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Abstract
We develop team semantics for Linear Temporal Logic (LTL) to express hyperproperties, which
have recently been identified as a key concept in the verification of information flow properties.
Conceptually, we consider an asynchronous and a synchronous variant of team semantics. We
study basic properties of this new logic and classify the computational complexity of its satis-
fiability, path, and model checking problem. Further, we examine how extensions of these basic
logics react on adding other atomic operators. Finally, we compare its expressivity to the one
of HyperLTL, another recently introduced logic for hyperproperties. Our results show that LTL
under team semantics is a viable alternative to HyperLTL, which complements the expressivity
of HyperLTL and has partially better algorithmic properties.
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1 Introduction

Guaranteeing security and privacy of user information is a key requirement in software
development. However, it is also one of the hardest goals to accomplish. One reason
for this difficulty is that such requirements typically amount to reasoning about the flow
of information and relating different execution traces of the system. In particular, these
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10:2 Team Semantics for the Specification and Verification of Hyperproperties

requirements are no longer trace properties, i.e., properties whose satisfaction can be verified
by considering each trace in isolation. For example, the property “the system terminates
eventually” is satisfied if every trace eventually reaches a final state. Formally, a trace
property ϕ is a set of traces and a system satisfies ϕ if each of its traces is in ϕ.

In contrast, the property “the system terminates within a bounded amount of time” is no
longer a trace property; consider a system that has a trace tn for every n, so that tn only
reaches a final state after n steps. This system does not satisfy the bounded termination
property, but each individual trace tn could also stem from a system that does satisfy it.
Thus, satisfaction of the property cannot be verified by considering each trace in isolation.

Properties with this characteristic were termed hyperproperties by Clarkson and Schnei-
der [6]. Formally, a hyperproperty ϕ is a set of sets of traces and a system satisfies ϕ if its set
of traces is contained in ϕ. The conceptual difference to trace properties allows specifying a
much richer landscape of properties including information flow and trace properties. Further,
one can also express specifications for symmetric access to critical resources in distributed
protocols and Hamming distances between code words in coding theory [29]. However, the
increase in expressiveness requires novel approaches to specification and verification.

HyperLTL. Trace properties are typically specified in temporal logics, most prominently in
Linear Temporal Logic (LTL) [28]. Verification of LTL specifications is routinely employed
in industrial settings and marks one of the most successful applications of formal methods to
real-life problems. Recently, this work has been extended to hyperproperties: HyperLTL,
LTL equipped with trace quantifiers, has been introduced to specify hyperproperties [5].
Accordingly, a model of a HyperLTL formula is a set of traces and the quantifiers range over
these traces. This logic is able to express the majority of the information flow properties
found in the literature (we refer to Section 3 of [5] for a full list). The satisfiability problem
for HyperLTL is undecidable [10] while the model checking problem is decidable, albeit of
non-elementary complexity [5, 13]. In view of this, the full logic is too strong. Fortunately
most information flow properties found in the literature can be expressed with at most
one quantifier alternation and consequently belong to decidable (and tractable) fragments.
Further works have studied runtime verification [2, 11], connections to first-order logic [14],
provided tool support [13, 10], and presented applications to “software doping” [7] and
the verification of web-based workflows [12]. In contrast, there are natural properties, e.g.,
bounded termination, which are not expressible in HyperLTL (which is an easy consequence
of a much stronger non-expressibility result [3]).

Team Semantics. Intriguingly, there exists another modern family of logics, Dependence
Logics [32, 9], which operate as well on sets of objects instead of objects alone. Informally,
these logics extend first-order logic (FO) by atoms expressing, e.g., that “the value of a
variable x functionally determines the value of a variable y” or that “the value of a variable x
is informationally independent of the value of a variable y”. Obviously, such statements only
make sense when being evaluated over a set of assignments. In the language of dependence
logic, such sets are called teams and the semantics is termed team semantics.

In 1997, Hodges introduced compositional semantics for Hintikka’s Independence-friendly
logic [19]. This can be seen as the cornerstone of the mathematical framework of dependence
logics. Intuitively, this semantics allows for interpreting a team as a database table. In this
approach, variables of the table correspond to attributes and assignments to rows or records.
In 2007, Väänänen [32] introduced his modern approach to such logics and adopted team
semantics as a core notion, as dependence atoms are meaningless under Tarskian semantics.
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After the introduction of dependence logic, a whole family of logics with different atomic
statements have been introduced in this framework: independence logic [17] and inclusion
logic [15] being the most prominent. Interest in these logics is rapidly growing and the
research community aims to connect their area to a plethora of disciplines, e.g., linguistics [16],
biology [16], game [4] and social choice theory [30], philosophy [30], and computer science [16].
We are the first to exhibit connections to formal languages via application of Büchi automata
(see Theorem 4.3). Team semantics has also found their way into modal [33] and temporal
logic [20], as well as statistics [8].

Recently, Krebs et al. [20] proposed team semantics for Computation Tree Logic (CTL),
where a team consists of worlds of the transition system under consideration. They considered
synchronous and asynchronous team semantics, which differ in how time evolves in the
semantics of the temporal operators. They proved that satisfiability is EXPTIME-complete
under both semantics while model checking is PSPACE-complete under synchronous semantics
and P-complete under asynchronous semantics.

Our Contribution. The conceptual similarities between HyperLTL and team semantics
raise the question how an LTL variant under team semantics relates to HyperLTL. For this
reason, we develop team semantics for LTL, analyse the complexity of its satisfiability and
model checking problems, and subsequently compare the novel logic to HyperLTL.

