states, an in-
put alphabet Σ, an output alphabet Γ, an initial state q0, a transition func-
tion δ : Q×Σ→ Q, and an output function τ : Q→ Γ. The function fT : Σ∗ → Γ
implemented by T is defined as fT (w) = τ(δ∗(w)), where δ∗ is defined as usual:
δ∗(ε) = q0 and δ∗(wv) = δ(δ∗(w), v). To implement a strategy by a transducer,
we use Σ = 2I and Γ = 2O. Then, we say that the strategy σ = fT is finite-state.
The size of σ is the number of states of T . The following proof is analogous to
the one for PROMPT–LTL [13].

Theorem 8. The PLDL realizability problem is 2ExpTime-complete.

When proving membership in 2ExpTime, we restrict ourselves w.l.o.g. to
PLDL3 formulas, as this special case is sufficient as shown in Lemma 3. First,
we use the alternating color technique to show that the PLDL3 realizability
problem is reducible to the realizability problem for specifications in LDLcp.
When considering the LDLcp realizability problem, we add the fresh proposi-
tion p used to specify the coloring to O, i.e., Player O is in charge of determining
the color of each position.

Lemma 10 (cf. Lemma 3.1 of [13]). A PLDL3 formula ϕ is realizable over
(I,O) if and only if the LDLcp formula c(ϕ) is realizable over (I,O ∪ {p}).

Proof. Let ϕ be realizable, i.e., there is a winning strategy σ : (2I)+ → 2O with
respect to some α. Now, consider the strategy σ′ : (2I)+ → 2O∪{p} defined by

σ′(i0 · · · in−1) =

{
σ(i0 · · · in−1) if n mod 2k < k,

σ(i0 · · · in−1) ∪ {p} otherwise,

where k = maxx∈var3(ϕ) α(x). We show that σ′ realizes c(ϕ). To this end,
let ρ′ = i0o0i1o1i2o2 · · · be a play that is consistent with σ′. Then, ρ =
i0(o0 \ {p})i1(o1 \ {p})i2(o2 \ {p}) · · · is by construction consistent with σ, i.e.,
(outcome(ρ), α) |= ϕ. As outcome(ρ′) is a k-spaced p-coloring of outcome(ρ), we
deduce outcome(ρ′) |= c(ϕ) by applying Item 1 of Lemma 4. Hence, σ′ realizes
c(ϕ).

Now, assume c(ϕ) is realized by σ′ : (2I)+ → 2O∪{p}, which we can assume to
be finite-state, say it is implemented by T with n states. We first show that every
outcome that is consistent with σ′ is n+ 1-bounded. Such an outcome satisfies
c(ϕ) and has therefore infinitely many changepoints. Now, assume it has a block
of length strictly greater than n + 1, e.g., between changepoints at positions i
and j. Let q0q1q2 · · · be the states reached during the run of T on the projection
of ρ to 2I . Then, there are two positions i′ and j′ satisfying i ≤ i′ < j′ < j in
the block such that qi′ = qj′ . Hence, q0 · · · qi′−1(qi′ · · · qj′−1)ω is also a run of T .
However, the output generated by this run has only finitely many changepoints,
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since the output at the states qi′ , . . . , qj′−1 coincides when restricted to {p}.
This contradicts the fact that T implements a winning strategy, which requires
in particular that every output has infinitely many changepoints. Hence, ρ is
(n+ 1)-bounded.

Let σ : (2I)+ → 2O be defined as σ(i0 · · · in−1) = σ′(i0 · · · in−1) ∩ O. By
definition, for every play ρ consistent with σ, there is an (n + 1)-bounded p-
coloring of outcome(ρ) that is the outcome of a play that is consistent with
σ′. Hence, applying Item 2 of Lemma 4 yields (outcome(ρ), β) |= ϕ, where
β(x) = 2n + 2 for every x. Hence, σ realizes ϕ with respect to β. Note that σ
is also finite-state and of the same size as σ′.

Now, we are able to prove the main result of this section.

Proof of Theorem 8. 2ExpTime-hardness of the PLDL realizability problem
follows immediately from the 2ExpTime-hardness of the LTL realizability prob-
lem [28], as LTL is a fragment of PLDL.

