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We consider graph games of infinite duration with winning conditions in parameterized linear tem-
poral logic, where the temporal operators are equipped withvariables for time bounds. In model
checking such specifications were introduced as “PLTL” by Alur et al. and (in a different version
called “PROMPT-LTL”) by Kupferman et al..

We present an algorithm to determine optimal variable valuations that allow a player to win a
game. Furthermore, we show how to determine whether a playerwins a game with respect to some,
infinitely many, or all valuations. All our algorithms run indoubly-exponential time; so, adding
bounded temporal operators does not increase the complexity compared to solving plain LTL games.

1 Introduction

Many of todays problems in computer science are no longer concerned with programs that transform
data and then terminate, but with non-terminating systems.Model-checking, the automated verification
of closed systems (those that do not have to interact with an environment), is nowadays routinely per-
formed in industrial settings. For open system (those that have to interact with a possibly antagonistic
environment), the framework of infinite two-player games isa powerful and flexible tool to verify and
synthesize such systems. A crucial aspect of automated verification is the choice of a specification for-
malism, which should be simple enough to be used by practitioners without formal training in automata
theory or logics. Here,Linear Temporal Logic(LTL) has turned out to be an expressive, but easy to use
formalism: its advantages include a compact, variable-free syntax and intuitive semantics. For example,
the specification “every requestq is answered by a responsep” is expressed byϕ = G(q→ Fp).

However, LTL lacks capabilities to express timing constraints, e.g., it cannot express that every re-
quest is answered within an unknown, but fixed number of steps. Also, in an infinite game with winning
conditionϕ , Player 0 might have two winning strategies, one that answers every request withinm steps,
and another one that takesn steps, for somen> m. The first strategy is clearly preferable to the second
one, but there is no guarantee that the first one is indeed computed, when the game is solved.

To overcome these shortcomings, several parameterized temporal logics [1, 4, 6] where introduced
for the verification of closed systems: here one adds parametric bounds on the temporal operators. We
are mainly concerned withParametric Linear Temporal Logic(PLTL) [1], which adds the operatorsF≤x

andG≤y to LTL. In PLTL, the request-response specification is expressed byG(q→ F≤xp), stating that
every request is answered within the nextx steps, wherex is a variable. Hence, satisfaction of a formula
is defined with respect to a variable valuationα mapping variables to natural numbers:F≤xϕ holds, ifϕ
is satisfied within the nextα(x) steps, whileG≤yϕ holds, ifϕ is satisfied for the nextα(y) steps.

The model-checking problem for a parameterized temporal logic is typically no harder than the
model-checking problem for the unparameterized fragment,e.g., deciding whether a transition system
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satisfies a PLTL formula with respect to some, infinitely many, or all variable valuations isPSPACE-
complete [1], as is LTL model-checking [13]. Similar results hold for parameterized real-time logics [4].
Also, for PLTL one can determine optimal variable valuations for which a formula is satisfied by a given
transition system in polynomial space.

In this work, we consider infinite games with winning conditions in PLTL, i.e., we lift the results on
model-checking parameterized specifications to synthesisof open systems from parameterized specifica-
tions. Our starting point is a result on the fragment of PLTL containing only parameterized eventualities,
which was discussed (in a different version called PROMPT–LTL) in [6]: there, the authors show that
the realizability problem (an abstract notion of a game) forPROMPT–LTL is2EXPTIME -complete. We
use this result to solve infinite games with winning conditions in the full logic with parameterized even-
tualities and always’: determining whether a player wins a PLTL game with respect to some, infinitely
many, or all variable valuations is also2EXPTIME -complete, as is determining the winner of an LTL
game [11]. So, we observe the same phenomenon as in model-checking: the addition of parameterized
operators does not increase the computational complexity of the problem.

After establishing these results, we consider the problem of finding optimal variable valuations that
allow a given player to win the game. If a winning condition contains only parameterized eventualities or
only parameterized always’, then it makes sense to ask for anoptimal valuation that a player can enforce
against her opponent and for a winning strategy realizing the optimum. Our main theorem states that this
optimization problem can be solved in doubly-exponential time; so even determining an optimal winning
strategy for such a game is of the same computational complexity as solving unparameterized games.

The remainder of this paper is structured as follows: in Section 2, we introduce infinite games with
winning conditions in parameterized linear temporal logicand fix our notation. In Section 3, we show
how the result on the PROMPT–LTL realizability problem can be used to show that determining whether
a player wins a PLTL game with respect to some, infinitely many, or all variable valuations can be decided
in doubly-exponential time. In Section 4, we use these results to determine optimal winning strategies in
games for which a notion of optimality can be defined. Finally, Section 5 gives a short conclusion.

2 Definitions

The set of non-negative integers is denoted byN, the set of positive integers byN+. The powerset of a
setS is denoted by 2S. Throughout this paper letP be a set of atomic propositions.

Automata. An (non-deterministic)ω-automatonA = (Q,Σ,Q0,∆,Acc) consists of a finite set of
statesQ, an alphabetΣ, a set of initial statesQ0 ⊆ Q, a transition relation∆ ⊆ Q× Σ ×Q, and an
acceptance condition Acc. Anω-automaton is deterministic, if|Q0| = 1 and for every(q,a) ∈ Q×Σ,
there is exactly oneq′ such that(q,a,q′) ∈ ∆. In this case, we denoteQ0 = {q0} by q0 and∆ as function
δ : Q×Σ → Q. The size ofA, denoted by|A|, is the cardinality ofQ. A run ofA on anω-word w∈ Σω

is an infinite sequence of statesq0q1q2 . . . such thatq0 ∈ Q0 and(qn,wn,qn+1) ∈ ∆ for everyn∈ N. We
consider different acceptance conditions Acc forω-automata: (1) Büchi automata with a set of accepting
statesF ⊆Q. A runq0q1q2 . . . is accepting if there are infinitely manyn such thatqn ∈F. (2) Generalized
Büchi automata with a family of sets of accepting statesF ⊆ 2Q. A run q0q1q2 . . . is accepting if for
everyF ∈ F there are infinitely manyn such thatqn ∈ F. (3) Parity automata with a priority function
c: Q→N. A run q0q1q2 . . . is accepting, if the minimal priority seen infinitely often is even. Anω-word
is accepted by anω-automaton, if there exists an accepting run on it. The languageL(A) of A contains
the ω-words accepted byA. An ω-automaton is called unambiguous, if it has at most one accepting
run on everyω-word w∈ Σω . It is called non-confluent, if for everyω-word w and two runsq0q1q2 . . .
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andq′0q′1q′2 . . . on w we have for alln that if qn = q′n, thenqm = q′m for everym< n. In a non-confluent
ω-automaton withn states, every finite prefix of anω-word has at mostn finite runs, all of which can
be uniquely identified by their last state. Finally, a state of an ω-automaton is unproductive, if it is not
reachable from the initial state or if there is no accepting run starting from this state. Removing all
unproductive states from a (generalized) Büchi or parity automaton does not change its language.

Remark 1. An unambiguous (generalized) Büchi or parity automaton without unproductive states is
non-confluent.