When defining the logic, we follow the approach of Krebs et al. [20] for defining team
semantics for CTL: we introduce synchronous and asynchronous team semantics for LTL,
where teams are now sets of traces. In particular, as a result, we have to consider potentially
uncountable teams, while all previous work on model checking problems for logics under
team semantics has been restricted to the realm of finite teams.

We prove that the satisfiability problem for team LTL is PSPACE-complete under both
semantics, by showing that the problems are equivalent to LTL satisfiability under classical
semantics. Generally, we observe that for the basic asynchronous variant all of our investigated
problems trivially reduce to and from classical LTL semantics. However, for the synchronous
semantics this is not the case for two variants of the model checking problem. As there
are uncountably many traces, we have to represent teams, i.e., sets of traces, in a finitary
manner. The path checking problem asks to check whether a finite team of ultimately
periodic traces satisfies a given formula. As our main result, we establish this problem to be
PSPACE-complete for synchronous semantics. In the (general) model checking problem, a
team is represented by a finite transition system. Formally, given a transition system and
a formula, the model checking problem asks to determine whether the set of traces of the
system satisfies the formula. For the synchronous case we give a polynomial space algorithm
for the model checking problem for the disjunction-free fragment, while we leave open the
complexity of the general problem. Disjunction plays a special role in team semantics, as it
splits a team into two. As a result, this operator is commonly called splitjunction instead of
disjunction. In our setting, the splitjunction requires us to deal with possibly infinitely many
splits of uncountable teams, if a splitjunction is under the scope of a G-operator, which raises
interesting language-theoretic questions.

Further, we study the effects for complexity that follow when our logics are extended by
dependence atoms and the contradictory negation. Finally, we show that LTL under team
semantics is able to specify properties which are not expressible in HyperLTL and vice versa.

Recall that satisfiability for HyperLTL is undecidable and model checking of non-
elementary complexity. Our results show that similar problems for LTL under team semantics
have a much simpler complexity while some hyperproperties are still expressible (e.g., input

MFCS 2018



10:4 Team Semantics for the Specification and Verification of Hyperproperties

determinism, see page 11, or bounded termination). This proposes LTL under team semantics
to be a significant alternative for the specification and verification of hyperproperties that
complements HyperLTL.

2 Preliminaries

The non-negative integers are denoted by N and the power set of a set S is denoted by 2S .
Throughout the paper, we fix a finite set AP of atomic propositions.

Computational Complexity. We will make use of standard notions in complexity theory.
In particular, we will use the complexity classes P and PSPACE. Most reductions used in
the paper are ≤p

m-reductions, that is, polynomial time, many-to-one reductions.

Traces. A trace over AP is an infinite sequence from (2AP)ω; a finite trace is a finite
sequence from (2AP)∗. The length of a finite trace t is denoted by |t|. The empty trace is
denoted by ε and the concatenation of two finite traces t0 and t1 by t0t1. Unless stated
otherwise, a trace is always assumed to be infinite. A team is a (potentially infinite) set of
traces.

Given a trace t = t(0)t(1)t(2) · · · and i ≥ 0, we define t[i,∞) := t(i)t(i+ 1)t(i+ 2) · · · ,
which we lift to teams T ⊆ (2AP)ω by defining T [i,∞) := {t[i,∞) | t ∈ T}. A trace t
is ultimately periodic, if it is of the form t = t0 · tω1 = t0t1t1t1 · · · for two finite traces t0
and t1 with |t1| > 0. As a result, an ultimately periodic trace t is finitely represented
by the pair (t0, t1); we define J(t0, t1)K = t0t

ω
1 . Given a set T of such pairs, we define

JT K = {J(t0, t1)K | (t0, t1) ∈ T }, which is a team of ultimately periodic traces. We call T a
team encoding of JT K.

Linear Temporal Logic. The formulas of Linear Temporal Logic (LTL) [28] are defined
via the grammar ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ | ϕRϕ, where p ranges
over the atomic propositions in AP. The length of a formula is defined to be the number of
Boolean and temporal connectives occurring in it. The length of an LTL formula is often
defined to be the number of syntactically different subformulas, which might be exponentially
smaller. Here, we need to distinguish syntactically equal subformulas which becomes clearer
after defining the semantics (see also Example 2.1 afterwards on this). As we only consider
formulas in negation normal form, we use the full set of temporal operators.

Next, we recall the classical semantics of LTL before we introduce team semantics. For
traces t ∈ (2AP)ω we define

t |=c p if p ∈ t(0),
t |=c ¬p if p /∈ t(0),
t |=c ψ ∧ ϕ if t |=c ψ and t |=c ϕ,
t |=c ψ ∨ ϕ if t |=c ψ or t |=c ϕ,
t |=c Xϕ if t[1,∞) |=c ϕ,
t |=c Fϕ if ∃k ≥ 0 : t[k,∞) |=c ϕ,

t |=c Gϕ if ∀k ≥ 0 : t[k,∞) |=c ϕ,
t |=c ψUϕ if ∃k ≥ 0 : t[k,∞) |=c ϕ and

∀k′ < k : t[k′,∞) |=c ψ,
t |=c ψRϕ if ∀k ≥ 0 : t[k,∞) |=c ϕ or

∃k′ < k : t[k′,∞) |=c ψ.