Now, consider membership and recall that we have argued that it is suf-
ficient to consider PLDL3 formulas. Thus, let ϕ be a PLDL3 formula. By
Lemma 10, we know that it is sufficient to consider the realizability of c(ϕ). Let
A = (Q, 2I∪O∪{p}, q0, δ,Ω) be a deterministic parity automaton recognizing the
models of c(ϕ). We turn A into a parity game G such that Player 1 wins G from
some dedicated initial vertex if and only if c(ϕ) is realizable. To this end, we
define the arena A = (V, V0, V1, E) with

• V = Q ∪ (Q× 2I),

• V0 = Q,

• V1 = Q× 2I , and

• E = {(q, (q, i)) | i ⊆ I} ∪ {((q, i), δ(q, i ∪ o)) | o ⊆ O ∪ {p}}, i.e., Player 0
picks a subset i ⊆ I and Player O picks a subset o ⊆ O ∪ {p}, which in
turn triggers the (deterministic) update of the state stored in the vertices.

Finally, we define the coloring ΩA of the arena via ΩA(q) = ΩA(q, i) = Ω(q).
It is straightforward to show that Player O has a winning strategy from

q0 in the parity game (A,ΩA) if and only if c(ϕ) (and thus ϕ) is realizable.
Furthermore, if Player 1 has a winning strategy, then A can be turned into a
transducer implementing a strategy that realizes c(ϕ) using V as set of states.
Note that |V | is doubly-exponential in |ϕ|, if we assume that I and O are
restricted to propositions appearing in ϕ. As the parity game is of doubly-
exponential size and has exponentially many colors, we can solve it in doubly-
exponential time in the size of ϕ.

Also, we obtain a doubly-exponential upper bound on a valuation that allows
to realize a given formula. A matching lower bound already holds for PLTL [18].

Corollary 2. If a PLDL3 formula ϕ is realizable with respect to some α, then
it is realizable with respect to an α that is bounded doubly-exponentially in |ϕ|.
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Proof. If ϕ is realizable, then so is c(ϕ). Using the construction proving the
right-to-left implication of Lemma 10, we obtain that ϕ is realizable with respect
to some α that is bounded by 2n + 2, where n is the size of a transducer
implementing the strategy that realizes c(ϕ). We have seen in the proof of
Theorem 8 that the size of such a transducer is at most doubly-exponential in
|c(ϕ)|, which is only linearly larger than |ϕ|. The result follows.

7. Optimal Variable Valuations for Model Checking and Realizability

In this section, we turn the model checking and the realizability problem into
optimization problems, e.g., the model checking optimization problem asks for
the optimal variable valuation such that a given system satisfies the specification
with respect to this valuation. Similarly, the realizability optimization problem
asks for an optimal variable valuation such that ϕ is realizable with respect to
this valuation. Furthermore, we are interested in computing a winning strategy
for Player O witnessing realizability with respect to an optimal valuation. The
definition of optimality depends on the type of formula under consideration:
for PLDL3 formulas, we want to minimize the waiting times while for PLDL2

formulas, we want to maximize satisfaction times. For formulas having both
types of parameterized operators, the optimization problems are undefined.

In Subsection 7.1, we show how to solve the model checking optimization
problem in polynomial space. Then, in Subsection 7.2, we explain how to
adapt the approach to solve the realizability optimization problem in triply-
exponential time. Thus, the model checking optimization problem is in polyno-
mial space, just as the decision problem, but there is an exponential gap between
the realizability optimization problem and its decision variant. Note that this
gap already exists for PLTL [18].

Both our results rely on the existence of automata of a certain size that
recognize the models of a given PLDL formula with respect to a fixed variable
valuation. On the one hand, it suffices to translate formulas with a single
variable; on the other hand, due to some technicalities, we have to consider
formulas that might additionally contain changepoint-bounded operators. The
semantics of such formulas are defined as expected.

Theorem 9. Let ϕ be a PLDL formula with var(ϕ) = {z} possibly having
changepoint-bounded operators and let α be a variable valuation. Then, there
exists a natural number n ∈ (3 · (α(z) + 1))O(|ϕ|) and there exist

1. a non-deterministic Büchi automaton of size n and

2. a deterministic parity automaton of size (n!)2 with 2n many colors

that recognize the language L(ϕ, α) = {w ∈ (2P
′
)ω | (w,α) |= ϕ}, which are both

effectively constructible.

