How Much Lookahead is Needed to Win Infinite Games? (Partially) joint work with Felix Klein (Saarland University) Martin Zimmermann Saarland University August 26th, 2015 Aalborg University, Aalborg, Denmark $$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$$, if $\beta(i)=\alpha(i+2)$ for every i **Büchi-Landweber:** The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively. $$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$$, if $\beta(i)=\alpha(i+2)$ for every i I: b 0: **Büchi-Landweber:** The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively. $$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$$, if $\beta(i)=\alpha(i+2)$ for every i 1: Ł O: a **Büchi-Landweber:** The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively. $$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$$, if $\beta(i)=\alpha(i+2)$ for every i I: b a *O*: **Büchi-Landweber:** The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively. $$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$$, if $\beta(i)=\alpha(i+2)$ for every i 1: b a O: a a **Büchi-Landweber:** The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively. $$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$$, if $\beta(i)=\alpha(i+2)$ for every i I: b a b O: a a **Büchi-Landweber:** The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively. $$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$$, if $\beta(i)=\alpha(i+2)$ for every i *I*: *b a b* ··· O: a a · · · **Büchi-Landweber:** The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively. $$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$$, if $\beta(i)=\alpha(i+2)$ for every i - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. **Büchi-Landweber:** The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively. $$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$\vdots \quad b \quad a \quad b \quad \cdots \qquad I \colon b$$ D: a a ··· O: - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. **Büchi-Landweber:** The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$\vdots \quad b \quad a \quad b \quad \cdots \qquad I \colon b \quad a$$ $$\vdots \quad a \quad a \quad \cdots \qquad O \colon$$ - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. **Büchi-Landweber:** The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$\vdots \quad b \quad a \quad b \quad \cdots \qquad I \colon b \quad a \quad b$$ $$\vdots \quad a \quad a \quad \cdots \qquad O \colon$$ 1 wins - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$l: b \quad a \quad b \quad \cdots \qquad l: b \quad a \quad b$$ $$O: \quad a \quad a \quad \cdots \qquad O: \quad b$$ $$l \text{ wins}$$ - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. **Büchi-Landweber:** The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$l: b \quad a \quad b \quad \cdots \qquad l: b \quad a \quad b \quad b$$ $$O: a \quad a \quad \cdots \qquad O: b$$ 1 wins - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b$$ $$O: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b$$ $$I \text{ wins}$$ - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a$$ $$O: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b$$ $$I \text{ wins}$$ - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a$$ $$O: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b \quad a$$ $$I \text{ wins}$$ - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a \quad b$$ $$O: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b \quad a$$ $$I \text{ wins}$$ - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a \quad b$$ $$O: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b \quad a \quad b$$ $$I \text{ wins}$$ - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a \quad b \quad a$$ $$O: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b \quad a \quad b$$ $$I \text{ wins}$$ - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a \quad b \quad a$$ $$O: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b \quad a \quad b \quad a$$ $$I \text{ wins}$$ - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. $$\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i$$ $$I: \quad b \quad a \quad b \quad \cdots \qquad I: \quad b \quad a \quad b \quad b \quad a \quad b \quad a \quad \cdots$$ $$O: \quad a \quad a \quad \cdots \qquad O: \quad b \quad b \quad a \quad b \quad a \quad \cdots$$ $$I \text{ wins} \qquad O \text{ wins}$$ - Many possible extensions: non-zero-sum, n > 2 players, type of winning condition, concurrency, imperfect information, etc. - We consider two: Interaction: one player may delay her moves. Winning condition: quantitative instead of qualitative. - Delay function: $f: \mathbb{N} \to \mathbb{N}_+$. - ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$. - Two players: Input (1) vs. Output (0). - Delay function: $f: \mathbb{N} \to \mathbb{N}_+$. - ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$. - Two players: Input (*I*) vs. Output (*O*). - In round i: - *I* picks word $u_i \in \Sigma_I^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$). - *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$). - Delay function: $f: \mathbb{N} \to \mathbb{N}_+$. - ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$. - Two players: Input (I) vs. Output (O). - In round i: - *I* picks word $u_i \in \Sigma_I^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$). - *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$). - O wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$. - Delay function: $f: \mathbb{N} \to \mathbb{N}_+$. - ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$. - Two players: Input (I) vs. Output (O). - In round i: - I picks word $u_i \in \Sigma_I^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$). - *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$). - O wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$. #### **Definition:** - f is constant, if f(i) = 1 for every i > 0. - f is bounded, if f(i) = 1 for almost all i. - Delay function: $f: \mathbb{N} \to \mathbb{N}_+$. - ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^{\omega}$. - Two players: Input (*I*) vs. Output (*O*). - In round i: - *I* picks word $u_i \in \Sigma_I^{f(i)}$ (building $\alpha = u_0 u_1 \cdots$). - *O* picks letter $v_i \in \Sigma_O$ (building $\beta = v_0 v_1 \cdots$). - O wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$. #### **Definition:** - \blacksquare f is constant, if f(i) = 1 for every i > 0. - \blacksquare f is bounded, if f(i) = 1 for almost all i. #### Questions we are interested in: - Given L, is there an f such that O wins $\Gamma_f(L)$? - How *large* does *f* have to be? - How hard is the problem to solve? ## **Another Example** - $\Sigma_I = \{0, 1, \#\} \text{ and } \Sigma_O = \{0, 1, *\}.$ - Input block: #w with $w \in \{0,1\}^+$. Length: |w|. - Output block: $$\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$$ for $\alpha(j) \in \{0,1\}$. Length: n. # **Another Example** - $\Sigma_I = \{0, 1, \#\} \text{ and } \Sigma_O = \{0, 1, *\}.$ - Input block: #w with $w \in \{0,1\}^+$. Length: |w|. - Output block: $$\binom{\#}{\alpha(n)} \binom{\alpha(1)}{*} \binom{\alpha(2)}{*} \cdots \binom{\alpha(n-1)}{*} \binom{\alpha(n)}{\alpha(n)}$$ for $\alpha(j) \in \{0,1\}$. Length: n. Define language L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. # **Another Example** - $\Sigma_I = \{0, 1, \#\} \text{ and } \Sigma_O = \{0, 1, *\}.$ - Input block: #w with $w \in \{0,1\}^+$. Length: |w|. - Output block: $$\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$$ for $\alpha(j) \in \{0,1\}$. Length: n. Define language L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. *O* wins $\Gamma_f(L_0)$ for every unbounded f: - If I produces arbitrarily long input blocks, then the lookahead will contain arbitrarily long input blocks. - Thus, O can produce arbitrarily long output blocks. ### **Previous Results** ### Theorem (Hosch & Landweber '72) The following problem is decidable: Given ω -regular L, does O win $\Gamma_f(L)$ for some constant f? ### **Previous Results** ### Theorem (Hosch & Landweber '72) The following problem is decidable: Given ω -regular L, does O win $\Gamma_f(L)$ for some constant f? ### Theorem (Holtmann, Kaiser & Thomas '10) - **1.