Linear Temporal Logics. Let X andY be two disjoint sets of variables1. The formulae of Para-
metric Linear Temporal Logic (PLTL) [1] are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ϕ | ϕ ∨ϕ | Xϕ | ϕUϕ | ϕRϕ | F≤xϕ | G≤yϕ ,

wherep ∈ P, x ∈ X andy ∈ Y . Also, we use the derived operatorstt := p∨¬p and ff := p∧¬p for
some fixedp ∈ P, Fϕ := ttUϕ , andGϕ := ffRϕ 2. The set of variables occurring inϕ is denoted by
var(ϕ) and defined in the obvious way. The size|ϕ | of a formulaϕ is measured by counting the distinct
subformulae ofϕ . We consider several fragments of PLTL:ϕ is an LTL formula, if var(ϕ) = /0; ϕ is a
PROMPT–LTL formula [6], if var(ϕ) is a subset ofX of cardinality at most one;ϕ is a PLTLF formula,
if var(ϕ) ⊆ X ; andϕ is a PLTLG formula, if var(ϕ) ⊆ Y . A formula in PLTLF or PLTLG is called
unipolar. The semantics of PLTL is defined with respect to anω-word w∈

(

2P
)ω

, a positioni ∈ N, and
a variable valuationα : X ∪Y → N as follows:

• (w, i,α) |= p iff p∈ wi and(w, i,α) |= ¬p iff p /∈ wi,

• (w, i,α) |= ϕ ∧ψ iff (w, i,α) |= ϕ and(w, i,α) |= ψ ,

• (w, i,α) |= ϕ ∨ψ iff (w, i,α) |= ϕ or (w, i,α) |= ψ ,

• (w, i,α) |= Xϕ iff (w, i +1,α) |= ϕ ,

• (w, i,α) |= ϕUψ iff there exists aj ≥ 0 such that(w, i + j,α) |= ψ and(w, i + j ′,α) |= ϕ for all j ′

in the range 0≤ j ′ < j,

• (w, i,α) |= ϕRψ iff for all j ≥ 0: either(w, i+ j,α) |= ψ or there exists aj ′ in the range 0≤ j ′ < j
such that(w, i + j ′,α) |= ϕ ,

• (w, i,α) |= F≤xϕ iff there exists aj in the range 0≤ j ≤ α(x) such that(w, i + j,α) |= ϕ , and

• (w, i,α) |= G≤yϕ iff for all j in the range 0≤ j ≤ α(y): (w, i + j,α) |= ϕ .

As the satisfaction of an LTL formulaϕ is independent of the variable valuationα , we omitα and write
(w, i) |= ϕ instead of(w, i,α) |= ϕ . PLTL and LTL (but not the fragments PROMPT–LTL, PLTLF and
PLTLG) are closed under negation, although we only allow formulaein negation normal form. This is
due to the duality ofU andR, andF≤x andG≤y. Thus, we use¬ϕ as shorthand for the equivalent formula
obtained by pushing the negation to the atomic propositions. Note that the negation of a PLTLF formula
is a PLTLG formula and vice versa.

Remark 2. For everyPLTL formulaϕ and every valuationα , there exists anLTL formulaϕα such that
for every w∈

(

2P
)ω

and every i∈ N: (w, i,α) |= ϕ if and only if(w, i) |= ϕα .

1If the sets of variables are not disjoint, already the model-checking problem for PLTL is undecidable [1].
2In [1], the authors also introduced the operatorsU≤x, R≤y, F>y, G>x, U>y, andR>x. However, they showed that all these

operators can be expressed usingF≤x andG≤y only, at the cost of a linear increase of the formula’s size. Also, we ignore
constant bounds as they do not add expressiveness.
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This can be shown by replacing the parameterized operators by disjunctions or conjunctions of nested
next-operators. The size ofϕα grows linearly in∑z∈var(ϕ)α(z). Due to Remark 2, we do not consider a
fixed variable valuation when defining games with winning conditions in PLTL, but ask whether Player 0
can win a game with winning conditionϕ with respect to some, infinitely many, or all valuations.

Infinite Games. An (initialized and labeled) arenaA =(V,V0,V1,E,v0, ℓ) consists of a finite directed
graph(V,E), a partition{V0,V1} of V denoting the positions of Player 0 and Player 1, an initial vertex
v0 ∈V, and a labeling functionℓ : V → 2P. The size|A | of A is |V|. It is assumed that every vertex has
at least one outgoing edge. A playρ = ρ0ρ1ρ2 . . . is an infinite path starting inv0. The trace ofρ is t(ρ)=
ℓ(ρ0)ℓ(ρ1)ℓ(ρ2) . . .. A strategy for Playeri is a mappingσ : V∗Vi → V such that(ρn,σ(ρ0 . . .ρn)) ∈ E
for all ρ0 . . .ρn ∈V∗Vi . A play ρ is consistent withσ if ρn+1 = σ(ρ0 . . .ρn) for all n with ρn ∈Vi .

A parity gameG = (A ,c) consists of an arenaA and a priority functionc: V → N. Player 0 wins
a playρ0ρ1ρ2 . . . if the minimal priority seen infinitely often is even. The number of priorities ofG is
|c(V)|. A strategyσ for Playeri is winning for her, if every play that is consistent withσ is won by her.
Then, we say Playeri winsG .

A PLTL gameG = (A ,ϕ) consists of an arenaA and a PLTL formulaϕ . Player 0 wins a playρ
with respect to a variable valuationα if (t(ρ),0,α) |= ϕ , otherwise Player 1 winsρ with respect toα . A
strategy for Playeri is a winning strategy for her with respect toα if every play that is consistent withσ is
won by Playeri with respect toα . Then, we say that Playeri winsG with respect toα . We define the set
W i

G
of winning valuations for Playeri in G = (A ,ϕ) by W i

G
= {α | Playeri winsG with respect toα}.

Here (and from now on) we assume thatα ’s domain is restricted to the variables occurring inϕ . LTL,
PROMPT–LTL, PLTLF, PLTLG, and unipolar games are defined by restricting the winning conditions to
LTL, PLTLF, PLTLG, and unipolar formulae. Again, winning an LTL game is independent ofα , hence
we are justified to say that Playeri wins an LTL game.

Strategies with Memory. A memory structureM = (M,m0,upd) for an arena(V,V0,V1,E,v0, ℓ)
consists of a finite setM of memory states, an initial memory statem0 ∈ M, and an update function
upd : M×V →M, which can be extended to upd∗ : V+ →M by upd∗(ρ0)=m0 and upd∗(ρ0 . . .ρnρn+1)=
upd(upd∗(ρ0 . . .ρn),ρn+1). A next-move function for Playeri is a function nxt :Vi ×M →V that satisfies
(v,nxt(v,m)) ∈ E for all v∈Vi and allm∈ M. It induces a strategyσ with memoryM via σ(ρ0 . . .ρn) =
nxt(ρn,upd∗(ρ0 . . .ρn)). A strategy is called finite-state if it can be implemented with a memory structure,
and positional if it can be implemented with a single memory state. The size ofM (and, slightly abusive,
σ ) is |M|. An arenaA and a memory structureM = (M,m0,upd) for A induce the expanded arena
A ×M = (V×M,V0×M,V1×M,E′,(s0,m0), ℓA ×M ) where((s,m),(s′,m′))∈E′ if and only if (s,s′)∈
E and upd(m,s′) = m′, andℓA ×M (s,m) = l(s). A gameG with arenaA is reducible toG ′ with arena
A ′ via M , writtenG ≤M G ′, if A ′ = A ×M and every play(ρ0,m0)(ρ1,m1)(ρ2,m2) . . . in G ′ is won
by the player who wins the projected playρ0ρ1ρ2 . . . in G .
Remark 3. If G ≤M G ′ and Player i has a positional winning strategy forG ′, then she also has a
finite-state winning strategy with memoryM for G .

A parity game or a PLTL gameG (with respect to a fixed variable valuation) cannot be won by both
players. On the other hand,G is determined, if one of the players wins it.
Proposition 4.

1. Parity games are determined with positional strategies [3, 10] and the winner can be determined
in timeO(m(n/d)⌈d/2⌉) [5], where n, m, and d denote the number of vertices, edges, and priorities.

2. LTL games (and therefore alsoPLTL games with respect to a fixed variable valuation) are de-
termined with finite-state strategies. Determining the winner is 2EXPTIME -complete [12] and
finite-state winning strategies can be computed in doubly-exponential time.
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3 Solving Prompt and PLTL Games

In this section, we consider several decision problems for PLTL games. Kupferman et al. solved the
PROMPT–LTL realizability problem3 by a reduction to the LTL realizability problem [6], which iscom-
plete for doubly-exponential time. We show that this resultsuffices to prove that even the decision prob-
lems for the full logic with non-uniform bounds and parameterized always-operators are in2EXPTIME .
For games with winning conditions in PLTL we are interested in the following decision problems:

Membership: Given a PLTL gameG , i ∈ {0,1}, and a valuationα , doesα ∈ W i
G

hold?
Emptiness: Given a PLTL gameG andi ∈ {0,1}, is W i

G
empty?