Team Semantics for LTL. Next, we introduce two variants of team semantics for LTL,
which differ in their interpretation of the temporal operators: a synchronous semantics ( |=s ),
where time proceeds in lockstep along all traces of the team, and an asynchronous semantics
( |=a ) in which, on each trace of the team, time proceeds independently. We write |=? whenever
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property definition |=a |=s

empty team property ∅ |=? ϕ X X

downwards closure T |=? ϕ implies ∀T ′ ⊆ T : T ′ |=? ϕ X X

union closure T |=? ϕ, T ′ |=? ϕ implies T ∪ T ′ |=? ϕ X ×
flatness T |=? ϕ if and only if ∀t ∈ T : {t} |=? ϕ X ×
singleton equivalence {t} |=? ϕ if and only if t |=c ϕ X X

Figure 1 Structural properties overview.

a definition coincides for both semantics. For teams T ⊆ (2AP)ω let

T |=? p if ∀t ∈ T : p ∈ t(0),
T |=? ¬p if ∀t ∈ T : p /∈ t(0),
T |=? ψ ∧ ϕ if T |=? ψ and T |=? ϕ,

T |=? ψ ∨ ϕ if ∃T1 ∪ T2 = T : T1 |=? ψ and T2 |=? ϕ,
T |=? Xϕ if T [1,∞) |=? ϕ.

This concludes the cases where both semantics coincide. Next, we present the remaining
cases for the synchronous semantics, which are inherited from the classical semantics of LTL.

T |=s Fϕ if ∃k ≥ 0 : T [k,∞) |=s ϕ,
T |=s Gϕ if ∀k ≥ 0 : T [k,∞) |=s ϕ,
T |=s ψUϕ if ∃k ≥ 0 : T [k,∞) |=s ϕ and ∀k′ < k : T [k′,∞) |=s ψ, and
T |=s ψRϕ if ∀k ≥ 0 : T [k,∞) |=s ϕ or ∃k′ < k : T [k′,∞) |=s ψ.

Finally, we present the remaining cases for the asynchronous semantics. Note that,
here there is no unique timepoint k, but a timepoint kt for every trace t, i.e., time evolves
asynchronously between different traces.

T |=a Fϕ if ∃kt ≥ 0, for each t ∈ T : {t[kt,∞) | t ∈ T} |=a ϕ
T |=a Gϕ if ∀kt ≥ 0, for each t ∈ T : {t[kt,∞) | t ∈ T} |=a ϕ,
T |=a ψUϕ if ∃kt ≥ 0, for each t ∈ T : {t[kt,∞) | t ∈ T} |=a ϕ, and

∀k′t < kt, for each t ∈ T : {t[k′t,∞) | t ∈ T} |=a ψ, and
T |=a ψRϕ if ∀kt ≥ 0, for each t ∈ T : {t[kt,∞) | t ∈ T} |=a ϕ or

∃k′t < kt, for each t ∈ T : {t[k′t,∞) | t ∈ T} |=a ψ.

We call expressions of the form ψ ∨ ϕ splitjunctions to emphasise on the team semantics
where we split a team into two parts. Similarly, the ∨-operator is referred to as a splitjunction.

Let us illustrate the difference between synchronous and asynchronous semantics with
an example involving the F operator. Similar examples can be constructed for the other
temporal operators (but for X) as well.

I Example 2.1. Let T = {{p}∅ω, ∅{p}∅ω}. We have that T |=a Fp, as we can pick kt = 0
if t = {p}∅ω, and kt = 1 if t = ∅{p}∅ω. On the other hand, there is no single k such that
T [k,∞) |=s p, as the occurrences of p are at different positions. Consequently T 6|=s Fp.

Moreover, consider the formula Fp∨Fp which is satisfied by T on both semantics. However,
Fp is not satisfied by T under synchronous semantics. Accordingly, we need to distinguish
the two disjuncts Fp and Fp of Fp ∨ Fp to assign them to different teams.

In contrast, synchronous satisfaction implies asynchronous satisfaction, i.e., T |=s ϕ implies
T |=a ϕ. The simplest way to prove this is by applying downward closure, singleton equivalence,
and flatness (see Fig. 1). Example 2.1 shows that the converse does not hold.

Next, we define the most important verification problems for LTL in team semantics
setting, namely satisfiability and two variants of the model checking problem: For classical
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10:6 Team Semantics for the Specification and Verification of Hyperproperties

LTL, one studies the path checking problem and the model checking problem. The difference
between these two problems lies in the type of structures one considers. Recall that a model
of an LTL formula is a single trace. In the path checking problem, a trace t and a formula ϕ
are given, and one has to decide whether t |=c ϕ. This problem has applications to runtime
verification and monitoring of reactive systems [23, 26]. In the model checking problem, a
Kripke structure K and a formula ϕ are given, and one has to decide whether every execution
trace t of K satisfies ϕ.

The satisfiability problem of LTL under team semantics is defined as follows.
Problem: LTL satisfiability w.r.t. teams (TSAT?) for ? ∈ {a, s}.
Input: LTL formula ϕ.
Question: Is there a non-empty team T such that T |=? ϕ?
The non-emptiness condition is necessary, as otherwise every formula is satisfiable due to the
empty team property (see Fig. 1).

We consider the generalisation of the path checking problem for LTL (denoted by LTL-PC),
which asks for a given ultimately periodic trace t and a given formula ϕ, whether t |=c ϕ holds.
In the team semantics setting, the corresponding question is whether a given finite team
comprised of ultimately periodic traces satisfies a given formula. Such a team is given by a
team encoding T . To simplify our notation, we will write T |=? ϕ instead of JT K |=? ϕ.

Problem: TeamPathChecking (TPC?) for ? ∈ {a, s}.
Input: LTL formula ϕ and a finite team encoding T .
Question: T |=? ϕ?

