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DELAY GAMES WITH
WMSO+U WINNING CONDITIONS ∗

Martin Zimmermann1

Abstract. Delay games are two-player games of infinite duration in
which one player may delay her moves to obtain a lookahead on her
opponent’s moves. We consider delay games with winning conditions
expressed in weak monadic second order logic with the unbounding
quantifier, which is able to express (un)boundedness properties.

We show that it is decidable whether the delaying player has a win-
ning strategy using bounded lookahead and give a doubly-exponential
upper bound on the necessary lookahead. In contrast, we show that
bounded lookahead is not always sufficient: We present a game that can
be won with unbounded lookahead, but not with bounded lookahead.
Then, we consider such games with unbounded lookahead and show
that the exact evolution of the lookahead is irrelevant: The winner is
always the same, as long as the initial lookahead is large enough and
the lookahead is unbounded.

1991 Mathematics Subject Classification. 68Q45.

1. Introduction

Many of today’s problems in computer science are no longer concerned with pro-
grams that transform data and then terminate, but with non-terminating reactive
systems, i.e., systems which have to interact with a possibly antagonistic envi-
ronment for an unbounded amount of time. The framework of infinite two-player
games is a powerful and flexible tool to verify and synthesize such systems. The
seminal theorem of Büchi and Landweber [10] states that the winner of an infinite
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game on a finite arena with an ω-regular winning condition can be determined and
a corresponding finite-state winning strategy can be constructed effectively.

Ever since, this result was extended along different dimensions, e.g., the number
of players, the type of arena, the type of winning condition, the type of interac-
tion between the players (alternation or concurrency), zero-sum or non-zero-sum,
and complete or incomplete information. In this work, we consider two of these
dimensions, namely more expressive winning conditions and the possibility for one
player to delay her moves.

1.1. WMSO+U

Recall that the ω-regular languages are exactly those that are definable in
(weak1) monadic second order logic (MSO and WMSO, respectively) [9]. Re-
cently, Bojańczyk has started a program [1–8,22] investigating the logic MSO+U,
MSO extended with the unbounding quantifier U. A formula UXϕ(X) is satis-
fied, if there are arbitrarily large finite sets X such that ϕ(X) holds. MSO+U
is able to express all ω-regular languages as well as non-regular ones such as
L = {an0ban1ban2b · · · | lim supi ni = ∞}. Decidability of MSO+U remained
an open problem until recently: Satisfiability of MSO+U on infinite words is un-
decidable [6].

Even before this undecidability result was shown, much attention was being
paid to fragments of the logic obtained by restricting the power of the second-order
quantifiers. In particular, considering weak MSO with the unbounding quantifier
turned out to be promising: WMSO+U on infinite words [2] and on infinite trees [8]
and WMSO+U with the path quantifier (WMSO+UP) on infinite trees [3] have
equivalent automata models with decidable emptiness. Hence, these logics are
decidable.

For WMSO+U on infinite words, these automata are called max-automata,
deterministic automata with counters whose acceptance conditions are a boolean
combination of conditions “counter c is bounded during the run”. While processing
the input, a counter may be incremented, reset to zero, or the maximum of two
counters may be assigned to it (hence the name max-automata). In this work, we
investigate delay games with winning conditions given by max-automata, so-called
max-regular conditions.

1.2. Delay Games

In such a delay game, one of the players can postpone her moves for some time,
thereby obtaining a lookahead on her opponent’s moves. This allows her to win
some games which she loses without lookahead, e.g., if her first move depends
on the third move of her opponent. Nevertheless, there are winning conditions
that cannot be won with any finite lookahead, e.g., if her first move depends on

1In the weak variant of monadic second-order logic, second-order quantification is restricted
to finite sets.
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every move of her opponent. Delay arises naturally when transmission of data in
networks or components with buffers are modeled.

From a more theoretical point of view, uniformization of relations by continuous
functions [30–32] can be expressed and analyzed using delay games. We consider
games in which two players pick letters from alphabets ΣI and ΣO, respectively,
thereby producing α ∈ ΣωI and β ∈ ΣωO. Thus, a strategy for the second player
induces a mapping τ : ΣωI → ΣωO turning input sequences α ∈ ΣωI into output
sequences β ∈ ΣωO. It is winning for the second player if (α, τ(α)) is contained in
the winning condition L ⊆ ΣωI ×ΣωO for every α. Then, we say that τ uniformizes L.

In the classical setting of infinite games, in which the players pick letters in
alternation, the n-th letter of τ(α) depends only on the first n letters of α, i.e., τ
satisfies a very strong notion of continuity. A strategy with bounded lookahead,
i.e., only finitely many moves are postponed, induces a Lipschitz-continuous func-
tion τ (in the Cantor topology on Σω) and a strategy with arbitrary lookahead
induces a continuous function (or equivalently, a uniformly continuous function,
as Σω is compact). We refer to [20] for a more detailed discussion.

Hosch and Landweber proved that it is decidable whether a game with ω-regular
winning condition can be won with bounded lookahead [21]. This result was im-
proved by Holtmann, Kaiser, and Thomas who showed that if a player wins a game
with arbitrary lookahead, then she already wins with doubly-exponential bounded
lookahead, and gave a streamlined decidability proof yielding an algorithm with
doubly-exponential running time [20]. Again, these results were improved by giv-
ing a tight exponential upper bound on the necessary lookahead and showing
ExpTime-completeness of the solution problem [24]. Going beyond ω-regular
winning conditions by considering context-free conditions leads to undecidability
and non-elementary lower bounds on the necessary lookahead, even for very weak
fragments [18].

Stated in terms of uniformization, Hosch and Landweber proved decidability of
the uniformization problem for ω-regular relations by Lipschitz-continuous func-
tions and Holtmann et al. proved the equivalence of the existence of a continuous
uniformization function and the existence of a Lipschitz-continuous uniformization
function for ω-regular relations.

In another line of work, Carayol and Löding investigated the case of finite
words [13], and Löding and Winter [28] considered the case of finite trees, which
are both decidable. However, the nonexistence of MSO-definable choice functions
on the infinite binary tree [12,19] implies that uniformization fails for such trees.

Another application of delay games concerns the existence of Wadge reductions,
e.g., reducibility between max-regular languages [11] can be expressed as a max-
regular delay game.

1.3. Our Contribution

We start our investigation of max-regular delay games by proving the analogue
of the Hosch-Landweber Theorem for max-regular winning conditions: It is decid-
able whether the delaying player has a winning strategy with bounded lookahead.
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Furthermore, we obtain a doubly-exponential upper bound on the necessary looka-
head, if this is the case.

WMSO+U is able to express several quantitative winning conditions studied
in the literature, e.g., winning conditions in parameterized temporal logics like
Prompt-LTL [27], Parametric LTL [33], or Parametric LDL [16], finitary parity
and Streett conditions [14], and parity and Streett conditions with costs [17].
Thus, for all these conditions we can decide whether Player O wins a delay game
with bounded lookahead.

Our proof consists of a reduction to a delay-free game with a max-regular win-
ning condition, i.e., we remove delay. Such games can be solved by expressing
them as a satisfiability problem for WMSO+UP on infinite trees: The strategy of
one player is an additional labeling of the tree and a path quantifier is able to range
over all strategies of the opponent2. Satisfiability for WMSO+UP is decidable [3],
but the exact complexity of the problem is open.

The reduction itself is an extension of the one used in the ExpTime-algorithm
for delay games with ω-regular winning conditions [24] and is based on an equiva-
lence relation that captures the behavior of the automaton recognizing the winning
condition. However, unlike the relation used for ω-regular conditions, ours is only
correct if applied to words of bounded lengths. Thus, we can deal with bounded
lookahead, but not with arbitrary lookahead.

We complement the analogue of the Hosch-Landweber Theorem by disproving
the analogue of the Holtmann-Kaiser-Thomas Theorem: We give a max-regular
delay game that is won by Player O, but only with unbounded lookahead. Thus,
not too surprisingly, unbounded lookahead is more powerful than bounded looka-
head when it comes to unboundedness conditions.

Finally, we prove that Player O’s ability to win a max-regular delay game does
not depend on the growth rate of the lookahead, but only on the fact that it grows
without bound and on a sufficiently large initial lookahead. This is, to the best
of our knowledge, the first such result and should be contrasted with the case of
ω-context-free winning conditions, for which a non-elementary growth rate might
be necessary for Player O to win [18].

As the analogue of the Holtmann-Kaiser-Thomas Theorem fails, determining
the winner of max-regular delay games with respect to arbitrary lookahead does not
coincide with determining the winner with respect to bounded lookahead. Hence,
we investigate the former problem: We give lower bounds on the complexity and
discuss some obstacles one encounters when trying the extend the decidability
proof for the bounded case and the undecidability proof for MSO+U satisfiability.

The present paper is a revised and extended version of [34] and is structured
as follows: In Section 2, we introduce max-automata and delay games. Then,
in Section 3, we introduce the equivalence relations that capture the behavior
of max-automata and prove this to be the case. Our results are then presented
in the next three sections: The analogue of the Hosch-Landweber Theorem in
Section 4, the counterexample to the analogue of the Holtmann-Kaiser-Thomas

2See Example 1 in [3] for more details.
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Theorem in Section 5, and the independence result for unbounded lookahead in
Section 6. To conclude, we discuss decidability of delay games with respect to
arbitrary lookahead in Section 7 and mention other open problems in Section 8.

2. Definitions

The set of non-negative integers is denoted by N. An alphabet Σ is a non-
empty finite set of letters, and Σ∗ (Σn, Σω) denotes the set of finite words (words
of length n, infinite words) over Σ. The empty word is denoted by ε, the length
of a finite word w by |w|. For w ∈ Σ∗ ∪ Σω we write w(n) for the n-th let-
ter of w. Given two infinite words α ∈ ΣωI and β ∈ ΣωO we write

(
α
β

)
for the

word
(
α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

)
· · · ∈ (ΣI × ΣO)ω. Analogously, we write

(
x
y

)
for finite

words x and y, provided they are of equal length. Finally, the index of an equiva-
lence relation ≡, i.e., the number of its equivalence classes, is denoted by idx(≡).