Finiteness:Given a PLTL gameG andi ∈ {0,1}, is W i
G

finite?
Universality: Given a PLTL gameG andi ∈ {0,1}, doesW i

G
contain all variable valuations?

Our first result is a simple consequence of Remark 2 and Proposition 4.2.

Theorem 5. The membership problem forPLTL games is decidable.

The realizability problem for PROMPT–LTL is known to be2EXPTIME -complete. The proof of this
result can easily be adapted to graph-based PROMPT–LTL games as considered here.

Theorem 6([6]). The emptiness problem forPROMPT–LTL games is2EXPTIME -complete.

The adapted proof in terms of graph-based games can be found in [14] and is sketched in the next
section (see Lemma 13). It proceeds by a reduction to solvingLTL games: given a PROMPT–LTL game
G = (A ,ϕ) one constructs an LTL gameG ′ = (A ′,ϕ ′) with |A ′| ∈ O(|A |2) and |ϕ ′| ∈ O(|ϕ |) such
that W 0

G
6= /0 if and only if Player 0 winsG ′. This proof yields the following corollary, which will be

crucial when we determine optimal strategies in the next section: let f (n) = 2275(n+1)
∈ 22O(n)

.

Corollary 7 ([14]). Let G = (A ,ϕ) be aPROMPT–LTL game withvar(ϕ) = {x}. If W 0
G
6= /0, then

Player0 also has a finite-state winning strategy forG of size2|A | f (|ϕ |) which is winning with respect
to the valuation x7→ 2(|A | · f (|ϕ |)+1).

To solve the other decision problems for games with winning conditions in full PLTL, we make use
of the duality of unipolar games and the duality of the emptiness and universality problem. For an arena
A = (V,V0,V1,E,v0, ℓ), let A :=(V,V1,V0,E,v0, ℓ) be its dual arena, where the two players swap their
positions. Given a PLTL gameG = (A ,ϕ), the dual game isG :=(A ,¬ϕ). The dual game of a PLTLG
game is a PLTLF game and vice versa. It is easy to see that Playeri winsG with respect toα if and only
if Player 1− i wins G with respect toα . The setsW i

G
enjoy two types of dualities, which we rely on in

the following. The first one is due to determinacy of LTL games, the second one due to duality.

Lemma 8. LetG be aPLTL game.

1. W 0
G

is the complement ofW 1
G

.

2. W i
G
= W

1−i
G

.

Another useful property is the monotonicity of the parameterized operators: letα(x) ≤ β (x) and
α(y) ≥ β (y). Then,(w, i,α) |= F≤xϕ implies(w, i,β ) |= F≤xϕ and(w, i,α) |= G≤yϕ implies(w, i,β ) |=
G≤yϕ . Hence, the setW 0

G
is upwards-closed ifG is a PLTLF game, and downwards-closed ifG is a

PLTLG game (valuations are compared componentwise). Now, we prove the main result of this section.

Theorem 9. The emptiness, finiteness, and universality problems forPLTL games are2EXPTIME -
complete.

3An abstract game without underlying arena in which two players alternatingly pick letters from 2P. The first player wins if
theω-word produced by the players satisfies the winning condition ϕ.
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Proof. Let G = (A ,ϕ). Due to Lemma 8.2 it suffices to consideri = 0.
Emptiness ofW 0

G
: Let ϕF be the formula obtained fromϕ by inductively replacing every subformula

G≤yψ by ψ , and letGF :=(A ,ϕF). Note thatGF is a PLTLF game. Applying downwards-closure, we
obtain thatW 0

G
is empty if and only ifW 0

GF
is empty.

The latter problem can be decided by a reduction to PROMPT–LTL games. Fix a variablex ∈ X

and letϕ ′ be the formula obtained fromϕF by replacing every variablez in ψ by x. Then,W 0
GF

6= /0 if and
only if W 0

G ′ 6= /0, whereG ′ = (A ,ϕ ′). The latter problem can be decided in doubly-exponential time by
Theorem 6. Since we have|ϕ ′| ≤ |ϕ |, the emptiness ofW 0

G
can be decided in doubly-exponential time.

Universality of W 0
G

: Applying both statements of Lemma 8 we get thatW 0
G

is universal if and only
if W 1

G
= /0 if and only ifW 0

G
= /0. The latter is decidable in doubly-exponential time, as shown above.

Finiteness ofW 0
G

: If ϕ contains at least oneF≤x, thenW 0
G

is infinite, if and only if it is non-
empty, due to monotonicity ofF≤x. The emptiness ofW 0

G
can be decided in doubly-exponential time as

discussed above. Otherwise,G is a PLTLG game whose finiteness problem can be decided in doubly-
exponential time by a reduction to the universality problemfor a (simpler) PLTLG game. We assume
that ϕ has at least one parameterized temporal operator, since theproblem is trivial otherwise. The set
W 0

G
is infinite if and only if there is a variabley ∈ var(ϕ) that is mapped to infinitely many values by

the valuations inW 0
G

. By downwards-closure we can assume that all other variables are mapped to zero.
Furthermore,y is mapped to infinitely many values if and only if it is mapped to all possible values, again
by downwards-closure. To combine this, we defineϕy to be the formula obtained fromϕ by inductively
replacing every subformulaG≤zψ for z 6= y by ψ and defineGy :=(A ,ϕy). Then,W 0

G
is infinite, if

and only if there exists some variabley∈ var(ϕ) such thatW 0
Gy

is universal. So, deciding whetherW 0
G

is infinite can be done in doubly-exponential time by solving|var(ϕ)| many universality problems for
PLTLG games, which were discussed above.

Finally, hardness follows directly from2EXPTIME -hardness of solving LTL games.

4 Optimal Winning Strategies for unipolar PLTL Games

For unipolar games, it is natural to view synthesis of winning strategies as an optimization problem:
which is thebestvariable valuationα such that Player 0 can win with respect toα? We consider two
quality measures for a valuationα for ϕ : the maximal parameter maxz∈var(ϕ) α(z) and the minimal
parameter minz∈var(ϕ)α(z). For a PLTLF game, Player 0 tries to minimize the waiting times. Hence,
we are interested in minimizing the minimal or maximal parameter. Dually, for PLTLG games, we are
interested in maximizing the quality measures. The dual problems, i.e., maximizing the waiting times
in a PLTLF game and minimizing the satisfaction time in a PLTLG game, are trivial due to upwards-
respectively downwards- closure of the set of winning valuations. Again, we only consider Player 0 as
one can dualize the game to obtain similar results for Player1. The main result of this section states that
all these optimization problems are not harder than solvingLTL games.

Theorem 10. Let GF = (AF,ϕF) be aPLTLF game andGG = (AG,ϕG) be aPLTLG game. Then, the
following values (and winning strategies realizing them) can be computed in doubly-exponential time.

1. minα∈W 0
GF

minx∈var(ϕF) α(x).

2. minα∈W 0
GF

maxx∈var(ϕF) α(x).

3. maxα∈W 0
GG

maxy∈var(ϕG) α(y).

4. maxα∈W 0
GG

miny∈var(ϕG) α(y).



152 Optimal Bounds in Parametric LTL Games

We begin the proof by showing that all four problems can be reduced to the optimization problem for
PROMPT–LTL games: letG = (A ,ϕ) be a PROMPT–LTL game with var(ϕ) = {x} ⊆ X . The goal is
to determine minα∈W 0

G

α(x).
The latter three reductions are simple applications of the monotonicity of the parameterized opera-

tors, while the first one requires substantial work.

1.) For eachx ∈ var(ϕ), we replace eventualities parameterized byz 6= x by an unparameterized
formula, thereby constructing the projection ofW 0

GF
to the values ofx. However, we cannot just re-

move the parameters from an eventuality, as we have to ensurethat the waiting times are still bounded
by some unknown, but fixed value. This is achieved by applyingthe alternating-color technique for
PROMPT–LTL [6].

