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Introduction

Model Checking: program P, specification ¢, does
PEoe?

Synthesis: environment E, specification . Generate program P
such that

ExPEy.

Synthesis as a game: no matter what the environment does, the
program has to guarantee .

m Beautiful and rich theory based on infinite graph games.

m typically: a player either wins or loses (zero-sum).

m here: adding quantitative aspects to infinite games.
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Outline

1. Infinite Games
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Definitions

An arena A = (V, Vo, Vi, E, vy, 1) consists of
m a finite directed graph (V/, E) without dead-ends,
m a partition {Vp, V1} of V denoting the positions of Player 0
(circles) and Player 1 (squares),
m an initial vertex vy € V,
m a labeling function / : V — 2F for some set P of atomic
propositions.
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W
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Definitions cont’d

m Play in A: infinite path pop1p2 ... starting in vp.
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Definitions cont’d

m Play in A: infinite path pop1p2 ... starting in vp.

m Strategy for Player i € {0,1}: mapping o : V*V; — V such
that (s,o(ws)) € E.

m o is finite-state: o computable by finite automaton with
output.

B pop1p2 ... is consistent with 0@ ppr1 = 0(po ... pn) forall n
such that p, € V,.
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m Play in A: infinite path pop1p2 ... starting in vp.

m Strategy for Player i € {0,1}: mapping o : V*V; — V such
that (s,o(ws)) € E.

m o is finite-state: o computable by finite automaton with
output.

B pop1p2 ... is consistent with 0@ ppr1 = 0(po ... pn) forall n
such that p, € V,.

Game: G = (A, Win) with Win C V¥,
m p winning for Player 0: p € Win.
m p winning for Player 1: p € V¥\Win.
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Definitions cont’d

m Play in A: infinite path pop1p2 ... starting in vp.

m Strategy for Player i € {0,1}: mapping o : V*V; — V such
that (s,o(ws)) € E.

m o is finite-state: o computable by finite automaton with
output.

B pop1p2 ... is consistent with 0@ ppr1 = 0(po ... pn) forall n
such that p, € V,.

Game: G = (A, Win) with Win C V¥,
m p winning for Player 0: p € Win.
m p winning for Player 1: p € V¥\Win.
m o winning strategy for Player i: all plays p consistent with o
are winning for Player i.
m G determined: one player has a winning strategy.
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Outline

2. Poset Games
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Motivation

m Request-Reponse conditions are a typical requirement on
reactive systems.

m There is a natural definition of waiting times and they allow
time-optimal strategies.
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Motivation

m Request-Reponse conditions are a typical requirement on
reactive systems.

m There is a natural definition of waiting times and they allow
time-optimal strategies.

Goal:
m Extend the Request-Response condition to partially ordered
objectives..
m .. while retaining the notion of waiting times and the
existence of time-optimal strategies.
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.

P1
Q2 I P>
@1
t1: O
th: O
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.

P1
@2 P>
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7: 01 2 0 O 1 2 3
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.

P1
@2 P>
|
@1
7: 01 2 0 O 1 2 3 4
tb: 0 0 O O 1 3 4 5
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.

P1
@2 P>
|
@1
7: 01 2 0 O 1 2 3 4 5
tb: 0 0 O O 1 3 4 5 0
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.

P1
@2 P>
|
@1
7t: 01 2 0 O 1 2 3 4 5 O
tb: 0 0 O O 1 3 4 5 0 O
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.

P1
@2 P>
|
@1
7: 01 2 0 0O 1 2 3 4 5 0
tb: 0 0 O O 1 3 4 5 0 0
pi=t +t O 1 2 0 1 3 5 7 9 5 0
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Request-Response games

Request-response game: (A, (Qj, Pj)j=1,..«) where Q;,P; C V.
Player 0 wins a play if every visit to Q; (request) is responded by a
later visit to P;.

Py
Q2 P,
|

@
t4: 01 2 0 0 1 2 3 4 5 0
pi=ti+t: 0 1 2 0 1 3 5 7 9 5 0
7 : 1 3 12 19 28 34 3
axiapii 005 1 3§ § F ¥ % §%on
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Request-Reponse Games: Results

m Waiting times: start a clock for every request that is stopped
as soon as it is responded (and ignore subsequent requests).

m Accumulated waiting time: sum up the clock values of a play
prefix (quadratic influence of open requests).

m Value of a play: limit superior of the average accumulated
waiting time.

m Value of a strategy: value of the worst play consistent with
the strategy.
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Request-Reponse Games: Results

m Waiting times: start a clock for every request that is stopped
as soon as it is responded (and ignore subsequent requests).

m Accumulated waiting time: sum up the clock values of a play
prefix (quadratic influence of open requests).

m Value of a play: limit superior of the average accumulated
waiting time.

m Value of a strategy: value of the worst play consistent with
the strategy.