The existence of such automata is proven in Subsection 7.3 by adapting the
Breakpoint construction of Miyano and Hayashi [20].
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7.1. The Model Checking Optimization Problem

In this subsection, we prove that the model checking optimization problem
can be solved in polynomial space. As already mentioned above, we only con-
sider PLDL3 and PLDL2 formulas. For PLDL3 formulas, optimal variable
valuations are as small as possible. To abstract a variable valuation to a single
value, we can either take the minimal element among the variables, i.e. the
shortest waiting time, or the maximal element among the variables, i.e. the
longest waiting time. Both options will provide a total ordering among vari-
able valuations. For PLDL2 formulas, optimal variable valuations are as large
as possible. For abstraction purposes, we may again either take the maximal
element, i.e. the longest guarantee, or the minimal element among the variable,
i.e. the shortest guarantee. Again, this results in a total order.

Theorem 10. Let ϕ3 be a PLDL3 formula, let ϕ2 be a PLDL2 formula, and
let S be a transition system. The following values are computable in polynomial
space:

1. min{α|S satisfies ϕ3 w.r.t. α}minx∈var(ϕ3) α(x).
2. min{α|S satisfies ϕ3 w.r.t. α}maxx∈var(ϕ3) α(x).
3. max{α|S satisfies ϕ2 w.r.t. α}maxy∈var(ϕ2) α(y).
4. max{α|S satisfies ϕ2 w.r.t. α}miny∈var(ϕ2) α(y).

Note that all other combinations are trivial due to the monotonicity prop-
erties of PLDL. Furthermore, we can restrict our attention to formulas with at
least one variable, as the optimization problem is trivial otherwise.

As a first step, we show that we can reduce all problems to ones with exactly
one variable, but possibly with changepoint-bounded operators.

1. Fix some x ∈ var(ϕ3) and apply the rewriting introduced for the alter-
nating-color technique to every variable but x to obtain the formula ϕx,
which has changepoint-bounded diamond-operators as well as diamond-
operators parameterized by x. Applying both directions of Lemma 4
(which also holds if we do not replace all parameterized operators) yields

min{α|S satisfies ϕ3 w.r.t. α}minx∈var(ϕ3) α(x) =

minx∈var(ϕ3) min{α|S satisfies ϕx w.r.t. α} α(x).

Thus, we have reduced the problem to |var(ϕ3)| many optimization prob-
lems for formulas ϕx with a single variable.

2. Rename every variable in ϕ3 to z and call the resulting formula ϕ′3. Due
to monotonicity, minimizing the maximal parameter value for ϕ3 yields
the same value as minimizing the value of z for ϕ′3.

3. Fix some y ∈ var(ϕ2) and denote by ϕy the formula obtained from ϕ2

by replacing every subformula [r ]≤y′ ψ with y′ 6= y by [ r̂ ]ψ, where r̂ is
defined as in the proof of Lemma 3. Intuitively, this sets the value for
every y′ 6= y to zero. Due to monotonicity, we have

max{α|S satisfies ϕ2 w.r.t. α}maxy∈var(ϕ2) α(y) =

maxy∈var(ϕ2) max{α|S satisfies ϕy w.r.t. α} α(y),
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i.e., we have reduced the problem to |var(ϕ2)|many optimization problems
for formulas ϕy with a single variable.

4. Rename every variable in ϕ2 to z and call the resulting formula ϕ′2. Due
to monotonicity, maximizing the minimal parameter value for ϕ2 yields
the same value as maximizing the value of z for ϕ′2.

First, we consider the minimization problem for a formula ϕ3 with a single
variable x ∈ var3(ϕ3) and possibly with changepoint-bounded operators. From
Corollary 1, which can easily be shown to hold for such formulas, too, we obtain
an upper bound (that is exponential in |ϕ3| and linear in |S|) on the value

min{α|S satisfies ϕ3 w.r.t. α} α(x).