Let p /∈ P be a fixed proposition. Anω-word w′ = w′
0w′

1w′
2 . . . ∈

(

2P∪{p}
)ω

is a p-coloring ofw=

w0w1w2 . . . ∈
(

2P
)ω

if w′
n∩P = wn, i.e., wn andw′

n coincide on all propositions inP. The additional
propositionp can be thought of as the color ofw′

n: we say that a positionn is green ifp∈ w′
n, and say

that it is red ifp /∈ w′
n. Givenk∈ N we say thatw′ is k-spaced, if the colors inw′ change infinitely often,

but not twice in any infix of lengthk. Dually, w′ is k-bounded, if the colors change at least once in every
infix of lengthk+1.

The formulaaltp :=GFp∧GF¬p is satisfied if the colors change infinitely often. Given a PLTL
formulaϕ andX ⊆ var(ϕ), letϕX denote the formula obtained by inductively replacing everysubformula
F≤xψ with x /∈ X by (p→ (pU(¬pUψ)))∧ (¬p→ (¬pU(pUψ))). Finally, consider the formulaϕX ∧
altp. It forces a coloring to have infinitely many color changes and every subformulaF≤xψ with x /∈ X
to be satisfied within one color change. We have var(ϕX) = X and|ϕX| ∈ O(|ϕ |).

For a variable valuationα and a subsetX of α ’s domain, we denote the restriction ofα to X by α↾X.

Lemma 11([6]). Let ϕ be aPLTL formula, X⊆ var(ϕ), and let w∈
(

2P
)ω

.

1. If (w,0,α) |= ϕ , then(w′,0,α↾X) |= ϕX ∧ altp for every k-spaced p-coloring w′ of w, where k=
maxx∈var(ϕ)\X α(x).

2. Let k∈ N. If w′ is a k-bounded p-coloring of w with(w′,0,α) |= ϕX, then(w,0,β ) |= ϕ where

β (x) =

{

α(x) if x ∈ X,

2k else.

The previous lemma shows how replace (on suitablep-colorings) a parameterized eventuality by an
LTL formula, while still ensuring a bound on the satisfaction of the parameterized eventuality. To apply
the alternating-color technique, we have to transform the original arenaA into an arenaA ′ in which
Player 0 producesp-colorings of the plays of the original arena, i.e.,A ′ will consist of two disjoint
copies ofA , one labeled withp, the other one not. Assume a play is in vertexv in one component.
Then, the player whose turn it is atv chooses a successorv′ of v and Player 0 picks a component. The
play then continues in this component’s vertexv′. We split this into two sequential moves: first, the
player whose turn it is chooses a successor and then Player 0 chooses the component. Thus, we have to
introduce a new vertex for every edge ofA which allows Player 0 to choose the component. Formally,
given an arenaA = (V,V0,V1,E,v0, ℓ), define the expanded arenaA ′ :=(V ′,V ′

0,V
′
1,E

′,v′0, ℓ
′) by

• V ′ =V ×{0,1}∪E,

• V ′
0 =V0×{0,1}∪E,

• V ′
1 =V1×{0,1},

• E′ = {((v,0),e),((v,1),e),(e,(v′ ,0)),(e,(v′ ,1)) | e= (v,v′) ∈ E},
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• v′0 = (v0,0),

• ℓ′(e) = /0 for all e∈ E andℓ′(v,b) =

{

ℓ(v)∪{p} if b= 0,

ℓ(v) if b= 1.

A ′ is bipartite with partition{V×{0,1},E}, so a play has the form(ρ0,b0)e0(ρ1,b1)e1(ρ2,b2) . . . where
ρ0ρ1ρ2 . . . is a play inA , en = (ρn,ρn+1), and thebn are in{0,1}. Also, we have|A ′| ∈ O(|A |2).

Finally, this construction necessitates a modification of the semantics of the game: only every other
vertex is significant when it comes to determining the winnerof a play in A ′, the choice vertices
have to be ignored. This motivates blinking semantics for PLTL games. LetG = (A ,ϕ) be a PLTL
game andρ = ρ0ρ1ρ2 . . . be a play. Player 0 winsρ with respect toα under blinking semantics, if
(t(ρ0ρ2ρ4 . . .),0,α) |= ϕ . Analogously, Player 1 winsρ with respect toα under blinking semantics if
(t(ρ0ρ2ρ4 . . .),0,α) 6|= ϕ . The notions of winning strategies and winningG with respect toα under
blinking semantics are defined in the obvious way.

Remark 12. PLTL games with respect to a fixed variable valuation under blinking semantics are deter-
mined with finite-state strategies.

Now, we can state the connection between a PLTLF game(A ,ϕ) and its counterpart inA ′ with
blinking semantics. The proof relies on the existence of finite-state winning strategies which necessarily
produce onlyk-bounded plays for some fixedk, sincealtp is part of the winning condition.

Lemma 13. Let (A ,ϕ) be aPLTLF game and X⊆ var(ϕ).

1. Letα : var(ϕ) → N be a variable valuation. If Player i wins(A ,ϕ) with respect toα , then she
wins(A ′,ϕX ∧altp) with respect toα↾X under blinking semantics.

2. Letα : X → N be a variable valuation. If Player i wins(A ′,ϕX ∧altp) with respect toα under
blinking semantics, then there exists a variable valuationβ with β (x) = α(x) for every x∈ X such
that she wins(A ,ϕ) with respect toβ .

Applying the lemma to our problem, we have

min
α∈W 0

G

min
x∈var(ϕ)

α(x)= min
x∈var(ϕ)

min{α(x) | Player 0 wins(A ′,ϕ{x}∧altp) w.r.t. α u. blinking semantics} .

Sinceϕ{x} = {x}, we have reduced the minimization problem to|var(ϕ)| many PROMPT–LTL opti-
mization problems, albeit under blinking semantics. However, the proof presented in the following can
easily be adapted to deal with blinking semantics.

2.) This problem can directly be reduced to a PROMPT–LTL optimization problem: letϕ ′
F be the

PROMPT–LTL formula obtained fromϕF by renaming eachx ∈ var(ϕF) to z and letG ′ :=(AF,ϕ ′
F).

Then, minα∈W 0
GF

maxx∈var(ϕF) α(x) = minα∈W 0
G ′

α(z), due to upwards-closure ofW 0
GF

.

3.) For everyy∈ var(ϕG) let ϕy be obtained fromϕG by replacing every subformulaG≤zψ for z 6= y
by ψ and letGy :=(AG,ϕy). Then, we have maxα∈W 0

GG
maxy∈var(ϕG) α(y) = maxy∈var(ϕG)maxα∈W 0

Gy
α(y),

due to downwards-closure ofW 0
GG

. Hence, we have reduced the original problem to|var(ϕG)| maximiza-
tion problems for a PLTLG game with a single variable, which are discussed below.

4.) Letϕ ′
G be obtained fromϕG by renaming every variable inϕG to zand letG ′ = (AG,ϕ ′

G). Then,
maxα∈W 0

GG
miny∈var(ϕG) α(y) = maxα∈W 0

G ′
α(z), again due to downwards-closure ofW 0

GG
. Again, we have

reduced the original problem to a maximization problem for aPLTLG game with a single variable.

To finish the reductions we translate a PLTLG optimization problem with a single variable into a
PROMPT–LTL optimization problem: letG = (A ,ϕ) be a PLTLG game with var(ϕ) = {y} ⊆ Y .
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Then, we have maxα∈W 0
G

α(y) = maxα∈W 1
G

α(y) = minα∈W 0
G

α(y)+1, due to the closure properties and

Lemma 8. AsG is a PROMPT–LTL game, we achieved our goal.
All reductions increase the size of the arena at most quadratically and the size of the winning

condition at most linearly. Furthermore, to minimize the minimal parameter value in a PLTLF game
and to maximize the maximal parameter value in a PLTLG game, we have to solve|var(ϕ)| many
PROMPT–LTL optimization problems (for the other two problems just one) to solve the original unipo-
lar optimization problem with winning conditionϕ . Thus, it suffices to show that a PROMPT–LTL
optimization problem can be solved in doubly-exponential time.