** TFAE for L given by deterministic parity automaton A: - O wins $\Gamma_f(L)$ for some f. - O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{2^{|A|}}$. - **2.** Deciding whether this is the case is in 2ExpTime. ### **Previous Results** ### Theorem (Hosch & Landweber '72) The following problem is decidable: Given ω -regular L, does O win $\Gamma_f(L)$ for some constant f? ### Theorem (Holtmann, Kaiser & Thomas '10) - **1.** TFAE for L given by deterministic parity automaton A: - lacksquare O wins $\Gamma_f(L)$ for some f. - O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{2^{|A|}}$. - **2.** Deciding whether this is the case is in 2EXPTIME. ### Theorem (Fridman, Löding & Z. '11) The following problem is undecidable: Given (one-counter, weak, visibly, deterministic) context-free L, does O win $\Gamma_f(L)$ for some f? ### **Uniformization of Relations** ■ A strategy σ for O in $\Gamma_f(L)$ induces a mapping $$f_{\sigma} \colon \Sigma_{I}^{\omega} \to \Sigma_{O}^{\omega}$$ $\blacksquare \ \sigma \text{ is winning} \Leftrightarrow \{\binom{\alpha}{f_{\sigma}(\alpha)} \mid \alpha \in \Sigma_I^{\omega}\} \subseteq L \quad \text{$(f_{\sigma}$ uniformizes L)}$ ### Uniformization of Relations ■ A strategy σ for O in $\Gamma_f(L)$ induces a mapping $$f_{\sigma} \colon \Sigma_{I}^{\omega} \to \Sigma_{O}^{\omega}$$ lacksquare σ is winning $\Leftrightarrow \{\binom{\alpha}{f_{\sigma}(\alpha)} \mid \alpha \in \Sigma_I^{\omega}\} \subseteq L$ (f_{σ} uniformizes L) Continuity in terms of strategies: ■ Strategy without lookahead: *i*-th letter of $f_{\sigma}(\alpha)$ only depends on first *i* letters of α (very strong notion of continuity). ### Uniformization of Relations ■ A strategy σ for O in $\Gamma_f(L)$ induces a mapping $$f_{\sigma} \colon \Sigma_{I}^{\omega} \to \Sigma_{O}^{\omega}$$ lacksquare σ is winning $\Leftrightarrow \{\binom{\alpha}{f_{\sigma}(\alpha)} \mid \alpha \in \Sigma_I^{\omega}\} \subseteq L$ (f_{σ} uniformizes L) Continuity in terms of strategies: - Strategy without lookahead: *i*-th letter of $f_{\sigma}(\alpha)$ only depends on first *i* letters of α (very strong notion of continuity). - Strategy with constant delay: f_{σ} Lipschitz-continuous. ### Uniformization of Relations ■ A strategy σ for O in $\Gamma_f(L)$ induces a mapping $$f_{\sigma} \colon \Sigma_{I}^{\omega} \to \Sigma_{O}^{\omega}$$ lacksquare σ is winning $\Leftrightarrow \{\binom{\alpha}{f_{\sigma}(\alpha)} \mid \alpha \in \Sigma_I^{\omega}\} \subseteq L$ (f_{σ} uniformizes L) ### Continuity in terms of strategies: - Strategy without lookahead: *i*-th letter of $f_{\sigma}(\alpha)$ only depends on first *i* letters of α (very strong notion of continuity). - Strategy with constant delay: f_{σ} Lipschitz-continuous. - Strategy with arbitrary (finite) delay: f_{σ} (uniformly) continuous. ### **Uniformization of Relations** ■ A strategy σ for O in $\Gamma_f(L)$ induces a mapping $$f_{\sigma} \colon \Sigma_{I}^{\omega} \to \Sigma_{O}^{\omega}$$ lacksquare σ is winning $\Leftrightarrow \{\binom{\alpha}{f_{\sigma}(\alpha)} \mid \alpha \in \Sigma_I^{\omega}\} \subseteq L$ (f_{σ} uniformizes L) Continuity in terms of strategies: - Strategy without lookahead: *i*-th letter of $f_{\sigma}(\alpha)$ only depends on first *i* letters of α (very strong notion of continuity). - Strategy with constant delay: f_{σ} Lipschitz-continuous. - Strategy with arbitrary (finite) delay: f_{σ} (uniformly) continuous. **Holtmann, Kaiser, Thomas**: for ω -regular L L uniformizable by continuous function L uniformizable by Lipschitz-continuous function ### **Outline** - 1. ω -regular Winning conditions - 2. Max-regular Winning Conditions - 3. Determinacy - 4. Conclusion # **Our Results: Regular Winning Conditions** ### Theorem (Klein & Z. '15) - **1.