Consider the generalised model checking problem where one checks whether the team of
traces of a Kripke structure satisfies a given formula. This is the natural generalisation of
the model checking problem for classical semantics, denoted by LTL-MC, which asks, for a
given Kripke structure K and a given LTL formula ϕ, whether t |=c ϕ for every trace t of K.

A Kripke structure K = (W,R, η, wI) consists of a finite set W of worlds, a left-total
transition relation R ⊆W ×W , a labeling function η : W → 2AP, and an initial world wI ∈
W . A path π through K is an infinite sequence π = π(0)π(1)π(2) · · · ∈ Wω such that
π(0) = wI and (π(i), π(i + 1)) ∈ R for every i ≥ 0. The trace of π is defined as t(π) =
η(π(0))η(π(1))η(π(2)) · · · ∈ (2AP)ω. The Kripke structure K induces the team T (K) = {t(π) |
π is a path through K}.

Problem: TeamModelChecking (TMC?) for ? ∈ {a, s}.
Input: LTL formula ϕ and a Kripke structure K.
Question: T (K) |=? ϕ?

3 Basic Properties

We consider several standard properties of team semantics (cf., e.g. [9]) and verify which
of these hold for our two semantics for LTL. These properties are later used to analyse the
complexity of the satisfiability and model checking problems. To simplify our notation, |=?

denotes |=a or |=s . See Figure 1 for the definitions of the properties and a summary for which
semantics the properties hold. The positive results follow via simple inductive arguments.
For the fact that synchronous semantics is not union closed, consider teams T = {{p}∅ω}
and T ′ = {∅{p}∅ω}. Then, we have T |=s Fp and T ′ |=s Fp but T ∪ T ′ 6|=s Fp. Note also that
flatness is equivalent of being both downward and union closed.

It turns out that, by Figure 1, LTL under asynchronous team semantics is essentially
classical LTL with a bit of universal quantification: for a team T and an LTL-formula ϕ,
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U(i)

qi
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qi

$
#

E(i)
T (i,1) T (i,0)

xi
qi

$

$
#

$

xi,qi
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3

if `jk = ¬xi,
then L(j, k) :

$

xi

$
#

cj at positions {1, 2, 3} \ {k}

Figure 2 Traces for the reduction defined in the proof of Lemma 4.1.

we have T |=a ϕ if and only if ∀t ∈ T : t |=c ϕ. This however does not mean that LTL under
asynchronous team semantics is not worth of a study; it only means that asynchronous LTL
is essentially classical LTL if we do not introduce additional atomic formulas that describe
properties of teams directly. This is a common phenomenon in the team semantics setting.
For instance, team semantics of first-order logic has the flatness property, but its extension
by so-called dependence atoms, is equi-expressive with existential second-order logic [32].
Extensions of LTL under team semantics are discussed in Section 5.

At this point, it should not come as a surprise that, due to the flatness property and
singleton equivalence, the complexity of satisfiability, path checking, and model checking for
LTL under asynchronous team semantics coincides with those of classical LTL semantics.
Firstly, note that an LTL-formula ϕ is satisfiable under asynchronous or synchronous team
semantics if and only if there is a singleton team that satisfies the formula. Secondly, note
that to check whether a given team satisfies ϕ under asynchronous semantics, it is enough to
check whether each trace in the team satisfies ϕ under classical LTL; this can be computed
by an AC0-circuit using oracle gates for LTL-PC. Putting these observations together, we
obtain the following results from the identical results for LTL under classical semantics
[22, 23, 26, 31].

The circuit complexity class ACi encompass of polynomial sized circuits of depth
O(logi(n)) and unbounded fan-in; NCi is similarly defined but with bounded fan-in. A
language A is constant-depth reducible to a language B, in symbols A ≤cd B, if there exists
a logtime-uniform AC0-circuit family with oracle gates for B that decides membership in A.
In this context, logtime-uniform means that there exists a deterministic Turing machine that
can check the structure of the circuit family C in time O(log |C|). For further information
on circuit complexity, we refer the reader to the textbook of Vollmer [35]. Furthermore,
logDCFL is the set of languages which are logspace reducible to a deterministic context-free
language.

I Proposition 3.1.
1. TMCa, TSATa, and TSATs are PSPACE-complete w.r.t. ≤p

m-reductions.
2. TPCa is in AC1(logDCFL) and NC1-hard w.r.t. ≤cd-reductions.

4 Classification of Decision Problems Under Synchronous Semantics

In this section, we examine the computational complexity of path and model checking with
respect to the synchronous semantics. Our main result settles the complexity of TPCs. It
turns out that this problem is harder than the asynchronous version.

I Lemma 4.1. TPCs is PSPACE-hard w.r.t. ≤p
m-reductions.

MFCS 2018



10:8 Team Semantics for the Specification and Verification of Hyperproperties

Proof. Determining whether a given quantified Boolean formula (qBf) is valid (QBF-VAL)
is a well-known PSPACE-complete problem [25]. The problem stays PSPACE-complete if
the matrix (i.e., the propositional part) of the given qBf is in 3CNF. To prove the claim
of the lemma, we will show that QBF-VAL ≤p

m TPCs. Given a quantified Boolean formula
ϕ, we stipulate, w.l.o.g., that ϕ is of the form ∃x1∀x2 · · ·Qxnχ, where χ =

∧m
j=1

∨3
k=1 `jk,

Q ∈ {∃,∀}, and x1, . . . , xn are exactly the free variables of χ and pairwise distinct.
In the following we define a reduction which is composed of two functions f and g. Given

a qBf ϕ, the function f will define an LTL-formula and g will define a team such that ϕ
is valid if and only if g(ϕ) |=s f(ϕ). Essentially, the team g(ϕ) will contain three kinds of
traces, see Figure 2: (i) traces which are used to mimic universal quantification (U(i) and
E(i)), (ii) traces that are used to simulate existential quantification (E(i)), and (iii) traces
used to encode the matrix of ϕ (L(j, k)). Moreover the trace T (i, 1) (T (i, 0), resp.) is used
inside the proof to encode an assignment that maps the variable xi true (false, resp.). Note
that, U(i), T (i, 1), T (i, 0), L(j, k) are technically singleton sets of traces. For convenience, we
identify them with the traces they contain.