2.1. Max-Automata

Given a finite set C of counters storing non-negative integers,

Ops(C) = {c := c+ 1, c := 0, c := max(c0, c1) | c, c0, c1 ∈ C}

is the set of counter operations over C. A counter valuation over C is a map-
ping ν : C → N. By νπ we denote the counter valuation that is obtained by ap-
plying a finite sequence π ∈ Ops(C)∗ of counter operations to ν, which is defined
as implied by the operations’ names.

A max-automaton A = (Q,C,Σ, qI , δ, `, ϕ) consists of a finite set Q of states, a
finite set C of counters, an input alphabet Σ, an initial state qI , a (deterministic
and complete) transition function δ : Q × Σ → Q, a transition labeling3 ` : δ →
Ops(C)∗ which labels each transition by a (possibly empty) sequence of counter
operations, and an acceptance condition ϕ, which is a boolean formula over C.

A run of A on α ∈ Σω is an infinite sequence

ρ = (q0, α(0), q1) (q1, α(1), q2) (q2, α(2), q3) · · · ∈ δω (1)

with q0 = qI . Partial (finite) runs on finite words are defined analogously, i.e.,
(q0, α(0), q1) · · · (qn−1, α(n− 1), qn) is the run of A on α(0) · · ·α(n− 1) starting in
q0. We say that this run ends in qn. As δ is deterministic, A has a unique run on
every finite or infinite word.

Let ρ be as in (1) and define πn = `(qn, α(n), qn+1), i.e., πn is the label of the
n-th transition of ρ. Given an initial counter valuation ν and a counter c ∈ C, we
define the sequence

ρc = ν(c) , νπ0(c) , νπ0π1(c) , νπ0π1π2(c) , . . .

3Here, and later whenever convenient, we treat δ as relation δ ⊆ Q× Σ×Q.
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of counter values of c reached on the run after applying all operations of a transition
label. The run ρ of A on α is accepting, if the acceptance condition ϕ is satisfied
by the variable valuation that maps a counter c to true if, and only if, lim sup ρc
is finite. Thus, ϕ can intuitively be understood as a boolean combination of
conditions “ lim sup ρc < ∞”. Note that the limit superior of ρc is independent of
the initial valuation used to define ρc, which is the reason it is not part of the
description of A. We denote the language recognized by A by L(A). A language
is max-regular if it is recognized by some max-automaton.

A parity condition (say min-parity) can be expressed in this framework using
a counter for each color that is incremented every time this color occurs and em-
ploying the acceptance condition to check that the smallest color whose associated
counter is unbounded, is even. Hence, the class of ω-regular languages is contained
in the class of max-regular languages.

2.2. Games with Delay

In a delay game, one player gains an advantage over the other by having a
lookahead on the opponent’s moves. There are at least two equivalent ways of for-
malizing this interaction. Either, the player given the lookahead may dynamically
skip moves while the other may not. In this setting, the rules of the game have
to enforce that not almost all moves are skipped to obtain an infinite sequence
of (non-skip) moves. In this setting, the evolution of the lookahead is controlled
by the strategy of the delaying player and may depend on the history of a play.
In the second variant, the evolution of the lookahead is part of the rules of the
game and independent of the history of a play. Formally, it is given by a func-
tion f : N→ N\{0}: One player has to make f(i) moves in round i while the other
one only makes one move. If f(i) > 1, then the lookahead increases in round i.

The equivalence between these approaches was proven by Holtmann et al. [20]
and underlies the Borel determinacy result for delay games [25]. We prefer the
second approach, as it allows to specify the degree of lookahead necessary to win
a game in a natural way: One can formalize constant, bounded, and unbounded
lookahead by restricting the delay functions under consideration.

Formally, a delay function is a mapping f : N → N \ {0}, which is said to be
bounded, if f(i) = 1 for almost all i. A special case of the bounded delay functions
are the constant ones, those that satisfy f(i) = 1 for all i > 0. Note that a constant
delay function f is not a constant function in the classical sense, but the lookahead
granted by f is constant, i.e., the quantity

∑n
i=0(f(i)− 1) is constant. The same

comment applies to bounded delay functions.
Given a delay function f and an ω-language L ⊆ (ΣI × ΣO)

ω, the game Γf (L)
is played by two players (the male input player “Player I” and the female output
player “Player O”) in rounds i = 0, 1, 2, . . . as follows: In round i, Player I picks a
word ui ∈ Σ

f(i)
I , then Player O picks one letter vi ∈ ΣO. We refer to the sequence

(u0, v0), (u1, v1), (u2, v2), . . . as a play of Γf (L), which yields two infinite words
α = u0u1u2 · · · and β = v0v1v2 · · · . Player O wins the play if, and only if, the
outcome

(
α
β

)
is in L, otherwise Player I wins.
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Given a delay function f , a strategy for Player I is a mapping τI : Σ∗O → Σ∗I
such that |τI(w)| = f(|w|), and a strategy for Player O is a mapping τO : Σ∗I → ΣO.
Consider a play (u0, v0), (u1, v1), (u2, v2), . . . of Γf (L). It is consistent with τI , if
ui = τI(v0 · · · vi−1) for every i; it is consistent with τO, if vi = τO(u0 · · ·ui) for
every i. A strategy τ for Player p ∈ {I,O} is winning for her, if every play that is
consistent with τ is won by Player p. In this case, we say Player p wins Γf (L). A
delay game is determined, if one of the players has a winning strategy.

Theorem 2.1. Delay games with max-regular winning conditions are determined.

Proof. This result can either be proven by modelling a delay game with a max-
regular winning condition as a delay-free game in a countable arena with a parity
winning condition. Such games are determined. Alternatively, one can apply a
recent Borel determinacy result for delay games [25], as max-regular languages are
Borel [2]. �

Given a max-automaton A, we want to determine whether Player O has a
winning strategy for Γf (L(A)) for some f , and, if yes, what kind of f is sufficient
to win, i.e., does constant or bounded lookahead suffice and how large does the
constant lookahead have to be.

First, let us remark that bounded and constant lookahead are equivalent, as long
as one is only interested in the existence of a delay function that allows Player O
to win.

Lemma 2.2. Let L ⊆ (ΣI × ΣO)ω. The following are equivalent:
(1) Player O wins Γf (L) for some constant f .
(2) Player O wins Γf (L) for some bounded f .

Proof. Every constant delay function is bounded, which proves one implication.
Now, assume Player O wins Γf (L) for some bounded delay function f . Let f ′ be
the constant delay function with f ′(0) = f(0) +

∑
i>0: f(i)>1(f(i) − 1). In every

round of Γf ′(L), Player O has at least as much lookahead as in the same round
of Γf (L). Thus, she can simulate her winning strategy for Γf (L) in Γf ′(L) and
thereby wins this game, too. �

In spite of this equivalence, we consider both classes of delay functions, as it is
often simpler to work with constant delay functions (as the lookahead is built up
in the first round and then constant) while bounded delay functions yield a more
general result. Furthermore, we consider unbounded lookahead in Section 5 and
Section 6, the counterpart of bounded lookahead.

3. Equivalence Relations Capturing Max-Automata

Fix a max-automaton A = (Q,C,Σ, qI , δ, `, ϕ). We generalize notions intro-
duced in [2] to define equivalences over sequences of counter operations and over
words over Σ to capture the behavior of A up to a given precision. The behavior we
consider here are the state transformations induced by input words and their effect
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on the counter values, e.g., which counters are incremented and which counter val-
ues are transferred using the max-operation. In general, there are infinitely many
behaviors, e.g., a self-loop with an increment operation allows arbitrarily long in-
crement sequences. To obtain finite equivalence relations, we only keep track of
increments up to a given threshold m, which is sufficient to prove our results.

First, we recall and extend some definitions introduced by Bojańczyk to capture
the behavior of max-automata. In particular, the notions of a “transfer” and of a
“c-trace” are from [2] while we extend his notion of a “transfer with an increment”
to an arbitrary, but fixed, number of increments.

First, we recall what it means for a sequence π ∈ Ops(C)∗ to transfer a counter c
to a counter d. The empty sequence and the operation c := c + 1 transfer every
counter to itself. The operation c := 0 transfers every counter c′ 6= c to itself and
the operation c := max(c0, c1) transfers every counter c′ 6= c to itself and transfers
c0 and c1 to c. Finally, if π0 transfers c to e and π1 transfers e to d, then π0π1

transfers c to d. If π transfers c to d, then we have νπ(d) ≥ ν(c) for every counter
valuation ν, i.e., the value of d after executing π is larger or equal to the value of
c before executing π, independently of the initial counter values.

Furthermore, a sequence of counter operations π transfers c to d with m ≥ 0
increments, if there are counters e1, . . . , em and a decomposition

π = π0 (e1 := e1 + 1)π1 (e2 := e2 + 1)π2 · · · πm−1 (em := em + 1)πm

of π such that π0 transfers c to e1, πj transfers ej to ej+1 for every j in the
range 1 ≤ j < m, and πm transfers em to d. If π transfers c to d with m
increments, then we have νπ(d) ≥ ν(c) + m for every counter valuation ν. Also
note that if π transfers c to d with m > 0 increments, then it also transfers c to
d with m′ increments for every m′ ≤ m. Finally, we say that π is a c-trace of
length m, if there is a counter c′ such that π transfers c′ to c with m increments.
Thus, if π is a c-trace of length m, then νπ(c) ≥ m for every valuation ν.

To illustrate these definitions, consider the following sequence:

c := c+ 1; d := max(c, d); d := d+ 1; c := 0; c := c+ 1; e := max(c, d); e := e+ 1

It transfers c to e with three increments; hence, it is an e-trace of length three.
Furthermore, it transfers c to d with two increments and is a c-trace of length one,
as it has a suffix that transfers c to c with one increment.

