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We consider graph games of infinite duration with winningditons in parameterized linear tem-
poral logic, where the temporal operators are equipped vétiables for time bounds. In model
checking such specifications were introduced as “PLTL" byrAdt al. and (in a different version
called “PROMPT-LTL") by Kupferman et al..

We present an algorithm to determine optimal variable \tana that allow a player to win a
game. Furthermore, we show how to determine whether a pleiysra game with respect to some,
infinitely many, or all valuations. All our algorithms run oloubly-exponential time; so, adding
bounded temporal operators does not increase the comyptexitpared to solving plain LTL games.

1 Introduction

Many of todays problems in computer science are no longeceroed with programs that transform
data and then terminate, but with non-terminating systévulel-checking, the automated verification
of closed systems (those that do not have to interact witmaimaament), is nowadays routinely per-
formed in industrial settings. For open system (those thaeHho interact with a possibly antagonistic
environment), the framework of infinite two-player games igowerful and flexible tool to verify and
synthesize such systems. A crucial aspect of automatefice#ion is the choice of a specification for-
malism, which should be simple enough to be used by prastitlowithout formal training in automata
theory or logics. Herd,inear Temporal Logi€LTL) has turned out to be an expressive, but easy to use
formalism: its advantages include a compact, variable-&ygtax and intuitive semantics. For example,
the specification “every requegis answered by a responggis expressed by = G(q — Fp).

However, LTL lacks capabilities to express timing consitsi e.g., it cannot express that every re-
quest is answered within an unknown, but fixed number of s#&l$®, in an infinite game with winning
condition¢, Player 0 might have two winning strategies, one that arseesry request withim steps,
and another one that takasteps, for some > m. The first strategy is clearly preferable to the second
one, but there is no guarantee that the first one is indeedweshpvhen the game is solved.

To overcome these shortcomings, several parameterizgubtairogics [1] 4] 6] where introduced
for the verification of closed systems: here one adds paranieiunds on the temporal operators. We
are mainly concerned witBarametric Linear Temporal Logi(PLTL) [1], which adds the operatoFs-x
andG<y to LTL. In PLTL, the request-response specification is esged byG(q — F<xp), stating that
every request is answered within the nesteps, where is a variable. Hence, satisfaction of a formula
is defined with respect to a variable valuatmmapping variables to natural numbeFs:x¢ holds, if ¢
is satisfied within the next (x) steps, whileG<y¢ holds, if ¢ is satisfied for the next (y) steps.

The model-checking problem for a parameterized tempowgit I typically no harder than the
model-checking problem for the unparameterized fragmeit, deciding whether a transition system
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satisfies a PLTL formula with respect to some, infinitely mamyall variable valuations i®SPACE-
completel[1], as is LTL model-checking [13]. Similar resutiold for parameterized real-time logics [4].
Also, for PLTL one can determine optimal variable valuasiéor which a formula is satisfied by a given
transition system in polynomial space.

In this work, we consider infinite games with winning conalits in PLTL, i.e., we lift the results on
model-checking parameterized specifications to syntluégsipen systems from parameterized specifica-
tions. Our starting point is a result on the fragment of PLBhtaining only parameterized eventualities,
which was discussed (in a different version called PROMHAT}in [B]: there, the authors show that
the realizability problem (an abstract notion of a game FBROMPT—LTL is2EXPTIME -complete. We
use this result to solve infinite games with winning condition the full logic with parameterized even-
tualities and always’: determining whether a player wind @lPgame with respect to some, infinitely
many, or all variable valuations is al&EXPTIME -complete, as is determining the winner of an LTL
game[11]. So, we observe the same phenomenon as in modduirethe addition of parameterized
operators does not increase the computational complekityeqroblem.

After establishing these results, we consider the problefmding optimal variable valuations that
allow a given player to win the game. If a winning conditiomtains only parameterized eventualities or
only parameterized always’, then it makes sense to ask fopamal valuation that a player can enforce
against her opponent and for a winning strategy realiziegfftimum. Our main theorem states that this
optimization problem can be solved in doubly-exponentiagt so even determining an optimal winning
strategy for such a game is of the same computational coitybexsolving unparameterized games.

The remainder of this paper is structured as follows: inige&, we introduce infinite games with
winning conditions in parameterized linear temporal lagiel fix our notation. In Sectidd 3, we show
how the result on the PROMPT-LTL realizability problem ca&nused to show that determining whether
a player wins a PLTL game with respect to some, infinitely mangll variable valuations can be decided
in doubly-exponential time. In Sectidh 4, we use these tesoldetermine optimal winning strategies in
games for which a notion of optimality can be defined. Fin&lgctiori b gives a short conclusion.

2 Definitions

The set of non-negative integers is denoted\yyhe set of positive integers ly,. The powerset of a
setSis denoted by 2 Throughout this paper I& be a set of atomic propositions.

Automata. An (non-deterministicyw-automatorl = (Q, %, Qp,A,Acc) consists of a finite set of
statesQ, an alphabet, a set of initial state®)y C Q, a transition relatiolA C Q x ~ x Q, and an
acceptance condition Acc. Ag-automaton is deterministic, jQo| = 1 and for every(g,a) € Q x Z,
there is exactly ong such thatg,a,q') € A. In this case, we denot@, = {qo} by go andA as function
0: Qx Z— Q. The size of, denoted by, is the cardinality ofQ. A run of 2l on anw-wordw € X
is an infinite sequence of statesqy ... such thagy € Qp and (gn, Wn, 0n+1) € A for everyn € N. We
consider different acceptance conditions Accdeautomata: (1) Blichi automata with a set of accepting
stated= C Q. Arunqoq10e .- . . is accepting if there are infinitely mamsuch that, € F. (2) Generalized
Biichi automata with a family of sets of accepting stafes— 2°. A run qog10e. . . is accepting if for
everyF € . there are infinitely many such thatg, € F. (3) Parity automata with a priority function
c: Q— N. Arunqgpqi10z.- . . is accepting, if the minimal priority seen infinitely ofteméven. Anw-word
is accepted by am-automaton, if there exists an accepting run on it. The laggu(2() of 2( contains
the w-words accepted b9l. An w-automaton is called unambiguous, if it has at most one aiccep
run on everyw-wordw € 2%, It is called non-confluent, if for evergp-word w and two runsjpqiQz . - -
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andqyo, 05 ... onw we have for alln that if ¢, = ¢f,, thengm = ¢, for everym < n. In a non-confluent
w-automaton witm states, every finite prefix of asw-word has at most finite runs, all of which can
be uniquely identified by their last state. Finally, a stdtammw-automaton is unproductive, if it is not
reachable from the initial state or if there is no acceptiang starting from this state. Removing all
unproductive states from a (generalized) Biichi or patitipaaton does not change its language.

Remark 1. An unambiguous (generalizedliéhi or parity automaton without unproductive states is
non-confluent.

