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The Pumping Lemma

L ⊆ Σ∗ regular implies

∃n ∈ N ∀w ∈ L ∩ Σ≥n ∃x , y , z ∈ Σ∗ xyz = w ∧
|xy | ≤ n∧
|y | > 0∧
∀i ∈ N xy iz ∈ L
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Model Checking

Intuition
Quantifiers and logical connectives correspond to moves in a game
between a player trying to satisfy a formula and an opponent
trying to falsify it.

Model Checking
Given a structure A and a sentence ϕ of first-order logic, decide
whether A satisfies ϕ.

Example
A = (N, <, |, 1) and
ϕ = ∀x∃y(x < y ∧ ∀z(¬(z |y) ∨ z = 1) ∨ z = y)
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Model Checking Games

A game between Verifier and Falsifier.

Positions: (ψ,β) where ψ is a subformula of ϕ and β is a
partial variable valuation.

Moves for Verifier:

(∃xψ,β) (ψ,β[x 󰀁→ a]) for all a of A

(ψ0 ∨ ψ1,β)

(ψ0,β)

(ψ1,β)

Moves for Falsifier: dual

Terminal positions:

¬

(R(x1, . . . , xn),β) for relation symbol R .
Winning for Verifier if and only if (β(x1) . . . ,β(xn))R

A.
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Example Continued

A = (N, <, |, 1) and
ϕ = ∀x∃y (x < y ∧ ∀z(¬(z |y) ∨ z = 1 ∨ z = y))󰁿 󰁾󰁽 󰂀

ψ
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ψ

(∀x∃yψ, ∅)

(∃yψ, x 󰀁→ 3)
F

(x < y ∧ ∀z(¬(z |y) ∨ z = 1 ∨ z = y), x 󰀁→ 3, y 󰀁→ 7)
V

(∀z(¬(z |y) ∨ z = 1 ∨ z = y), x 󰀁→ 3, y 󰀁→ 7)
F

(¬(z |y) ∨ z = 1 ∨ z = y , x 󰀁→ 3, y 󰀁→ 7, z 󰀁→ 13)
F

(¬(z |y), x 󰀁→ 3, y 󰀁→ 7, z 󰀁→ 13)
V

Winning for Verifier, as 13 does not divide 7
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Example Continued

A = (N, <, |, 1) and
ϕ = ∀x∃y (x < y ∧ ∀z(¬(z |y) ∨ z = 1 ∨ z = y))󰁿 󰁾󰁽 󰂀

ψ

Theorem
The following are equivalent:

1. A satisfies ϕ.

2. Verifier has a winning strategy for the game induced by A
and ϕ.
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Word Automata Emptiness
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For automata on finite words, emptiness can be expressed as a
(trivial) one-player reachability game: find a path from the initial
state to some accepting state.
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Tree Automata Emptiness
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The Emptiness Game

One player picks transitions, the other
(implicitly) the structure of the input tree.

Theorem
An automaton has a non-empty language if and only if
the player constructing a run has a winning strategy
for the induced game.

An analogous result holds for automata on infinite trees.
However, the resulting game is an infinite-duration game.
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Determinacy

All games considered thus far, at most one player can have a
winning strategy.

A game is determined, if one of the players has a winning
strategy for it.

Theorem (Zermelo 1913)

Every finite-duration two-player zero-sum game of perfect
information is determined.
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Determinacy

All games considered thus far, at most one player can have a
winning strategy.

A game is determined, if one of the players has a winning
strategy for it.

Theorem (Zermelo 1913)

Every finite-duration two-player zero-sum game of perfect
information is determined.

The proof works by bottom-up induction over the finite tree of
positions.
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Determinacy

All games considered thus far, at most one player can have a
winning strategy.

A game is determined, if one of the players has a winning
strategy for it.

Theorem (Zermelo 1913)

Every finite-duration two-player zero-sum game of perfect
information is determined.

Question
Is every infinite-duration two-player zero-sum game of perfect
information determined?
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Chomp

There is a (rectangular) chocolate bar with m × n pieces.

A move consists of taking a piece and all others that are to
the right and above.

Two players, Player 0 and Player 1, move in alternation,
starting with Player 0.

The player who takes the bottom-left piece loses.
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Let’s Play
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Strategy Stealing

Claim

Player 0 has a winning strategy for every bar (unless m = n = 1).

Assume Player 1 has a winning strategy.

Look how this strategy reacts to Player 0 only taking the
top-right piece in the first move.