** TFAE for L given by deterministic parity automaton A with k colors: - lacksquare O wins $\Gamma_f(L)$ for some f. - O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{|\mathcal{A}| \cdot k}$. - **2.** Deciding whether this is the case is ExpTime-complete. # **Our Results: Regular Winning Conditions** ### Theorem (Klein & Z. '15) - **1.** TFAE for L given by deterministic parity automaton A with k colors: - lacksquare O wins $\Gamma_f(L)$ for some f. - O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{|\mathcal{A}| \cdot k}$. - **2.** Deciding whether this is the case is ExpTime-complete. - **3.** Matching lower bound on necessary lookahead (already for reachability and safety). # **Our Results: Regular Winning Conditions** ## Theorem (Klein & Z. '15) - **1.** TFAE for L given by deterministic parity automaton A with k colors: - lacksquare O wins $\Gamma_f(L)$ for some f. - O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{|\mathcal{A}| \cdot k}$. - **2.** Deciding whether this is the case is ExpTime-complete. - **3.** Matching lower bound on necessary lookahead (already for reachability and safety). - **4.** Solving reachability delay games is PSPACE-complete. #### **Theorem** For every n > 1 there is a language L_n such that - L_n is recognized by some deterministic reachability automaton A_n with $|A_n| \in \mathcal{O}(n)$, - lacksquare O wins $\Gamma_f(L_n)$ for some constant delay function f, but - I wins $\Gamma_f(L_n)$ for every delay function f with $f(0) \leq 2^n$. #### **Theorem** For every n > 1 there is a language L_n such that - L_n is recognized by some deterministic reachability automaton A_n with $|A_n| \in \mathcal{O}(n)$, - lacksquare O wins $\Gamma_f(L_n)$ for some constant delay function f, but - I wins $\Gamma_f(L_n)$ for every delay function f with $f(0) \leq 2^n$. #### **Proof:** - $w \in \Sigma_I^*$ contains bad j-pair $(j \in \Sigma_I)$ if there are two occurrences of j in w such that no j' > j occurs in between. #### **Theorem** For every n > 1 there is a language L_n such that - L_n is recognized by some deterministic reachability automaton A_n with $|A_n| \in \mathcal{O}(n)$, - lacksquare O wins $\Gamma_f(L_n)$ for some constant delay function f, but - I wins $\Gamma_f(L_n)$ for every delay function f with $f(0) \leq 2^n$. #### **Proof:** - $w \in \Sigma_I^*$ contains bad j-pair $(j \in \Sigma_I)$ if there are two occurrences of j in w such that no j' > j occurs in between. - $w \in \Sigma_O^*$ has no bad j-pair for any $j \Rightarrow |w| \leq 2^n 1$. - Exists $w_n \in \Sigma_O^*$ with $|w_n| = 2^n 1$ and without bad j-pair. $$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L_n$$ iff $\alpha(1)\alpha(2)\cdots$ contains a bad $\beta(0)$ -pair. $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L_n$ iff $\alpha(1)\alpha(2)\cdots$ contains a bad $\beta(0)$ -pair. $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L_n$ iff $\alpha(1)\alpha(2)\cdots$ contains a bad $\beta(0)$ -pair. ■ O wins $\Gamma_f(L_n)$, if $f(0) > 2^n$: In first round, I picks u_0 s.t. u_0 without its first letter has bad j-pair. O picks j in first round. $$\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L_n$$ iff $\alpha(1)\alpha(2)\cdots$ contains a bad $\beta(0)$ -pair. - O wins $\Gamma_f(L_n)$, if $f(0) > 2^n$: In first round, I picks u_0 s.t. u_0 without its first letter has bad j-pair. O picks j in first round. - I wins $\Gamma_f(L_n)$, if $f(0) \leq 2^n$: - I picks prefix of $1w_n$ of length f(0) in first round, - lacksquare O answers by some j. - I finishes w_n and then picks some $j' \neq j$ ad infinitum. #### **Theorem** TFAE for L recognized by a parity automaton with k colors: - **1.** O wins $\Gamma_f(L)$ for some f. - **2.