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Deterministic automata with Muller acceptance

Many other acceptance conditions: parity, Rabin, Streett, ..

Martin Zimmermann Saarland University Reducing ω-regular Specifications to Safety Conditions 2/13



ω-regular Specifications

ω-regular expressions

Monadic second-order logic with one successor

Non-deterministic automata with Büchi acceptance
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ω-regular expressions

Monadic second-order logic with one successor

Non-deterministic automata with Büchi acceptance

Deterministic automata with Muller acceptance

Many other acceptance conditions: parity, Rabin, Streett, ..

Generality: Every acceptance condition that only depends on the
states visited infinitely often is a Muller condition.

Non-deterministic automata with safety acceptance

Weaker: not every ω-regular language is a safety condition.
Is it nevertheless possible to turn every Muller condition into an
equivalent safety condition? (under which equivalence?)

Upside: simpler algorithms for safety conditions
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Muller Games

We study this question in a more general setting: infinite games.

Running example

10 2

Formally: Muller game (A,F0,F1) with

Arena A = (V ,V0,V1,E , v) and partition (F0,F1) of 2V .

Player i wins play ρ iff Inf(ρ) ∈ Fi .

Emptiness of (non-deterministic) Muller automata and universality
of deterministic Muller automata are one-player Muller games

Our goal: give winner-preserving reduction from Muller to safety
games.
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Playing Muller Games in Finite Time

Robert McNaughton:

We believe that infinite games might have an interest for
casual living-room recreation.

But there is a problem: it takes a long time to play an infinite
game!

Thus:

Scoring functions for Muller games.

Use threshold score to obtain finite-duration variant.

If threshold is large enough, obtain finite game with the same
winning regions as infinite game.

Question
How large has the threshold to guarantee same winner?
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Scores and Accumulators

For F ⊆ V define ScF : V+ → N and AccF : V+ → 2F . Intuition:

ScF (w): maximal k ∈ N such that F is visited k times since
last vertex in V \ F (reset).
AccF (w): set A ⊂ F of vertices (from F ) seen since last
increase or reset of ScF .

w 0 0 1 1 0 0 1 2

Sc{0}

1 2 0 0 1 2 0 0

Acc{0}

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1}

0 0 1 1 2 2 3 0

Acc{0,1}

{0} {0} ∅ {1} ∅ {0} ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Remark
F = Inf(ρ) ⇔ lim infn→∞ ScF (ρ0 · · · ρn) =∞
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Results

McNaughton’s version: stop play when some ScF reaches |F |! + 1.

Theorem (McNaughton 2000)

Every Muller game and McNaughton’s finite-time variant are won
by the same player.

Fearnley and Z.: stop play when some ScF reaches 3.

Theorem (Fearnley, Z. 2010)

Every Muller game and the variant up to score 3 are won by the
same player.

Stronger statement, which implies the theorem:

Lemma
If Player i wins the Muller game, then she can prevent her opponent
from ever reaching a score of 3 for every set F ∈ F1−i .
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Game Reductions

Reduce complicated game G to simpler game G′: every play ρ in G
is mapped (continuously) to play ρ′ in G′ that has the same winner.

G ≤ G′

ρ 7→ ρ′

Solving G′ yields

winner of G and

corresponding finite-state winning strategy for winner.

Remark
Muller games cannot be reduced to safety games.
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Reducing Muller Games to Safety Games

Recall: If Player i wins a Muller game, then she can prevent her
opponent from ever reaching a score of 3 for every set F ∈ F1−i .

“Player 0 has a winning strategy iff she can prevent Player 1 from
reaching a score of 3” ⇒ safety condition!

Construction:

Ignore scores of Player 0.

Identify plays having the same scores and accumulators for
Player 1: w =F1 w ′ iff last(w) = last(w ′) and for all F ∈ F1:

ScF (w) = ScF (w ′) and AccF (w) = Acc(w ′)

Build =F1-quotient of unravelling up to score 3 for Player 1.

Winning condition for Player 0: avoid ScF = 3 for all F ∈ F1.
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Continuing the Example

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

Player 0 wins from 1 : move to 0 and 2 alternatingly.

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[100]

[122]

[121]

[1010]

[1001]

[1221]

[1212]

[10101]

[10010]

[12212]

[12121]

[101010]

[100101]

[122121]

[121212]
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Results

Theorem (Neider, Rabinovich, Z. 2011)

1. Player i wins the Muller game from v iff she wins the safety
game from [v ]=F1

.

2. Safety game can be turned into finite-state winning strategy for
the Muller game.

3. Size of the safety game: (n!)3.

Remarks:

Size of parity game in LAR-reduction n!. But: simpler
algorithms for safety games.

2. does not hold for Player 1.

Not a reduction in the classical sense: not every play of the
Muller game can be mapped to a play in the safety game.
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Proof Idea: Safety to Muller

10 2
F0 = {{0, 1, 2}, {0}, {2}}
F1 = {{0, 1}, {1, 2}}

[100]

[122]

[1001]

[1221]

[10101]

[12121]

[1010]

[1212]

[10010]

[12212]

[101010]

[100101]

[122121]

[121212]

[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[121]
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[0]

[1]

[2]

[10]

[12]

[01]

[21]

[101]

[121]

Pick a winning strategy for the safety game. This “is” a finite-state
winning strategy for the Muller game.
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[12]
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Even better: only use “maximal” elements, yields smaller memory.
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Safety Reductions

Definition
G = (A,Win) with vertex set V is safety reducible, if there is a
regular L ⊆ V ∗ such that:

For every ρ ∈ V ω: if Pref(ρ) ⊆ L, then ρ ∈Win.

If v ∈W0(G), then Player 0 has a strategy σ with Pref(ρ) ⊆ L
for every ρ consistent with σ and starting in v .

Theorem (Neider, Rabinovich, Z. 2011)

G safety reducible with L(A) ⊆ V ∗ for DFA A = (Q,V , q0, δ,F ).
Define the safety game GS = (A× A,V × F ). Then:

1. Player i wins G from v if and only if Player i wins GS from
(v , δ(q0, v)).

2. Player 0 has a finite-state winning strategy for G with memory
states Q (if she wins G).
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Safety Reductions: Applications

Reachability games: reach F after |V \ F | steps.

Büchi games: reach F every |V \ F | steps.

co-Büchi games: avoid visiting v ∈ V \ F twice.

Request-response games and poset games: bound waiting
times (Horn, Thomas, Wallmeier 2008; Z. 2009).

parity, Rabin, Streett games: progress measure algorithms “are”
safety reductions (Jurdziński 2000; Piterman, Pnueli 2006).

Muller games: bound scores.

If you can solve safety games, you can solve all these games.
Caveat: safety games will be larger than original game.
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