
Reducing ω-regular Specifications
to Safety Conditions

Joint work with
John Fearnley (University of Liverpool)

Daniel Neider (RWTH Aachen University)
Roman Rabinovich (TU Berlin)

Martin Zimmermann

Saarland University

March 5th, 2014

AVACS Meeting, Oldenburg, Germany

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 1/13

ω-regular Specifications

ω-regular expressions

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 2/13

ω-regular Specifications

ω-regular expressions

Monadic second-order logic with one successor

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 2/13

ω-regular Specifications

ω-regular expressions

Monadic second-order logic with one successor

Non-deterministic automata with Büchi acceptance
(Q,Σ, q0,∆,F) with F ⊆ Q and

q0q1q2 · · · accepting ⇔ Inf(q0q1q2 · · ·) ∩ F 6= ∅

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 2/13

ω-regular Specifications

ω-regular expressions

Monadic second-order logic with one successor

Non-deterministic automata with Büchi acceptance

Deterministic automata with Muller acceptance
(Q,Σ, q0, δ,F) with F ⊆ 2Q and

q0q1q2 · · · accepting ⇔ Inf(q0q1q2 · · ·) ∈ F

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 2/13

ω-regular Specifications

ω-regular expressions

Monadic second-order logic with one successor

Non-deterministic automata with Büchi acceptance

Deterministic automata with Muller acceptance

Many other acceptance conditions: parity, Rabin, Streett, ..

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 2/13

ω-regular Specifications

ω-regular expressions

Monadic second-order logic with one successor

Non-deterministic automata with Büchi acceptance

Deterministic automata with Muller acceptance

Many other acceptance conditions: parity, Rabin, Streett, ..

Generality: Every acceptance condition that only depends on the
states visited infinitely often is a Muller condition.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 2/13

ω-regular Specifications

ω-regular expressions

Monadic second-order logic with one successor

Non-deterministic automata with Büchi acceptance

Deterministic automata with Muller acceptance

Many other acceptance conditions: parity, Rabin, Streett, ..

Generality: Every acceptance condition that only depends on the
states visited infinitely often is a Muller condition.

Non-deterministic automata with safety acceptance

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 2/13

ω-regular Specifications

ω-regular expressions

Monadic second-order logic with one successor

Non-deterministic automata with Büchi acceptance

Deterministic automata with Muller acceptance

Many other acceptance conditions: parity, Rabin, Streett, ..

Generality: Every acceptance condition that only depends on the
states visited infinitely often is a Muller condition.

Non-deterministic automata with safety acceptance
(Q,Σ, q0,∆,F) with F ⊆ Q and

q0q1q2 · · · accepting ⇔ Occ(q0q1q2 · · ·) ⊆ F

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 2/13

ω-regular Specifications

ω-regular expressions

Monadic second-order logic with one successor

Non-deterministic automata with Büchi acceptance

Deterministic automata with Muller acceptance

Many other acceptance conditions: parity, Rabin, Streett, ..

Generality: Every acceptance condition that only depends on the
states visited infinitely often is a Muller condition.

Non-deterministic automata with safety acceptance

Weaker: not every ω-regular language is a safety condition.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 2/13

ω-regular Specifications

ω-regular expressions

Monadic second-order logic with one successor

Non-deterministic automata with Büchi acceptance

Deterministic automata with Muller acceptance

Many other acceptance conditions: parity, Rabin, Streett, ..

Generality: Every acceptance condition that only depends on the
states visited infinitely often is a Muller condition.

Non-deterministic automata with safety acceptance

Weaker: not every ω-regular language is a safety condition.
Is it nevertheless possible to turn every Muller condition into an
equivalent safety condition? (under which equivalence?)

Upside: simpler algorithms for safety conditions

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 2/13

Muller Games

We study this question in a more general setting: infinite games.

Running example

10 2

Formally: Muller game (A,F0,F1) with

Arena A = (V ,V0,V1,E , v) and partition (F0,F1) of 2V .

Player i wins play ρ iff Inf(ρ) ∈ Fi .

Emptiness of (non-deterministic) Muller automata and universality
of deterministic Muller automata are one-player Muller games

Our goal: give winner-preserving reduction from Muller to safety
games.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 3/13

Muller Games

We study this question in a more general setting: infinite games.

Running example

10 2

Formally: Muller game (A,F0,F1) with

Arena A = (V ,V0,V1,E , v) and partition (F0,F1) of 2V .