As only counter values reached after executing all counter operations of a
transition label are considered in the semantics of max-automata, we treat Λ =
{`(q, a, q′) | (q, a, q′) ∈ δ} as an alphabet. Every word λ ∈ Λ∗ can be flattened
to a word in Ops(C)∗, which is denoted by flat(λ). However, infixes, prefixes, or
suffixes of λ are defined with respect to the alphabet Λ. We define `(q, w) ∈ Λ∗ to
be the sequence of elements in Λ labeling the run ρ(q, w).

Let λ ∈ Λ∗ be a sequence of transition labels and let π ∈ Ops(C)∗ be a sequence
of counter instructions. We say that λ ends with π, if π is a suffix of flat(λ) and
that λ contains π, if λ has a prefix that ends with π. Containment of π in an
infinite sequence of transition labels is defined similarly.
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Next, we need to introduce some notation to deal with runs of A. Given a
state q and w ∈ Σ∗ ∪ Σω, let ρ(q, w) be the run of A on w starting in q. If w is
finite, then δ∗(q, w) denotes the state ρ(q, w) ends with. The transition profile of
w ∈ Σ∗ is the mapping q 7→ δ∗(q, w).

Now, we can lift the notions of “ending with π” and “containing π” to runs: Let
ρ be a finite run of A and let π ∈ Ops(C)∗. We say that ρ ends with π, if `(ρ) ends
with π. Similarly, a finite or infinite run ρ contains π, if `(ρ) contains π. These
definitions account for the fact that only counter values reached after executing
all counter operations of a transition label are considered in the semantics of max-
automata.

Lemma 3.1 ([2]). Let ρ be a run of A and c a counter. Then, lim sup ρc =∞ if,
and only if, ρ contains arbitrarily long c-traces.

We use the notions of transfer (with increments) to define the equivalence re-
lations that capture A’s behavior, i.e., the c-traces that occur during a run. Let
π = π0π1π2 · · · be an infinite sequence of blocks πi ∈ Ops(C)∗ of counter op-
erations. A c-trace contained in π can either be contained in some block πi or
span multiple πi. In the latter case, it starts with a suffix of some πi, continues
throughout several segments as transfers, and then ends with a prefix of some πi′ .

The following definition captures all these cases. Fix some m ≥ 0. We say that
λ, λ′ ∈ Λ∗ are m-equivalent4, denoted by λ ≡mops λ

′, if for all counters c and d and
for all m′ in the range 0 ≤ m′ ≤ m:

(1) λ contains a c-trace of length m′ if, and only if, λ′ contains a c-trace of
length m′,

(2) λ ends with a c-trace of length m′ if, and only if, λ′ ends with a c-trace of
length m′,

(3) the flattening of λ transfers c to d with m′ increments if, and only if, the
flattening of λ′ transfers c to d with m′ increments, and

(4) λ has a prefix whose flattening transfers c to d with m′ increments if, and
only if, λ′ has a prefix whose flattening transfers c to d withm′ increments.

Using this, we define two words x, x′ ∈ Σ∗ to bem-equivalent, denoted by x ≡mA x′,
if they have the same transition profile and if `(q, x) ≡mops `(q, x

′) for all states q.
Recall that a congruence is an equivalence relation ≡ over Σ∗ such that x ≡ y

implies xz ≡ yz for every z ∈ Σ∗.

Lemma 3.2. Let A be a max-automaton with n states and k counters and let
m ∈ N.

4The definition of the equivalence relation used in the conference version of this paper [34]
differs in several aspects from the one we present here, as we consider more general problems here.
In particular, we added the first requirement, which is important when analyzing games with
unbounded lookahead, which we do here, but did not do in the conference version. Secondly, we
added the fourth requirement to fix a bug in the proof of Item (1) of the analogue of Lemma 3.3
in the conference version. Finally, we parameterized the equivalence relation with m ≥ 0 while
we only considered the case m = 1 in the conference version. Again, this is necessary to reason
about unbounded lookahead. Note that the definition presented here slightly increases the upper
bounds on the index presented in Lemma 3.2 in comparison to the old one.
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(1) λ ≡mops λ
′ implies λ ≡m′ops λ

′ for every m′ ≤ m.
(2) x ≡mA x′ implies x ≡m′A x′ for every m′ ≤ m.
(3) ≡mops is a congruence.
(4) ≡mA is a congruence.
(5) The index of ≡mops is at most 22(k2+k) log(m+2).
(6) The index of ≡mA is at most 2n(log(n)+2(k2+k) log(m+2)).

Proof. The first two items follow trivially from the definition of ≡mops. Thus, we
only consider the latter four items.

(3) Let λ ≡mops λ
′ and let π ∈ Λ (note that we treat π as a letter from Λ,

although it is also a sequence of counter operations). We show λπ ≡mops λ′π.
Then, an inductive application proves that ≡mops is a congruence.

First, assume λπ contains a c-trace of length for some m′ ≤ m, i.e., λπ has
an infix λ0 whose flattening has a suffix π0 that is a c-trace of length m′. If
λ0 is an infix of λ, then λ ≡mops λ

′ implies that λ′ has an infix with the same
property. The other trivial case is when λ0 is equal to π. Thus, it remains to
consider the case where λ0 is a suffix of λπ of length at least two (recall that we
treat π as one letter, i.e., λ0 contains at least one letter from λ). Thus, π0 can be
decomposed into two parts, one that is a c′-trace of length m0 and is a suffix of
the flattening of λ, and another one that is equal to π (treated as a sequence of
counter operations now), which transfers c′ to c withm1 increments. Furthermore,
we have m0 +m1 = m′ ≤ m.

Due to λ ≡mops λ
′, we conclude that the flattening of λ′ has a suffix that is

a c′-trace of length m0. Combining this suffix with π, we obtain a suffix of the
flattening of λ′π that is a c-trace of length m′. Hence, there is also an infix of
λ′π whose flattening has a suffix that is a c-trace of length m′, i.e., λ′π contains a
c-trace of length m′.

The argument where λ′π has such an infix is symmetric and the reasoning for
the other three properties in the definition of ≡mops is analogous.

(4) Due to δ∗(q, xz) = δ(δ∗(q, x), z), having the same transition profile is a
congruence. This, and ≡mops being a congruence imply that ≡mA is a congruence,
too.

(5) An ≡mops equivalence class is uniquely characterized by the following prop-
erties:

• For every counter c, by the largest m′ ≤ m such that its elements contain
a c-trace of length m′ (note that every word contains a c-trace of length 0,
e.g., the empty sequence of operations).
• For every counter c, by the largest m′ ≤ m such that its elements end

with a c-trace of length m′ (note that every word ends with a c-trace of
length 0, e.g., the empty sequence of operations).
• For every pair (c, d) of counters, whether the flattenings of its elements

transfer c to d, and if yes by the largest m′ ≤ m such that the transfer has
m′ increments.
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• For every pair (c, d) of counters, whether its elements have a prefix whose
flattening transfers c to d, and if yes by the largest m′ ≤ m such that the
transfer has m′ increments.

Thus, an equivalence class is induced by two mappings from C to {0, 1, . . . ,m}
and two mappings from C × C to {⊥, 0, 1, . . . ,m}, where ⊥ encodes that no such
transfer exists. The number of quadruples of such mappings is bounded by

(m+ 2)2(k2+k) = 22(k2+k) log(m+2).

(6) An equivalence class of ≡mA is uniquely characterized by a transition profile
and, for every state q, by the ≡mops equivalence class of the sequence of counter
operations encountered along the run starting in q. Thus, the class is characterized
by a mapping from Q to pairs of a state and an ≡mops class. Thus, the index of ≡mA
is bounded by the number of such mappings, i.e., by

(n · idx(≡mops))
n = 2

log
(

(n22(k2+k) log(m+2))n
)

= 2n(log(n)+2(k2+k) log(m+2)). �

Next, we show that we can take any infinite word x0x1x2 · · · with xi ∈ Σ∗

and replace each xi by an equivalent x′i without changing membership in L(A).
We present two variants of this replacement, which differ in the formalization of
the equivalence. One variant is for the case of bounded lookahead and one for
unbounded lookahead. In the former case, we have to require that the lengths of
the xi and the lengths of the x′i are bounded. Then, one can replace each xi by
an ≡1

A-equivalent x
′
i, as the error introduced by the replacement is bounded due

to the bound on the word lengths. For the unbounded case, we have to capture
the evolution of the counters properly with the imprecise equivalence relations ≡mA .
Here, we require that the xi and the x′i are ≡mA -equivalent form tending to infinity.
Formally, a sequence (ri)i∈N of natural numbers is a (convergence) rate, if it is
weakly increasing and unbounded, i.e., ri ≤ ri+1 for every i and supi ri = ∞.
Then, we are able to replace each xi by some ≡riA-equivalent x′i.

Lemma 3.3. Let (xi)i∈N and (x′i)i∈N be two sequences of words over Σ∗. Define
x = x0x1x2 · · · and x′ = x′0x

′
1x
′
2 · · · .

(1) If supi |xi| < ∞, supi |x′i| < ∞, and xi ≡1
A x
′
i for all i, then x ∈ L(A) if,

and only if, x′ ∈ L(A).
(2) If there is a rate (ri)i∈N such that xi ≡riA x′i for all i, then x ∈ L(A) if,

and only if, x′ ∈ L(A).

Proof. We start by introducing some notation that is used in both items of the
proof, based on the fact that we have xi ≡0

A x′i for all i in both cases, due to
Item (2) of Lemma 3.2.

Let ρ = ρ(qI , x) be the run of A on x and let ρ′ = ρ(qI , x) be the run of A on x′.
Furthermore, let qi = δ∗(qI , x0 · · ·xi−1) and q′i = δ∗(qI , x

′
0 · · ·x′i−1) be the states

reached after processing the prefixes x0 · · ·xi−1 and x′0 · · ·x′i−1, respectively. By
definition of ≡0

A, we obtain qi = q′i for every i.
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Furthermore, let λi = `(qi, xi) be the sequence of counter operations labeling
the run of A on xi starting in qi, which ends in qi+1. The sequences λ′i = `(q′i, x

′
i)

labeling the runs on the x′i are defined analogously.
In both cases, we show that ρ contains arbitrarily long c-traces if, and only if, ρ′

contains arbitrarily long c-traces. Due to Lemma 3.1, this suffices to show that ρ is
accepting if, and only if, ρ′ is accepting. Furthermore, due to symmetry, it suffices
to show one direction of the equivalence. Thus, assume ρ contains arbitrarily
long c-traces and pick m′ ∈ N arbitrarily. We show the existence of a c-trace of
lengthm′ contained in ρ′. From now on, we have to consider both items separately.

