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L C X* regular implies

dJneNVwe LNYZ" Ix,y,ze X xyz = wA

Ixy| < nA
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Model Checking

Intuition
Quantifiers and logical connectives correspond to moves in a game

between a player trying to satisfy a formula and an opponent
trying to falsify it.
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Model Checking

Intuition

Quantifiers and logical connectives correspond to moves in a game
between a player trying to satisfy a formula and an opponent
trying to falsify it.

Model Checking
Given a structure 2 and a sentence ¢ of first-order logic, decide
whether 2 satisfies (.

Example
2A=(N,<,|,1) and
e =Vx3dy(x <y AVz(=(z|y)Vz=1)Vz=y)
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Model Checking Games

A game between Verifier and Falsifier.

m Positions: (v, 3) where v is a subformula of ¢ and § is a
partial variable valuation.

m Moves for Verifier:
(3xv, B) —> (¥, B[x — a]) for all a of A

(1o, B)
WovyrB)
(1, B)
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A game between Verifier and Falsifier.
m Positions: (v, 3) where v is a subformula of ¢ and § is a
partial variable valuation.

m Moves for Verifier:
(3xv, B) —> (¥, B[x — a]) for all a of A

(1o, B)
WovyrB)
(1, B)

m Moves for Falsifier: dual

m Terminal positions: —(R(x,...,xs), ) for relation symbol R.
Winning for Verifier if and only if (8(x1) ..., 8(x,)) ¢ R*.
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e =Vx3y (x <y AVz(—(z|y)Vz=1Vz=y))

(]

(Fy, x — 3)

(Vx3ye, 0)
!
((x<y/\Vz(—|(z\y)\/z—1\/z—y),Xb—>3,yb—>7)
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e =Vx3y (x <y AVz(—(z|y)Vz=1Vz=y))

(]

Vx3y1p, )
Jy, x — 3)

Vz(=(z|y)Vz=1Vz=y),x— 3,y —1T)

—(zly)Vz=1Vz=y,x— 3,y =7,z 13)

< M1 mnm < =M

(

g

(

((x<y/\Vz —(z|y)Vz=1Vz=y),x— 3,y —1T7)
(

(e

(
(=

=(z|y),x = 3,y — 7,z 13)

Winning for Verifier, as 13 does not divide 7
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Example Continued

A= (N,<,|,1) and
e =Vx3y (x <y AVz(—(z|y)Vz=1Vz=y))
(4

Theorem
The following are equivalent:

1. 2 satisfies .

2. Verifier has a winning strategy for the game induced by 2l
and .

5/23



Word Automata Emptiness

6/23



Word Automata Emptiness
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For automata on finite words, emptiness can be expressed as a
(trivial) one-player reachability game: find a path from the initial
state to some accepting state.
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The Emptiness Game

One player picks transitions, the other
(implicitly) the structure of the input tree.
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The Emptiness Game

One player picks transitions, the other
(implicitly) the structure of the input tree.

Theorem

An automaton has a non-empty language if and only if
the player constructing a run has a winning strategy
for the induced game.
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The Emptiness Game

One player picks transitions, the other
(implicitly) the structure of the input tree.

Theorem

An automaton has a non-empty language if and only if
the player constructing a run has a winning strategy
for the induced game.

An analogous result holds for automata on infinite trees.
However, the resulting game is an infinite-duration game.
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Determinacy

m All games considered thus far, at most one player can have a
winning strategy.
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Determinacy

m All games considered thus far, at most one player can have a
winning strategy.

m A game is determined, if one of the players has a winning
strategy for it.

Theorem (Zermelo 1913)

Every finite-duration two-player zero-sum game of perfect
information is determined.

The proof works by bottom-up induction over the finite tree of
positions.
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Determinacy

m All games considered thus far, at most one player can have a
winning strategy.

m A game is determined, if one of the players has a winning
strategy for it.

Theorem (Zermelo 1913)

Every finite-duration two-player zero-sum game of perfect
information is determined.