Player i wins play ρ iff Inf(ρ) ∈ Fi .

Emptiness of (non-deterministic) Muller automata and universality
of deterministic Muller automata are one-player Muller games

Our goal: give winner-preserving reduction from Muller to safety
games.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 3/13

Muller Games

We study this question in a more general setting: infinite games.

Running example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Formally: Muller game (A,F0,F1) with

Arena A = (V ,V0,V1,E , v) and partition (F0,F1) of 2V .

Player i wins play ρ iff Inf(ρ) ∈ Fi .

Emptiness of (non-deterministic) Muller automata and universality
of deterministic Muller automata are one-player Muller games

Our goal: give winner-preserving reduction from Muller to safety
games.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 3/13

Muller Games

We study this question in a more general setting: infinite games.

Running example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Formally: Muller game (A,F0,F1) with

Arena A = (V ,V0,V1,E , v) and partition (F0,F1) of 2V .

Player i wins play ρ iff Inf(ρ) ∈ Fi .

Emptiness of (non-deterministic) Muller automata and universality
of deterministic Muller automata are one-player Muller games

Our goal: give winner-preserving reduction from Muller to safety
games.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 3/13

Muller Games

We study this question in a more general setting: infinite games.

Running example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Formally: Muller game (A,F0,F1) with

Arena A = (V ,V0,V1,E , v) and partition (F0,F1) of 2V .

Player i wins play ρ iff Inf(ρ) ∈ Fi .

Emptiness of (non-deterministic) Muller automata and universality
of deterministic Muller automata are one-player Muller games

Our goal: give winner-preserving reduction from Muller to safety
games.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 3/13

Muller Games

We study this question in a more general setting: infinite games.

Running example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Formally: Muller game (A,F0,F1) with

Arena A = (V ,V0,V1,E , v) and partition (F0,F1) of 2V .

Player i wins play ρ iff Inf(ρ) ∈ Fi .

Emptiness of (non-deterministic) Muller automata and universality
of deterministic Muller automata are one-player Muller games

Our goal: give winner-preserving reduction from Muller to safety
games.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 3/13

Playing Muller Games in Finite Time

Robert McNaughton:

We believe that infinite games might have an interest for
casual living-room recreation.

But there is a problem: it takes a long time to play an infinite
game!

Thus:

Scoring functions for Muller games.

Use threshold score to obtain finite-duration variant.

If threshold is large enough, obtain finite game with the same
winning regions as infinite game.

Question
How large has the threshold to guarantee same winner?

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 4/13

Playing Muller Games in Finite Time

Robert McNaughton:

We believe that infinite games might have an interest for
casual living-room recreation.

But there is a problem: it takes a long time to play an infinite
game! Thus:

Scoring functions for Muller games.

Use threshold score to obtain finite-duration variant.

If threshold is large enough, obtain finite game with the same
winning regions as infinite game.

Question
How large has the threshold to guarantee same winner?

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 4/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0}

1 2 0 0 1 2 0 0

Acc{0}

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1}

0 0 1 1 2 2 3 0

Acc{0,1}

{0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0}

1 2 0 0 1 2 0 0

Acc{0}

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1}

0 0 1 1 2 2 3 0

Acc{0,1}

{0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1

2 0 0 1 2 0 0

Acc{0} ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1}

0 0 1 1 2 2 3 0

Acc{0,1}

{0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2

0 0 1 2 0 0

Acc{0} ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1}

0 0 1 1 2 2 3 0

Acc{0,1}

{0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0

0 1 2 0 0

Acc{0} ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅

Sc{0,1}

0 0 1 1 2 2 3 0

Acc{0,1}

{0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0

1 2 0 0

Acc{0} ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

Sc{0,1}

0 0 1 1 2 2 3 0

Acc{0,1}

{0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1

2 0 0

Acc{0} ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅

Sc{0,1}

0 0 1 1 2 2 3 0

Acc{0,1}

{0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2

0 0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅

Sc{0,1}

0 0 1 1 2 2 3 0

Acc{0,1}

{0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0

0

Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅

Sc{0,1}

0 0 1 1 2 2 3 0

Acc{0,1}

{0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1}

0 0 1 1 2 2 3 0

Acc{0,1}

{0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0

0 1 1 2 2 3 0

Acc{0,1} {0}

{0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0

1 1 2 2 3 0

Acc{0,1} {0} {0}

∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1

1 2 2 3 0

Acc{0,1} {0} {0} ∅

{1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1

2 2 3 0

Acc{0,1} {0} {0} ∅ {1}

∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2

2 3 0

Acc{0,1} {0} {0} ∅ {1} ∅

{0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2

3 0

Acc{0,1} {0} {0} ∅ {1} ∅ {0}

∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3

0

Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅

∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0
Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0
Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2} 0

