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Why Model Counting

How many models does a boolean formula ϕ have?

Generalization of satisfiability: does ϕ have a model?

Applications:

probabilistic inference problems
planning problems
combinatorial designs
etc.
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Why LTL Model Counting

LTL model counting comes in two flavors:

for fixed ϕ and k ∈ N..

.. count (ultimately periodic) word models u · vω with
|u|+ |v | = k :

Analogue to model checking: count the number of error
traces of a given system.

.. count tree models of depth k with
back-edges at leaves:

Analogue to synthesis: count the
number of implementations
(implementation freedom).
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Theorem (Finkbeiner and Torfah ’14)

1. Word models can be counted in time O(k · 22|ϕ|).

2. Tree models can be counted in time O(k · 222
|ϕ|

).

Martin Zimmermann Saarland University The Complexity of Counting LTL Models 3/15



Why LTL Model Counting

LTL model counting comes in two flavors: for fixed ϕ and k ∈ N..

.. count (ultimately periodic) word models u · vω with
|u|+ |v | = k :

Analogue to model checking: count the number of error
traces of a given system.

.. count tree models of depth k with
back-edges at leaves:

Analogue to synthesis: count the
number of implementations
(implementation freedom).

a

b c
e1 e2

e1

e2 e2
e1

Theorem (Finkbeiner and Torfah ’14)

1. Word models can be counted in time O(k · 22|ϕ|).

2. Tree models can be counted in time O(k · 222
|ϕ|

).

Martin Zimmermann Saarland University The Complexity of Counting LTL Models 3/15



Why LTL Model Counting

LTL model counting comes in two flavors: for fixed ϕ and k ∈ N..

.. count (ultimately periodic) word models u · vω with
|u|+ |v | = k :

Analogue to model checking: count the number of error
traces of a given system.

.. count tree models of depth k with
back-edges at leaves:

Analogue to synthesis: count the
number of implementations
(implementation freedom).

a

b c
e1 e2

e1

e2 e2
e1

Theorem (Finkbeiner and Torfah ’14)

1. Word models can be counted in time O(k · 22|ϕ|).

2. Tree models can be counted in time O(k · 222
|ϕ|

).

Martin Zimmermann Saarland University The Complexity of Counting LTL Models 3/15



Why LTL Model Counting

LTL model counting comes in two flavors: for fixed ϕ and k ∈ N..

.. count (ultimately periodic) word models u · vω with
|u|+ |v | = k :

Analogue to model checking: count the number of error
traces of a given system.

.. count tree models of depth k with
back-edges at leaves:

Analogue to synthesis: count the
number of implementations
(implementation freedom).

a

b c
e1 e2

e1

e2 e2
e1

Theorem (Finkbeiner and Torfah ’14)

1. Word models can be counted in time O(k · 22|ϕ|).

2. Tree models can be counted in time O(k · 222
|ϕ|

).

Martin Zimmermann Saarland University The Complexity of Counting LTL Models 3/15



Why LTL Model Counting

LTL model counting comes in two flavors: for fixed ϕ and k ∈ N..

.. count (ultimately periodic) word models u · vω with
|u|+ |v | = k :

Analogue to model checking: count the number of error
traces of a given system.

.. count tree models of depth k with
back-edges at leaves:

Analogue to synthesis: count the
number of implementations
(implementation freedom).

a

b c
e1 e2

e1

e2 e2
e1

Theorem (Finkbeiner and Torfah ’14)

1. Word models can be counted in time O(k · 22|ϕ|).

2. Tree models can be counted in time O(k · 222
|ϕ|

).

Martin Zimmermann Saarland University The Complexity of Counting LTL Models 3/15



Outline

1. Counting Complexity

2. Counting Word Models

3. Counting Tree Models

4. Conclusion
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Counting Complexity

f : Σ∗ → N

is in #P if there is an NP machine M such that
f (w) is equal to the number of accepting runs of M on w .