Linear Temporal Logics. Let 2" and%  be two disjoint sets of variabl@s The formulae of Para-
metric Linear Temporal Logic (PLTL) [1] are given by the gnauar

¢:=p|-PI¢AP[dVP[XP[PUP[PRY [Fxdp [Gyd ,

wherepe P, xe 2" andy € . Also, we use the derived operatdts=pV —p andff :=pA —p for
some fixedp € P, F¢ :=ttU ¢, andG¢ :=ffR ¢ B. The set of variables occurring ip is denoted by
var(¢) and defined in the obvious way. The size of a formula¢ is measured by counting the distinct
subformulae ofp. We consider several fragments of PLTéq:is an LTL formula, if vatg) = 0; ¢ is a
PROMPT-LTL formulal[6], if vaf¢ ) is a subset of2” of cardinality at most onep is a PLTLg formula,

if var(¢) C 27; and ¢ is a PLTLg formula, if va¢) C #. A formula in PLTLg or PLTLg is called
unipolar. The semantics of PLTL is defined with respect tasawordw € (2°)“, a positioni € N, and

a variable valuatiom : 2" U% — N as follows:

e (Wi,a) = piff pew; and(w,i,a) | —piff p¢w,
o (Wi,a) = AYiff (wi,a)E¢and(wi,a) =y,
o (Wi,a) =@V iff (wi,a) = ¢ or (wi.a) =y,
o (wi,a)EXgiff (wi+1a)E¢,

e (Wi,a) = ¢Uy iff there exists g > 0 such thatw,i + j,a) = ¢ and(w,i+ j’,a) = ¢ for all j
in the range & ' < j,

e (wi,a) = @Ryiffforall j > 0: either(w,i+ j,a) = g or there exists & in the range & ' < |
such thatw,i+ j’,a) = ¢,

o (Wi,a) = F<¢ iff there exists g in the range &< j < a(x) such thatfw,i+ j,a) = ¢, and

o (Wi,a) =Gy iff forall jintherange &< j <a(y): (wi+j,a) = ¢.
As the satisfaction of an LTL formulé is independent of the variable valuatianwe omita and write
(w,i) = ¢ instead of(w,i,a) = ¢. PLTL and LTL (but not the fragments PROMPT—-LTL, PLTand
PLTLg) are closed under negation, although we only allow formiagegation normal form. This is
due to the duality ob) andR, andF<, andG<y. Thus, we use.¢ as shorthand for the equivalent formula

obtained by pushing the negation to the atomic propositiblude that the negation of a PLEformula
is a PLTLg formula and vice versa.

Remark 2. For everyPLTL formula¢ and every valuatiomr, there exists ahTL formula ¢, such that
for every we (2°) and every £ N: (w,i,a) = ¢ if and only if (w,i) = @q.

1if the sets of variables are not disjoint, already the matheleking problem for PLTL is undecidable [1].

2In [1], the authors also introduced the operatdes;, R<y, F-y, G>x, Usy, andR~x. However, they showed that all these
operators can be expressed uskg and G<y only, at the cost of a linear increase of the formula’s sizésoAwe ignore
constant bounds as they do not add expressiveness.
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This can be shown by replacing the parameterized operatalisjonctions or conjunctions of nested
next-operators. The size ¢ grows linearly iny ,cyarg) 0 (2). Due to Remarkl2, we do not consider a
fixed variable valuation when defining games with winningditians in PLTL, but ask whether Player O
can win a game with winning conditiogh with respect to some, infinitely many, or all valuations.

Infinite Games. An (initialized and labeled) arena = (V,Vy, Vi, E, o, ¢) consists of a finite directed
graph(V,E), a partition{Vp,V1} of V denoting the positions of Player 0 and Player 1, an initiafexe
Vo €V, and a labeling functiodi: V — 2P. The size.«7| of <7 is |V|. It is assumed that every vertex has
at least one outgoing edge. A play= pop102 ... is aninfinite path starting imy. The trace op ist(p) =
L(po)l(p1)t(p2).... A strategy for Player is a mappingo: V*Vi — V such that(p,, o (po...pn)) € E
forall po...pn € V*Vi. A play p is consistent witho if pn.1 = 0 (po...pn) for all nwith p, € V.

A parity game¥ = (<7, c) consists of an aren& and a priority functiorc: V — N. Player 0 wins
a play pop102 . .. if the minimal priority seen infinitely often is even. The nber of priorities of¥ is
|c(V)|. A strategyo for Playeri is winning for her, if every play that is consistent withis won by her.
Then, we say Playeémwins¥.

A PLTL game¥ = (<7, ¢) consists of an aren& and a PLTL formulap. Player O wins a play
with respect to a variable valuatianif (t(p),0,a) = ¢, otherwise Player 1 wing with respect tax. A
strategy for Playeiris a winning strategy for her with respectddf every play that is consistent wiitn is
won by Playei with respect tax. Then, we say that Playewins ¢ with respect tax. We define the set
), of winning valuations for Playerin 4 = (<7, ¢) by #;, = {a | Playeri wins ¢ with respect tax }.
Here (and from now on) we assume tligs domain is restricted to the variables occurringinLTL,
PROMPT-LTL, PLTLg, PLTLg, and unipolar games are defined by restricting the winnimglitimns to
LTL, PLTLE, PLTLg, and unipolar formulae. Again, winning an LTL game is indegent ofa, hence
we are justified to say that Playewins an LTL game.

Strategies with Memory. A memory structure# = (M, my,upd) for an arenaV, Vo, V1, E, Vo, ?)
consists of a finite seéfl of memory states, an initial memory statg € M, and an update function
upd: M xV — M, which can be extended to updv ™ — M by upd (po) =mgand upd(po. .. PnPni1) =
upd(upd*(po- - - Pn), Pnr1)- A next-move function for Playeris a function nxtV; x M — V that satisfies
(v,nxt(v,m)) € E for all v V; and allme M. It induces a strategy with memory.# via o(pg...pn) =
nxt(pn,upd'(po ... Pn)). Astrategy is called finite-state if it can be implementethwa memory structure,
and positional if it can be implemented with a single memdayes The size af# (and, slightly abusive,
0) is |[M|. An arenas/ and a memory structureZ = (M, my,upd) for &7 induce the expanded arena
A xM=NxMVMyxM,Vi x M E, (5,M0), s «.n) Where((s;m),(s,m)) e E'ifand only if (s,5) €
E and updm,s’) =m, and/.«_»~(s;m) = I(s). A game¥ with arena< is reducible ta¢’ with arena
o' via.#, written¥ < , 9, if o' = of x .4 and every play po, M) (1, M) (P2,Mp)... IN ¥’ is won
by the player who wins the projected playp1p2... in 4.

Remark 3. If ¥ < , ¢’ and Player i has a positional winning strategy f&t, then she also has a
finite-state winning strategy with memaowy for ¢.

A parity game or a PLTL gam# (with respect to a fixed variable valuation) cannot be wondty b
players. On the other hand, is determined, if one of the players wins it.