0 0 0 0 0 0 1

Acc{0,1,2} {0}

{0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0
Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2} 0 0

0 0 0 0 0 1

Acc{0,1,2} {0} {0}

{0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0
Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2} 0 0 0

0 0 0 0 1

Acc{0,1,2} {0} {0} {0, 1}

{0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0
Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2} 0 0 0 0

0 0 0 1

Acc{0,1,2} {0} {0} {0, 1} {0, 1}

{0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0
Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2} 0 0 0 0 0

0 0 1

Acc{0,1,2} {0} {0} {0, 1} {0, 1} {0, 1}

{0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0
Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2} 0 0 0 0 0 0

0 1

Acc{0,1,2} {0} {0} {0, 1} {0, 1} {0, 1} {0, 1}

{0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0
Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2} 0 0 0 0 0 0 0

1

Acc{0,1,2} {0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1}

∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0
Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2} 0 0 0 0 0 0 0 1
Acc{0,1,2} {0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0} 1 2 0 0 1 2 0 0
Acc{0} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1} 0 0 1 1 2 2 3 0
Acc{0,1} {0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2} 0 0 0 0 0 0 0 1
Acc{0,1,2} {0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 5/13

Results

McNaughton’s version: stop play when some ScF reaches |F |! + 1.

Theorem (McNaughton 2000)

Every Muller game and McNaughton’s finite-time variant are won
by the same player.

Fearnley and Z.: stop play when some ScF reaches 3.

Theorem (Fearnley, Z. 2010)

Every Muller game and the variant up to score 3 are won by the
same player.

Stronger statement, which implies the theorem:

Lemma
If Player i wins the Muller game, then she can prevent her opponent
from ever reaching a score of 3 for every set F ∈ F1−i .

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 6/13

Results

McNaughton’s version: stop play when some ScF reaches |F |! + 1.

Theorem (McNaughton 2000)

Every Muller game and McNaughton’s finite-time variant are won
by the same player.

Fearnley and Z.: stop play when some ScF reaches 3.

Theorem (Fearnley, Z. 2010)

Every Muller game and the variant up to score 3 are won by the
same player.

Stronger statement, which implies the theorem:

Lemma
If Player i wins the Muller game, then she can prevent her opponent
from ever reaching a score of 3 for every set F ∈ F1−i .

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 6/13

Results

McNaughton’s version: stop play when some ScF reaches |F |! + 1.

Theorem (McNaughton 2000)

Every Muller game and McNaughton’s finite-time variant are won
by the same player.

Fearnley and Z.: stop play when some ScF reaches 3.

Theorem (Fearnley, Z. 2010)

Every Muller game and the variant up to score 3 are won by the
same player.

Stronger statement, which implies the theorem:

Lemma
If Player i wins the Muller game, then she can prevent her opponent
from ever reaching a score of 3 for every set F ∈ F1−i .

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 6/13

Game Reductions

Reduce complicated game G to simpler game G′: every play ρ in G
is mapped (continuously) to play ρ′ in G′ that has the same winner.

G ≤ G′

ρ 7→ ρ′

Solving G′ yields

winner of G and

corresponding finite-state winning strategy for winner.

Remark
Muller games cannot be reduced to safety games.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 7/13

Game Reductions

Reduce complicated game G to simpler game G′: every play ρ in G
is mapped (continuously) to play ρ′ in G′ that has the same winner.

G ≤ G′

ρ 7→ ρ′

Solving G′ yields

winner of G and

corresponding finite-state winning strategy for winner.

Remark
Muller games cannot be reduced to safety games.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 7/13

Game Reductions

Reduce complicated game G to simpler game G′: every play ρ in G
is mapped (continuously) to play ρ′ in G′ that has the same winner.

G ≤ G′

ρ 7→ ρ′

Solving G′ yields

winner of G and

corresponding finite-state winning strategy for winner.

Remark
Muller games cannot be reduced to safety games.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 7/13

Reducing Muller Games to Safety Games

Recall: If Player i wins a Muller game, then she can prevent her
opponent from ever reaching a score of 3 for every set F ∈ F1−i .