Question
Is every infinite-duration two-player zero-sum game of perfect
information determined?
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Chomp

m There is a (rectangular) chocolate bar with m x n pieces.

m A move consists of taking a piece and all others that are to
the right and above.

m Two players, Player 0 and Player 1, move in alternation,
starting with Player Q.

m The player who takes the bottom-left piece loses.
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Let's Play

PLAYER 0'S Ture
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Let’s Play

PLAYER O wins



Strategy Stealing

Claim

Player 0 has a winning strategy for every bar (unless m = n=1).
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Strategy Stealing

Claim
Player 0 has a winning strategy for every bar (unless m = n=1).

m Assume Player 1 has a winning strategy.

m Look how this strategy reacts to Player 0 only taking the
top-right piece in the first move.

m Let Player O use this strategy from the beginning.

m This is winning for Player 0, which is a contradiction.

m As Chomp is determined, this means Player 0 must have a
winning strategy.
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Strategy Stealing

Claim
Player 0 has a winning strategy for every bar (unless m = n=1).

m Assume Player 1 has a winning strategy.

m Look how this strategy reacts to Player 0 only taking the
top-right piece in the first move.

m Let Player O use this strategy from the beginning.

m This is winning for Player 0, which is a contradiction.

m As Chomp is determined, this means Player 0 must have a
winning strategy.

Note

m The proof is non-constructive..
B ..winning strategy only known for special cases n x n, n x 2,
2xn,nx1, and 1 x n (try to find them).
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Hamming Distance

In the following: B = {0, 1}

Definition

For x = xpx1x2 -+ and y = yoy1y» - -+ in B¥, the Hamming
distance between x and y is defined as

hd(x,y) = {n € N | x, # yn}| € NU {oo}.

Example
m hd(0101101000- - -,
1010100000 - -)
m hd(1010101010-- -,
0101010101 --)
m hd(1010101010-- -,
1111111111--+)

5

(.¢]

Q.
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Infinite XOR Functions

Definition
A function f: B¥ — B is an infinite XOR function, if hd(x,y) =1
implies f(x) # f(y) for all x,y € B¥.
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Infinite XOR Functions

Definition
A function f: B¥ — B is an infinite XOR function, if hd(x,y) =1
implies f(x) # f(y) for all x,y € B¥.

Example
| have none.. we will come back to this later.

Theorem
There exists an infinite XOR function.

The proof requires the axion of choice.

14/23



The Game G

m Fix some infinite XOR function f.

m We define a game Gr between Player 0 and Player 1 who pick
sequences of bits in alternation.
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The Game G

m Fix some infinite XOR function f.

m We define a game Gr between Player 0 and Player 1 who pick
sequences of bits in alternation.

Example

1100 0 000000110000 1100101 1 100000
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m Fix some infinite XOR function f.

m We define a game Gr between Player 0 and Player 1 who pick
sequences of bits in alternation.

Example

1100 0 000000110000 1100101 1 100000 - - -
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The Game G

m Fix some infinite XOR function f.

m We define a game Gr between Player 0 and Player 1 who pick
sequences of bits in alternation.

Example

winner: Player £( 1100 0 000000110000 1100101 1 100000 - - - )
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The Game G

m Fix some infinite XOR function f.

m We define a game Gr between Player 0 and Player 1 who pick
sequences of bits in alternation.

Example

winner: Player £( 1100 0 000000110000 1100101 1 100000 - - - )

m Formally, Gr is played in rounds n =10,1,2,....

m In round n, first Player 0 picks wy, € B, then Player 1 picks
Wony1 € BT

m Play wp, wi, ws, ... is won by Player f(wowiwy ---).

15/23



There are Undetermined Games

Theorem
Let f be an infinite XOR function. No player has a winning
strategy for Gr.
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Proof ldea

Strategy stealing:

For every strategy 7 of Player 1, we construct two counter
strategies o and ¢’ that mimic 7.

The only difference between o and ¢’ is that one starts by
playing a 0, the other by playing a 1.

The remainder of the plays resulting from playing o and o’
against 7 are equal.

Hence, their Hamming distance is 1 and one of the plays is
won by Player 0.

Thus, 7 is not a winning strategy.
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Proof ldea

Strategy stealing:
m For every strategy 7 of Player 1, we construct two counter
strategies o and ¢’ that mimic 7.

m The only difference between o and ¢’ is that one starts by
playing a 0, the other by playing a 1.

m The remainder of the plays resulting from playing o and o’
against 7 are equal.

m Hence, their Hamming distance is 1 and one of the plays is
won by Player 0.

m Thus, 7 is not a winning strategy.