(1) Here, we take a c-trace in ρ of length m > m′ for some sufficiently large
m and show that the corresponding part of ρ′ contains a c-trace of length m′.
To begin, we note that xi ≡1

A x′i and qi = q′i implies that λi and λ′i are ≡1
ops-

equivalent as well. Furthermore, define b = supi |xi|, which is well-defined due
to our assumption, and define m = (m′ + 1) · o · b, where o = maxπ∈Λ |π| is the
maximal length of a sequence of operations labeling a transition (viewed as a word
over Ops(C)). Each λi can contribute at most |flat(λi)| increments to a c-trace
that subsumes λi, which is bounded by |flat(λi)| ≤ o · b.

Now, we pick i such that λ0 · · ·λi contains a c-trace of length m. By the choice
of m, this trace spans several λi, i.e., there are counters cs+1, cs+2, . . . , ci such that

• the flattening of λs has a suffix that is a cs+1-trace,
• the flattening of λj transfers cj to cj+1 for every j in the range s < j < i,

and
• λi has a prefix whose flattening transfers ci to c.

By the choice of m we know that we can pick the counters cs+1, cs+2, . . . , ci so
that at least m′ of the transfers between them are actually transfers with at least
one increment, as every transfer contains at most b · o increments.

The equivalence of λj and λ′j implies that λ′j realizes the same transfers (with
at least one increment) as λj . Hence, λ′0 · · ·λ′i contains a c-trace of length m′.

(2) Here, we can take a c-trace of length m′ in ρ appearing after a sufficiently
large prefix of ρ so that the rate ri is large enough to imply that the ≡riops-equivalent
part in ρ′ contains a c-trace of length m′ as well. Again, we begin by noting that
we have λi ≡riops λ

′
i for every i, due to xi ≡riA x′i and qi = q′i.

Now, fix a c-trace of length m′ in ρ. As there are arbitrarily long such traces,
we can pick one that is contained in some infix λs · · ·λi with m′ ≤ rs ≤ ri.

If s = i, then the complete c-trace is contained in λs. Thus, the first requirement
in the definition of ≡riops yields that λ′s contains a c-trace of the same length.

If s < i, then the reasoning is similar to Item (1) above: There are coun-
ters cs+1, cs+2, . . . , ci and natural numbers ms,ms+1, . . . ,mi with ms + ms+1 +
· · ·+mi = m′ such that

• the flattening of λs has a suffix that is a cs+1-trace of length ms,
• the flattening of λj transfers cj to cj+1 with mj increments for every j in

the range s < j < i, and
• λi has a prefix whose flattening transfers ci to c with mi increments.
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The equivalence of λj and λ′j implies that λ′j realizes the same transfers with the
same number of increments as λj . Hence, ρ′ contains a c-trace of length m′. �

Note that the first item of the lemma does not hold if we drop the boundedness
requirements on the lengths of the xi and the x′i.

The ≡mA classes are regular and trackable on-the-fly by a deterministic finite
automaton (DFA) Tm due to ≡mA being a congruence.

Lemma 3.4. There is a DFA Tm with set of states Σ∗/≡mA such that the run of
Tm on w ∈ Σ∗ ends with state [w]≡m

A
.

Proof. Define Tm = (Σ∗/ ≡mA ,Σ, [ε]≡m
A
, δTm , ∅) where δTm([x]≡m

A
, a) = [xa]≡m

A
,

which is independent of the representative x and based on the fact that ≡mA is a
congruence. An induction over |w| shows that Tm has the desired properties. �

In particular, every ≡mA equivalence class is regular and recognized by the DFA
obtained from Tm by making the class to be recognized the only final state.

For the remainder of this section, we assume Σ = ΣI × ΣO. We denote the
projection of ΣI ×ΣO to ΣI by πI(·), an operation we lift to words and languages
over ΣI × ΣO in the usual way. Now, for each equivalence relation ≡mA over
(ΣI × ΣO)∗ we define its projection5 =m

A over Σ∗I via x =m
A x′ if, and only if, for

all ≡mA classes S: x ∈ πI(S) if, and only if, x′ ∈ πI(S).

Remark 3.5. idx(=m
A ) ≤ 2idx(≡m

A ).

Furthermore, every =m
A equivalence class is regular: We have

[x]=m
A

=
⋂

S∈(ΣI×ΣO)∗/≡m
A : x∈πI(S)

πI(S) ∩
⋂

S∈(ΣI×ΣO)∗/≡m
A : x/∈πI(S)

Σ∗I \ πI(S),

where each projection πI(S) and each complemented projection Σ∗I \ πI(S) is
recognized by a DFA of size 2idx(≡m

A ). All these DFA’s share the same set of
states. Thus, [x]=m

A
is recognized by a DFA of size 2idx(≡m

A ) as well. In particular,
we have the following bound that is applied in the next section, which stems from
the fact that a DFA with s states that recognizes a word w of length |w| ≥ s
recognizes an infinite language.

Remark 3.6. Recall that n denotes the number of states and k the number of
counters of A and let x be in a finite equivalence class of =0

A. Then, we have
|x| < 2idx(≡0

A) = 22n(log(n)+2(k2+k))

.

4. Max-regular Delay Games with Bounded Lookahead

In this section, we prove the analogue of the Hosch-Landweber Theorem for
max-regular winning conditions: Given a max-automaton A, it is decidable wheth-
er Player O wins Γf (L(A)) for some constant f . The proof consists of a reduction

5The notation =m
A should not be understood as denoting equality, but merely as having

projected away one bar from ≡m
A .
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to a delay-free game with max-regular winning condition. The winner of such a
game can be determined effectively by a reduction to the satisfiability problem
for WMSO+UP. As the complexity of the satisfiability problem is open, even
when already starting with an automaton instead of a formula, we also obtain a
decidability result without any upper bound on the complexity. We come back to
this issue in Section 8.

The delay-removal is similar to the one in the ω-regular case that forms the
foundation for the exponential-time algorithm solving such games [24]. Intuitively,
instead of picking words over their alphabet, Player I picks =1

A equivalence classes
and Player O picks compatible ≡1

A classes. To account for the lookahead, Player I
is aways one move ahead in the delay-free game.

By picking representatives of the ≡1
A classes picked by Player O, one obtains a

word whose membership in L(A) determines the winner. The error introduced by
using the imprecise equivalence relation is bounded, as we only consider constant
delay functions. The correctness of this construction is based on Item (1) of
Lemma 3.3, which shows that such a bounded error is negligible when it comes to
satisfying the acceptance condition of a max-automaton.

To obtain small bounds on the necessary lookahead, we modifyA so that it keeps
track of the ≡1

A class of the input it processes and then work with the projection
of the modified automaton A instead of projecting the equivalence relation. This
approach yielded the exponential improvement between the algorithms presented
in [20] and [24] for solving ω-regular delay games.

Theorem 4.1. The following problem is decidable: Given a max-automaton A,
does Player O win Γf (L(A)) for some constant delay function f?

Let A = (Q,C,ΣI × ΣO, qI , δ, `, ϕ) be a max-automaton and let the tracking
automaton T1 = ((ΣI×ΣO)/≡1

A,ΣI×ΣO, [ε]≡1
A
, δT1 , ∅) be defined as in Lemma 3.4.

In this section, for the sake of readability, we denote the ≡1
A equivalence class of

w by [w] and do not make use of the other equivalence relations ≡mA for m 6= 1.
Furthermore, we denote equivalence classes using the letter S.

We define the product P = (QP , C,ΣI × ΣO, q
P
I , δP , `P , ϕ) of A and T1, which

is a max-automaton, where

• QP = Q× ((ΣI × ΣO)/≡1
A),

• qPI = (qI , [ε]),
• δP((q, S), a) = (δ(q, a), δT1(S, a)) for q ∈ Q, a class S ∈ (ΣI × ΣO)/≡1

A,
and a letter a ∈ ΣI × ΣO, and

• `P((q, S), a, (q′, S′)) = `(q, a, q′).

Let

n = |QP | = |Q| · idx(≡1
A) ≤ |Q| · 2|Q|(log(|Q|)+4(k2+k)).

We have L(P) = L(A), since acceptance only depends on the component A of P.
However, we are interested in partial runs of P, as the component T1 keeps track
of the equivalence class of the input processed by P.
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Remark 4.2. Let w ∈ (ΣI × ΣO)∗ and let (q0, S0)(q1, S1) · · · (q|w|, S|w|) be the
run of P on w from some state (q0, S0) with S0 = [ε]. Then, q0q1 · · · q|w| is the run
of A on w starting in q0 and S|w| = [w].

In the following, we work with partial functions r from QP to 2QP , where we
denote the domain of r by dom(r). Intuitively, we use such a function to capture
the information encoded in the lookahead provided by Player I. Assume Player I
has picked α(0) · · ·α(j) and Player O has picked β(0) · · ·β(i) for some i < j, i.e.,
the lookahead is α(i+1) · · ·α(j). Then, we can determine the state q that P reaches
when processing

(
α(0)
β(0)

)
· · ·
(
α(i)
β(i)

)
, but the automaton cannot process α(i+1) · · ·α(j),

since Player O has not yet provided her moves β(i+ 1) · · ·β(j). However, we can
determine which states Player O can enforce by picking an appropriate completion.
These are contained in r(q).