Theorem (Horn, Thomas, Wallmeier)

If Player 0 has a winning strategy for an RR-game, then she also
has an optimal winning strategy, which is finite-state and
effectively computable.
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Extending Request-Reponse Games

greeng green;

1I><]

raiseg  raisep

N/

crossing free

train go

/N

lowerg lower;

1><]

redo red1
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Extending Request-Reponse Games

reen reen :
& o & 1 Generalize RR-games to express more

T T complicated conditions, but retain notion
raiseg  raise; of time-optimality.

\ Request: still a singular event.

crossing free

Response: partially ordered set of events.
train go

/N

lowerg lower;

1><]

redo red1

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 10/32



A Play

train go
lowerg lower;
redg red;
l_
{req}
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A Play

train go
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A Play

train go

N\

lowerg lower;

>

’r—ego_ ——==-red;

Z -
-
e
. - //
” < /
-
» ¥
I } I
{req} {redi1} {redo}
Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 11/32



A Play

train go

N\

lowerg lower;
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A Play

train go
lowerg lower;
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A Play
train go
% §
N
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N\
\
lowerg lower; N
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]
{lower; } {train go}

Winning condition for Player 0: every request g; is responded by a
later embedding of P;.
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Solving Poset Games

Theorem
Poset games are determined with finite-state strategies, i.e., in

every poset games, one of the players has a finite-state winning
strategy.
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Solving Poset Games

Theorem

Poset games are determined with finite-state strategies, i.e., in
every poset games, one of the players has a finite-state winning
strategy.

Proof:

Reduction to Biichi games; memory is used
m to store elements of the posets that still have to be embedded,
m to deal with overlapping embeddings,

m to implement a cyclic counter to ensure that every request is
responded by an embedding.

Size of the memory: exponential in the size of the posets P;.
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Waiting Times

As desired, a natural definition of waiting times is retained:
m Start a clock if a request is encountered...
m ... that is stopped as soon as the embedding is completed.

m Need a clock for every request (even if another request is
already open).
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Waiting Times

As desired, a natural definition of waiting times is retained:

m Start a clock if a request is encountered...

m ... that is stopped as soon as the embedding is completed.

m Need a clock for every request (even if another request is
already open).

m Value of a play: limit superior of the average accumulated
waiting time.

m Value of a strategy: value of the worst play consistent with
the strategy.

m Corresponding notion of optimal strategies.
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The Main Theorem

Theorem
If Player O has a winning strategy for a poset game G, then she

also has an optimal winning strategy, which is finite-state and
effectively computable.
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The Main Theorem

Theorem

If Player O has a winning strategy for a poset game G, then she
also has an optimal winning strategy, which is finite-state and
effectively computable.

Proof:

m If Player 0 has a winning strategy, then she also has one of
value less than a certain constant ¢ (from reduction). This
bounds the value of an optimal strategy, too.

m For every strategy of value < ¢ there is another strategy of
smaller or equal value, that also bounds all waiting times and
bounds the number of open requests.

m If the waiting times and the number of open requests are
bounded, then G can be reduced to a mean-payoff game.
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Further research and Open Problems

Size of the mean-payoff game: super-exponential in the size of the
poset game (holds already for RR-games). Needed: tight bounds
on the length of a non-self-covering sequence of waiting time
vectors.
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Further research and Open Problems

Size of the mean-payoff game: super-exponential in the size of the
poset game (holds already for RR-games). Needed: tight bounds
on the length of a non-self-covering sequence of waiting time
vectors.

Also:

Heuristic algorithms and approximatively optimal strategies.

Lower bounds on the memory size of an optimal strategy.

Direct computation of optimal strategies (without reduction
to mean-payoff games).

m Other valuation functions for plays (e.g., discounting,
lim sup Zf'(:l ti).
m Tradeoff between size and value of a strategy.
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Outline

3. Parametric LTL Games
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Motivation

Here, we consider winning conditions in linear temporal logic
(LTL). Advantages of LTL as specification language are

m compact, variable-free syntax,
m intuitive semantics,
m successfully employed in model checking tools.