** 0 wins $\Gamma_f(L)$ for the constant f with $f(0) = 2^{(|A|k)^2}$. #### **Theorem** TFAE for L recognized by a parity automaton with k colors: - **1.** O wins $\Gamma_f(L)$ for some f. - **2.** 0 wins $\Gamma_f(L)$ for the constant f with $f(0) = 2^{(|A|k)^2}$. - **3.** O wins parity game G. Furthermore, G can be constructed and solved in exponential time. #### **Theorem** TFAE for L recognized by a parity automaton with k colors: - **1.** O wins $\Gamma_f(L)$ for some f. - **2.** 0 wins $\Gamma_f(L)$ for the constant f with $f(0) = 2^{(|A|k)^2}$. - **3.** O wins parity game \mathcal{G} . Furthermore, G can be constructed and solved in exponential time. #### **Proof Idea:** Capture behavior of A, i.e., state changes and maximal color seen on run \Rightarrow equivalence relation \equiv over Σ^* of exponential index. #### **Theorem** TFAE for L recognized by a parity automaton with k colors: - **1.** O wins $\Gamma_f(L)$ for some f. - **2.** 0 wins $\Gamma_f(L)$ for the constant f with $f(0) = 2^{(|A|k)^2}$. - **3.** O wins parity game \mathcal{G} . Furthermore, G can be constructed and solved in exponential time. #### **Proof Idea:** Capture behavior of A, i.e., state changes and maximal color seen on run \Rightarrow equivalence relation \equiv over Σ^* of exponential index. #### Lemma Let $(x_i)_{i\in\mathbb{N}}$ and $(x_i')_{i\in\mathbb{N}}$ be two sequences of words over Σ^* with $x_i\equiv x_i'$ for all i. Then, $$x_0x_1x_2\cdots\in L(\mathcal{A})\Leftrightarrow x_0'x_1'x_2'\cdots\in L(\mathcal{A}).$$ - In A, project away Σ_O and construct equivalence \equiv over Σ_I^* . - Define parity game G: - I picks equivalence classes, - O constructs run on representatives (always one step behind to account for delay). - *O* wins, if run is accepting. - In A, project away Σ_O and construct equivalence \equiv over Σ_I^* . - Define parity game G: - I picks equivalence classes, - O constructs run on representatives (always one step behind to account for delay). - *O* wins, if run is accepting. #### Lemma O wins $\Gamma_f(L(A))$ for some constant $f \Leftrightarrow$ she wins G. - In A, project away Σ_O and construct equivalence \equiv over Σ_I^* . - Define parity game G: - I picks equivalence classes, - O constructs run on representatives (always one step behind to account for delay). - *O* wins, if run is accepting. #### Lemma O wins $\Gamma_f(L(A))$ for some constant $f \Leftrightarrow$ she wins G. \mathcal{G} is delay-free parity game of exponential size with k colors. - In A, project away Σ_O and construct equivalence \equiv over Σ_I^* . - Define parity game G: - I picks equivalence classes, - O constructs run on representatives (always one step behind to account for delay). - *O* wins, if run is accepting. #### Lemma O wins $\Gamma_f(L(A))$ for some constant $f \Leftrightarrow$ she wins G. \mathcal{G} is delay-free parity game of exponential size with k colors. ### Corollary Winner can be determined in ExpTime. ### **Further Results** Applying both directions of equivalence between $\Gamma_f(L(A))$ and G yields upper bound on lookahead. ### **Corollary** Let L = L(A) where A is a deterministic parity automaton with k colors. The following are equivalent: - **1.** O wins $\Gamma_f(L)$ for some delay function f. - **2.** O wins $\Gamma_f(L)$ for some constant delay function f with $f(0) \leq 2^{(|A|k)^2}$. ### **Further Results** Applying both directions of equivalence between $\Gamma_f(L(A))$ and $\mathcal G$ yields upper bound on lookahead. ### **Corollary** Let L = L(A) where A is a deterministic parity automaton with k colors. The following are equivalent: - **1.** O wins $\Gamma_f(L)$ for some delay function f. - **2.