To formalize this, we first treat P as a DFA, i.e., we ignore the transition label-
ing and the acceptance condition. Then, we project away the second component
of the alphabet to obtain a non-deterministic automaton over the alphabet ΣI ,
denoted by πI(P). Finally, we apply the powerset construction to determinize the
automaton. Let δpow : 2QP ×ΣI → 2QP be the transition function of the powerset
automaton, i.e., δpow(P, a) =

⋃
q∈P

⋃
b∈ΣO

δP
(
q,
(
a
b

))
. As usual, we extend δpow to

δ∗pow : 2QP ×Σ∗I → 2QP via δ∗pow(P, ε) = P and δ∗pow(P,wa) = δpow(δ∗pow(P,w), a).
Let D ⊆ QP be non-empty and let w ∈ Σ∗I . We define the function rDw with

domain D as follows: For every (q, S) ∈ D, we have

rDw (q, S) = δ∗pow({(q, [ε])}, w) ,

i.e., we collect all states (q′, S′) reachable from (q, [ε]) (note that the second com-
ponent is the equivalence class of the empty word while the class S from the
argument is ignored) via a run of the projected automaton πI(P) on w. Thus, if
(q′, S′) ∈ rDw (q, S), then there is a word w′ whose projection is w and with [w′] = S′

such that the run of A on w′ leads from q to q′. Hence, if Player I has picked the
lookahead w, then Player O could pick an answer such that the combined word
leads A from q to q′ and such that it is a representative of S′.

We call w a witness for a partial function r : QP → 2QP , if we have r = r
dom(r)
w .

Thus, we obtain a language Wr ⊆ Σ∗I of witnesses for each such function r. Now,
we define R = {r | dom(r) 6= ∅ and Wr is infinite}.

Lemma 4.3. Let R be defined as above.
(1) Let r ∈ R. Then, r(q) 6= ∅ for every q ∈ dom(r).
(2) Let r, r′ ∈ R such that r 6= r′ and dom(r) = dom(r′). Then, Wr∩Wr′ = ∅.
(3) Let r be a partial function from QP to 2QP . Then, Wr is recognized by a

DFA with at most 2n
2

states.
(4) Let r ∈ R. Then, Wr contains a word w with k ≤ |w| ≤ k + 2n

2

for every
k.

(5) Let D ⊆ QP be non-empty and let w be such that |w| ≥ 2n
2

. Then, there
exists some r ∈ R with dom(r) = D and w ∈Wr.
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Proof. The first statement follows from completeness of the automaton P while
the second one follows from the definition of rDw , which is uniquely determined by
w and D. Hence, a fixed w cannot witness two different functions r and r′ with
the same domain.

To prove the third statement, fix some partial function r from QP to 2QP with
domain D = {(q1, S1), . . . , (q|D|, S|D|)}. Then, the product of |D| copies of the
powerset automaton of πI(P) (ignoring the transition labeling and the acceptance
condition) with the initial state ({(q1, [ε])}, . . . , {(q|D|, [ε])}) and the unique ac-
cepting state (r(q1, S1), . . . , r(q|D|, S|D|)) recognizes the witness language Wr. As
|D| ≤ n, the automaton has at most (2n)|D| ≤ 2n

2

states.
The fourth statement is follows immediately by a simple pumping argument

from the third one: Every finite automaton with s states recognizing an infinite
language recognizes a word w of length k ≤ |w| ≤ k + s for every k.

For proving the last statement, we fix some non-empty D and some w of length
at least 2n

2

. Define r = rDw , which implies w ∈ Wr by definition. As just shown,
there exists an automaton recognizing Wr with at most 2n

2 ≤ |w| many states.
Thus, the accepting run of the automaton on w contains a state-repetition. Hence,
Wr is infinite, i.e., r ∈ R. �

Due to Items (2) and (5), we can define for every non-empty D ⊆ QP a function
rD that maps words w ∈ Σ∗I with |w| ≥ 2n

2

to the unique function r with dom(r) =
D and w ∈Wr. This is used later in the proof.

Now, we define an abstract game G(A) between Player I and Player O that is
played in rounds i = 0, 1, 2, . . .: In each round, Player I picks a function from R
and then Player O picks a state q of P. In round 0, Player I has to pick r0 subject
to constraint (C1): dom(r0) = {qPI }. Then, Player O has to pick a state q0 ∈
dom(r0) (which implies q0 = qPI ). Now, consider round i > 0: Player I has picked
functions r0, r1, . . . , ri−1 and Player O has picked states q0, q1, . . . , qi−1. Now,
Player I has to pick a function ri subject to constraint (C2): dom(ri) = ri−1(qi−1).
Then, Player O has to pick a state qi ∈ dom(ri). Both players can always move:
Player I can, as ri−1(qi−1) is always non-empty (Item (1) of Lemma 4.3) and thus
the domain of some r ∈ R (Item (5) of Lemma 4.3) and Player O can, as the
domain of every r ∈ R is non-empty by construction.

The resulting play is the sequence r0q0r1q1r2q2 · · · . Let qi = (q′i, Si) for every i,
i.e., Si is an ≡1

A equivalence class. Let xi ∈ Si for every i such that supi |xi| <∞,
i.e., we pick representatives whose lengths are bounded. Such a sequence can al-
ways be found as≡1

A has finite index. Player O wins the play if the word x0x1x2 · · ·
is accepted by A. Due to Item (1) of Lemma 3.3, this definition is independent of
the choice of the representatives xi. Hence, the winner of the play only depends
on the sequence S0S1S2 · · · .

A strategy for Player I is a function τ ′I mapping the empty play prefix to
a function r0 subject to constraint (C1) and mapping a non-empty play pre-
fix r0q0 · · · ri−1qi−1 ending in a state to a function ri subject to constraint (C2).
On the other hand, a strategy for Player O maps a play prefix r0q0 · · · ri ending in
a function to a state qi ∈ dom(ri). A play r0q0r1q1r2q2 · · · is consistent with τ ′I ,
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if ri = τ ′I(r0q0 · · · ri−1qi−1) for every i ≥ 0. Dually, the play is consistent with τ ′O,
if qi = τ ′O(r0q0 · · · ri) for every i ≥ 0. A strategy is winning for Player p, if every
play that is consistent with this strategy is winning for her. As usual, we say that
Player p wins G(A), if she has a winning strategy.

In the proof of Theorem 4.1, we construct an explicit variant of G(A) and show
that its winning condition is max-regular. As a corollary, we obtain determinacy
of G(A). But first we prove that G(A) captures the existence of a bounded delay
function f such that Player O wins Γf (L(A)).

Lemma 4.4. Player O wins Γf (L(A)) for some constant delay function f if, and
only if, Player O wins G(A).

Proof. For the sake of readability, we write Γ instead of Γf (L(A)), as long as f is
clear from context. Similarly, we write G′ instead of G′(A).

First, assume PlayerO has a winning strategy τO for Γf (L(A)) for some constant
delay function f . We construct a winning strategy τ ′O for Player O in G via
simulating a play of G by a play of Γ.

Let r0 be the first move of Player I in G, which has to be responded to by
Player O by picking qPI = τ ′O(r0), and let r1 be Player I’s response to that move.
Let w0 ∈ Wr0 and w1 ∈ Wr1 be witnesses for the functions picked by Player I.
Due to Item (4) of Lemma 4.3, we can choose w0 and w1 with f(0) ≤ |w0|, |w1| ≤
f(0) + 2n

2

. We simulate the play prefix r0q0r1 in Γ, where q0 = qPI : Player I picks
w0w1 = α(0) · · ·α(`1 − 1) in his first moves and let β(0) · · ·β(`1 − f(0)) be the
response of Player O according to τO. We obtain |β(0) · · ·β(`1 − f(0))| ≥ |w0|,
due to f(0) ≤ |w1|.

Thus, we are in the following situation for i = 1: In G, we have a play pre-
fix r0q0 · · · ri−1qi−1ri and in Γ, Player I has picked w0w1 · · ·wi = α(0) · · ·α(`i−1)
and Player O has picked β(0) · · ·β(`i−f(0)) according to τO, where |β(0) · · ·β(`i−
f(0))| ≥ |w0 · · ·wi−1|. Furthermore, wj is a witness for rj for every j ≤ i.

In this situation, let qi be the state of P that is reached when processing wi−1

and the corresponding moves of Player O, i.e., the word

(
α(|w0 · · ·wi−2|)
β(|w0 · · ·wi−2|)

)
· · ·
(
α(|w0 · · ·wi−1| − 1)

β(|w0 · · ·wi−1| − 1)

)
,

starting in state (q′i−1, [ε]), where qi−1 = (q′i−1, Si−1).
By definition of ri−1, we have qi ∈ ri−1(qi−1), i.e., qi is a legal move for

Player O in G to extend the play prefix r0q0 · · · ri−1qi−1ri. Thus, we define
τ ′O(r0q0 · · · ri−1qi−1ri) = qi. Now, let ri+1 be the next move of Player I in G
and let wi+1 ∈ Wri+1 be a witness with f(0) ≤ |wi+1| ≤ f(0) + 2n

2

. Going
back to Γ, let Player I pick wi+1 = α(`i) · · ·α(`i+1 − 1) as his next moves and
let β(`i − f(0) + 1) · · ·β(`i+1 − f(0)) be the response of Player O according to
τO. Then, we are in the situation as described in the previous paragraph, which
concludes the definition of τ ′O.
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It remains to show that the strategy τ ′O is winning for Player O in G. Consider a
play r0q0r1q1r2q2 · · · that is consistent with τ ′O and let w =

(
α
β

)
be the correspond-

ing outcome constructed as in the simulation described above. Let qi = (q′i, Si),
i.e., q′i is a state of our original automaton A. A straightforward inductive appli-
cation of Remark 4.2 shows that q′i is the state that A reaches after processing wi
and the corresponding moves of Player O, i.e.,

xi =

(
α(|w0 · · ·wi−1|)
β(|w0 · · ·wi−1|)

)
· · ·
(
α(|w0 · · ·wi| − 1)

β(|w0 · · ·wi| − 1)

)
,

starting in q′i−1, and that Si = [xi]. Note that the length of the xi is bounded,
i.e., we have supi |xi| ≤ f(0) + 2n

2

.
As w is consistent with a winning strategy for Player O, the run of A on

w = x0x1x2 · · · is accepting. Thus, we conclude that the play r0q0r1q1r2q2 · · · is
winning for Player O, as the xi are a bounded sequence of representatives. Hence,
τ ′O is indeed a winning strategy for Player O in G.