Proposition 4.
1. Parity games are determined with positional strategi®sl0] and the winner can be determined
intime &’ (m(n/d)!9/21) [5], where n, m, and d denote the number of vertices, edgebpsarities.

2. LTL games (and therefore ald8LTL games with respect to a fixed variable valuation) are de-
termined with finite-state strategies. Determining thenemnis 2EXPTIME -complete [[12] and
finite-state winning strategies can be computed in doukherential time.
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3 Solving Prompt and PLTL Games

In this section, we consider several decision problems fdiRyjames. Kupferman et al. solved the
PROMPT-LTL realizability probleﬁmy a reduction to the LTL realizability probleml[6], whichdem-
plete for doubly-exponential time. We show that this resuffices to prove that even the decision prob-
lems for the full logic with non-uniform bounds and paramigied always-operators are 2EXPTIME .
For games with winning conditions in PLTL we are interestethie following decision problems:

Membership: Given a PLTL gam¢/, i € {0,1}, and a valuatiorr, doesa € ng hold?
Emptiness: Given a PLTL game/ andi € {0,1}, is #;;, empty?

Finiteness: Given a PLTL game/ andi < {0,1}, is 7, finite?

Universality: Given a PLTL game/ andi € {0,1}, does¥,, contain all variable valuations?

Our first result is a simple consequence of Rerhark 2 and Pitapod|[2.
Theorem 5. The membership problem fBLTL games is decidable.

The realizability problem for PROMPT-LTL is known to BEXPTIME -complete. The proof of this
result can easily be adapted to graph-based PROMPT-LTLgameonsidered here.

Theorem 6([6]). The emptiness problem fBROMPTFLTL games iEXPTIME -complete.

The adapted proof in terms of graph-based games can be foJad]iand is sketched in the next
section (see Lemniall3). It proceeds by a reduction to solviihggames: given a PROMPT—-LTL game
¢ = (o/,¢) one constructs an LTL gant¢’ = (7', ¢') with |.&’| € ¢(|</|?) and|¢’| € O(|¢|) such
that “//é’ # 0 if and only if Player 0 wins¢’. This proof yields the following corollary, which will be
crucial when we determine optimal strategies in the nexiaeclet f (n) = 27 ¢ 2"

Corollary 7 ([14]). Let¥ = («/,¢) be aPROMPTFLTL game withvar(¢) = {x}. If #J # 0, then
Player0 also has a finite-state winning strategy férof size2|.<7| f (|¢|) which is winning with respect
to the valuation - 2(|.<7|- f(|¢|) +1).

To solve the other decision problems for games with winnimigdations in full PLTL, we make use
of the duality of unipolar games and the duality of the engstiand universality problem. For an arena
o = (V,Vo,V1,E, Vo, £), let o7 :=(V,V1,Vo, E, Vo, /) be its dual arena, where the two players swap their
positions. Given a PLTL gan = (<7, ¢), the dual game i¥ :=(.<7,—¢). The dual game of a PLTd.
game is a PLTE game and vice versa. Itis easy to see that Playéns ¢ with respect tax if and only
if Player 1—i wins ¢ with respect tax. The setS%j} enjoy two types of dualities, which we rely on in
the following. The first one is due to determinacy of LTL gantbe second one due to duality.

Lemma 8. Let¥ be aPLTL game.
1. #,) is the complement of}.
2. Wy =W

Another useful property is the monotonicity of the paramieéel operators: letr(x) < B(x) and

a(y) > B(y). Then,(wi,a) = F<x$ implies (Wi, ) = F<x$ and(w.i,a) = Gy¢ implies (wi, ) |=
G<y¢. Hence, the se%jf’ is upwards-closed ¥ is a PLTL- game, and downwards-closed4fis a
PLTLs game (valuations are compared componentwise). Now, wegh@/main result of this section.

Theorem 9. The emptiness, finiteness, and universality problem$P{drL games are2EXPTIME -
complete.

3An abstract game without underlying arena in which two playternatingly pick letters fromf2 The first player wins if
the w-word produced by the players satisfies the winning condifio



M. Zimmermann 151

Proof. Let¥ = («7,¢). Due to Lemm&lBI2 it suffices to considet 0.

Emptiness of%j?: Let ¢r be the formula obtained fromgh by inductively replacing every subformula
Gy by ¢, and let%r :=(«7, ¢r). Note that¥r is a PLTL: game. Applying downwards-closure, we
obtain that# is empty if and only if#;? is empty.

The latter problem can be decided by a reduction to PROMPI-¢ames. Fix a variablg ¢ 2"
and let¢’ be the formula obtained frome by replacing every variablein ¢ by x. Then,%ﬂgi £ Qif and
only if # # 0, where¥’ = (7, ¢'). The latter problem can be decided in doubly-exponentiaé tby
Theoreni®b. Since we hayg'| < |¢|, the emptiness o#, can be decided in doubly-exponential time.

Universality of 7@9: Applying both statements of Lemrha 8 we get th@? is universal if and only
if 7@1 =0 if and only ifW?? = 0. The latter is decidable in doubly-exponential time, lz@x above.

Finiteness of #,0: If ¢ contains at least onE, then %0 is infinite, if and only if it is non-
empty, due to monotonicity df<x. The emptiness o%} can be decided in doubly-exponential time as
discussed above. Otherwisé,is a PLTLs game whose finiteness problem can be decided in doubly-
exponential time by a reduction to the universality problkema (simpler) PLTlg game. We assume
that ¢ has at least one parameterized temporal operator, singgdbkem is trivial otherwise. The set
“//é’ is infinite if and only if there is a variablg € var(¢) that is mapped to infinitely many values by
the valuations irif/g?. By downwards-closure we can assume that all other vadatske mapped to zero.
Furthermorey is mapped to infinitely many values if and only if it is mappedall possible values, again
by downwards-closure. To combine this, we deffiydo be the formula obtained froh by inductively
replacing every subformul& <, for z# y by ¢ and define4, :=(<7, ¢y). Then,Wg? is infinite, if
and only if there exists some variabfes var(¢) such that%/g‘z is universal. So, deciding Wheth@@)
is infinite can be done in doubly-exponential time by solvjnar(¢)| many universality problems for
PLTLs games, which were discussed above.

Finally, hardness follows directly fro@EXPTIME -hardness of solving LTL games. O

4 Optimal Winning Strategies for unipolar PLTL Games

For unipolar games, it is natural to view synthesis of wigngtrategies as an optimization problem:
which is thebestvariable valuationoa such that Player 0 can win with respecta@ We consider two
quality measures for a valuatiom for ¢: the maximal parameter max,.4)a(z) and the minimal
parameter migy,p) 0 (2). For a PLTL game, Player O tries to minimize the waiting times. Hence,
we are interested in minimizing the minimal or maximal pagéen Dually, for PLTlg games, we are
interested in maximizing the quality measures. The duablpruos, i.e., maximizing the waiting times
in a PLTL= game and minimizing the satisfaction time in a PigTgame, are trivial due to upwards-
respectively downwards- closure of the set of winning viadunes. Again, we only consider Player O as
one can dualize the game to obtain similar results for Play&he main result of this section states that
all these optimization problems are not harder than solkiFiggames.