** O wins $\Gamma_f(L)$ for some constant delay function f with $f(0) \leq 2^{(|A|k)^2}$. **Note:** $f(0) \le 2^{2|A|k+2} + 2$ achievable by direct pumping argument. ### **Outline** - 1. ω -regular Winning conditions - 2. Max-regular Winning Conditions - 3. Determinacy - 4. Conclusion **Bojańczyk:** Let's add a new quantifier to (weak) monadic second order logic (WMSO/MSO) ■ $UX\varphi(X)$ holds, if there are arbitrarily large finite sets X such that $\varphi(X)$ holds. **Bojańczyk:** Let's add a new quantifier to (weak) monadic second order logic (WMSO/MSO) ■ $UX\varphi(X)$ holds, if there are arbitrarily large finite sets X such that $\varphi(X)$ holds. $$L = \{a^{n_0}ba^{n_1}ba^{n_2}b\cdots \mid \limsup_i n_i = \infty\}$$ **Bojańczyk:** Let's add a new quantifier to (weak) monadic second order logic (WMSO/MSO) ■ $UX\varphi(X)$ holds, if there are arbitrarily large finite sets X such that $\varphi(X)$ holds. $$L = \{a^{n_0}ba^{n_1}ba^{n_2}b\cdots \mid \limsup_i n_i = \infty\}$$ L defined by $$\forall x \exists y (y > x \land P_b(y)) \land$$ $$UX \ [\forall x \forall y \forall z (x < y < z \land x \in X \land z \in X \rightarrow y \in X) \land \forall x (x \in X \rightarrow P_a(x))]$$ **Bojańczyk:** Let's add a new quantifier to (weak) monadic second order logic (WMSO/MSO) ■ $UX\varphi(X)$ holds, if there are arbitrarily large finite sets X such that $\varphi(X)$ holds. $$L = \{a^{n_0}ba^{n_1}ba^{n_2}b\cdots \mid \limsup_i n_i = \infty\}$$ L defined by $$\forall x \exists y (y > x \land P_b(y)) \land$$ $$UX \ [\forall x \forall y \forall z (x < y < z \land x \in X \land z \in X \rightarrow y \in X)$$ $$\land \forall x (x \in X \rightarrow P_a(x)) \]$$ ## Theorem (Bojańczyk '14) Delay-free games with WMSO+U winning conditions are decidable. ### **Max-Automata** Equivalent automaton model for WMSO+U on infinite words: - Deterministic finite automata with counters. - counter actions: incr, reset, max. - lacksquare acceptance: boolean combination of "counter γ is bounded". ### Max-Automata Equivalent automaton model for WMSO+U on infinite words: - Deterministic finite automata with counters. - counter actions: incr, reset, max. - lacksquare acceptance: boolean combination of "counter γ is bounded". Acceptance condition: γ and γ' unbounded. ### **Max-Automata** Equivalent automaton model for WMSO+U on infinite words: - Deterministic finite automata with counters. - counter actions: incr, reset, max. - **acceptance:** boolean combination of "counter γ is bounded". Acceptance condition: γ and γ' unbounded. ## Theorem (Bojańczyk '09) The following are (effectively) equivalent: - 1. L WMSO+U-definable. - **2.** L recognized by max-automaton. ### The Case of Bounded Lookahead ### **Theorem (Z. '15)** The following problem is decidable: given a max-automaton A, does O win $\Gamma_f(L(A))$ for some constant delay function f. ### The Case of Bounded Lookahead ## **Theorem (Z. '15)** The following problem is decidable: given a max-automaton A, does O win $\Gamma_f(L(A))$ for some constant delay function f. #### **Proof Idea:** Analogously to the parity case: capture behavior of A, i.e., state changes and evolution of counter values: - Transfers from counter γ to γ' . - Existence of increments, but not how many. - \Rightarrow equivalence relation \equiv over Σ^* of exponential index. ### The Case of Bounded Lookahead ## **Theorem (Z. '15)** The following problem is decidable: given a max-automaton A, does O win $\Gamma_f(L(A))$ for some constant delay function f. #### **Proof Idea:** Analogously to the parity case: capture behavior of A, i.e., state changes and evolution of counter values: - Transfers from counter γ to γ' . - Existence of increments, but not how many. - \Rightarrow equivalence relation \equiv over Σ^* of exponential index. #### Lemma Let $(x_i)_{i\in\mathbb{N}}$ and $(x_i')_{i\in\mathbb{N}}$ be two sequences of words over Σ^* with $\sup_i |x_i| < \infty$, $\sup_i |x_i'| < \infty$, and $x_i \equiv x_i'$ for all i. Then, $$x_0x_1x_2\cdots\in L(A)\Leftrightarrow x_0'x_1'x_2'\cdots\in L(A).