The argument showing that Player 0 has no winning strategy is
similar.
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Proof

Let 7 be a strategy for Player 1 in Gr. We show that 7 is not
winning by constructing counter strategies ¢ and ¢’ as above.

g
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Proof

Let 7 be a strategy for Player 1 in Gr. We show that 7 is not
winning by constructing counter strategies ¢ and ¢’ as above.
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0
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Proof
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winning by constructing counter strategies ¢ and ¢’ as above.
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Proof

Let 7 be a strategy for Player 1 in Gr. We show that 7 is not
winning by constructing counter strategies ¢ and ¢’ as above.
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Proof

Let 7 be a strategy for Player 1 in Gr. We show that 7 is not
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Proof

Let 7 be a strategy for Player 1 in Gr. We show that 7 is not

winning by constructing counter strategies ¢ and ¢’ as above.

o 0 w2 117 We
4 A A
1 1 1
1 1 1
T w1 II w3 II II
N \ 1 1 1
N [ \ 1 1
\ 1 \ 1 1
‘| 1' ‘\ l' \ l'
1 1 \ 1 \ 1
A\ 1 v 1 Y 1
o Iwy | ws ws
1 1 1
1 1 1
1 1 1
wo Wi We
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Proof

Let 7 be a strategy for Player 1 in Gr. We show that 7 is not
winning by constructing counter strategies ¢ and ¢’ as above.

o 0 %) Wy We
4 A A
1 1 1
1 1 1
T w1 /I w3 II Ws :I
s \ 1 1 1
\ ! ] n
\ 1 1 \ 1
‘| 1' \ l' ‘\ l'
\ 1 \ 1 \ 1
A\ 1 \ 1 Y 1
o lwg w3 ws
1 1 1
1 1 1
1 1 1
Wy We

w2

Consider the resulting plays: they differ only at their first position.
Hence, Player 0 wins one of them. Thus, 7 is not winning.

->

18/23



Proof

Let o be a strategy for Player 0 in Gr. We show that ¢ is not
winning by constructing counter strategies 7 and 7’ as above.
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Proof
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Proof

Let o be a strategy for Player 0 in Gr. We show that ¢ is not
winning by constructing counter strategies 7 and 7’ as above.
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Proof

Let o be a strategy for Player 0 in Gr. We show that ¢ is not
winning by constructing counter strategies 7 and 7’ as above.
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Proof

Let o be a strategy for Player 0 in Gr. We show that ¢ is not

winning by constructing counter strategies 7 and 7’ as above.
g wo wi w3 Whs
\ \ \
\ \ \
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\ /A‘ \\ /4 \\
\
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S T \
\ 1 1 1 1
\ J 1 ! 1
o wo wo 7 !
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S

Consider the resulting plays: they differ only at their first position.
Hence, Player 1 wins one of them. Thus, ¢ is not winning.
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Church’s Synthesis Problem

i3

ip —

L 5 0;

Church 1957: Given a specification on the input/output behavior
of a circuit (in some suitable logical language), decide whether

such a circuit exists, and, if yes, compute one.
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Church’s Synthesis Problem

L 5 0;

i3

i, — L .o,

Example
Interpret input i; = 1 as client j requesting a shared resource and
output o; = 1 as the corresponding grant to client .

Typical properties:
1. Every request is eventually answered.
2. At most one grant at a time (mutual exclusion).

3. No spurious grants.
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Church’s Synthesis Problem

i —— > 01

i, — L .o,

Solved by Biichi & Landweber in 1969.

Insight: Problem can be expressed as two-player game of infinite
duration between the environment (producing inputs) and the
circuit (producing outputs).
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Back to the Example

Consider the one-client case!
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Back to the Example

Consider the one-client case!

U=

s <2
\\\\\\\“‘-—-—>»‘|Eil’ S o)
Input: 0

0 0
Output: 0 0

21/23



Back to the Example

Consider the one-client case!

[
|

21/23



Back to the Example

Consider the one-client case!

[
|

21/23



Back to the Example

Consider the one-client case!

[
|

21/23



Back to the Example

Consider the one-client case!

[
|

21/23



Back to the Example

Consider the one-client case!
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Back to the Example

Consider the one-client case!

U=
s <o

\)\_/

Winning plays for circuit player have to satisfy

[e}

1. if i is visited, then o as well at a later position, and

2. if o is visited, then it has not been visited since the last visit
of i.
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Buchi-Landweber in a Nutshell

==t
s >
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o
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Buchi-Landweber in a Nutshell

U=

S

\\/

m Circuit player has a (memoryless) winning strategy,

<2

o
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m Circuit player has a (memoryless) winning strategy,

m which can be turned into an automaton with output,
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Buchi-Landweber in a Nutshell

i] ——

0/0(3@:)1/1

———> 01

m Circuit player has a (memoryless) winning strategy,

m which can be turned into an automaton with output,

m which can be turned into a circuit satisfying the specification.
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Even More Games

Logics
m Ehrenfeucht Fraisse Games
Set theory

m Banach Mazur Games
m Wadge Games

Complexity theory
Proof theory
Automata theory

Economics
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