Next we inductively define the reduction function f that maps qBf-formulas to LTL-
formulas:

f(χ) :=
n∨
i=1

Fxi ∨
m∨
i=1

Fci,

where χ is the 3CNF-formula
∧m
j=1

∨3
k=1 `jk with free variables x1, . . . , xn,

f(∃xiψ) := (Fqi) ∨ f(ψ),
f(∀xiψ) :=

(
$ ∨ (¬qiUqi) ∨ F[# ∧ Xf(ψ)]

)
U#.

The reduction function g that maps qBf-formulas to teams is defined as follows with
respect to the traces in Figure 2.

g(χ) :=
m⋃
j=1

L(j, 1) ∪ L(j, 2) ∪ L(j, 3),

where χ is the 3CNF-formula
∧m
j=1

∨3
k=1 `jk with free variables x1, . . . , xn and

g(∃xiψ) := E(i) ∪ g(ψ),
g(∀xiψ) := U(i) ∪ E(i) ∪ g(ψ).

In Fig. 2, the first position of each trace is marked with a white circle. For instance, the
trace of U(i) is then encoded via

(ε, ∅{qi, $}{$}∅{$}{qi, $,#}).

The reduction function showing QBF-VAL ≤p
m TPCs is then ϕ 7→ 〈g(ϕ), f(ϕ)〉. Clearly f(ϕ)

and g(ϕ) can be computed in linear time with respect to |ϕ|.
Intuitively, for the existential quantifier case, the formula (Fqi) ∨ f(ψ) allows to continue

in f(ψ) with exactly one of T (i, 1) or T (i, 0). If b ∈ {0, 1} is a truth value then selecting
T (i, b) in the team is the same as setting xi to b. For the case of f(∀xiψ), the formula
(¬qiUqi)∨F[#∧Xf(ψ)] with respect to the team (U(i)∪E(i))[0,∞) is similar to the existential
case choosing xi to be 1 whereas for (U(i) ∪ E(i))[3,∞) one selects xi to be 0. The use of
the until operator in combination with $ and # then forces both cases to happen.
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Let ϕ′ = Q′xn′+1 · · ·Qxnχ, where Q′, Q ∈ {∃,∀} and let I be an assignment of the
variables in {x1, . . . , xn′} for n′ ≤ n. Then, let

g(I, ϕ′) := g(ϕ′) ∪
⋃

xi∈Dom(I)

T (i, I(xi)).

We claim I |= ϕ′ if and only if g(I, ϕ′) |=s f(ϕ′).
Note that when ϕ′ = ϕ it follows that I = ∅ and that g(I, ϕ′) = g(ϕ). Accordingly, the

lemma follows from the claim of correctness. The claim is proven by induction on the number
of quantifier alternations in ϕ′. The details can be found in the full version [21]. J

The matching upper bound follows via a PSPACE algorithm implementing the semantics
in straightforward way. The details can be found in the full version [21].

I Theorem 4.2. TPCs is PSPACE-complete w.r.t. ≤p
m-reductions.

The next theorem deals with model checking of the splitjunction-free fragment of LTL
under synchronous team semantics.

I Theorem 4.3. TMCs restricted to splitjunction-free formulas is in PSPACE.

Proof. Fix K = (W,R, η, wI) and a splitjunction-free formula ϕ. We define S0 = {wI} and
Si+1 = {w′ ∈ W | (w,w′) ∈ R for some w ∈ Si} for all i ≥ 0. By the pigeonhole principle,
this sequence is ultimately periodic with a characteristic (s, p) with s+ p ≤ 2|W |.3 Next, we
define a trace t over AP ∪ {p | p ∈ AP} via

t(i) = {p ∈ AP | p ∈ η(w) for all w ∈ Si} ∪ {p | p /∈ η(w) for all w ∈ Si}

that reflects the team semantics of (negated) atomic formulas, which have to hold in every
element of the team.

An induction over the construction of ϕ shows that T (K) |=s ϕ if and only if t |=c ϕ, where
ϕ is obtained from ϕ by replacing each negated atomic proposition ¬p by p. To conclude the
proof, we show that t |=c ϕ can be checked in non-deterministic polynomial space, exploiting
the fact that t is ultimately periodic and of the same characteristic as S0S1S2 · · · . However,
as s + p might be exponential, we cannot just construct a finite representation of t of
characteristic (s, p) and then check satisfaction in polynomial space.

Instead, we present an on-the-fly approach which is inspired by similar algorithms in the
literature. It is based on two properties:
1. Every Si can be represented in polynomial space, and from Si one can compute Si+1 in

polynomial time.
2. For every LTL formula ϕ, there is an equivalent non-deterministic Büchi automaton Aϕ

of exponential size (see, e.g., [1] for a formal definition of Büchi automata and for the
construction of Aϕ). States of Aϕ can be represented in polynomial space and given two
states, one can check in polynomial time, whether one is a successor of the other.