So, letG = (A ,ϕ) be a PROMPT–LTL game with var(ϕ) = {x}. If W 0
G
6= /0, then Corollary 7 yields

minα∈W 0
G

α(x) ≤ k :=2(|A | · f (|ϕ |)+ 1) ∈ |A | · 22O(|ϕ|)
. Let αn be the valuation mappingx to n. To

determine minα∈W 0
G

α(x), it suffices to find the smallestn< k such thatαn ∈W 0
G

. As the number of such

valuationsαn is equal tok, it suffices to show thatαn ∈ W 0
G

can be decided in doubly-exponential time
in the size ofG , provided thatn< k. This is achieved by a game reduction to a parity game.

Fix a valuationα and remember thatϕα is an LTL formula (see Remark 2). Now, observe that
a deterministic parity automatonP = (Q,2P,q0,δ ,c) with L(P) = {w ∈ (2P)ω | (w,0) |= ϕα} can be
turned into a memory structureM = (Q,q0,upd) for (A ,ϕα) by defining upd(q,v) = δ (q, ℓ(v)). Then,
we have(A ,ϕα)≤M (A ×M ,c′), wherec′(v,q) = c(q). Hence, the Remarks 2 and 3 yieldα ∈ W 0

G
if

and only if Player 0 wins(A ×M ,c′).

Lemma 14. Letα be a variable valuation andϕ be aPROMPT–LTL formula withvar(ϕ) = {x}. There
exists a deterministic parity automatonP recognizing the language{w∈ (2P)ω | (w,0) |= ϕα} such that

|P| ∈ 22O(|ϕ|)
· (α(x)+1)2O(|ϕ|)

andP has2O(|ϕ |) many colors.

For a valuationαn with n < k, we have|P| ∈ 22O(|A |+|ϕ|)
with 2O(|ϕ |) many colors. Thus, Propo-

sition 4.1 implies that(A ×M ,c′) can be solved in doubly-exponential time in the size ofG , which
suffices to prove Theorem 10, as we have to solve at most doubly-exponentially many parity games4,
each of which can be solved in doubly-exponential time. Thus, it remains to prove Lemma 14.

Furthermore, we have seen that the automatonP for theminimalαn can easily be turned into a finite-
state winning strategy forG realizing minα∈W 0

G

α(x). To obtain a winning strategy for the general case
of an PLTLF (respectively PLTLG) game it is necessary to construct a deterministic parity automaton
for the PLTLF formula ϕ (respectively¬ϕ) as described below. In case of a PLTLG game, we need to
complement the automaton, which is achieved by incrementing the priority of each state by one.

We construct an automaton as required in Lemma 14 in the remainder of this section. Note that
the naive approach of constructing a deterministic parity automaton for the LTL formulaϕαn yields an
automaton that recognizes the desired language, but is of quadruply-exponential size, ifn is close tok.
The problem arises from the fact thatϕαn uses a disjunction of nested next-operators of depthn to be able
to count up ton. This (doubly-exponential)counteris hardwired into the formulaϕαn and thus leads to
a quadruply-exponential blowup when turningϕαn into a deterministic parity automaton, since turning
LTL formulae into deterministic parity automata necessarily incurs a doubly-exponential blowup [7].

To obtain our results, we decouple the counter from the formula by relaxing parameterized eventual-
ities to plain eventualities. We translate the relaxed formula into a generalized Büchi automaton, which
is then turned in a Büchi automaton. By placing an additional constraint on accepting runs we take care
of the bound on the (now relaxed) parameterized operators. As these automata are unambiguous, we
also end up with a non-confluent Büchi automaton, which is then determinized into a parity automaton.
Only then, the additional constraint is added to the parity automaton in the form of a counter that tracks

4This can be improved to exponentially many by binary search.



M. Zimmermann 155

(and aborts, if the counter is overrun) different runs of theBüchi automaton. This way, we obtain an
automaton that is equivalent to the (unrelaxed) PROMPT–LTLformula with respect toαn. To add these
counters, it is crucial to have a non-confluent Büchi automaton, as such an automaton has at most|Q|
runs which have to be tracked by the counter.

In the following we extend known constructions for translating an LTL formula into a non-deter-
ministic Büchi automaton and for translating a non-deterministic Büchi automaton into a deterministic
parity automaton. In the first step we have to deal with the additional constraints, which do not appear in
the classical translation problem. In the second step, we have to simulate these constraints with the states
of the parity automaton, which requires changes to this translation as well. Since our proof technique
can deal with several parameters, we consider the more general case of a PLTLF formula instead of a
PROMPT–LTL formula.

From PLTLF to generalized B̈uchi Automata. We begin by constructing a generalized Büchi automaton
from a PLTLF formula using a slight adaptation of a standard textbook method (see [2]). We ignore the
parameters when defining the transition relation, i.e., we treat a parameterized eventually as a plain
eventually. The bounds are taken care of by additional constraints on accepting runs.

Given a PLTLF formula ϕ we define its closure cl(ϕ) to be the set of subformulae ofϕ . A set
B⊆ cl(ϕ) is consistent, if the following properties are satisfied:

• p∈ B if and only if¬p /∈ B for everyp∈ P.

• ψ1∧ψ2 ∈ B if and only if ψ1 ∈ B andψ2 ∈ B.

• ψ1∨ψ2 ∈ B if and only if ψ1 ∈ B or ψ2 ∈ B.

• ψ2 ∈ B impliesψ1Uψ2 ∈ B.

• ψ1,ψ2 ∈ B impliesψ1Rψ2 ∈ B.

• ψ1 ∈ B impliesF≤xψ1 ∈ B.

The set of consistent subsets is denoted byC (ϕ)⊆ 2cl(ϕ).

Construction 15. Given aPLTLF formulaϕ , we define the generalized Büchi automaton
Aϕ = (Q,2P,Q0,∆,F ) by

• Q= C (ϕ) and Q0 = {B∈ C (ϕ) | ϕ ∈ B},

• (B,a,B′) ∈ ∆ if and only if

– B∩P= a,

– Xψ1 ∈ B if and only ifψ1 ∈ B′,

– ψ1Uψ2 ∈ B if and only ifψ2 ∈ B or (ψ1 ∈ B andψ1Uψ2 ∈ B′),

– ψ1Rψ2 ∈ B if and only ifψ2 ∈ B and (ψ1 ∈ B or ψ1Rψ2 ∈ B′), and

– F≤xψ1 ∈ B if and only ifψ1 ∈ B or F≤xψ1 ∈ B′.

• F = FU ∪FR ∪FF≤ where

– FU = {Fψ1Uψ2 | ψ1Uψ2 ∈ cl(ϕ)} with Fψ1Uψ2 = {B∈ C (ϕ) | ψ1Uψ2 /∈ B or ψ2 ∈ B},

– FR = {Fψ1Rψ2 | ψ1Rψ2 ∈ cl(ϕ)} with Fψ1Rψ2 = {B∈ C (ϕ) | ψ1Rψ2 ∈ B or ψ2 /∈ B}, and

– FF≤ = {FF≤xψ1 | F≤xψ1 ∈ cl(ϕ)} with FF≤xψ1 = {B∈ C (ϕ) | F≤xψ1 /∈ B or ψ1 ∈ B}.

Lemma 16. Let ϕ ∈ PLTLF and letAϕ be defined as in Construction 15.

1. (w,0,α) |= ϕ if and only ifAϕ has an accepting runρ on w such that each FF≤xψ1 ∈FF≤ is visited
at least once in every infix ofρ of lengthα(x)+1.