Now, we consider the other implication: Assume Player O has a winning strat-
egy τ ′O for G and fix d = 2n

2

. We construct a winning strategy τO for her in
Γf (L(A)) for the constant delay function f with f(0) = 2d. In the following, both
players pick their moves in blocks of length d. We denote Player I’s blocks by ai
and Player O’s blocks by bi, i.e., in the following, every ai is in ΣdI and every bi is
in ΣdO. This time, we simulate a play of Γ by a play in G.

Let a0a1 be the first move of Player I in Γ, let q0 = qPI , and define the functions
r0 = r{q0}(a0) and r1 = rr0(q0)(a1) (recall the definition of rD below Lemma 4.3).
Then, r0q0r1 is a legal play prefix of G that is consistent with the winning strat-
egy τ ′O for Player O.

Thus, we are in the following situation for i = 1: In G, we have constructed a
play prefix r0q0 · · · ri−1qi−1ri that is consistent with τ ′O; in Γ, Player I has picked
a0 · · · ai such that aj is a witness for rj for every j in the range 0 ≤ j ≤ i. Player O
has picked b0 · · · bi−2, which is the empty word for i = 1.

In this situation, let qi = τ ′O(r0q0 · · · ri−1qi−1ri). By definition, we have qi ∈
dom(ri) = ri−1(qi−1). Furthermore, as ai−1 is a witness for ri−1, there exists bi−1

such that P reaches the state qi when processing
(
ai−1

bi−1

)
starting in state (q′i−1, [ε]),

where qi−1 = (q′i−1, Si−1).
Player O’s strategy for Γ is to play bi−1 in the next d rounds, which is answered

by Player I by picking some ai+1 during these rounds. This induces the func-
tion ri+1 = rri(qi)(ai+1). Now, we are in the same situation as described in the
previous paragraph. This finishes the description of the strategy τO.

It remains to show that τO is winning for PlayerO in Γ. Let w =
(
a0
b0

)(
a1
b1

)(
a2
b2

)
· · ·

be the outcome of a play in Γ that is consistent with τO. Furthermore, let
r0q0r1q1r2q2 · · · be the corresponding play in G constructed in the simulation as
described above, which is consistent with τ ′O. Let qi = (q′i, Si). A straightforward
inductive application of Remark 4.2 shows that q′i is the state reached by A after
processing xi =

(
ai
bi

)
starting in q′i−1 and Si = [xi]. Furthermore, supi |xi| = d.
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As r0q0r1q1r2q2 · · · is consistent with a winning strategy for Player O and there-
fore winning for Player O, we conclude that x0x1x2 · · · is accepted by A. Hence, A
accepts the outcome w, which is equal to x0x1x2 · · · , i.e., the play in Γ is winning
for Player O. Thus, τO is a winning strategy for Player O in Γ. �

Now, we can prove our main theorem of this section, Theorem 4.1.

Proof. Due to Lemma 4.4, we just have to show that we can construct and solve
an explicit version of G(A). First, we show how to determine R. The automaton P
can be constructed by building the tracking automaton T1. Then, for every partial
function r from QP to 2QP construct the automaton recognizing the language Wr

of witnesses of r as described in the proof of Lemma 4.3. Then, r ∈ R if, and only
if, Wr is infinite, which can easily be checked.

Now, we encode G(A) as a graph-based game with arena (V, VI , VO, E) where
• the set of vertices is V = VI ∪ VO with
• the vertices VI = {vI} ∪ R × QP of Player I, where vI is a fresh initial

vertex,
• the vertices VO = R of Player O, and
• E is the union of the following sets of edges:

– {(vI , r) | dom(r) = {qPI }}, the initial moves of Player I,
– {((r, q), r′) | dom(r′) = r(q)}, (regular) moves of Player I, and
– {(r, (r, q)) | q ∈ dom(r)}, moves of Player O.

A play is an infinite path starting in vI . To determine the winner of a play,
we fix an arbitrary function rep: (ΣI × ΣO)∗/≡1

A→ (ΣI × ΣO)∗ that maps each
equivalence class to some representative, i.e., rep(S) ∈ S for every S ∈ (ΣI×ΣO)∗/
≡1
A. This can be effectively done by picking a word that leads to each reachable

state of T , as these states correspond to equivalence classes of ≡1
A.

Now, consider an infinite play

vI , r0, (r0, q0), r1, (r1, q1), r2, (r2, q2), . . . ,

with qi = (q′i, Si) for every i. This play is winning for Player O, if the infi-
nite word rep(S0)rep(S1)rep(S2) · · · is accepted by A (note that supi |rep(Si)| is
bounded, as there are only finitely many equivalence classes). The set Win ⊆ V ω
of winning plays for Player O is a max-regular language6, as it can be recognized
by an automaton that simulates the run of A on rep(S) when processing a vertex
of the form (r, (q, S)) and ignores all other vertices. Games in finite arenas with
max-regular winning condition are decidable via an encoding as a satisfiability
problem for WMSO+UP [3].

Player O wins G(A) (and thus Γf (L(A)) for some constant f) if, and only if,
she has a winning strategy from vI in the game ((V, VI , VO, E),Win). �

We obtain a doubly-exponential upper bound on the constant lookahead nec-
essary for Player O to win a delay game with a max-regular winning condition
by applying both directions of the equivalence between Γf (L(A)) and G(A): If

6This implies that G(A) is determined, as max-regular conditions are Borel [2].



20 TITLE WILL BE SET BY THE PUBLISHER

Player O wins Γf (L(A)) for some constant f , then she also wins G(A), and there-
fore also Γf (L(A)) for the constant f with f(0) = 2d, where d is defined as in the
proof of Lemma 4.4.

Corollary 4.5. Let A be a max-automaton with n states and k counters. The
following are equivalent:

(1) Player O wins Γf (L(A)) for some constant delay function f .
(2) Player O wins Γf (L(A)) for some constant delay function f with

f(0) ≤ 2n
2·22n(log(n)+4(k2+k))+1.

5. Bounded Lookahead Does Not Suffice

In the previous section, we proved that the winner of a max-regular delay game
with respect to constant delay functions can be determined effectively. However, in
this section, we show that bounded and thus constant lookahead does not suffice to
win every max-regular delay game that Player O can win with arbitrary lookahead.
Thus, in this aspect, the max-regular languages behave differently than the ω-
regular ones.

Theorem 5.1. There is a max-regular language L such that Player O wins Γf (L)
for every unbounded delay function f , but not for any bounded delay function f .

Proof. Let ΣI = {0, 1,#} and ΣO = {0, 1, ∗}. An input block is a word #w with
w ∈ {0, 1}+. An output block is a word

(
#
α(n)

)(
α(1)
∗
)(
α(2)
∗
)
· · ·
(
α(n−1)
∗
)(
α(n)
α(n)

)
∈

(ΣI ×ΣO)+ with α(j) ∈ {0, 1} for all j in the range 1 ≤ j ≤ n. The first and last
letter in an output block are the only ones whose second component is not an ∗,
and these bits have to be equal to the first component of the block’s last letter.
Every input block of length n can be extended to an output block of length n and
projecting an output block to its first components yields an input block.

Let L ⊆ (ΣI × ΣO)ω be the language of words
(
α
β

)
satisfying the following

property: If α contains infinitely many # and arbitrarily long input blocks, then(
α
β

)
contains arbitrarily long output blocks (note that we do not require the output

blocks to be maximal in the sense that they end just before a position where
Player I has picked a #). It is easy to come up with a WMSO+U formula defining
L by formalizing the definitions of input and output blocks in first-order logic.

Now, consider L as winning condition for a delay game. Intuitively, Player O
has to specify arbitrarily long output blocks, provided Player I produces arbitrarily
long input blocks. The challenge for Player O is that she has to specify at the
beginning of every output block whether she ends the block in a position where
Player I has picked a 0 or a 1.

First, consider Γf (L) for an unbounded delay function f . The following strategy
is winning for Player O: Whenever she has to pick β(i) at a position where Player I
picked α(i) = #, she picks the last letter of the longest input block in the lookahead
that starts with the current #. Then, she completes the output block by picking
∗ until the end of the input block, where she copies β(i), which completes the
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output block. At every other position, she picks an arbitrary letter. Now, consider
a play consistent with this strategy: If Player I picks infinitely many # and
arbitrarily large input blocks, then Player O sees arbitrarily large input blocks in
her lookahead, i.e., her strategy picks arbitrarily large output blocks. Thus, the
strategy is indeed winning.

It remains to show that Player I wins Γf (L) for every bounded delay function f .
Due to Lemma 2.2, it suffices to only consider constant delay functions.

Hence, fix such a function and define ` = f(0), i.e., ` is the size of the lookahead
Player O has in each round. Player I produces longer and longer input blocks of
the following form: He starts picking # followed by 0’s until Player O has picked
an answer at the position of the last #. If she picked a 0, then Player I finishes
the input block by picking 1’s; if she picked a 1 (or an ∗), then he finishes the
input block by picking 0’s. Thus, the length of every output block is at most `,
since Player O has to determine the answer to every # after seeing the the next `
letters picked by Player I. Thus, Player I picks infinitely many # and arbitrarily
long input blocks, while the length of the output blocks is bounded. Hence, the
strategy is winning for Player I. �

6. Max-regular Delay Games with Unbounded Lookahead

In this section, we complement the result of the previous section, showing that
bounded lookahead is not always sufficient for max-regular delay games, by show-
ing that any unbounded lookahead is sufficient for Player O, provided some looka-
head allows her to win at all. It is easy to see that if Player O wins a game with
respect to some delay function f , then she also wins with respect to every f ′ that
grants her at every round larger lookahead. The hard part of the proof is to show
that she also wins for smaller functions f ′ that grant her less lookahead.