Dually, for a formula ϕ2 with a single variable y ∈ var2(ϕ2) and possibly with
changepoint-bounded operators, Lemma 7, which holds for such formulas, too,
yields a bound kmax (that is exponential in |ϕ2| and linear in |S|) such that
either

max{α|S satisfies ϕ2 w.r.t. α} α(y) ≤ kmax

or the maximum is equal to ∞. Thus, in both cases, we have an exponential
search space for the optimal value.

Therefore, binary search yields the optimal value, if we can solve each query
“does S satisfy ϕ with respect to α” in polynomial space, provided α is expo-
nential in |ϕ| and linear in |S|. To this end, we use the non-deterministic Büchi
automaton A recognizing L(¬ϕ, α) as given by Item 1 of Theorem 9, whose size
is exponential in |ϕ| and linear in |S|. Model checking S against A answers
the query and is possible in polynomial space by executing the emptiness test
on-the-fly without constructing A completely [10].

7.2. The Realizability Optimization Problem

In this subsection, we show how to adapt the reasoning of the model checking
case to give an algorithm for the realizability optimization problem with triply-
exponential running time.

Theorem 11. Let ϕ3 be a PLDL3 formula and let ϕ2 be a PLDL2 formula.
The following values (and winning strategies witnessing them) can be computed
in triply-exponential time:

1. min{α|ϕ3 realizable w.r.t. α}minx∈var(ϕ3) α(x).

2. min{α|ϕ3 realizable w.r.t. α}maxx∈var(ϕ3) α(x).

3. max{α|ϕ2 realizable w.r.t. α}maxy∈var(ϕ2) α(y).

4. max{α|ϕ2 realizable w.r.t. α}miny∈var(ϕ2) α(y).

The reductions to optimization problems for formulas with a single variable
remain valid in the realizability case. However, instead of proving bounds on
the search space for both the PLDL3 case and the PLDL2 case, we rely on
Corollary 2, which proves an upper bound for the former case, and on duality:
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given a PLDL formula ϕ over P = I ∪ O and its negation ¬ϕ as defined in
Lemma 1, define ϕ to be the formula obtained from ¬ϕ by replacing each atomic
proposition p ∈ I by 〈tt〉 p and each negated proposition ¬p with p ∈ I by
〈tt〉 ¬p. Here, 〈tt〉 can be understood as the PLDL-equivalent of LTL’s next-
operator. The realizability problems for ϕ and ϕ are dual, i.e., we have swapped
the roles of the players and negated the specification (and used the next-operator
to account for the fact that Player I is always the first to move). The following
lemma formalizes this fact and relies on determinacy of parity games [29, 30],
to which the realizability problem is reduced to, as shown in Section 6.

Lemma 11. Let ϕ be a PLDL formula and let α be a variable valuation. Then,
ϕ is not realizable over (I,O) with respect to α if and only if ϕ is realizable over
(O, I) with respect to α.

Thus, applying Lemma 11 and monotonicity in the case of a PLDL2 for-
mula ϕ2 with a single variable y yields

max{α|ϕ2 realizable w.r.t. α} α(y) = min{α|ϕ2 realizable w.r.t. α} α(y)− 1,

i.e., to solve the PLDL2 optimization problem for ϕ2 we just have to solve the
problem for ϕ2 and subtract one.

Thus, it remains to consider a minimization problem for a formula ϕ3 with a
single variable x ∈ var3(ϕ3) and possibly with changepoint-bounded operators.
From Corollary 2, which holds for such formulas, too, we obtain a doubly-
exponential (in |ϕ3|) upper bound on min{α|ϕ3 realizable w.r.t. α} α(x).

Thus, we have a doubly-exponential search space for the optimal variable
valuation. Recall that Item 2 of Theorem 9 gives us a deterministic parity au-
tomaton of triply-exponential size and with exponentially many colors (both
in |ϕ3|) recognizing L(ϕ3, α), as α(x) is bounded doubly-exponentially. This
allows us to construct a parity game of triply-exponential size with exponen-
tially many colors that is won by Player O if and only if ϕ3 is realizable with
respect to α. The construction is similar to the one described in the proof
of Theorem 8. Such a parity game can be solved in triply-exponential time.
Thus, to solve the optimization problem, we perform binary search through the
doubly-exponential search space where each query can be answered in triply-
exponential time by solving a parity game. Thus, the overall running time is
indeed triply-exponential.