2. Aϕ is unambiguous.

3. |Aϕ | ≤ 2|ϕ | and |F |< |ϕ |.
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Proof. 1.) Let (w,0,α) |= ϕ . For eachn defineBn = {ψ ∈ cl(ϕ) | (w,n,α) |= ψ} and show thatρ =
B0B1B2 . . . is an accepting run ofAϕ such that eachFF≤xψ1 ∈FF≤ is visited at least once in every infix of
ρ of lengthα(x)+1. The semantics of PLTL guarantee that eachBn is consistent,B0 ∈ Q0 follows from
(w,0,α) |= ϕ , and(Bn,wn,Bn+1) ∈ ∆ for everyn is due to the semantics of PLTL. Thus, the sequence
B0B1B2 . . . is a run. Assume that someFψ1Uψ2 is visited only finitely often, i.e., there exists an indexn
such that for everyn′ ≥ n we have(w,n′,α) |=ψ1Uψ2 and(w,n′,α) 6|=ψ2. This contradicts the semantics
of the until-operator, which guarantee a positionm≥ n such that(w,m,α) |= ψ2, if (w,n,α) |= ψ1Uψ2.
Now, assume that someFψ1Rψ2 is visited only finitely often, i.e., there exists an indexn such that for
every n′ ≥ n we have(w,n′,α) 6|= ψ1Rψ2 and (w,n′,α) |= ψ2. This contradicts the semantics of the
release-operator, which state(w,n,α) |= ψ1Rψ2, if ψ2 holds at every positionn′ ≥ n. Finally, assume
that someFF≤xψ1 ∈ FF≤ is not visited in an infix ofB0B1B2 . . . of lengthα(x)+ 1, i.e., there is some
indexn such that(w,n,α) |= F≤xψ1 and(w,n+ j,α) 6|= ψ1 for every j in the range 0≤ j ≤ α(x). This
contradicts the semantics of the parameterized eventually, which guarantee the existence of an indexk
in the range 0≤ k≤ α(x) such that(w,n+k,α) |= ψ1. Hence,B0B1B2 . . . is an accepting run such that
eachFF≤xψ1 ∈ FF≤ is visited at least once in every infix ofB0B1B2 . . . of lengthα(x)+1.

For the other direction, letρ = B0B1B2 . . . be an accepting run ofAϕ on w such that eachFF≤xψ1 ∈
FF≤ is visited at least once in every infix ofρ of lengthα(x)+1. A structural induction overϕ shows
thatψ ∈ Bn if and only if (w,n,α) |= ψ . This suffices, since we haveϕ ∈ B0.

2.) Lete(ϕ) be the formula obtained fromϕ ∈ PLTLF by replacing every parameterized eventually
F≤x by an eventuallyF. The automataAϕ andAe(ϕ) are isomorphic. Thus, it suffices to show thatAe(ϕ)

is unambiguous. So, assume there are two accepting runsB0B1B2 . . . andB′
0B′

1B′
2 . . . on anω-word w

and letn be an index such thatBn 6= B′
n, i.e., there existsψ ∈ cl(e(ϕ)) such that (w.l.o.g.)ψ ∈ Bn, but

ψ /∈ B′
n. In 1.), we have shown that we haveψ ∈ Bn (respectivelyψ ∈ B′

n) if and only if (w,n) |= ψ
(note thatψ is an LTL formula, hence we do not need to care about a variablevaluation). Thus, we have
(w,n) |= ψ (due toψ ∈ Bn) and(w,n) 6|= ψ (due toψ 6∈ B′

n), which yields the desired contradiction.
3.) Clear.

From generalized B̈uchi Automata to Büchi Automata. Now, we use a standard construction (see [2])
to turn a generalized Büchi automatonA = (Q,Σ,Q0,∆,{F1, . . . ,Fk}) into a Büchi automatonA′ =
(Q′,Σ,Q′

0,∆′,F ′) while preserving its language (even under the additional constraints) and its unambi-
guity. The state set ofA′ is Q×{0,1, . . . ,k}, where the first component is used to simulate the behavior
of A, while the second component is used to ensure that every setFj is visited infinitely often.

Lemma 17. LetA= (Q,Σ,Q0,∆,{F1, . . . ,Fk}) be a generalized B̈uchi automaton. There exists a Büchi
automatonA′ with state set Q×{0,1. . . ,k} such that the following holds:

1. LetA = Aϕ for somePLTLF formula ϕ as in Construction 15. Then,(w,0,α) |= ϕ if and only if
A′ has an accepting run(q0, i0)(q1, i1)(q2, i2) . . . on w such that eachFF≤xψ1 ∈ FF≤ is visited at
least once in every infix of q0q1q2 . . . of lengthα(x)+1.

2. A′ is unambiguous, ifA is unambiguous.

3. |A′|= |A| · (k+1)

From Büchi Automata to Deterministic Parity Automata. Now, we have to determinize an unam-
biguous (and therefore non-confluent) Büchi automaton while incorporating the additional constraints
on accepting runs. Abstractly, we are given a non-confluent Büchi automatonA and a finite set of tu-
ples(Fj ,b j) ∈ 2Q×N+ and are only interested in runsρ that visit a state fromFj in every infix ofρ of
lengthb j , while visiting the accepting states of the Büchi automaton infinitely often. Remember that a
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non-confluent automaton has at most|Q| finite runs on a finite wordw0 · · ·wn, which can be uniquely
identified by their last state. Furthermore, for every last stateq of such a run, there is a unique statep
such thatp is the last state of a run of the automaton onw0 · · ·wn−1 and(p,wn,q) ∈ ∆. Thus, to check
the additional constraints on the runs, we can use countersd(q, j) to abort the run ending inq if it did
not visit Fj for b j consecutive states. The state space of the deterministic automaton we construct is the
cartesian product of the state space ofP and the countersd(q, j) for everyq and j, whereP is a deter-
ministic automaton recognizing the language ofA without additional constraints. To prove Theorem 10,
we want to use the deterministic automaton with counters as memory structure in a game reduction,
which imposes additional requirements on its size and its acceptance condition.

The Büchi automaton we need to determinize is already of exponential size. Hence, we can spend
another exponential for determinization, which is the typical complexity of a determinization procedure
for Büchi automata. However, we have to carefully choose the acceptance condition of the deterministic
automaton we construct: to prove the main theorem, we need anacceptance condition Acc such that a
game with arenaA ×M and winning condition Acc can be solved in doubly-exponential time, even
if M is already of doubly-exponential size. Furthermore, it is desirable to use a condition Acc that
guarantees Player 0 positional winning strategies: in thiscase,M implements a finite-state winning
strategy for her in the original PLTLF game.

The parity condition satisfies all our requirements. Thus, we adapt a determinization construc-
tion [8, 9] tailored for non-confluent Büchi automata yielding a parity automaton. The automata obtained
by this construction are slightly larger than the ones obtained by optimal constructions, but still small
enough to satisfy our requirements on them. Another advantage of this construction is the fact that it
is conceptually simpler than the constructions for arbitrary Büchi automata based on trees labeled with
state sets. Nevertheless, it is possible to use another determinization construction, as long as it satisfies
the requirements in terms of size and winning condition described above.

Given a transition relation∆ ⊆ Q×Σ×Q, define∆(S,a) = {q′ ∈ Q | (q,a,q′) ∈ ∆ for someq∈ S}.

Construction 18 ([9]). Given a non-confluent B̈uchi automatonA = (Q,Σ,Q0,∆,F) and a finite set
{(F1,b1), . . . ,(Fk,bk)} ⊆ 2Q×N+ construct the deterministic parity automatonP = (Q′,Σ,q′0,δ ,c) as
follows: let n= |Q| and define

• Q′ = {((S0,m0), . . . ,(Sn,mn),d) | Si ⊆ Q, mi ∈ {0,1}, d : Q×{1, . . . ,k}→N∪{⊥} with d(q, j)<
b j or d(q, j) =⊥},

• q′0 = ((S0,0),( /0,0), . . . ,( /0,0),d0) with d0(q, j) = 0 if q ∈ Q0∩Fj ; d0(q, j) = 1 if q ∈ Q0 \Fj and
1< b j ; and d0(q, j) =⊥ otherwise; and S0 = {q∈ Q0 | d(q, j) 6=⊥ for every j}.

• We define the transition functionδ only for reachable states:δ (((S0,m0), . . . ,(Sn,mn),d),a) =
((S′0,m

′
0), . . . ,(S

′
n,m

′
n),d

′) where

– d′(q, j) =























0 if q ∈ ∆(S0,a) and q∈ Fj ,

d(p, j)+1 if q ∈ ∆(S0,a), q /∈ Fj , and d(p, j)+1< b j ,

⊥ if q ∈ ∆(S0,a), q /∈ Fj , and d(p, j)+1= b j ,

⊥ if q /∈ ∆(S0,a),
where p is the unique (due to non-confluence, see Lemma 20.1) state in S0 with (p,a,q) ∈ ∆.
Define T= {q∈ Q | d′(q, j) 6=⊥ for every j}.