Drawback: LTL lacks capabilities to express timing constraints.
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Motivation

Here, we consider winning conditions in linear temporal logic
(LTL). Advantages of LTL as specification language are

m compact, variable-free syntax,
m intuitive semantics,
m successfully employed in model checking tools.

Drawback: LTL lacks capabilities to express timing constraints.

Solution: Consider games with winning conditions in extensions of
LTL that can express timing constraints.
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LTL

Formulae of Linear temporal logic over P:

pu=ploploAe|lpVe|Xe|Fo|Gp
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LTL

Formulae of Linear temporal logic over P:

pu=plopleneleVve|Xe|Fo| Gy
LTL is evaluated at positions i of infinite words p over 2P:

ool : : : : : :

(0.1) E Xpr ,-

(i) E P p T

(p, 1) = Ge: Pt
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Parametric LTL

Let X and ) be two disjoint sets of variables. PLTL adds
bounded temporal operators to LTL:

m Fo, for x e X,
m G, foryec ).
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Parametric LTL

Let X and ) be two disjoint sets of variables. PLTL adds
bounded temporal operators to LTL:

m Fo, for x e X,
m G, foryec ).

Semantics defined w.r.t. variable valuation v: X U)Y — N.

, ool ' :
(p7’aa) ): FSXQO: p i I+ a(X)
().0 ® ® 2 9{7
j i+a(y)

(P’ iv O[) ): GSY‘JO: Pt
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Parametric LTL Games

PLTL game (A, ¢):
m 0 is a winning strategy for Player 0 w.r.t. « iff for all plays p
consistent with o: (p,0, @) = ¢.
m 7 is a winning strategy for Player 1 w.r.t. « iff for all plays p
consistent with 7: (p,0, &) B~ .
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Parametric LTL Games

PLTL game (A, ¢):

m 0 is a winning strategy for Player 0 w.r.t. « iff for all plays p
consistent with o: (p,0, @) = ¢.

m 7 is a winning strategy for Player 1 w.r.t. « iff for all plays p
consistent with 7: (p,0, &) B~ .

The set of winning valuations for Player i is

W’g = {«a | Player i has winning strategy for G w.r.t. a} .

We are interested in the emptiness, finiteness, and universality
problem for W and in finding optimal valuations in Wj,.
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PLTL Games: Example

Winning condition G(q — F<,p): “Every request g is eventually
responded by p”.

m Player 0's goal: uniformly bound the waiting times between
requests g and responses p by a(x).

I ] ] q ] P Iq p

—
< o(x)
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PLTL Games: Example

Winning condition G(q — F<,p): “Every request g is eventually
responded by p”.

m Player 0's goal: uniformly bound the waiting times between
requests g and responses p by a(x).

I ] ] q ] P Iq p

—
< o(x)

m Player 1's goal: enforce waiting time greater than a(x).
. . . 4P P TP TP

> a(x)

Martin Zimmermann

RWTH Aachen University Time-optimal Strategies for Infinite Games 21/32



PLTL Games: Example

Winning condition G(q — F<,p): “Every request g is eventually
responded by p”.

m Player 0's goal: uniformly bound the waiting times between
requests g and responses p by a(x).

I ] ] q ] P Iq p

—
< o(x)

m Player 1's goal: enforce waiting time greater than a(x).
. . . 4P P TP TP

> a(x)

Note: the winning condition induces an optimization problem (for
Player 0): minimize a(x).

Martin Zimmermann
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PLTL: Results

Theorem (Pnueli, Rosner ’89)

Determining the winner of an LTL game is 2EXPTIME-complete.
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PLTL: Results

Theorem (Pnueli, Rosner ’89)

Determining the winner of an LTL game is 2EXPTIME-complete.

Theorem
Let G be a PLTL game. The emptiness, finiteness, and
universality problem for W are 2EXPTIME-complete.
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PLTL: Results

Theorem (Pnueli, Rosner ’89)

Determining the winner of an LTL game is 2EXPTIME-complete.

Theorem
Let G be a PLTL game. The emptiness, finiteness, and
universality problem for W are 2EXPTIME-complete.