Let Player 0 use this strategy from the beginning.

This is winning for Player 0, which is a contradiction.

As Chomp is determined, this means Player 0 must have a
winning strategy.

Note

The proof is non-constructive..

..winning strategy only known for special cases n × n, n × 2,
2× n, n × 1, and 1× n (try to find them).
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Hamming Distance

In the following: B = {0, 1}
Definition
For x = x0x1x2 · · · and y = y0y1y2 · · · in Bω, the Hamming
distance between x and y is defined as

hd(x , y) = |{n ∈ N | xn ∕= yn}| ∈ N ∪ {∞}.

Example

hd(0101101000 · · · ,
1010100000 · · · ) = 5

hd(1010101010 · · · ,
0101010101 · · · ) = ∞

hd(1010101010 · · · ,
1111111111 · · · ) = ∞.
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Infinite XOR Functions

Definition
A function f : Bω → B is an infinite XOR function, if hd(x , y) = 1
implies f (x) ∕= f (y) for all x , y ∈ Bω.

Example
I have none.. we will come back to this later.

Theorem
There exists an infinite XOR function.

The proof requires the axion of choice.
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The Game Gf

Fix some infinite XOR function f .

We define a game Gf between Player 0 and Player 1 who pick
sequences of bits in alternation.

Example

winner: Player f ( 1100 0 000000110000 1100101 1 100000 · · · )

Formally, Gf is played in rounds n = 0, 1, 2, . . ..

In round n, first Player 0 picks w2n ∈ B+, then Player 1 picks
w2n+1 ∈ B+.

Play w0,w1,w2, . . . is won by Player f (w0w1w2 · · · ).
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There are Undetermined Games

Theorem
Let f be an infinite XOR function. No player has a winning
strategy for Gf .
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Proof Idea

Strategy stealing:

For every strategy τ of Player 1, we construct two counter
strategies σ and σ′ that mimic τ .

The only difference between σ and σ′ is that one starts by
playing a 0, the other by playing a 1.

The remainder of the plays resulting from playing σ and σ′

against τ are equal.

Hence, their Hamming distance is 1 and one of the plays is
won by Player 0.

Thus, τ is not a winning strategy.

The argument showing that Player 0 has no winning strategy is
similar.
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Proof

Let τ be a strategy for Player 1 in Gf . We show that τ is not
winning by constructing counter strategies σ and σ′ as above.

τ

σ

σ′

τ

0

w1

1w1

w2

w2

w3

w3

w4

w4

w5

w5

w6

w6

Consider the resulting plays: they differ only at their first position.
Hence, Player 0 wins one of them. Thus, τ is not winning.
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Proof

Let σ be a strategy for Player 0 in Gf . We show that σ is not
winning by constructing counter strategies τ and τ ′ as above.
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Hence, Player 1 wins one of them. Thus, σ is not winning.
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Church’s Synthesis Problem

?
i1

...

in

o1

...

on

Church 1957: Given a specification on the input/output behavior
of a circuit (in some suitable logical language), decide whether
such a circuit exists, and, if yes, compute one.
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Church’s Synthesis Problem

?
i1

...

in

o1

...

on

Example

Interpret input ij = 1 as client j requesting a shared resource and
output oj = 1 as the corresponding grant to client j .

Typical properties:
1. Every request is eventually answered.

2. At most one grant at a time (mutual exclusion).

3. No spurious grants.
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Church’s Synthesis Problem

?
i1

...

in

o1

...

on

Solved by Büchi & Landweber in 1969.

Insight: Problem can be expressed as two-player game of infinite
duration between the environment (producing inputs) and the
circuit (producing outputs).
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Back to the Example

Consider the one-client case!
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Back to the Example

Consider the one-client case!
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Input: 0 0 0 1 1 · · ·
Output: 0 0 1 1 1 · · ·
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Back to the Example

Consider the one-client case!

s

i

i

o

o

Winning plays for circuit player have to satisfy

1. if i is visited, then o as well at a later position, and

2. if o is visited, then it has not been visited since the last visit
of i.
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Büchi-Landweber in a Nutshell

s

i

i

o

o

Circuit player has a (memoryless) winning strategy,

which can be turned into an automaton with output,

which can be turned into a circuit satisfying the specification.
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Even More Games

Logics

Ehrenfeucht Fraisse Games

Set theory

Banach Mazur Games
Wadge Games

Complexity theory

Proof theory

Automata theory

Economics
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