– For the update of the state sets consider the sequence(S0,m0), . . . ,(Sn,mn) as a list contain-
ing tuples(S,m). Remark 19.2 yields that there are at most n non-empty sets Si . First, we
delete all elements of the list containing the empty set by moving the non-empty state sets to
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the left, without changing their order. Then, we replace every Si by ∆(Si ,a)∩T . Finally, we
append the state set S0∩F to the end of the list. Denote the length of the updated list by ℓ.
Now, we clean up states. For i= 0, . . . , ℓ−1 do: if Si \F is a subset of

⋃ℓ−1
i′=i+1Si′ and Si 6= /0,

then set m′i = 1, otherwise m′i = 0. Now, if mi = 1, then remove the states contained in Si from
every Si′ with i′ > i. As we haveℓ≤ n+1, we can retranslate the updated list into a unique
state tuple((S′0,m

′
0), . . . ,(S

′
n,m

′
n)) (if the list is too short, we pad it with( /0,0) at the end).

• To define c consider a reachable state q= ((S0,m0), . . . ,(Sn,mn),d). Let e be the minimal i such
that Si = /0 and let m be the minimal i such that mi = 1. Note that e is always defined for reachable
states (due to Remark 19.2) and that e6= m. We define

c(q) =











1 if e= 0,

2m if m< e,

2e−1 if 0< e< m or if m undefined.

Note that in the definition ofδ , cleaning up the sets might introduce new empty sets in the middle of
the list. Also, note thatp in the definition ofd′ is only well defined when considering reachable states.
To prove the correctness of this construction, we need some properties of the states ofP.

Remark 19. Let q′ = ((S0,m0), . . . ,(Sn,mn),d) be a reachable state ofP.

1. Si ⊆ S0 for every i.

2. For every non-empty set Si there is a state qi ∈ Si such that qi /∈ Si′ for every i′ > i.

3. S0 = {q∈ Q | d(q, j) 6=⊥ for every j}.

To improve readability, we say that a finite or infinite runρ satisfiesO = {(F1,b1), . . . ,(Fk,bk)} ⊆
2Q×N+, if for every j we have that every infix ofρ of lengthb j contains at least one state fromFj . Next,
we show thatd(q, j) counts the time since the unique simulated run ofA ending inq has visitedFj .

Lemma 20. Let q′0q′1q′2 . . . be the run ofP on w0w1w2 · · · ∈ Σω with q′t = ((St
0,m

t
0), . . . ,(S

t
n,m

t
n),d

t).

1. If qt ∈ St
i , then there exists a (unique) finite run q0q1 . . .qt ofA on w0w1 . . .wt−1 that satisfiesO.

2. Let t0 < t1 be positions of q′0q′1q′2 . . . and let i be in the range0≤ i ≤ n such that

• mt0
i = mt1

i = 1,

• St
i 6= /0 for every t in the range t0 ≤ t ≤ t1, and

• mt
i′ = 0 and Sti′ 6= /0 for every t in the range t0 ≤ t ≤ t1 and every i′ < i.

Then, every finite run qt0 . . .qt1 of A on wt0 . . .wt1−1 satisfying qt ∈ St
i for every t in the range

t0 ≤ t ≤ t1 visits a state in F at least once.

3. Let q0q1q2 . . . be a run ofA on w0w1w2 . . . that satisfiesO. Then, we have qt ∈ St
0 for every t.

Proof. 1.) We show a stronger statement by induction overt: if qt ∈ St
i for somei, then there exists

a finite runq0q1 . . .qt of A on w0w1 . . .wt−1 that satisfiesO and for everyj in the range 0≤ j ≤ k we
havedt(qt , j) = min{t − t ′ | t ′ ≤ t andqt ′ ∈ Fj} or (in case there is no suchqt ′ ∈ Fj) we havedt(qt , j) =
|q0q1 · · ·qt |= t +1. Uniqueness of the run is then implied by non-confluence ofA.

Due to Remark 19.1 it suffices to consideri = 0. The claim holds fort = 0 by definition ofq′0. Now,
let t > 0: asqt ∈St

0, there is a unique (due to non-confluence) stateqt−1 ∈St−1
0 such that(qt−1,wt−1,qt)∈

∆. Applying the inductive hypothesis, we obtain a runq0q1 . . .qt−1 of A onw0w1 . . .wt−2 that satisfiesO
anddt−1(qt−1, j) = min{(t −1)− t ′ | t ′ ≤ t −1 andqt ′ ∈ Fj} or dt−1(qt−1, j) = |q0q1 · · ·qt−1| = t. Fur-
thermore, Remark 19.3 yieldsdt(qt , j)< b j . We consider two cases: ifqt ∈ Fj , thenq0q1 · · ·qt satisfiesO
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and we havedt(qt , j) = 0, by definition ofdt , which is equal to min{t − t ′ | t ′ ≤ t andqt ′ ∈ Fj}. Now,
supposeqt /∈ Fj . Then, we havedt−1(qt−1, j) < b j −1, since we havedt(qt , j) = dt−1(qt−1, j)+1< b j

by the definition ofdt in caseqt /∈ Fj . We consider the two choices for the value ofdt−1(qt−1, j). If
dt−1(qt−1, j) =min{(t−1)− t ′ | t ′ ≤ t−1 andqt ′ ∈ Fj}< b j −1, then the suffix ofq0q1 · · ·qt−1 of length
b j −1, contains a vertex fromFj . Thus, also the suffix ofq0q1 · · ·qt of lengthb j contains a vertex from
Fj and hencedt(qt , j) = min{(t −1)− t ′ | t ′ ≤ t −1 andqt ′ ∈ Fj}+1= min{t − t ′ | t ′ ≤ t andqt ′ ∈ Fj}
andq0q1 · · ·qt satisfiesO, since the induction hypothesis applies to every infix but the last one, which
has a vertex fromFj . Otherwise, ifdt−1(qt−1, j) = |q0q1 · · ·qt−1| = t < b j −1, thendt(qt , j) = t +1=
|q0q1 · · ·qt | by definition ofdt . Then,q0q1 · · ·qt trivially satisfiesO, as it has no infix of lengthb j .

2.) We assumeqt1 /∈ F, since we are done otherwise. We haveqt0 /∈ St0
i′ for every i′ > i, due to

mt0
i = 1, which means all states fromSt0

i are deleted from the setsSt0
i′ for everyi′ > i. Let t ′ in the range

t0 < t ′ ≤ t1 be the first position such thatqt ′ ∈
⋃n

i′=i+1 St ′
i′ . Such a position exists, as we havemt1

i = 1, which
implies qt1 ∈ St1

i′ for somei′ > i. Sinceqt ′ ∈ St ′
i′ , eitherqt ′ ∈ ∆(St ′−1

i′ ,wt ′−1) or qt ′ ∈ ∆(St ′−1
0 ,wt ′−1)∩F.

Thus, it suffices to derive a contradiction in the first case:qt ′ ∈ ∆(St ′−1
i′ ,wt ′−1) implies the existence of

a p∈ St ′−1
i′ such that(p,wt ′−1,qt ′) ∈ ∆. We havep 6= qt ′−1 due to the minimality of the positiont ′. But

then Lemma 20.1 yields two different runs ofA from q0 to qt ′ on w0 . . .wt ′−1, which gives the desired
contradiction to the non-confluence ofA.

3.) Again, we show a stronger statement by induction overt: let q0q1q2 . . . be a run ofA on
w0w1w2 . . . that satisfiesO. Then, for everyt we haveqt ∈ St

0 and for everyj in the range 1≤ j ≤ k
we havedt(qt , j) = min{t − t ′ | t ′ ≤ t andqt ′ ∈ Fj} or (in case there is no suchqt ′ ∈ Fj ) we have
dt(qt , j) = |q0q1 · · ·qt | = t + 1. Note that this statement is only well-defined for a non-confluent au-
tomaton.