$$ - In A, project away Σ_O and construct equivalence \equiv over Σ_I^* . - Define game \mathcal{G} : - I picks equivalence classes, - O constructs run on representatives (always one step behind to account for delay). - *O* wins, if run is accepting. ## **Removing Delay** - In A, project away Σ_O and construct equivalence \equiv over Σ_I^* . - Define game \mathcal{G} : - I picks equivalence classes, - O constructs run on representatives (always one step behind to account for delay). - *O* wins, if run is accepting. #### Lemma O wins $\Gamma_f(L(A))$ for some constant $f \Leftrightarrow \text{she wins } G$. ## **Removing Delay** - In A, project away Σ_O and construct equivalence \equiv over Σ_I^* . - Define game \mathcal{G} : - I picks equivalence classes, - O constructs run on representatives (always one step behind to account for delay). - *O* wins, if run is accepting. #### Lemma O wins $\Gamma_f(L(A))$ for some constant $f \Leftrightarrow \text{she wins } G$. \mathcal{G} is delay-free with WMSO+U winning condition. - Can be solved effectively by reduction to satisfiability problem for WMSO+U with path quantifiers over infinite trees. - Doubly-exponential upper bound on necessary constant lookahead. Recall: O wins $\Gamma_f(L_0)$ for every unbounded f. - Input block: #w with $w \in \{0,1\}^+$. - Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$ - Winning condition L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. **Claim:** *I* wins $\Gamma_f(L_0)$ for every constant *f*. Recall: O wins $\Gamma_f(L_0)$ for every unbounded f. - Input block: #w with $w \in \{0,1\}^+$. - $\bullet \text{ Output block: } \binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$ - Winning condition L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. **Claim:** *I* wins $\Gamma_f(L_0)$ for every constant *f*. Recall: O wins $\Gamma_f(L_0)$ for every unbounded f. - Input block: #w with $w \in \{0,1\}^+$. - Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$ - Winning condition L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. **Claim:** *I* wins $\Gamma_f(L_0)$ for every constant *f*. O: 0 Recall: O wins $\Gamma_f(L_0)$ for every unbounded f. - Input block: #w with $w \in \{0,1\}^+$. - Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$ - Winning condition L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. **Claim:** *I* wins $\Gamma_f(L_0)$ for every constant *f*. *O*: 0 Recall: O wins $\Gamma_f(L_0)$ for every unbounded f. - Input block: #w with $w \in \{0,1\}^+$. - Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$ - Winning condition L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. **Claim:** *I* wins $\Gamma_f(L_0)$ for every constant *f*. O: 0 * Recall: O wins $\Gamma_f(L_0)$ for every unbounded f. - Input block: #w with $w \in \{0,1\}^+$. - Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$ - Winning condition L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. **Claim:** *I* wins $\Gamma_f(L_0)$ for every constant *f*. *I*: # 0 0 ··· 0 1 1 O: 0 * Recall: O wins $\Gamma_f(L_0)$ for every unbounded f. - Input block: #w with $w \in \{0,1\}^+$. - Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$ - Winning condition L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. **Claim:** *I* wins $\Gamma_f(L_0)$ for every constant *f*. - $I: \# 0 0 \cdots 0 1 1$ - *O*: 0 * * Recall: O wins $\Gamma_f(L_0)$ for every unbounded f. - Input block: #w with $w \in \{0,1\}^+$. - Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$ - Winning condition L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. **Claim:** *I* wins $\Gamma_f(L_0)$ for every constant *f*. $$I: \# 0 0 \cdots 0 1 1 1$$ O: 0 * * Recall: O wins $\Gamma_f(L_0)$ for every unbounded f. - Input block: #w with $w \in \{0,1\}^+$. - Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$ - Winning condition L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. **Claim:** *I* wins $\Gamma_f(L_0)$ for every constant *f*. O: 0 * * ··· Recall: O wins $\Gamma_f(L_0)$ for every unbounded f. - Input block: #w with $w \in \{0,1\}^+$. - Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$ - Winning condition L_0 : if infinitely many # and arbitrarily long input blocks, then arbitrarily long output blocks. **Claim:** *I* wins $\Gamma_f(L_0)$ for every constant *f*. - Lookahead contains only input blocks of length f(0). - I can react to O's declaration at beginning of an output block to bound size of output blocks while producing arbitrarily large input blocks. #### Theorem TFAE for L recognized by a max automaton with k counters: - **1.