These properties allow us to construct both t and a run of Aϕ on t on the fly. The details
can be found in the full version [21]. J

3 The characteristic of an encoding (t0, t1) of an ultimately periodic trace t0t1t1t1 · · · is the pair (|t0|, |t1|).
Slightly abusively, we say that (|t0|, |t1|) is the characteristic of t0t1t1t1 · · · , although this is not unique.
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The complexity of general model checking problem is left open. It is trivially PSPACE-
hard, due to Theorem 4.2 and the fact that finite teams of ultimately periodic traces can be
represented by Kripke structures. However, the problem is potentially much harder, as one
has to deal with infinitely many splits of possibly uncountable teams with non-periodic traces,
if a split occurs under the scope of a G-operator. Currently, we are working on interesting
language-theoretic problems one encounters when trying to generalise our algorithms for
the general path checking problem and for the splitjunction-free model checking problem,
e.g., how complex can an LTL-definable split be, if the team to be split is one induced by a
Kripke structure.

5 Extensions

In this section we take a brief look into extensions of our logics by dependence atoms and
contradictory negation. Contradictory negation combined with team semantics allows for
powerful constructions. For instance, the complexity of model checking for propositional
logic jumps from NC1 to PSPACE [27], whereas the complexity of validity and satisfiability
jumps all the way to alternating exponential time with polynomially many alternations
(ATIME-ALT(exp,pol)) [18].

Formally, we define that T |=? ∼ϕ if T 6|=? ϕ. Note that the negation ∼ is not equivalent to
the negation ¬ of atomic propositions defined earlier, i.e., ∼p and ¬p are not equivalent. In
the following, problems of the form TPCa(∼), etc., refer to LTL-formulas with negation ∼.

Also, we are interested in atoms expressible in first-order (FO) logic over the atomic
propositions; the most widely studied ones are dependence, independence, and inclusion
atoms [9]. The notion of generalised atoms in the setting of first-order team semantics was
introduced by Kuusisto [24]. It turns out that the algorithm for TPCs is very robust to such
strengthenings of the logic under consideration.

We consider FO-formulas over the signature (Ap)p∈AP, where each Ap is a unary predicate.
Furthermore, we interpret a team T as a relational structure A(T ) over the same signature
with universe T such that t ∈ T is in AA

p if and only if p ∈ t(0). The formulas then express
properties of the atomic propositions holding in the initial positions of traces in T . An
FO-formula ϕ FO-defines the atomic formula D with T |=? D ⇐⇒ A(T ) |= ϕ. In this case, D
is also called an FO-definable generalised atom.

For instance, the dependence atom dep(x; y) is FO-definable by ∀t∀t′((Ax(t)↔ Ax(t′))→(
Ay(t)↔ Ay(t′))), for x, y ∈ AP. We call an LTL-formula extended by a generalised atom D

an LTL(D)-formula. Similarly, we lift this notion to sets of generalised atoms as well as
to the corresponding decision problems, i.e., TPCs(D) is the path checking problem over
synchronous semantics with LTL formulas which may use the generalised atom D.

The result of Theorem 4.2 can be extended to facilitate also the contradictory negation
and first-order definable generalised atoms.

I Theorem 5.1. Let D be a finite set of first-order definable generalised atoms. Then
TPCs(D) and TPCs(∼) are PSPACE-complete w.r.t. ≤p

m-reductions.

The next proposition translates a result from Hannula et al. [18] to our setting. They
show completeness for ATIME-ALT(exp,pol) for the satisfiability problem of propositional
team logic with negation. This logic coincides with LTL-formulas without temporal operators
under team semantics.

I Proposition 5.2 ([18]). TSATa(∼) and TSATs(∼) for formulas without temporal operators
are complete for ATIME-ALT(exp,pol) w.r.t. ≤p

m-reductions.
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KP : r

a1p1 b1 p1

a2p2 b2 p2

anpn bn pn

Figure 3 Kripke structure for the proof of Theorem 5.3.

I Theorem 5.3. TMCa(∼) and TMCs(∼) are hard for ATIME-ALT(exp,pol) w.r.t. ≤p
m-

reductions.

Proof. We will state a reduction from the satisfiability problem of propositional team logic
with negation ∼ (short PL(∼)). The stated hardness then follows from Proposition 5.2.

For P = {p1, . . . , pn}, consider the traces starting from the root r of the Kripke structure
KP depicted in Figure 3 using proposition symbols p1, . . . , pn, p1, . . . , pn. Each trace in the
model corresponds to a propositional assignment on P . For ϕ ∈ PL(∼), let ϕ∗ denote the
LTL(∼)-formula obtained by simultaneously replacing each (non-negated) variable pi by
Fpi and each negated variable ¬pi by Fpi. Let P denote the set of variables that occur in
ϕ. Define > := (p ∨ ¬p) and ⊥ := p ∧ ¬p, then T (KP ) |=?

(
> ∨ ((∼⊥) ∧ ϕ∗)

)
if and only if

T ′ |=? ϕ∗ for some non-empty T ′ ⊆ T (KP ). It is easy to check that T ′ |=? ϕ∗ if and only if the
propositional team corresponding to T ′ satisfies ϕ and thus the above holds if and only if ϕ
is satisfiable. J

In the following, we define the semantics for dependence atoms. For Teams T ⊆ (2AP)ω
we define T |=? dep(p1, . . . , pn; q1, . . . , qm) if

∀t, t′ ∈ T : (t(0) p1⇔ t′(0), . . . , t(0) pn⇔ t′(0)) implies (t(0) q1⇔ t′(0), . . . , t(0) qm⇔ t′(0)),

where t(i) p⇔ t(j) means the sets t(i) and t(j) agree on proposition p, i.e., both contain
p or not. Observe that the formula dep(; p) merely means that p has to be constant on
the team. Often, due to convenience we will write dep(p) instead of dep(; p). Note that
the hyperproperties ‘input determinism’ now can be very easily expressed via the formula
dep(i1, . . . , in; o1, . . . , om), where ij are the (public) input variables and oj are the (public)
output variables.