Furthermore, as already described in the aforementioned proof, a winning
strategy for the parity game can be turned into a transducer witnessing realiz-
ability of ϕ3. Finally, it is straightforward to show how to turn this transducer
into one for the original specifications with potentially several variables. This
is trivial for the cases not requiring an application of the alternating-color tech-
nique and requires the transformation described in the proof of Lemma 10 for
the other cases. This finishes the proof of Theorem 11, save for the construction
of a deterministic parity automaton with the desired properties.

28



7.3. Small Automata for PLDL

Fix a formula ϕ with a single variable z ∈ var(ϕ) possibly having change-
point-bounded operators and a variable valuation α. We show how to adapt
the Breakpoint construction of Miyano and Hayashi [20] to construct a non-
deterministic Büchi automaton of size (3 · (α(z) + 1))O(|ϕ|) to prove Item 1 of
Theorem 9. The deterministic automaton for Item 2 of Theorem 9 can then be
obtained by applying Schewe’s determinization construction [21], which deter-
minizes a Büchi automaton with n states into a parity automaton with (n!)2

states and 2n colors.
Recall that ϕ has a single variable. In the following, we assume that it pa-

rameterizes diamond-operators, the case of box-operators is dual and discussed
below. Thus, call the variable x and let 〈r1〉≤x ψ1, . . . , 〈rk〉≤x ψk ∈ cl(ϕ) be the
parameterized subformulas of ϕ. Furthermore, let ϕ′ be the LDLcp formula ob-
tained by removing the parameters, i.e., by replacing each 〈rj〉≤x ψj by 〈rj〉ψj ,
and let Aϕ′ = (Q, 2P

′
, q0, δ, F ) be the equivalent alternating Büchi automaton

given by Theorem 2. For j ∈ {1, . . . , k}, we denote the set of states of the
automaton Arj checking for a match with rj by Qrj , which is a subset of Q.
Furthermore, we assume the Qrj to be pairwise disjoint.

Lemma 12. Let ϕ and Aϕ′ as above and let w ∈ (2P
′
)ω. Then, (w,α) |= ϕ

if and only if Aϕ′ has an accepting run ρ that satisfies the bounded-match
property: every path (qn, n) · · · (qn+`, n+`) in ρ with qn, . . . , qn+` ∈ Qrj satisfies
` ≤ α(x) for every j ∈ {1, . . . , k}.

To prove this lemma, we first need to strengthen Lemma 5 to be able to
deal with parameterized formulas in the tests. Fix a regular expression r with
tests θ1?, . . . , θk?, which might contain parameterized operators and let Ar the ε-
NFA with markings obtained from the construction described above Lemma 5.
Note that the markings are the formulas θ1?, . . . , θk?. Furthermore, let w =
w0w1w2 · · · ∈ (2P

′
)ω, and let w0 · · ·wn−1 be a (possibly empty, if n = 0) prefix

of w. The following two statements are equivalent for every α:

1. Ar has an accepting run on w0 · · ·wn−1 with ε-paths πi such that (wiwi+1wi+2 · · · , α) |=∧
m(πi) for every i in the range 0 ≤ i ≤ n .

2. (0, n) ∈ R(r, w, α).

Proof of Lemma 12. The following proof is a strengthening of the proof of The-
orem 2. Again, we proceed by induction over the structure of ϕ.

First, we consider the direction from logic to automata. The induction starts
for atomic formulas and the induction steps for disjunction and conjunction are
straightforward. Hence, it remains to consider the temporal operators.

Consider 〈r〉ψ. If (w,α) |= 〈r〉ψ, then there exists a position n such that
(wnwn+1wn+2 · · · , α) |= ψ and (0, n) ∈ R(r, w, α). Hence, due to the strength-
ening of Lemma 5, there is an accepting run of Ar on w0 · · ·wn−1 such that the
tests visited during the run are satisfied with respect to α by the appropriate
suffixes of w. Thus, applying the induction hypothesis yields accepting runs of
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the appropriate test automata Aθ′j on these suffixes which satisfy the bounded-
match property. Also, there is an accepting run of Aψ′ on wnwn+1wn+2 · · ·
which satisfies the bounded-match property, again by induction hypothesis.
These runs can be “glued” together to build an accepting run of A(〈r〉ψ)′ on
w satisfying the bounded-match property.