Theorem 10. Let % = (<%, ¢r) be aPLTLg game and%s = (<%, $c) be aPLTLg game. Then, the
following values (and winning strategies realizing thermi) ©e computed in doubly-exponential time.

1. mino,e/,,,/ggF MiNycyar(ge) O (X)
2. minae%gp ma)g(eva,(d,F) G(X).
3. ma@e%ge MaXcvar(ge) A (Y)-

4. ma@G%G MiNyevar(ge) A (Y)-
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We begin the proof by showing that all four problems can beced to the optimization problem for
PROMPT-LTL games: le&¥ = (<7, ¢) be a PROMPT-LTL game with vep) = {x} C 2". The goal is
to determine mip. 0 a(X).

The latter three reductions are simple applications of thaatonicity of the parameterized opera-
tors, while the first one requires substantial work.

[.) For eachx € var(¢), we replace eventualities parameterizedzl3y x by an unparameterized
formula, thereby constructing the projection%{,% to the values ok. However, we cannot just re-
move the parameters from an eventuality, as we have to etigiréhe waiting times are still bounded
by some unknown, but fixed value. This is achieved by applyireyalternating-color technique for
PROMPT-LTL [6].

Let p ¢ P be a fixed proposition. Am-wordw = wiwiw;. .. € (2PU(PH)® is a p-coloring ofw =
WoWiW5o. .. € (2P)w if w,NP = w,, i.e.,w, andwj, coincide on all propositions iP. The additional
propositionp can be thought of as the color wf;: we say that a position is green ifp € wj,, and say
that it is red ifp ¢ w/,. Givenk € N we say thatv is k-spaced, if the colors in/ change infinitely often,
but not twice in any infix of lengthk. Dually, w is k-bounded, if the colors change at least once in every
infix of lengthk+ 1.

The formulaalt,:=GFp A GF—p is satisfied if the colors change infinitely often. Given a BLT
formula¢ andX C var(¢), let ¢x denote the formula obtained by inductively replacing eweryformula
F<x@ with x ¢ X by (p — (pU(=pUy))) A (-p — (=pU(pUy))). Finally, consider the formulgx A
altp. It forces a coloring to have infinitely many color changed awery subformuldr <,y with x ¢ X
to be satisfied within one color change. We havd ¢j = X and|¢x| € O(|¢|).

For a variable valuatioar and a subseX of a’s domain, we denote the restriction @fto X by a;x.

Lemma 11([6]). Let¢ be aPLTL formula, XC var(¢), and let we (2P)®.

1. If (w,0,a) = ¢, then(W,0,ax) = ¢x Aalt, for every k-spaced p-coloring’wf w, where k=
ma)g(evar(d))\x G(X).
2. Let ke N. If w is a k-bounded p-coloring of w wittw',0,a) | ¢x, then(w,0,8) E ¢ where

B(x) — {a(x) if x € X,

2k else.

The previous lemma shows how replace (on suitgbb®lorings) a parameterized eventuality by an
LTL formula, while still ensuring a bound on the satisfantiof the parameterized eventuality. To apply
the alternating-color technique, we have to transform tiigiral arenas into an arenaz’ in which
Player 0 produceg-colorings of the plays of the original arena, i.e7/ will consist of two disjoint
copies of«/, one labeled withp, the other one not. Assume a play is in vertex one component.
Then, the player whose turn it is athooses a successdrof v and Player 0 picks a component. The
play then continues in this component’s vertéx We split this into two sequential moves: first, the
player whose turn it is chooses a successor and then Playemo8es the component. Thus, we have to
introduce a new vertex for every edge.wfwhich allows Player 0 to choose the component. Formally,
given an arena? = (V,Vp, V1, E, v, /), define the expanded arend :=(V',Vy,V],E'.v,, ') by

o V' =V x{0,1} UE,

o V[ =Vox{0,1} UE,

o V! =Vi x{0,1},

o E'={((v0),8).((v1),8), (& (V.0)), (& (V,1)) | e= (wV) € E},
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e \/6 = (V0>0)1

(vyu{p} ifb=0,
£(v) if b= 1.

/" is bipartite with partition{VV x {0,1},E}, so a play has the fortipo, bo)eo(p1,b1)e1(p2,b2) ... where
PopP1P2. .. is a play ine’, &, = (Pn, Pni1), and theby, are in{0,1}. Also, we have.e’’| € 0(|.7|?).

Finally, this construction necessitates a modificatiorhefdgemantics of the game: only every other
vertex is significant when it comes to determining the winokm play in.7’, the choice vertices
have to be ignored. This motivates blinking semantics foflPgames. Lety = («7,¢) be a PLTL
game ando = pop1p2... be a play. Player O wing with respect toa under blinking semantics, if
(t(Pop2ps--.),0,a) = ¢. Analogously, Player 1 winp with respect too under blinking semantics if
(t(pop2pa--..),0,a) = ¢. The notions of winning strategies and winnigwith respect toa under
blinking semantics are defined in the obvious way.

e !'(e)=0forallec Eand/(v,b) = {

Remark 12. PLTL games with respect to a fixed variable valuation under btigisemantics are deter-
mined with finite-state strategies.

Now, we can state the connection between a RLZame(<7,¢) and its counterpart iny’ with
blinking semantics. The proof relies on the existence ofdistate winning strategies which necessarily
produce onlyk-bounded plays for some fixad sincealt, is part of the winning condition.

Lemma 13. Let (<7, ¢) be aPLTLg game and XC var(¢).

1. Leta: var(¢) — N be a variable valuation. If Player i winge/, ¢) with respect tax, then she
wins (7', px A altp) with respect taxr;x under blinking semantics.

2. Leta: X — N be a variable valuation. If Player i win«/’, ¢x A alt,) with respect toa under
blinking semantics, then there exists a variable valuafomith 3(x) = a(x) for every xe X such
that she wing.«7, ¢ ) with respect t3.

Applying the lemma to our problem, we have

min min a(x)=_ min min{a(x)| Player 0 wing.«’, ¢,y Aaltp) w.rt. a u. blinking semantick .
aewQdxevar() xevar(¢)

Since ¢,y = {x}, we have reduced the minimization problem|tar(¢)| many PROMPT-LTL opti-
mization problems, albeit under blinking semantics. Hosvethe proof presented in the following can
easily be adapted to deal with blinking semantics.

[2.) This problem can directly be reduced to a PROMPT-LTLrofation problem: let/ be the
PROMPT-LTL formula obtained fronpe by renaming each € var(¢g) to z and let¥’ :=(a%, 9f).
Then, mir}),e%oF MaX%evar(ge) O (X) = minae%g a(z), due to upwards-closure OﬁfgoF.