** O wins $\Gamma_f(L)$ for some f. - 2. O wins $\Gamma_f(L)$ for every unbounded f with $f(0) \geq 2^{2^{(|\mathcal{A}|k)^2}}$ #### Theorem TFAE for L recognized by a max automaton with k counters: - **1.** O wins $\Gamma_f(L)$ for some f. - 2. O wins $\Gamma_f(L)$ for every unbounded f with $f(0) \geq 2^{2^{(|\mathcal{A}|k)^2}}$ - **3.** O wins \mathcal{G} . #### Theorem TFAE for L recognized by a max automaton with k counters: - **1.** O wins $\Gamma_f(L)$ for some f. - **2.** O wins $\Gamma_f(L)$ for every unbounded f with $f(0) \ge 2^{2^{(|\mathcal{A}|k)^2}}$ - **3.** O wins \mathcal{G} . Analogously to the case: of bounded lookahead: - Define \equiv_m as \equiv , but capture behavior up to m increments. - *I* picks \equiv_m classes for *m* tending to infinity. #### Theorem TFAE for L recognized by a max automaton with k counters: - **1.** O wins $\Gamma_f(L)$ for some f. - **2.** O wins $\Gamma_f(L)$ for every unbounded f with $f(0) \ge 2^{2^{(|\mathcal{A}|k)^2}}$ - **3.** O wins \mathcal{G} . Analogously to the case: of bounded lookahead: - Define \equiv_m as \equiv , but capture behavior up to m increments. - *I* picks \equiv_m classes for *m* tending to infinity. $\mathcal G$ is infinite state \Rightarrow cannot solve it to determine winner of delay game w.r.t. unbounded delay functions. ## **Outline** - 1. ω -regular Winning conditions - 2. Max-regular Winning Conditions - 3. Determinacy - 4. Conclusion # **Borel Determinacy for Delay Games** - A game is determined, if one of the players has a winning strategy. - Borel hierarchy: family of languages constructed from *open* languages $K \cdot \Sigma^{\omega}$ with $K \subseteq \Sigma^*$ via countable union and complementation. - Contains all regular and max-regular languages (and much more). # **Borel Determinacy for Delay Games** - A game is determined, if one of the players has a winning strategy. - Borel hierarchy: family of languages constructed from *open* languages $K \cdot \Sigma^{\omega}$ with $K \subseteq \Sigma^*$ via countable union and complementation. - Contains all regular and max-regular languages (and much more). ## Theorem (Martin '75) Every delay-free game with Borel winning condition is determined. # **Borel Determinacy for Delay Games** - A game is determined, if one of the players has a winning strategy. - Borel hierarchy: family of languages constructed from *open* languages $K \cdot \Sigma^{\omega}$ with $K \subseteq \Sigma^*$ via countable union and complementation. - Contains all regular and max-regular languages (and much more). ## Theorem (Martin '75) Every delay-free game with Borel winning condition is determined. ## Theorem (Klein & Z. '15) Every delay game with Borel winning condition is determined. ## **Outline** - 1. ω -regular Winning conditions - 2. Max-regular Winning Conditions - 3. Determinacy - 4. Conclusion ### **Conclusion** #### Results: - Tight results for ω -regular conditions - First results for max-regular conditions, but decidability and exact complexity open. - Borel determinacy. ## **Conclusion** #### Results: - Tight results for ω -regular conditions - First results for max-regular conditions, but decidability and exact complexity open. - Borel determinacy. ### Open problems: - Results for other acceptance conditions (Rabin, Streett Muller), non-deterministic or alternating automata. - Decidability of max-regular delay games w.r.t. unbounded delay functions. - What are strategies in delay games, e.g., do they have to depend on the delay function under consideration?