Problems of the form TSATa(dep), etc., refer to LTL-formulas with dependence operator
dep. The following proposition follows from the corresponding result for classical LTL using
downwards closure and the fact that on singleton teams dependence atoms are trivially
fulfilled.

I Proposition 5.4. TSATa(dep) and TSATs(dep) are PSPACE-complete.

In the following, we will show a lower bound while the matching upper bound still is
open.

I Theorem 5.5. TPCa(dep) is PSPACE-hard w.r.t. ≤p
m-reductions.

Proof. As in the proof of Lemma 4.1, we reduce from QBF-VAL.
Consider a given quantified Boolean formula ∃x1∀x2 · · ·Qxnχ, where χ =

∧m
j=1

∨3
k=1 `jk,

Q ∈ {∃,∀}, and x1, . . . , xn are exactly the free variables of χ and pairwise distinct. We will
use two traces for each variable xi (gadget for xi) as shown in Figure 4.
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pi
qi
ri
si

qi
ri
pi

qi
si
pi

everywhere pj , pj for i 6= j

Figure 4 Traces in the proof of Theorem 5.5.

Intuitively, the proposition pi marks that the variable xi is set true while the proposition
pi marks that xi is set false, qi encodes that the gadget is used to quantify xi, and si, ri are
auxiliary propositions. Picking the left trace corresponds to setting xi to true and picking
the right trace corresponds to setting xi to false. In the following, we omit the pj and pj ,
when j 6= i, for readability. Then, the team T is defined as

T := {(ε, {pi, qi, ri, si}), (ε, {qi, ri, pi}{qi, si, pi}) | 1 ≤ i ≤ n}.

Next, we recursively define the LTL(dep)-formula used in the reduction: f(χ) is obtained
from χ by substituting every positive literal xi by pi and negated literal ¬xi by pi, f(∃xiψ) :=(
qi ∧ dep(pi)

)
∨ f(ψ)

)
, and

f(∀xiψ) := G
((

dep(pi) ∧ qi ∧ ri
)
∨
(
si ∧ f(ψ)

))
.

In the existential quantification of xi, the splitjunction requires for the xi-trace-pair to put
(ε, {pi, qi, ri, si}) into the left or right subteam (of the split). The trace (ε, {qi, ri, pi}{qi, si, pi})
has to go to the opposite subteam as dep(pi) requires pi to be of constant value. (Technically
both of the traces could be put to the right subteam, but this logic is downwards closed and,
accordingly, this allows to omit this case.) As explained before, we existentially quantify xi
by this split. For universal quantification, the idea is a bit more involved. To verify T |=? Gθ,
where Gθ = f(∀xiψ) essentially two different teams T ′ for which T ′ |= θ need to be verified.
(1.) (ε, {pi, qi, ri, si}), (ε, {qi, ri, pi}{qi, si, pi}) ∈ T ′. In this case, (ε, {pi, qi, ri, si}) must be
put to the right subteam of the split and (ε, {qi, ri, pi}{qi, si, pi}) to the left subteam, setting
xi true.
(2.) (ε, {pi, qi, ri, si}), (ε, {qi, si, pi}{qi, ri, pi}) ∈ T ′. In this case, (ε, {pi, qi, ri, si}) must be
put to the left and (ε, {qi, si, pi}{qi, ri, pi}) to the right subteam, implicitly forcing xi to be
false. These observations are utilised to prove that 〈∃x1∀x2 · · ·Qxnχ〉 ∈ QBF-VAL if and
only if 〈f(∃x1∀x2 · · ·Qxnχ), T 〉 ∈ TPCa(dep). The reduction is polynomial time computable
in the input size. J

The following result from Virtema talks about the validity problem of propositional team
logic.

I Proposition 5.6 ([34]). Validity of propositional logic with dependence atoms is
NEXPTIME-complete w.r.t. ≤p

m-reductions.

I Theorem 5.7. TMCa(dep) and TMCs(dep) are NEXPTIME-hard w.r.t. ≤p
m-reductions.

Proof. The proof of this result uses the same construction idea as in the proof of Theorem 5.3,
but this time from a different problem, namely, validity of propositional logic with dependence
atoms which settles the lower bound by Proposition 5.6. Due to downwards closure the
validity of propositional formulas with dependence atoms boils down to model checking
the maximal team in the propositional (and not in the trace) setting, which essentially is
achieved by T (K), where K is the Kripke structure from the proof of Theorem 5.3. J
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6 LTL under Team Semantics vs. HyperLTL

LTL under team semantics expresses hyperproperties [6], that is, sets of teams, or equivalently,
sets of sets of traces. Recently, HyperLTL [5] was proposed to express information flow
properties, which are naturally hyperproperties. For example, input determinism can be
expressed as follows: every pair of traces that coincides on their input variables, also coincides
on their output variables (this can be expressed in LTL with team semantics by a dependence
atom dep as sketched is Section 5). To formalise such properties, HyperLTL allows to
quantify over traces. This results in a powerful formalism with vastly different properties
than LTL [14]. After introducing syntax and semantics of HyperLTL, we compare the
expressive power of LTL under team semantics and HyperLTL.