Now, consider 〈rj〉≤x ψj . If (w,α) |= 〈rj〉≤x ψj , then there is a position n ≤
α(x) such that (wnwn+1wn+2 · · · , α) |= ψj and (0, n) ∈ R(r, w, α). Recall
that we removed the parameter to obtain ϕ′. Thus, we can argue as in the
previous case and obtain runs of Arj , of the appropriate test automata Aθ′j , and
of Aψ′ , all satisfying the induction hypothesis. In particular, the run of Arj
has length n ≤ α(x) and therefore satisfies the bounded-match property. Thus,
the glued run of A(〈rj〉≤x ψj)′ = A〈rj〉ψ′j satisfies the bounded-match property as

well.
The case for [r ]ψ is dual to the one for 〈r〉ψ, while the cases for the change-

point-bounded operators 〈r〉cp ψ and [r ]cp ψ are analogous, using the fact that
Acp accepts words which have at most one changepoint.

Now, we consider the other direction, where the induction starts for atomic
formulas and the induction steps for disjunction and conjunction are again
straightforward.

We continue with formulas of the form 〈r〉ψ. Let ρ be an accepting run of
A(〈r〉ψ)′ on w. Let n ≥ 0 be the last level of ρ that contains a state from Qr.
Such a level has to exist since states in Qr are not accepting and they have
no incoming edges from states of the automata Aψ′ and Aθ′j (the θ′j are the

tests in r), but the initial state of A(〈r〉ψ)′ is in Qr. Furthermore, A(〈r〉ψ)′ is
non-deterministic when restricted to states in Qr \ Cr. Hence, we can extract
an accepting run of Ar from ρ on w0 · · ·wn−1 that additionally satisfies the
requirements formulated in the strengthening of Lemma 5, due to the transitions
into the test automata and an application of the induction hypothesis. Hence, we
have (0, n) ∈ R(r, w, α). Also, from the remainder of ρ (levels greater or equal
to n) we can extract an accepting run of Aψ′ on wnwn+1wn+2 · · · satisfying
the bounded-match property. Hence, (wnwn+1wn+2 · · · , α) |= ψ by induction
hypothesis. So, we conclude (w,α) |= 〈r〉ψ.

In the case of 〈rj〉≤x ψj , the reasoning is similar: we have removed the pa-

rameter to obtain ϕ′. Thus, we end up in an analogous situation as in the
previous case, but the level n satisfies n ≤ α(x) due to the bounded-match
property. This implies (w,α) |= 〈rj〉≤x ψj .

Again, the case for [r ]ψ is dual to the one for 〈r〉ψ and the cases for the
changepoint-bounded operators 〈r〉cp ψ and [r ]cp ψ rely on the fact that Acp
only accepts words which have at most one changepoint.

Next, we show that words having runs as described in Lemma 12 can be
recognized by a non-deterministic Büchi automaton: the following lemma con-
cludes the proof of Item 1 of Theorem 9. To this end, we extend the classical
Breakpoint construction [20] by counters that check the bounded-match prop-
erty: the original construction yields an automaton that guesses an accepting
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run of a given alternating Büchi automaton level by level, which are represented
as the set of states they contain. We employ the counters γ to keep track of the
length of paths in Qrj in the guessed run. If the bound α(x) is exceeded, then
the guessed run is discarded.

Lemma 13. There exists a non-deterministic Büchi automaton of size (3 ·
(α(x)+1))O(|ϕ|) that accepts w ∈ (2P

′
)ω if and only if Aϕ′ has an accepting run

on w satisfying the bounded-match property.