[3.) For everyy € var(¢g) let ¢, be obtained fronpg by replacing every subformula,y for z#y
by ¢ and let¥,:= (%, ¢y). Then, we have mq;g%% MaXevar(g) A (Y) = MaAxevar(ps) ma>g7,€%oy a(y),
due to downwards-closure WgoG. Hence, we have reduced the original problenvén(¢c)| maximiza-
tion problems for a PLTE game with a single variable, which are discussed below.

[4.) Let¢g be obtained frompg by renaming every variable i to zand let¥’ = (a7, ¢5). Then,
ma>§3,€,,,/(59G MiNycvarge) A (Y) = MaX; 0 o(z), again due to downwards—closure%@z; . Again, we have
reduced the original problem to a maximization problem feldLs game with a single variable.

To finish the reductions we translate a Plgrbptimization problem with a single variable into a
PROMPT-LTL optimization problem: le¥ = (<7,¢) be a PLTlg game with vaf¢) = {y} C #.
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Then, we have may o0 a(y) = maX,cy10a(y) = min, 0 a(y) + 1, due to the closure properties and
¢ g 4

LemmdB. As/ is a PROMPT-LTL game, we achieved our goal.

All reductions increase the size of the arena at most quadlst and the size of the winning
condition at most linearly. Furthermore, to minimize thenimial parameter value in a PLELgame
and to maximize the maximal parameter value in a RiTdame, we have to solviar(¢)| many
PROMPT-LTL optimization problems (for the other two prahkejust one) to solve the original unipo-
lar optimization problem with winning conditiogp. Thus, it suffices to show that a PROMPT-LTL
optimization problem can be solved in doubly-exponentrakt

So, let¥ = (<7, ¢) be a PROMPT-LTL game with vep) = {x}. If #,0 # 0, then CorollaryT7 yields

mingcyoa(x) < k:=2(l/|- f(|¢]) +1) € || 227" | et a, be the valuation mappingto n. To
determine mip o a(x), it suffices to find the smallest< k such thatr, € #,2. As the number of such

valuationsay, is equal tok, it suffices to show thatr, € 7@9 can be decided in doubly-exponential time
in the size of¢, provided than < k. This is achieved by a game reduction to a parity game.

Fix a valuationa and remember thap, is an LTL formula (see RemaiK 2). Now, observe that
a deterministic parity automatol} = (Q,2", ¢, 8,¢) with L(B) = {w € (2°)® | (w,0) |= ¢4} can be
turned into a memory structure = (Q, go, upd) for (<7, ¢4) by defining upda,v) = 8(q,£(v)). Then,
we have(, ¢q) <. (o x #,c'), wherec (v,q) = ¢(q). Hence, the Remarks 2 aindl 3 yietd= 7, if
and only if Player O wing.« x .#,c).

Lemma 14. Leta be a variable valuation ang be aPROMPTLTL formula withvar(¢) = {x}. There
exists a deterministic parity automat@hrecognizing the languaggw < (2°)® | (w,0) = ¢4} such that

3| € 22" (a(x) +1)2°"*" andp has22(¢) many colors.

For a valuationa, with n < k, we havep| € 22" with 2¢(¢) many colors. Thus, Propo-
sition[4[1 implies that.«” x .#,c’) can be solved in doubly-exponential time in the sizefofwhich
suffices to prove Theorem 110, as we have to solve at most dexplgnentially many parity gan@s
each of which can be solved in doubly-exponential time. Thusmains to prove Lemniall4.

Furthermore, we have seen that the automgdar theminimala, can easily be turned into a finite-
state winning strategy fo¥’ realizing min, 0 a(x). To obtain a winning strategy for the general case
of an PLTLg (respectively PLTk) game it is necessary to construct a deterministic paritgraaton
for the PLTLg formula ¢ (respectively—¢) as described below. In case of a Plg’'hame, we need to
complement the automaton, which is achieved by incremgititia priority of each state by one.

We construct an automaton as required in Lemima 14 in the neleaiof this section. Note that
the naive approach of constructing a deterministic patitpmaton for the LTL formulap,, yields an
automaton that recognizes the desired language, but isaafrgply-exponential size, if is close tok.
The problem arises from the fact th@, uses a disjunction of nested next-operators of deptibe able
to count up tan. This (doubly-exponentialgounteris hardwired into the formulg,, and thus leads to
a quadruply-exponential blowup when turnigg, into a deterministic parity automaton, since turning
LTL formulae into deterministic parity automata necedganicurs a doubly-exponential blowupl[7].

To obtain our results, we decouple the counter from the ftarroy relaxing parameterized eventual-
ities to plain eventualities. We translate the relaxed fdeninto a generalized Bichi automaton, which
is then turned in a Blichi automaton. By placing an addilieoastraint on accepting runs we take care
of the bound on the (now relaxed) parameterized operatossthése automata are unambiguous, we
also end up with a nhon-confluent Biichi automaton, whicheas ttleterminized into a parity automaton.
Only then, the additional constraint is added to the pauty®@aton in the form of a counter that tracks

4This can be improved to exponentially many by binary search.
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(and aborts, if the counter is overrun) different runs of Bighi automaton. This way, we obtain an
automaton that is equivalent to the (unrelaxed) PROMPT-HoFinula with respect tar,. To add these
counters, it is crucial to have a non-confluent Biichi automaas such an automaton has at njQst
runs which have to be tracked by the counter.

In the following we extend known constructions for tranisigtan LTL formula into a non-deter-
ministic Blchi automaton and for translating a non-deteistic Biichi automaton into a deterministic
parity automaton. In the first step we have to deal with theteaeal constraints, which do not appear in
the classical translation problem. In the second step, we tiesimulate these constraints with the states
of the parity automaton, which requires changes to thisstation as well. Since our proof technique
can deal with several parameters, we consider the more aJeraese of a PLTE formula instead of a
PROMPT-LTL formula.

From PLTLr to generalized Bichi Automata. We begin by constructing a generalized Biichi automaton
from a PLTLr formula using a slight adaptation of a standard textboolhow{seel[2]). We ignore the
parameters when defining the transition relation, i.e., reatta parameterized eventually as a plain
eventually. The bounds are taken care of by additional cainé$ on accepting runs.

Given a PLTLs formula ¢ we define its closure @p) to be the set of subformulae gf. A set
B C cl(¢) is consistent, if the following properties are satisfied:

e peBifandonly if -p ¢ B for everyp € P. e Un € BimpliesyyUy» € B.
e Uy AUYp e Bifandonlyif ¢y € Bandyy, € B. o s, yn € Bimpliesy1RY» € B.
e 1V UyreBifandonlyif ¢ € Bor yr € B. o | € BimpliesFxyn € B.