The formulas of HyperLTL are given by the grammar

ϕ ::=∃π.ϕ | ∀π.ϕ | ψ, ψ ::= pπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where p ranges over atomic propositions in AP and where π ranges over a given countable
set V of trace variables. The other Boolean connectives and the temporal operators release R,
eventually F, and always G are derived as usual, due to closure under negation. A sentence
is a closed formula, i.e., one without free trace variables.

The semantics of HyperLTL is defined with respect to trace assignments that are a
partial mappings Π: V → (2AP)ω. The assignment with empty domain is denoted by Π∅.
Given a trace assignment Π, a trace variable π, and a trace t, denote by Π[π → t] the
assignment that coincides with Π everywhere but at π, which is mapped to t. Further,
Π[i,∞) denotes the assignment mapping every π in Π’s domain to Π(π)[i,∞). For teams T
and trace-assignments Π we define

(T,Π) |=h pπ if p ∈ Π(π)(0),
(T,Π) |=h ¬ψ if (T,Π) 6|=h ψ,
(T,Π) |=h ψ1 ∨ ψ2 if (T,Π) |=h ψ1 or (T,Π) |=h ψ2,
(T,Π) |=h Xψ if (T,Π[1,∞)) |=h ψ,
(T,Π) |=h ψ1Uψ2 if ∃k ≥ 0 : (T,Π[k,∞)) |=h ψ2 and ∀0 ≤ k′ < k : (T,Π[k′,∞)) |=h ψ1,
(T,Π) |=h ∃π.ψ if ∃t ∈ T : (T,Π[π → t]) |=h ψ, and
(T,Π) |=h ∀π.ψ if ∀t ∈ T : (T,Π[π → t]) |=h ψ.

We say that T satisfies a sentence ϕ, if (T,Π∅) |=h ϕ, and write T |=h ϕ. The semantics of
HyperLTL are synchronous, i.e., the semantics of the until refers to a single k. Accordingly,
one could expect that HyperLTL is closer related to LTL under synchronous team semantics
than to LTL under asynchronous team semantics. In the following, we refute this intuition.

Formally, a HyperLTL sentence ϕ and an LTL formula ϕ′ under synchronous (asynchron-
ous) team semantics are equivalent, if for all teams T : T |=h ϕ if and only if T |=s ϕ′ (T |=a ϕ′).
In the following, let ∀-HyperLTL denote that set of HyperLTL sentences of the form ∀π. ψ
with quantifier-free ψ, i.e., sentences with a single universal quantifier.

I Theorem 6.1. 1. No LTL-formula under synchronous or asynchronous team semantics
is equivalent to ∃π.pπ.

2. No HyperLTL sentence is equivalent to Fp under synchronous team semantics.
3. LTL under asynchronous team semantics is as expressive as ∀-HyperLTL.

Proof.
1. Consider T = {∅ω, {p}∅ω}. We have T |=h ∃π.pπ. Assume there is an equivalent LTL

formula under team semantics, call it ϕ. Then, T |=? ϕ and thus {∅ω} |=? ϕ by downwards
closure. Hence, by equivalence, {∅ω} |=h ∃π.pπ, yielding a contradiction.
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2. Bozzelli et al. proved that the property encoded by Fp under synchronous team semantics
cannot be expressed in HyperLTL [3].

3. Let ϕ be an LTL-formula and define ϕh := ∀π.ϕ′, where ϕ′ is obtained from ϕ by
replacing each atomic proposition p by pπ. Then, due to singleton equivalence, T |=a ϕ if
and only if T |=h ϕh. For the other implication, let ϕ = ∀π.ψ be a HyperLTL sentence with
quantifier-free ψ and let ψ′ be obtained from ψ by replacing each atomic proposition pπ
by p. Then, again due to the singleton equivalence, we have T |=h ϕ if and only if T |=a ψ′.

J

Note that these separations are obtained by very simple formulas, and are valid for
LTL(dep) formulas, too. In particular, the HyperLTL formulas are all negation-free.

I Corollary 6.2. HyperLTL and LTL under synchronous team semantics are of incomparable
expressiveness and HyperLTL is strictly more expressive than LTL under asynchronous team
semantics.

7 Conclusion

We introduced synchronous and asynchronous team semantics for linear temporal logic LTL,
studied complexity and expressive power of related logics, and compared them to HyperLTL.
We concluded that LTL under team semantics is a valuable logic which allows to express
relevant hyperproperties and complements the expressiveness of HyperLTL while allowing
for computationally simpler decision problems. We conclude with some directions of future
work and open problems.
1. We showed that some important properties that cannot be expressed in HyperLTL (such

as uniform termination) can be expressed by LTL-formulas in synchronous team semantics.
Moreover input determinism can be expressed in LTL(dep). What other important and
practical hyperproperties can be expressed in LTL under team semantics? What about in
its extensions with dependence, inclusion, and independence atoms, or the contradictory
negation.

2. We showed that with respect to expressive power HyperLTL and LTL under synchronous
team semantics are incomparable. What about the extensions of LTL under team
semantics? For example the HyperLTL formula ∃π.pπ is expressible in LTL(∼). Can we
characterise the expressive power of relevant extensions of team LTL as has been done in
first-order and modal contexts?

3. We studied the complexity of path-checking, model checking, and satisfiability problems
of team LTL and its extensions with dependence atoms and the contradictory negation.
Many problems are still open: Can we show matching upper bounds for the hardness
results of Section 5? What is the complexity of TMCs when splitjunctions are allowed?
What happens when LTL is extended with inclusion or independence atoms?

4. Can we give a natural team semantics to CTL∗ and compare it to HyperCTL∗ [5]?
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