The induction startt = 0 follows from the definition ofq′0. Now, lett > 0: the induction hypothesis
yields qt−1 ∈ St−1

0 and for every j in the range 1≤ j ≤ k we havedt−1(qt−1, j) = min{(t − 1)− t ′ |
t ′ ≤ t −1 andqt ′ ∈ Fj} or dt−1(qt−1, j) = |q0q1 · · ·qt−1|= t. We consider two cases. Ifqt ∈ Fj , then we
haveqt ∈ St

0 anddt(qt , j) = 0, which is equal to min{t − t ′ | t ′ ≤ t andqt ′ ∈ Fj} by definition ofSt
0 and

dt . Otherwise, ifqt /∈ F, then we havedt−1(qt−1, j) < b j −1, by induction hypothesis and the fact that
q0q1 · · ·qt−1 satisfiesO. Due to Remark 19.3, it suffices to showdt(qt , j) < b j . We consider the two
choices for the value ofdt−1(qt−1, j). If dt1(qt−1, j) = min{(t −1)− t ′ | t ′ ≤ t −1 andqt ′ ∈ Fj}< b j −1,
thendt(qt , j) = min{(t −1)− t ′ | t ′ ≤ t −1 andqt ′ ∈ Fj}+1= min{t − t ′ | t ′ ≤ t andqt ′ ∈ Fj}< b j . On
the other hand, ifdt−1(qt−1, j) = |q0q1 · · ·qt−1|= t < b j −1, thendt(qt , j) = t+1= |q0q1 · · ·qt |< b j .

We are now able to prove the correctness of Construction 18. Our proof proceeds along the lines of
the proof for the original construction without counters [9].

Lemma 21. LetA = (Q,Σ,q0,∆,F) be a non-confluent B̈uchi automaton, let{(F1,b1), . . . ,(Fk,bk)} ⊆
2Q×N+, and letP be the deterministic parity automaton obtained from Construction 18.

1. P accepts w if and only ifA has an accepting runρ on w such that every Fj is visited at least once
in every infix ofρ of length bj .

2. |P| ≤ 2(|A|+1)2
·
(

Πk
j=1(b j +1)

)|A|
and |c(Q′)|= 2|A|+1.

Proof. 1.) Let q′0q′1q′2 . . . be an accepting run ofP on w, with q′t = ((St
0,m

t
0), . . . ,(S

t
n,m

t
n),d

t). Then,
there exists a positiont0 and ani such thatc(q′t) = 2i for infinitely manyt andc(q′t)≥ 2i for everyt ≥ t0.
Thus,St

i′ 6= /0 for everyt ≥ t0 and everyi′ ≤ i andmt
i′ = 0 for everyt ≥ t0 and everyi′ < i. SinceSt+1

i is
a non-empty subset of∆(St

i ,wt) for everyt ≥ t0, König’s Lemma yields an infinite runqt0qt0+1qt0+2 . . .



160 Optimal Bounds in Parametric LTL Games

(not necessarily starting in an initial state) ofA on wt0wt0+1wt0+2 . . . such thatqt ∈ St
i for everyt ≥ t0.

Furthermore, there exists a finite run ofA on w0 . . .wt0−1 starting in an initial state and ending inqt0 due
to Lemma 20.1. These runs can be concatenated to an infinite run q0q1q2 . . . of A on w such thatqt ∈ St

0
for everyt. Hence,q0q1q2 . . . satisfiesO due to Lemma 20.1. Lett1 < t2 < t3 < · · · be the positions after
t0 such thatc(q′ts) = 2i, i.e.,mts

i = 1. The runq0q1q2 . . . is accepting due to Lemma 20.2, as the run visits
an accepting state in between anyts andts+1, of which there are infinitely many.

Now, let q0q1q2 . . . be an accepting run ofA on w that satisfiesO and letq′0q′1q′2 . . . be the run of
P on w with q′t = ((St

0,m
t
0), . . . ,(S

t
n,m

t
n),d

t). We haveqt ∈ St
0 for everyt due to Lemma 20.3. Assume

there are only finitely manyt such thatmt
0 = 1. Then, there is a minimal indexi1 such that an infinite

suffix of q0q1q2 . . . is tracked bySi1 andSt
i′ 6= /0 for everyi′ ≤ i1 from some point onwards. This is due

to the fact that for everyt with qt ∈ F the setS0∩F (which containsqt) is appended to the list of state
sets. Furthermore, this set can be moved to the left (in case other sets are empty) only a finite number of
times. Finally, if the stateqt is deleted from this set, then there is a smaller set which tracks this run, for
which the same reasoning applies. Again, assume there are only finitely manyt such thatmt

i1 = 1. Then,
there exists a minimal indexi2 > i1 such that an infinite suffix ofq0q1q2 . . . is tracked bySi2 andSt

i′ 6= /0
for everyi′ ≤ i2 from some point onwards. This can be iterated until we have that the setsSt

n−1 track the
suffix of q0q1q2 . . . and all smaller sets are always non-empty. But asSt

n−1 is in this situation always a
singleton (see Remark 19.2), it gets marked every time an accepting state is visited byq0q1q2 . . . . Hence,
the run ofP on w is accepting.

2.) Clear.

The Lemmata 16, 17, and 21 imply the existence of a deterministic parity automaton with the prop-
erties required in Lemma 14. Hence, this finishes the proof ofTheorem 10. To compute a finite-state
strategy realizing the optimal value (witnessed by a valuation α) in a PLTLF game with winning condi-
tion ϕ , one has to compute a deterministic parity automaton recognizing theω-wordsw satisfyingϕα ,
as explained above Lemma 14. Dually, in a PLTLG game with winning conditionϕ , one computes a
deterministic parity automaton recognizing theω-wordsw satisfying¬ϕα , which is then complemented
by incrementing the priorities. This complement automatonis a memory structure for the PLTLG game.

5 Conclusion

We presented2EXPTIME -algorithms for computing optimal strategies in a PLTL gameand to determine
whether a given player wins with respect to some, infinitely many, or all variable valuations. The decision
problems for PROMPT–LTL and PLTL (with the exception of the finiteness problem for PLTL) are
decidable by solving a single LTL game of the same size. Hence, adding parameterized operators does
not increase the asymptotic computational complexity of solving these games. Furthermore, even the
optimization problems for unipolar games can be solved in doubly-exponential time, so they are of the
same computational complexity as solving LTL games. However, it takes an exponential number of
parity games to solve to determine an optimal strategy. It isopen whether this can be improved.

An interesting open question concerns the tradeoff betweenthe size of a finite-state strategy and the
quality of the bounds it is winning for.
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[11] Amir Pnueli & Roni Rosner (1989):On the Synthesis of a Reactive Module. In: POPL, pp. 179–190.
Available athttp://doi.acm.org/10.1145/75277.75293.

[12] Amir Pnueli & Roni Rosner (1989):On the Synthesis of an Asynchronous Reactive Module. In Giorgio
Ausiello, Mariangiola Dezani-Ciancaglini & Simona RonchiDella Rocca, editors:ICALP, Lecture Notes in
Computer Science372, Springer, pp. 652–671, doi:10.1007/BFb0035790.

[13] A. Prasad Sistla & Edmund M. Clarke (1985):The Complexity of Propositional Linear Temporal Logics. J.
ACM 32(3), pp. 733–749. Available athttp://doi.acm.org/10.1145/3828.3837.

[14] Martin Zimmermann (2010):Parametric LTL Games. Technical Report AIB 2010-20, RWTH Aachen Uni-
versity. Available athttp://aib.informatik.rwth-aachen.de/2010/2010-20.ps.gz.

http://doi.acm.org/10.1145/377978.377990
http://doi.acm.org/10.1145/377978.377990
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1007/978-3-642-13089-2_21
http://dx.doi.org/10.1007/978-3-642-13089-2
http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/978-3-540-78163-9_24
http://doi.acm.org/10.1145/75277.75293
http://dx.doi.org/10.1007/BFb0035790
http://doi.acm.org/10.1145/3828.3837
http://aib.informatik.rwth-aachen.de/2010/2010-20.ps.gz

	1 Introduction
	2 Definitions
	3 Solving Prompt and PLTL Games
	4 Optimal Winning Strategies for unipolar PLTL Games
	5 Conclusion