The set of consistent subsets is denotedifp) C 2°(%).
Construction 15. Given aPLTLg formula ¢, we define the generalizediéhi automaton
Ap = (Q,2°,Qu, A, .F) by
e Q=%(¢)and @={Bc%(¢)| ¢ B},
e (B,a,B') € Aifand only if
- BNP=a,
— Xyn € Bifand only ifyy € B,
— ynUyr e Bif and only ify, € B or (Y1 € B andy,Uy, € B'),
— YRy, € Bifand only ify, € B and @ € B or y1Ry, € B'), and
— Fxyn e Bifand only ifyy € Bor Fxy; € B'.
o = cg?Uch;RchiF§ where
— Fu = {Fyuy, | Y1Ur € cl(¢)} with Fy,uy, ={B€ € (¢) | y1Uy2 ¢ B or ), € B},
— IR ={Fyry, | Y1R U € cl(9)} with Fyry, = {B< Z(9) | 1Ry € B or Y, ¢ B}, and
- e = {Fr | FaxPr € cl(¢)} with Fe_,y, = {B€ €(¢) | F<xyn ¢ B or yn € B}.

Lemma 16. Let¢ € PLTLg and let2(y be defined as in Constructionl15.

1. (w,0,a) = ¢ if and only if2(y has an accepting rup on w such that eacheE,y, € ZF_ is visited
at least once in every infix @f of lengtha (x) + 1.

2. 2y is unambiguous.
3. |2Ap| <2l and|.Z| < |¢|.
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Proof. [1.) Let(w,0,a) = ¢. For eachn defineB, = {Y € cl(¢) | (w,n,a) = ¢} and show thap =
BoB1B:... is an accepting run dly such that eachg_,y, € Fr_ is visited at least once in every infix of
p of lengtha (x) + 1. The semantics of PLTL guarantee that eBglis consistentBy € Qo follows from
(w,0,a) = ¢, and(Bn,wh,Bn:1) € A for everyn is due to the semantics of PLTL. Thus, the sequence
BoB1Bs... is a run. Assume that sonkg, uy, is visited only finitely often, i.e., there exists an index
such that for every’ > nwe have(w,n', a) = ynUyr and(w, ', a) = yr. This contradicts the semantics
of the until-operator, which guarantee a positiar> n such thatw,m, a) = ¢, if (w,n,a) = g1Us,.
Now, assume that sonf&y,ry, is visited only finitely often, i.e., there exists an indexsuch that for
everyn’ > n we have(w,n’,a) = yhRy»r and (w,n’,a) = . This contradicts the semantics of the
release-operator, which stafe,n,a) = 1Ry, if @, holds at every positiom’ > n. Finally, assume
that someFr_, g, € #r_ is not visited in an infix oBpB1B,... of length a(x) + 1, i.e., there is some
indexn such thatw,n, a) = F<,@n and(w,n+ j,a) b gy for everyj in the range < j < a(x). This
contradicts the semantics of the parameterized eventualiich guarantee the existence of an index
in the range X k < a(x) such thatw,n+k, a) = ¢1. HenceBoB1B;... is an accepting run such that
eachFr_ g, € ZF_ is visited at least once in every infix 85B1B,. .. of lengtha (x) + 1.

For the other direction, lgt = BoB;B;... be an accepting run &y onw such that eacke_y, €
FE_ is visited at least once in every infix pf of lengtha (x) + 1. A structural induction oveg shows
thaty € B, if and only if (w,n, a) = . This suffices, since we hagee B,.

[2.) Lete(¢) be the formula obtained from € PLTLg by replacing every parameterized eventually
F<x by an eventuallfr. The automataly and®le ) are isomorphic. Thus, it suffices to show tR&t,)
is unambiguous. So, assume there are two acceptingBgBid, ... andByB|B,... on anw-word w
and letn be an index such tha&, # By, i.e., there existg € cl(e(¢)) such that (w.l.o.g.) € By, but
Y ¢ B;.. In[l.), we have shown that we hayec B, (respectivelyy € B) if and only if (w,n) = ¢
(note thaty is an LTL formula, hence we do not need to care about a varialation). Thus, we have
(w,n) = ¢ (due toy € By) and(w, n) = @ (due toy ¢ By), which yields the desired contradiction.

[3.) Clear. O

From generalized Hichi Automata to Blichi Automata. Now, we use a standard construction (see [2])
to turn a generalized Buchi automat@h= (Q,Z,Qo,A, {Fi,...,F}) into a Buchi automatorl’ =
(@,Z,Qp, 4, F') while preserving its language (even under the additionabtaints) and its unambi-
guity. The state set af’ is Q x {0,1,...,k}, where the first component is used to simulate the behavior
of 2, while the second component is used to ensure that eveRy gevisited infinitely often.

Lemma 17. Let2A = (Q,Z,Qo,A, {F1,...,F}) be a generalized &hi automaton. There exists d@éhi
automator®l’ with state set & {0,1...,k} such that the following holds:

1. Let2 =2, for somePLTLg formula¢ as in Construction 15. Theitw,0,a) = ¢ if and only if
2’ has an accepting ruiido,io)(d1,i1)(02,i2) ... on w such that eackr_,y, € F¢_ is visited at
least once in every infix obg 0z . .. of lengtha (x) + 1.

2. 2" is unambiguous, #( is unambiguous.
3. A =2 (k+1)

From Buichi Automata to Deterministic Parity Automata. Now, we have to determinize an unam-
biguous (and therefore non-confluent) Biichi automatorienihcorporating the additional constraints
on accepting runs. Abstractly, we are given a non-confluérdhBautomator®l and a finite set of tu-
ples(Fj,b;j) € 29 x N, and are only interested in rupsthat visit a state fronfr; in every infix of p of
lengthb;, while visiting the accepting states of the Biichi automatdinitely often. Remember that a
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non-confluent automaton has at m@3t finite runs on a finite wordvy - - - Wy, which can be uniquely
identified by their last state. Furthermore, for every laatex of such a run, there is a unique stgte
such thatp is the last state of a run of the automatonven - -w,_1 and(p,wn,q) € A. Thus, to check
the additional constraints on the runs, we can use coudterg) to abort the run ending iq if it did

not visit F; for b; consecutive states. The state space of the determinigtmaton we construct is the
cartesian product of the state spacéoénd the counterd(q, j) for everyq and j, wherej3 is a deter-
ministic automaton recognizing the languagelofithout additional constraints. To prove Theoriem 10,
we want to use the deterministic automaton with counters esony structure in a game reduction,
which imposes additional requirements on its size and te@ance condition.

The Bichi automaton we need to determinize is already obmemtial size. Hence, we can spend
another exponential for determinization, which is the ¢gbcomplexity of a determinization procedure
for Biichi automata. However, we have to carefully choosesitceptance condition of the deterministic
automaton we construct: to prove the main theorem, we need@ptance condition Acc such that a
game with arenay x .# and winning condition Acc can be solved in doubly-exporarime, even
if .# is already of doubly-exponential size. Furthermore, itésichble to use a condition Acc that
guarantees Player O positional winning strategies: indhi&e,.# implements a finite-state winning
strategy for her in the original PLTHgame.