“Player 0 has a winning strategy iff she can prevent Player 1 from
reaching a score of 3” ⇒ safety condition!

Construction:

Ignore scores of Player 0.

Identify plays having the same scores and accumulators for
Player 1: w =F1 w ′ iff last(w) = last(w ′) and for all F ∈ F1:

ScF (w) = ScF (w ′) and AccF (w) = Acc(w ′)

Build =F1-quotient of unravelling up to score 3 for Player 1.

Winning condition for Player 0: avoid ScF = 3 for all F ∈ F1.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 8/13

Reducing Muller Games to Safety Games

Recall: If Player i wins a Muller game, then she can prevent her
opponent from ever reaching a score of 3 for every set F ∈ F1−i .

“Player 0 has a winning strategy iff she can prevent Player 1 from
reaching a score of 3” ⇒ safety condition!

Construction:

Ignore scores of Player 0.

Identify plays having the same scores and accumulators for
Player 1: w =F1 w ′ iff last(w) = last(w ′) and for all F ∈ F1:

ScF (w) = ScF (w ′) and AccF (w) = Acc(w ′)

Build =F1-quotient of unravelling up to score 3 for Player 1.

Winning condition for Player 0: avoid ScF = 3 for all F ∈ F1.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 8/13

Continuing the Example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Player 0 wins from 1 : move to 0 and 2 alternatingly.

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[100]

[122]

[121]

[1010]

[1001]

[1221]

[1212]

[10101]

[10010]

[12212]

[12121]

[101010]

[100101]

[122121]

[121212]

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 9/13

Continuing the Example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Player 0 wins from 1 : move to 0 and 2 alternatingly.

[0]

[1]

[2]

Sc{0,1} = 0, Acc{0,1} = {0}
Sc{1,2} = 0, Acc{1,2} = ∅

Sc{0,1} = 0, Acc{0,1} = {1}
Sc{1,2} = 0, Acc{1,2} = {1}

Sc{0,1} = 0, Acc{0,1} = ∅
Sc{1,2} = 0, Acc{1,2} = {2}

[10]

[12]

[01]

[21]

[101]

[100]

[122]

[121]

[1010]

[1001]

[1221]

[1212]

[10101]

[10010]

[12212]

[12121]

[101010]

[100101]

[122121]

[121212]

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 9/13

Continuing the Example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Player 0 wins from 1 : move to 0 and 2 alternatingly.

[0]

[1]

[2]

[10]

[12]

Sc{0,1} = 1, Acc{0,1} = ∅
Sc{1,2} = 0, Acc{1,2} = ∅

Sc{0,1} = 0, Acc{0,1} = ∅
Sc{1,2} = 1, Acc{1,2} = ∅

[01]

[21]

[101]

[100]

[122]

[121]

[1010]

[1001]

[1221]

[1212]

[10101]

[10010]

[12212]

[12121]

[101010]

[100101]

[122121]

[121212]

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 9/13

Continuing the Example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Player 0 wins from 1 : move to 0 and 2 alternatingly.

[0]

[1]

[2]

[10]

[12]

[01]

[21]

Sc{0,1} = 1, Acc{0,1} = ∅
Sc{1,2} = 0, Acc{1,2} = ∅

Sc{0,1} = 1, Acc{0,1} = ∅
Sc{1,2} = 0, Acc{1,2} = {1}

[101]

[100]

[122]

[121]

[1010]

[1001]

[1221]

[1212]

[10101]

[10010]

[12212]

[12121]

[101010]

[100101]

[122121]

[121212]

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 9/13

Continuing the Example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Player 0 wins from 1 : move to 0 and 2 alternatingly.

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[100]

[122]

[121]

[1010]

[1001]

[1221]

[1212]

[10101]

[10010]

[12212]

[12121]

[101010]

[100101]

[122121]

[121212]

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 9/13

Continuing the Example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Player 0 wins from 1 : move to 0 and 2 alternatingly.

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[100]

[122]

[121]

[1010]

[1001]

[1221]

[1212]

[10101]

[10010]

[12212]

[12121]

[101010]

[100101]

[122121]

[121212]

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 9/13

Continuing the Example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Player 0 wins from 1 : move to 0 and 2 alternatingly.