We show this by defining another game G′(A) based on the equivalence relations
capturing the behavior of max-automata. This time, as we have to deal with un-
bounded delay functions, we use the relations ≡mA for arbitrarily large m: Player I
picks equivalence classes of =m

A for increasing m and Player O picks compatible
≡mA classes. The rate of m’s convergence to infinity is controlled by Player I.
In particular, he loses if m does not tend to infinity. If it does, then by picking
representatives of the ≡mA classes picked by Player O, one obtains a word whose
membership in L(A) determines the winner. Also, Player I is always one move
ahead to account for the delay. This game allows to prove that smaller, but un-
bounded, lookahead is also sufficient, as Player I is in charge of the precision and
may increase it as slowly as he wants to.
Theorem 6.1. Let A be a max-automaton with n states and k counters and let
d = 22n(log(n)+2(k2+k))

. The following are equivalent:
(1) Player O wins Γf (L(A)) for some f .
(2) Player O wins Γf (L(A)) for every unbounded f with f(0) ≥ 2d.
Fix A = (Q,C,ΣI × ΣO, qI , δ, `, ϕ) with |Q| = n and |C| = k. We define

the game G′(A) between Player I and Player O played in rounds i = 0, 1, 2, . . .
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as follows: In round 0, Player I picks natural numbers r0, r1 and picks infinite
equivalence classes [x0]=r0

A
and [x1]=r1

A
. Then, Player O picks an equivalence

class [
(
x0

y0

)
]≡r0
A
. Note that this choice is independent of the representative x0.

Now, consider round i > 0: Player I picks ri+1 ∈ N and an infinite equivalence
class [xi+1]

=
ri+1
A

. Afterwards, Player O picks an equivalence class [
(
xi

yi

)
]≡ri
A
, whose

choice is again independent of the representative xi.
Thus, the players produce a play

[x0]=r0
A

[

(
x0

y0

)
]≡r0
A

[x1]=r1
A

[

(
x1

y1

)
]≡r1
A

[x2]=r2
A

[

(
x2

y2

)
]≡r2
A
· · ·

(note that this does not represent the order in which the players made their moves).
Player O wins, if (ri)i∈N is not a rate or if

(
x0

y0

)(
x1

y1

)(
x2

y2

)
· · · ∈ L(A). Otherwise,

i.e., if (ri)i∈N is a rate and
(
x0

y0

)(
x1

y1

)(
x2

y2

)
· · · /∈ L(A), Player I wins. By Item (2) of

Lemma 3.3, winning does not depend on the choice of representatives xi and yi.
Strategies and winning strategies for G′(A) are defined as expected, taking into
account that Player I is always one equivalence class ahead.

The following lemma about the relation between Γf (L(A)) and G′(A) implies
Theorem 6.1.

Lemma 6.2. The following are equivalent:
(1) Player O wins Γf (L(A)) for some f .
(2) Player O wins Γf (L(A)) for every unbounded f with f(0) ≥ 2d.
(3) Player O wins G′(A).

Proof. It suffices to show that (1) implies (3) and that (3) implies (2), as (2) implies
(1) is trivially true. For the sake of readability, we write Γ instead of Γf (L(A)), as
long as f is clear from context. Similarly, we write G′ instead of G′(A).

Let Player O win Γf (L(A)) for some f , say with winning strategy τO. We
construct a winning strategy τ ′O for her in G′ by simulating a play in Γ that is
consistent with τO.

In round 0 of G′, Player I picks r0, r1, [x0]=r0
A
, and [x1]=r1

A
. As both equiv-

alence classes are infinite, we can assume without loss of generality |x0| ≥ f(0)

and |x1| ≥
∑|x0|−1
j=1 f(j). Now, assume Player I picks in Γ the prefix of x0x1 of

length
∑|x0|−1
j=0 f(j) during the first |x0| rounds. Let y0 of length |x0| be the answer

of Player O to these choices determined by the winning strategy τO. We define
τ ′O such that it picks [

(
x0

y0

)
]≡r0
A

as answer to Player I picking r0, r1, [x0]=r0
A
, and

[x1]=r1
A

in round 0.
Now, we are in the following situation for i = 1: In G′, Player I has picked

natural numbers r0, . . . , ri and equivalence classes [x0]=r0
A
, . . . , [xi]=ri

A
such that

|x0| ≥ f(0), |x1| ≥
∑|x0|−1
j=1 f(j), and

|xi′ | ≥
|xi′−1|−1∑
j=0

f(|x0 · · ·xi′−1|+ j)
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for every i′ with 1 < i′ ≤ i (this statement is vacuously true for i = 1). Player O
has picked [

(
x0

y0

)
]≡r0
A
, . . . , [

(
xi−1

yi−1

)
]≡ri−1
A

. Further, in Γ, Player I has picked the prefix

of x0 · · ·xi of length
∑|x0···xi−1|−1
j=0 f(j) during the first |x0 · · ·xi−1| rounds, which

was answered by Player O according to τO by picking y0 · · · yi−1.
In this situation, it is Player I’s turn in G′, i.e., he picks ri+1 and [xi+1]

=
ri+1
A

.

Again, as the class is infinite, we can assume |xi+1| ≥
∑|xi|−1
j=0 f(|x0 · · ·xi| + j).

Thus, we continue the play in Γ by letting Player I pick letters such that he has
picked the prefix of x0 · · ·xi+1 of length

∑|x0···xi|−1
j=0 f(j) during the first |x0 · · ·xi|

rounds. Again, this is answered by Player I by picking y0 · · · yi such that |yi| = |xi|
according to τO. Now, we define τ ′O such that it picks [

(
xi

yi

)
]≡ri
A
as next move. Thus,

we are in the situation described above for i+ 1.
Let w′ = [x0]=r0

A
[
(
x0

y0

)
]≡r0
A

[x1]=r1
A

[
(
x1

y1

)
]≡r1
A

[x2]=r2
A

[
(
x2

y2

)
]≡r2
A
· · · be a play in G′

that is consistent with τ ′O. Consider the outcome w =
(
x0

y0

)(
x1

y1

)(
x2

y2

)
· · · of the play

in Γ constructed during the simulation. It is consistent with τO, hence w ∈ L(A).
Accordingly, Player O wins the play w′. Thus, τ ′O is indeed a winning strategy for
Player O in G′.

Now, consider the second implication to be proven: Assume Player O has a
winning strategy τ ′O for G′ and let f be an arbitrary unbounded delay function with
f(0) ≥ 2d. We construct a winning strategy τO for Player O in Γ by simulating a
play of Γ in G′.

To this end, we define a strictly increasing auxiliary rate (di)i∈N recursively as
follows: Let d0 be minimal with the property that every word of length at least
d0 is in some infinite equivalence class of =0

A. We have d0 ≤ d = 22n(log(n)+2(k2+k))

due to Remark 3.6. Now, we define di+1 to be the minimal integer strictly greater
than di such that every word of length at least di+1 is in some infinite equivalence
class of =i+1

A . This is well-defined due to =i+1
A having finite index, i.e., there are

only finitely many words in finite equivalence classes.
Let Player I pick x0x1 of length f(0) ≥ 2 · d0 in round 0 of Γ (the exact

decomposition into x0 and x1 is irrelevant, we just use it to keep the notation
consistent). Now, decompose x0x1 = x′0x

′
1β1 such that |x′0| = |x′1| = d0. We

simulate these moves by letting Player I pick r0 = r1 = 0, [x′0]=r0
A
, and [x′1]=r1

A
in

round 0 of G′, which are legal moves by the choice of d0.
Thus, we are in the following situation for i = 1: In Γ, Player I has picked

x0 · · ·xi and Player O has picked y0 · · · yi−2. Furthermore, in G′, Player I has
picked [x′0]=r0

A
, . . . , [x′i]=ri

A
and there is a buffer βi ∈ Σ∗I such that x0 · · ·xi =

x′0 · · ·x′iβi. Finally, Player O has picked [
(
x′0
y0

)
]≡r0
A
· · · [

(
x′i−2
yi−2

)
]≡ri−2
A

.

In this situation, it is Player O’s turn and τ ′O returns a class [
(
x′i−1
yi−1

)
]≡ri−1
A

. Thus,
we define τO such that it picks yi−1 during the next rounds, in which Player I picks
letters forming xi+1 satisfying |xi+1| ≥ |yi−1|. We consider two cases to simulate
these in G′:

(1) If |βixi+1| ≥ 2dri+1−dri , then Player I picks ri+1 = ri+1 and [x′i+1]
=

ri+1
A

,
where x′i+1 is the prefix of βixi+1 of length dri+1

. This is an infinite
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equivalence class by the choice of dri+1
. The remaining suffix of βixi+1 is

stored in the buffer βi+1, i.e., we have βixi+1 = x′i+1βi+1.
(2) Now, consider the case |βixi+1| < 2dri+1−dri : Below, we show |βixi+1| ≥

dri . Then, Player I picks ri+1 = ri and [x′i+1]
=

ri+1
A

, where x′i+1 is the prefix
of βixi+1 of length dri+1 = dri , which is again an infinite equivalence class
by the choice of dri+1

. The remaining suffix of βixi+1 is stored in the
buffer βi+1, i.e., we have βixi+1 = x′i+1βi+1.

To show |βixi+1| ≥ dri , we again consider two cases: If ri−1 = ri, then
we have

|βixi+1| ≥ |xi+1| ≥ |yi−1| = |x′i−1| = dri−1 = dri .

On the other hand, assume ri−1 < ri, which implies ri−1 + 1 = ri, as we
are in case (1) of the (outer) case distinction. Then, we have |βi−1xi| ≥
2dri−1+1 − dri−1

and x′i is the prefix of length dri = dri−1+1 of βi−1xi,
which implies |βi| ≥ dri−1+1−dri−1 , as it is the remaining suffix of βi−1xi.
Finally, we have

|xi+1| ≥ |yi−1| = |x′i−1| = dri−1
.