The parity condition satisfies all our requirements. Thus, adapt a determinization construc-
tion [8,/9] tailored for non-confluent Biichi automata yielgla parity automaton. The automata obtained
by this construction are slightly larger than the ones olatéiby optimal constructions, but still small
enough to satisfy our requirements on them. Another adganté this construction is the fact that it
is conceptually simpler than the constructions for arbjtiaiichi automata based on trees labeled with
state sets. Nevertheless, it is possible to use anothantdeization construction, as long as it satisfies
the requirements in terms of size and winning condition diesd above.

Given a transition relatioh C Q x 2 x Q, defineA(Sa) = {d € Q| (q,a,d) € A for someq € S}.

Construction 18 ([9]). Given a non-confluent i&hi automatorRl = (Q,Z,Qp,A,F) and a finite set
{(Fy,b1),..., (F,b)} € 29 x N, construct the deterministic parity automatgh= (Q',%,qp,5,c) as
follows: let n=|Q| and define

o @ ={((S,m),...,(S,M),d) | S €Q m € {0,1},d: Qx{1,....k} = NU{L} withd(q,]) <
bj ord(q, j) = L},

e 05 = ((%£,0),(0,0),...,(0,0),do) with do(q, j) =0if g€ QoNFj; do(q,j) =1ifqe Qo\ Fj and
1< bj; and dh(q, j) = L otherwise; and $= {gc Qo | d(q, j) # L for every .

e We define the transition functioh only for reachable statesd(((S,mp),...,(S,M),d),a) =
(%), -, (S, M), d’) where

0 if g € A(S,a) and ge Fy,

d(p,j)+1 ifqeA(S,a),q¢Fj,anddp,j)+1<Dbj,

1 ifqelA(S,a),q¢ Fj,anddp,j)+1=Dbj,

1 if g ¢ A(S,a),
where p is the unique (due to non-confluence, see Lémina 2&d )rsS with (p,a,q) € A.
Define T={qe Q| d/(q, ) # L for every j.

— For the update of the state sets consider the sequéRcey),..., (S, my) as a list contain-
ing tuples(S,m). RemarK 192 yields that there are at most n non-empty setSirSt, we
delete all elements of the list containing the empty set byingdhe non-empty state sets to

- d/(q7 J) =
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the left, without changing their order. Then, we replacerg\® by A(S,a) N T. Finally, we
append the state sep SF to the end of the list. Denote the length of the updated list b
Now, we clean up states. Fori0,...,¢—1do: if §\ F is a subset ofJi_j ;S and $ # 0,
then set h= 1, otherwise rh= 0. Now, if m = 1, then remove the states contained ifr&m
every $ with i’ > i. As we have < n+ 1, we can retranslate the updated list into a unique
state tuple((S,, ), - - -, (S, m,)) (if the list is too short, we pad it witfd, 0) at the end).

¢ To define c consider a reachable state-d(S, M), ..., (S, M),d). Let e be the minimal i such
that $ = 0 and let m be the minimal i such that ga 1. Note that e is always defined for reachable
states (due to Remalkl[9.2) and that en. We define

1 ife=0,
c(g) =< 2m ifm<e
2e—1 if0<e< morif mundefined
Note that in the definition od, cleaning up the sets might introduce new empty sets in thielmof

the list. Also, note thap in the definition ofd’ is only well defined when considering reachable states.
To prove the correctness of this construction, we need soopegies of the states gf.

Remark 19. Letd = ((S,mo), -, (Sy,my),d) be a reachable state 8.
1. SC Sforeveryi.
2. For every non-empty settBere is a statejge § such that q¢ S/ for every { > i.

3. 9={qeQ|d(q,j) # L forevery j.

To improve readability, we say that a finite or infinite rpreatisfiesd’ = {(Fy,b1),..., (F.bk)} C
2Q x N, if for every j we have that every infix gb of lengthb; contains at least one state fréfm Next,
we show thatl(q, j) counts the time since the unique simulated rufl@nding inq has visitedr;.

Lemma 20. Let ¢, d5. .. be the run off3 on wowiws, - -- € @ with f = (S}, ), ..., (S, ), db).
1. If g € §, then there exists a (unique) finite rugog. .. o of A on wew; ... w4 that satisfies’.
2. Letp < t1 be positions of gjd, ... and let i be in the rang® < i < n such that

° m}o _ m}l =1,

e § + 0foreverytin the rangept<t < t;, and

e i, =0and $ # 0 for every t in the rangept< t <t; and every’i<i.
Then, every finite runy..q, of 2 on w,...w,_; satisfying g € § for every t in the range
tg <t <ty visits a state in F at least once.

3. Let @u0p... be arun ofd on wawiWs, ... that satisfiesy. Then, we have;ge % for every t.

Proof. [1.) We show a stronger statement by induction dveif ¢ € § for somei, then there exists
a finite rungpqy ... ¢ of 2A onwgw; ... w1 that satisfies”’ and for everyj in the range X j < k we
haved'(q, j) = min{t—t’ |t’ <t andg € Fj} or (in case there is no such € Fj) we haved'(q, j) =
|00t - - - G| =t + 1. Uniqueness of the run is then implied by non-confluenc. of

Due to RemarkB11 it suffices to consider 0. The claim holds fot = 0 by definition ofcy,. Now,
lett > 0: asg € S, there is a unique (due to non-confluence) state € §;* such that(ge—1,w1,¢) €
A. Applying the inductive hypothesis, we obtain a g ... ¢ 1 of A onwgws ... W _» that satisfieg’
andd"Y(g_1,j) = min{(t—1) —t' |t <t —1andg: € Fj} ord""*(gr—_1,j) = |Gots - G—1| =t. Fur-
thermore, Remaifk3.3 yield(q, j) < bj. We consider two cases:df € Fj, thendoas - - - ¢ satisfies
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and we havel'(q, j) = 0, by definition ofd', which is equal to mift —t' |t <t andqgw € Fj}. Now,
supposey ¢ Fj. Then, we havel' (g1, j) < b; — 1, since we have'(q, j) = d'"" (g1, j) + 1 < b
by the definition ofd' in caseq ¢ Fj. We consider the two choices for the valuedSf!(g_1, j). If
d=(q-_1,j) =min{(t—1)—t'|t' <t—1andg € Fj} <bj — 1, then the suffix obocy - - - ;1 of length
bj — 1, contains a vertex frorRj. Thus, also the suffix afpqs - - - ¢ of lengthb; contains a vertex from
F; and hencel' (¢, j) =min{(t—1) —t' |t' <t—1andg € Fj} +1=min{t—t' |[t' <tandq € Fj}
andqoQ; - - - ¢ satisfies?, since the induction hypothesis applies to every infix betldst one, which
has a vertex fronfr;. Otherwise, ifd"1(ct_1, ) = |do--- G-1| =t < bj — 1, thend'(q, j) =t+ 1=
|0t - - - G| by definition ofd'. Then,qoq: - - -  trivially satisfies@, as it has no infix of length;.