Proof. Let Aϕ′ = (Q, 2P
′
, q0, δ, F ) be as above and recall that Qrj ⊆ Q for

j ∈ {1, . . . , k} is the set of states which has to be left after at most α(x) steps in
order to satisfy the bounded-match property. Define the Büchi automaton A′ =
(Q′, 2P

′
, q′0, δ

′, F ′) with

• Q′ = {(T,O, γ) | Q ⊇ T ⊇ O and γ ∈ {0, 1, . . . , α(x)}T∩
⋃k

j=1Q
rj },

• q′0 = ({q0}, ∅, γ), where γ(q0) = α(x) if q0 ∈
⋃k
j=1Q

rj ,

• F ′ = {(T, ∅, γ) | (T, ∅, γ) ∈ Q′}, and

• δ′((T,O, γ), A) is equal to

{(T ′, T ′ \ F,upd(γ,G)) | exists graph G = (T ∪ T ′, E) with E ⊆ T × T ′

s.t. SuccG(q) |= δ(q,A) for every q ∈ T} ∩Q′

if O = ∅, and equal to

{(T ′, O′ \ F,upd(γ,G)) | O′ ⊆ T ′ and there

exists graph G = (T ∪ T ′, E) with E ⊆ T × T ′

s.t. SuccG(q) |= δ(q, A) for every q ∈ T , and

SuccG�(O∪O′)(q) |= δ(q, A) for every q ∈ O} ∩Q′

if O 6= ∅. Here, SuccG(q) denotes the set of successors of q in G, G � (O ∪ O′)
is the restriction of G to O ∪O′, and upd(γ,G) is defined via

upd(γ,G)(q′) = min{α(x), γ(q)−1 | (q, q′) ∈ E and q, q′ ∈ Qrj for some j}.

Note that we might have upd(γ,G)(q′) < 0, which implies that upd(γ,G) is not
the third component of a state of A′ and explains the intersection with Q′ in
the definition of δ′. Thus, the counter γ prevents the simulation of runs of Aϕ′

that violate the bounded-match property by blocking transitions.
Intuitively, the graphs used to define the transition relation δ′ are building

blocks for runs of Aϕ′ that contain two levels of a run as well as the edges
between them that witness the satisfaction of the transition relation δ. As
already explained, the counter γ ensures that every path through some Qrj is
of length α(x) or less.

In the first two components of A′, we implement the Breakpoint construc-
tion while we use the third component to implement a counter that checks the
bounded-match property. The correctness of this construction follows directly
from the correctness of the Breakpoint construction [20].
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In case ϕ has parameterized box-operators, e.g., with variable y, Lemma 12
reads as follows:

(w,α) |= ϕ if and only if Aϕ′ has an accepting run ρ where every
path of the form (qn, n) · · · (qn+`, n+ `) in ρ with qn, . . . , qn+` ∈ Qrj
for some j ∈ {1, . . . , k} satisfying ` > α(x) may end in a terminal
vertex (qn+`, n+ `).

As before, adapting the Breakpoint construction by adding a counter map-
ping states in T ∩

⋃k
j=1Q

rj to {0, 1, . . . , α(x)} yields a non-deterministic Büchi
automaton that accepts exactly those words having a run that satisfies the
bounded-match property for formulas with parameterized box-operators.

8. Conclusion

We introduced Parametric Linear Dynamic Logic, which extends Linear Dy-
namic Logic by temporal operators equipped with parameters that bound their
scope, similarly to Parametric Linear Temporal Logic, which extends Linear
Temporal Logic by parameterized temporal operators. Here, the model check-
ing problem asks for a valuation of the parameters such that the formula is
satisfied with respect to this valuation on every path of the transition system.
Realizability is defined in the same spirit.

We showed PLDL model checking and PLDL assume-guarantee model check-
ing to be PSpace-complete and PLDL realizability to be 2ExpTime-complete,
just as for LTL. Thus, in a sense, PLDL is not harder than LTL. Finally, we
were able to give tight exponential respectively doubly-exponential bounds on
the optimal valuations for model checking and realizability.

With respect to the computation of optimal valuations, we have shown this
to be possible in polynomial space for model checking and in triply-exponential
time for realizability, which is similar to the situation for PLTL [12, 18]. Note
that it is an open question whether optimal valuations for PLTL realizability
can be determined in doubly-exponential time. Recently, a step towards this
goal was made by giving an 1

2 -approximation algorithm with doubly-exponential
running time [31].
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