Altogether, we obtain

|βixi+1| ≥ (dri−1+1 − dri−1) + dri−1 = dri−1+1 = dri .

In both cases, we are back in the situation described above for i+ 1.
Let w =

(
x0x1x2···
y0y1y2···

)
be the outcome of a play in Γ that is consistent with τO. The

play [x′0]=r0
A

[
(
x′0
y0

)
]≡r0
A

[x′1]=r1
A

[
(
x′1
y1

)
]≡r1
A

[x′2]=r2
A

[
(
x′2
y2

)
]≡r2
A
· · · in G′ constructed during

the simulation is consistent with τ ′O. As f is unbounded, (ri)i∈N is unbounded as
well and thus a rate. Hence, we conclude

(
x′0
y0

)(
x′1
y1

)(
x′2
y2

)
∈ L(A), as τ ′O is a winning

strategy. Also, a straightforward induction shows x0x1x2 · · · = x′0x
′
1x
′
2 · · · . Thus,

w ∈ L(A), i.e., τO is a winning strategy for Player O in Γ. �

7. Towards Solving Max-regular Delay Games with
Unbounded Lookahead

Unlike for ω-regular delay games, bounded lookahead is not always sufficient for
Player O to win a max-regular delay game. Hence, determining the winner with
respect to arbitrary delay functions is not equivalent to determining the winner
with respect to bounded delay functions, which we have shown to be decidable in
Section 4. We refer to the former problem as “solving max-regular delay games”. In
this section, we discuss some obstacles one has to overcome in order to extend the
decidability result for bounded lookahead to unbounded lookahead. Furthermore,
we give straightforward lower bounds on the complexity.
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Proving upper bounds, e.g., decidability of determining the winner of max-
regular delay games with respect to arbitrary delay functions, is complicated by the
need for unbounded lookahead. All known decidability results [20,24,26], including
the one presented here, are for the case where bounded lookahead is sufficient and
proceed by solving this restricted problem. in particular, the decidability proof
presented here is based on the fact that the error introduced by using the imprecise
equivalence relation ≡1

A is bounded in the context of bounded lookahead.
However, for unbounded lookahead, the error is unbounded as well. In particu-

lar, the example presented in Section 4 shows that bounded counters might grow
arbitrarily large during different plays: The winning condition L described in the
proof of Theorem 5.1 is recognized by a max-automaton with four counters: ci
counts the length of input blocks and is reset at every #, c′o is incremented during
prefixes of possible output blocks and reset at the end of such a block. Further-
more, the value of c′o is copied to co every time the requirement on the first and
last letter of an output block is met. Finally, a counter c# counts the number
of #’s in the word. The acceptance condition of the automaton recognizing L is
given by the formula

“lim sup ρc# <∞” ∨ “lim sup ρci <∞” ∨ “lim sup ρco =∞”.

As already argued, Player O has a winning strategy for Γf (L), provided f is
unbounded. However, she does not have a strategy that bounds the counters c#
and ci to some fixed value among all consistent plays that are won due to c# or ci
being bounded: For example, Player I can pick any finite number of #’s and then
stop doing so. This implies that c# is bounded, but with an arbitrarily large value
among different plays. The lack of such a uniform bound in itself is not surprising,
but entails that one has to deal with arbitrarily large counter values when trying
to extend the approach described above for the setting with bounded lookahead.
In particular, it is not enough to replace =1

A and ≡1
A by =m

A and ≡mA for some
fixed m that only depends on the winning condition.

Two other possible approaches follow from the results proven in this paper:
First, one could show that G′(A) can be solved effectively. However, the game is of
infinite size and not in one of the classes of effectively solvable games with infinite
state space, e.g., pushdown games. Second, one can pick any unbounded delay
function f with large enough f(0) and solve Γf (L(A)), as winning with respect to
one such function is equivalent to winning with respect to all of them. However,
Γf (L(A)) is again of infinite size and not in one of the classes of effectively solvable
games with infinite state space.

One obvious reason we fail to find an algorithm solving max-regular delay games
might be that the problem is undecidable. There is a class of winning conditions
for which solving delay games is indeed known to be undecidable, namely (very re-
stricted fragments of) ω-context-free conditions [18]. However, this result is based
on the language {anbn | n ∈ N} being context-free, which suffices to encode two-
counter machines. As max-automata have no mechanism to compare arbitrarily
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large numbers exactly, this simple encoding of two-counter machines cannot be
captured in a delay game with max-regular winning condition.

This can be overcome by allowing quantification over arbitrary sets: Recently,
and after being an open problem for more than a decade, satisfiability of MSO+U
over infinite words was shown to be undecidable [6] by capturing termination of
two-counter machines by MSO+U formulas based on a specially tailored encod-
ing. However, the resulting formulas have six alternations between existential and
universal set quantifiers and then a block of (negated) unbounding quantifiers. To
adapt this proof to show undecidability of max-regular delay games with respect to
arbitrary delay functions, one has to replace the set quantifiers by the interaction
between the players, which seems unlikely to be achievable.

On the other hand, one can prove some straightforward lower bounds. As
usual, solving delay games is at least as hard as solving the universality problem
for the class of automata used to specify the winning conditions: Given such an
automaton A over some alphabet Σ, we change the alphabet to Σ×Σ by replacing
each letter a on a transition by the letter

(
a
a

)
and route all missing transitions to

a fresh rejecting sink state. Call the resulting automaton A′. The game Γf (A′) is
won by Player O if, and only if, L(A) is universal, independently of f : If L(A) is
not universal, then Player I can produce some α /∈ L(A) and thereby win; if it is
indeed universal, then Player O can mimic the choices of Player I and wins.
Proposition 7.1. Solving max-regular delay games is at least as hard as solving
the universality problem for max-automata.

The best known lower bound on the universality problem for max-automata
is PSpace-hardness, which stems from max-automata being closed under comple-
mentation and the emptiness problem being PSpace-hard [7]. The exact complex-
ity of the emptiness problem for max-automata is, to the best of our knowledge,
an open problem.

Another lower bound is obtained by considering delay games with weaker win-
ning conditions: Solving delay games with winning conditions recognized by de-
terministic safety automata is ExpTime-complete [24]. Such automata can be
transformed into max-automata without increasing the number of states: Turn
the non-safe states into sinks and increment a designated counter c on every tran-
sition not leading into a non-safe state. Then, the max-automaton with acceptance
condition “ lim sup ρc =∞” recognizes the same language as the original safety au-
tomaton. Hence, we obtain the following lower bound.
Theorem 7.2. Solving max-regular delay games is ExpTime-hard.

This lower bound is oblivious to the intricate acceptance condition of max-
automata and relies solely on the transition structure. This is in line with results
for ω-regular games: Solving delay games with winning conditions given by deter-
ministic parity automata is in ExpTime, i.e., it matches the lower bound for the
special case of safety. It is open whether moving to more concise acceptance condi-
tions for deterministic ω-automata, e.g., Rabin, Streett, and Muller, increases the
complexity. These results would directly transfer to max-automata as well. An-
other aspect that is not exploited by this reduction is the unbounded lookahead:
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The safety delay game is always winnable with bounded lookahead. We are cur-
rently investigating whether these aspects can be exploited to improve the bounds.

8. Conclusion

We considered delay games with max-regular winning conditions. Our main
result is an algorithm that determines whether Player O has a winning strategy
for some constant delay function, which consists of reducing the original problem
to a delay-free game with max-regular winning condition. Such a game can be
solved by encoding it as an emptiness problem for a certain class of tree automata
(so-called WMSO+UP automata) that capture WMSO+UP on infinite trees. Our
reduction also yields a doubly-exponential upper bound on the necessary constant
lookahead to win such a game, provided Player O does win for some constant delay
function. It is open whether the doubly-exponential upper bound is tight. The
best lower bounds are exponential and hold already for deterministic reachability
and safety automata [24], which can easily be transformed into max-automata.

We deliberately skipped the complexity analysis of our algorithm, since the
reduction of the delay-free game to an emptiness problem for WMSO+UP au-
tomata does most likely not yield tight upper bounds on the complexity. Instead,
we propose to investigate (delay-free) games with max-regular winning conditions,
a problem that is worthwhile studying on its own, and to find a direct solution
algorithm. Currently, the best lower bound on the computational complexity of
determining whether Player O wins a delay game with max-regular winning con-
dition for some constant delay function is the ExpTime-hardness result for games
with safety conditions [24].

Also, we showed that constant lookahead is not sufficient for max-regular condi-
tions by giving a max-regular winning condition L such that Player O wins Γf (L)
for every unbounded f , but not for any bounded delay function f .

Both the lower bound on the necessary lookahead and the one on the compu-
tational complexity for safety conditions mentioned above are complemented by
matching upper bounds for games with parity conditions [24], i.e., having a parity
condition instead of a safety condition has no discernible influence. Stated differ-
ently, the complexity of the problems manifests itself in the transition structure
of the automaton. Our example from Section 5 shows that this is no longer true
for max-regular conditions: Having a quantitative acceptance condition requires
growing lookahead.

Finally, we showed that even though max-regular winning conditions require in
general unbounded lookahead, they cannot enforce any lower bound on the growth,
unlike ω-context-free conditions. In ongoing work, we aim to solve delay games
with respect to arbitrary delay functions.

Due to the need for unbounded lookahead and the need for solving WMSO+UP
satisfiability for solving max-regular delay games, we are currently investigat-
ing tractable quantitative fragments of WMSO+U. In preliminary work, we have
shown that Prompt-LTL has better properties [26]: Triply-exponential constant
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lookahead is always sufficient (and in general necessary) and solving delay games
with Prompt-LTL winning conditions is complete for triply-exponential time.

As noticed by one of the reviewers, the correctness of the games G(A) and G′(A)
only depends on the properties of the equivalence relations specified in Lemma 3.2
and Lemma 3.3. Hence, as soon as one can devise equivalence relations with the
same properties, one obtains decidability of delay games with bounded lookahead
respectively the winner being the same for every unbounded delay function.
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