[2.) We assumey, ¢ F, since we are done otherwise. We hayg¢ 39 for everyi’ > i, due to
m? = 1, which means all states frofjf are deleted from the se& for everyi’ > i. Lett’ in the range
to < t’ <ty be the first position such thet € J_;_ 1 S Such a position exists, as we hem}é: 1, which
implies o, € S+ for somei’ > i. Sincequ € §, eitherqy € A(S 1, wy_1) or gy € AL, wy_1) NF.
Thus, it suffices to derive a contradiction in the first cagec A(Sf,/’l,wt/,l) implies the existence of
ape S ! such that p,wy_1,q) € A. We havep # gv_1 due to the minimality of the positioti. But
then Lemma 2011 yields two different runs 2ffrom qg to gz onwp...Wy_1, which gives the desired
contradiction to the non-confluence 2f

[B.) Again, we show a stronger statement by induction dvelet goq:g2... be a run of2l on
WowWiW; ... that satisfies7. Then, for everyt we haveq: € §, and for everyj in the range K j <k
we haved' (g, j) = min{t —t' | t' < tandg. € Fj} or (in case there is no sudly € Fj) we have
d'(cr,j) = |goQ1---q| =t +1. Note that this statement is only well-defined for a nonficemt au-
tomaton.

The induction start = 0 follows from the definition ofy,. Now, lett > 0: the induction hypothesis
yields g1 € 3{1 and for everyj in the range 1< j < k we havedY(q_1,j) = min{(t — 1) —t’ |
' <t—1landg € Fj} ord""1(c_1,]) = [qoG1 - - G—1| =t. We consider two cases. df € Fj, then we
haveq: € § andd'(q, j) = 0, which is equal to mift —t’ |’ <t andq € Fj} by definition of$, and
d'. Otherwise, ifg ¢ F, then we havel'~(g_1, j) < bj — 1, by induction hypothesis and the fact that
ol - - - G—1 satisfiesd. Due to Remark 1813, it suffices to shalMq, j) < bj. We consider the two
choices for the value aft (g1, j). If d'*(q_1, j) =min{(t —1) —t'|t' <t—1andg € Fj} <b; -1,
thend'(q, j) =min{(t—1) —t'|[t' <t—1andg € Fj}+1=min{t—t' |[t' <tandqg: € Fj} <bj. On
the other hand, i ~%(q_1, j) = [doth - - - Gh—1| =t < bj — 1, thend (ct, j) =t+1=|qo0s--- G| <bj. O

We are now able to prove the correctness of Construttibn 18 p@of proceeds along the lines of
the proof for the original construction without counterk [9

Lemma 21. Let2 = (Q,Z,qo,A,F) be a non-confluent iBhi automaton, lef(Fy,by),...,(F,bk)} C
29 x N, and let}3 be the deterministic parity automaton obtained from Carctton[18.

1. B accepts w if and only #( has an accepting rup on w such that every;His visited at least once
in every infix ofp of length k.

2
2. ] < 27 (M (b +1)) and]o(@)] =220 + 1.

Proof. [1.) Letqgyd,d,... be an accepting run &8 onw, with gf = ((§,,m}), ..., (S,,m),d"). Then,
there exists a positiolg and an such that(q/) = 2i for infinitely manyt andc(q]) > 2i for everyt > to.
Thus,S, # 0 for everyt > to and everyi’ <i andni, = 0 for everyt > ty and everyi’ < . Since§ ™ is
a non-empty subset @f(S§,w) for everyt > to, Konig’s Lemma yields an infinite rugg, o, +10,-2- - -
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(not necessarily starting in an initial state)fon wi,W,1W,2... such thaty € § for everyt > to.
Furthermore, there exists a finite run®onwp...w,_1 starting in an initial state and endingadg due
to Lemmd2{1l. These runs can be concatenated to an infinipaua, ... of 2l onw such thaty € §,
for everyt. Hence o010 . .. satisfiest’ due to Lemma20l1. Lét <t, <tz < --- be the positions after
to such that(q;, ) = 2i, i.e., nﬁs = 1. The rungog:10p.. . . is accepting due to Lemmal20.2, as the run visits
an accepting state in between aggndts, 1, of which there are infinitely many.

Now, letcogia.... be an accepting run & onw that satisfies/’ and letqpd; 5. .. be the run of
B onw with ¢f = ((§,m), ..., (S, ), d"). We haveg € S for everyt due to Lemma20]3. Assume
there are only finitely many such thatrf, = 1. Then, there is a minimal indéx such that an infinite
suffix of qog10p. . . is tracked byS, andﬁ, # Q for everyi’ < i; from some point onwards. This is due
to the fact that for every with ¢ € F the setS N F (which containgy) is appended to the list of state
sets. Furthermore, this set can be moved to the left (in dhse sets are empty) only a finite number of
times. Finally, if the state is deleted from this set, then there is a smaller set whiaksér¢his run, for
which the same reasoning applies. Again, assume there rérotely manyt such tharrﬁ1 =1. Then,
there exists a minimal indey > i1 such that an infinite suffix ap010. . . is tracked byS, andﬁ/ 0
for everyi’ < i, from some point onwards. This can be iterated until we haaette sets, , track the
suffix of gog10. .. and all smaller sets are always non-empty. Bu§as is in this situation always a
singleton (see Remalk1[9.2), it gets marked every time agpdiog state is visited bgoq:0z . ... Hence,
the run of]3 onw is accepting.

2.) Clear. O

The Lemmata 16, 17, and]21 imply the existence of a detertitiqiarity automaton with the prop-
erties required in Lemmiall4. Hence, this finishes the prodfhaforen{ ID. To compute a finite-state
strategy realizing the optimal value (witnessed by a vadnat) in a PLTLs game with winning condi-
tion ¢, one has to compute a deterministic parity automaton rezimgnthe w-wordsw satisfying ¢,
as explained above Lemrhal14. Dually, in a PETgame with winning conditior$, one computes a
deterministic parity automaton recognizing teevordsw satisfying—¢, which is then complemented
by incrementing the priorities. This complement automascsm memory structure for the PLELgame.

5 Conclusion

We presente@ EXPTIME -algorithms for computing optimal strategies in a PLTL gaand to determine
whether a given player wins with respect to some, infinitebngg or all variable valuations. The decision
problems for PROMPT-LTL and PLTL (with the exception of theitkness problem for PLTL) are
decidable by solving a single LTL game of the same size. Heambding parameterized operators does
not increase the asymptotic computational complexity dfisg these games. Furthermore, even the
optimization problems for unipolar games can be solved wbteexponential time, so they are of the
same computational complexity as solving LTL games. Howeatdakes an exponential number of
parity games to solve to determine an optimal strategy.dpen whether this can be improved.

An interesting open guestion concerns the tradeoff betwleesize of a finite-state strategy and the
quality of the bounds it is winning for.
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