Examples:

#SAT is in #P.

#CLIQUE is in #P.

(Parsimonious) Reductions:

f #P-hard: for all f ′ ∈ #P there is a polynomial time
computable function r such that f ′(x) = f (r(x)) for all
inputs x .

If f ′ is computed by M, then r may depend on M and its
time-bound p(n).

Completeness: hardness and membership.
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Counting Complexity

#SAT is #P-complete.

#CLIQUE is #P-complete.

#2SAT is #P-complete.

#DNF-SAT is #P-complete.

#PERFECT-MATCHING is #P-complete.

Note:
Decision problems 2SAT, DNF-SAT, and PERFECT-MATCHING
are in P:

Counting versions of easy problems can be hard!
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Beyond #P

Remark: f ∈ #P implies f (w) ∈ O(2p(|w |)) for some polynomial p.

We need larger counting classes.

f : Σ∗ → N is in #Pspace, if there is a nondeterministic
polynomial-space Turing machine M such that f (w) is equal
to the number of accepting runs of M on w .

Analogously: #Exptime, #Expspace, and #2Exptime.

Remark:

f ∈ #Exptime implies f (w) ∈ O(22
p(|w|)

) for a polynomial p.

f ∈ #2Exptime implies f (w) ∈ O(22
2p(|w|)

) for a
polynomial p.

w 7→ 22
|w|

is in #Pspace.

w 7→ 22
2|w|

is in #Expspace.
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Counting Word-Models for Binary Bounds

Theorem
The following problem is #Pspace-complete: Given an LTL
formula ϕ and a bound k (in binary), how many k-word-models
does ϕ have?

Lower bound: Pspace-hardness of LTL satisfiability [Sistla
& Clarke ’85] made parsimonious.

· · ·
p(n)

c1 c2 c3 ct
$

1

$

2

$

3

$

t · · ·
ct

$ 2p
′(n) ⊥ω

Length of prefix is exponential, but k can be encoded in binary.

Upper bound: guess word of length k letter-by-letter (starting
at the end) and model-check it on the fly (using unambiguous
non-determinism). Then: one accepting run per model.
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Counting Word-Models

Theorem
The following problem is #P-complete: Given an LTL formula ϕ
and a bound k (in unary), how many k-word-models does ϕ have?

Lower bound: Same as before, but we have to encode k in
unary. Thus, k has to be polynomial.

Upper bound: Guess word of length k and model-check it.
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Counting Tree-Models with Unary Bounds

Theorem
The following problem is #Exptime-complete: Given an LTL
formula ϕ and a bound k (in unary), how many k-tree-models does
ϕ have?

Lower bound:
2p(n)

2p(n)

c1 c2 c2p(n)−1 c2p(n)

p(n)

p(n)
left

right

Upper bound: Guess tree of height k and model-check it.
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Counting Tree-Models with Binary Bounds

Theorem
The following problem is #Expspace-hard and in #2Exptime:
Given an LTL formula ϕ and a bound k (in binary), how many
k-tree-models does ϕ have?

Lower bound:

C1

C2

C3

C4 C5

C6

C7 C8

C9

C10

C11 C12

C13

C14 C15

left

right

each inner tree has exponentially many leaves.
tree has exponential height (thus, doubly-exponentially
many inner trees).

Upper bound: Guess tree of height k and model-check it.
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Conclusion

Overview of results:
unary binary

words #P-compl. #Pspace-compl.
trees #Exptime-compl. #Expspace-hard/#2Exptime

graphs #P-hard/#oPspace. #Exptime-compl.

Lower bounds: safety LTL, upper bounds: full LTL

Open problems:

Close the gap!
Lowering the upper bound: how to guess and model-check
doubly-exponentially sized trees in exponential space?
Raising the lower bound: how to encode
doubly-exponentially sized configurations using
polynomially sized formulas? Do games help?

Close the gap for graph models, too.
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