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[100]

[122]

[121]

[1010]

[1001]

[1221]

[1212]

[10101]

[10010]

[12212]

[12121]

[101010]

[100101]

[122121]

[121212]

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[100]

[122]

[121]

[1010]

[1001]

[1221]

[1212]

[10101]

[10010]

[12212]

[12121]

[101010]

[100101]

[122121]

[121212]

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 9/13

Results

Theorem (Neider, Rabinovich, Z. 2011)

1. Player i wins the Muller game from v iff she wins the safety
game from [v]=F1

.

2. Safety game can be turned into finite-state winning strategy for
the Muller game.

3. Size of the safety game: (n!)3.

Remarks:

Size of parity game in LAR-reduction n!. But: simpler
algorithms for safety games.

2. does not hold for Player 1.

Not a reduction in the classical sense: not every play of the
Muller game can be mapped to a play in the safety game.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 10/13

Results

Theorem (Neider, Rabinovich, Z. 2011)

1. Player i wins the Muller game from v iff she wins the safety
game from [v]=F1

.

2. Safety game can be turned into finite-state winning strategy for
the Muller game.

3. Size of the safety game: (n!)3.

Remarks:

Size of parity game in LAR-reduction n!. But: simpler
algorithms for safety games.

2. does not hold for Player 1.

Not a reduction in the classical sense: not every play of the
Muller game can be mapped to a play in the safety game.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 10/13

Proof Idea: Safety to Muller

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

[100]

[122]

[1001]

[1221]

[10101]

[12121]

[1010]

[1212]

[10010]

[12212]

[101010]

[100101]

[122121]

[121212]

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[121]

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 11/13

Proof Idea: Safety to Muller

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

[100]

[122]

[1001]

[1221]

[10101]

[12121]

[1010]

[1212]

[10010]

[12212]

[101010]

[100101]

[122121]

[121212]

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[121]

Pick a winning strategy for the safety game. This “is” a finite-state
winning strategy for the Muller game.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 11/13

Proof Idea: Safety to Muller

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

[100]

[122]

[1001]

[1221]

[10101]

[12121]

[1010]

[1212]

[10010]

[12212]

[101010]

[100101]

[122121]

[121212]

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[121]

Even better: only use “maximal” elements, yields smaller memory.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 11/13

Safety Reductions

Definition
G = (A,Win) with vertex set V is safety reducible, if there is a
regular L ⊆ V ∗ such that:

For every ρ ∈ V ω: if Pref(ρ) ⊆ L, then ρ ∈Win.

If v ∈W0(G), then Player 0 has a strategy σ with Pref(ρ) ⊆ L
for every ρ consistent with σ and starting in v .

Theorem (Neider, Rabinovich, Z. 2011)

G safety reducible with L(A) ⊆ V ∗ for DFA A = (Q,V , q0, δ,F).
Define the safety game GS = (A× A,V × F). Then:

1. Player i wins G from v if and only if Player i wins GS from
(v , δ(q0, v)).

2. Player 0 has a finite-state winning strategy for G with memory
states Q (if she wins G).

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 12/13

Safety Reductions

Definition
G = (A,Win) with vertex set V is safety reducible, if there is a
regular L ⊆ V ∗ such that:

For every ρ ∈ V ω: if Pref(ρ) ⊆ L, then ρ ∈Win.

If v ∈W0(G), then Player 0 has a strategy σ with Pref(ρ) ⊆ L
for every ρ consistent with σ and starting in v .

Theorem (Neider, Rabinovich, Z. 2011)

G safety reducible with L(A) ⊆ V ∗ for DFA A = (Q,V , q0, δ,F).
Define the safety game GS = (A× A,V × F). Then:

1. Player i wins G from v if and only if Player i wins GS from
(v , δ(q0, v)).

2. Player 0 has a finite-state winning strategy for G with memory
states Q (if she wins G).

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 12/13

Safety Reductions: Applications

Reachability games: reach F after |V \ F | steps.

Büchi games: reach F every |V \ F | steps.

co-Büchi games: avoid visiting v ∈ V \ F twice.

Request-response games and poset games: bound waiting
times (Horn, Thomas, Wallmeier 2008; Z. 2009).

parity, Rabin, Streett games: progress measure algorithms “are”
safety reductions (Jurdziński 2000; Piterman, Pnueli 2006).

Muller games: bound scores.

If you can solve safety games, you can solve all these games.
Caveat: safety games will be larger than original game.

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 13/13