So, adding bounded temporal operators does increase the
complexity of solving games.
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PLTL: Results

If ¢ contains only F<, respectively only G<,, then solving games
is an optimization problem: which is the best valuation in Wg?
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PLTL: Results

If ¢ contains only F<, respectively only G<,, then solving games
is an optimization problem: which is the best valuation in Wg?

Theorem
Let o be G<-free and pg be F<-free, let G = (A, ¢F) and
Ge = (A, ¢g). Then, the following values are computable:

m Mingepp MaXsevar(pr) A(X).

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 23/32



PLTL: Results

If ¢ contains only F<, respectively only G<,, then solving games
is an optimization problem: which is the best valuation in Wg?

Theorem
Let o be G<-free and pg be F<-free, let G = (A, ¢F) and
Ge = (A, ¢g). Then, the following values are computable:

m Mingepp MaXsevar(pr) A(X).
] mlnaeng MINycvar(pF) a(X)'
[ ] maxaeWgG MaXy cvar(pg) a(y).

] maxaeng MiNy cvar(c) a(y).
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PLTL: Results

If ¢ contains only F<, respectively only G<,, then solving games
is an optimization problem: which is the best valuation in Wg?

Theorem
Let o be G<-free and pg be F<-free, let G = (A, ¢F) and
Ge = (A, ¢g). Then, the following values are computable:

m Mingepp MaXsevar(pr) A(X).
u minaeng mianvar(ch) a(X)'
[ ] maxaeWgG MaXy cvar(pg) a(y).
] maxaeng minyevar(cp(;) Oé(y)
Proof idea: obtain (double-exponential) upper bound k on the

optimal value by a reduction to an LTL game. Then, perform
binary search in the interval (0, k) to find the optimum.
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Further research and Open Problems

m Again: tradeoff between size and quality of a finite-state
strategy.

m Better algorithms for the optimization problems.

m Hardness results for the optimization problems.
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Outline

4. Finite-time Muller Games
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Motivation

o positional strategy: o(w) only depends on the last vertex of w.
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Motivation

o positional strategy: o(w) only depends on the last vertex of w.

m Assume a game allows positional winning strategies for both
players.

m Then, we can stop a play as soon as the first loop is closed.

m Winner is determined by infinite repetition of this loop.
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Motivation

o positional strategy: o(w) only depends on the last vertex of w.

m Assume a game allows positional winning strategies for both
players.

m Then, we can stop a play as soon as the first loop is closed.

m Winner is determined by infinite repetition of this loop.

Is there an analogous notion for games with finite-state strategies?
Here, we consider Muller games.
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Muller Games

m Inf(p) = {v € V| In € N such that p, = v}.

Muller game: (A, Fo, F1) such that {Fo, F1} is a partition of
2V\{0}. A play p is winning for Player i, if Inf(p) € F:.
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Muller Games

m Inf(p) = {v € V| In € N such that p, = v}.

Muller game: (A, Fo, F1) such that {Fo, F1} is a partition of
2V\{0}. A play p is winning for Player i, if Inf(p) € F:.

Theorem
Muller games are determined with finite-state strategies of size
V- VL.
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Finite-time Muller Games

Finite-time Muller game: (A, Fo, F1, k) such that {Fo, F1} is a
partition of 2Y\ {0} and k > 2. A finite play w is winning for
Player i, if F € F;, where F is the first loop that is seen k times in
a row.
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Finite-time Muller Games

Finite-time Muller game: (A, Fo, F1, k) such that {Fo, F1} is a
partition of 2Y\ {0} and k > 2. A finite play w is winning for
Player i, if F € F;, where F is the first loop that is seen k times in
a row.

Example

1
Vi %) (%

Let k = 2: play
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Finite-time Muller game: (A, Fo, F1, k) such that {Fo, F1} is a
partition of 2Y\ {0} and k > 2. A finite play w is winning for
Player i, if F € F;, where F is the first loop that is seen k times in
a row.

Example

1
Vi %) (%

Let k =2: play w

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 28/32



Finite-time Muller Games

Finite-time Muller game: (A, Fo, F1, k) such that {Fo, F1} is a
partition of 2Y\ {0} and k > 2. A finite play w is winning for
Player i, if F € F;, where F is the first loop that is seen k times in
a row.

Example

1
Vi %) (%

Let k =2: play wyw
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Finite-time Muller Games

Finite-time Muller game: (A, Fo, F1, k) such that {Fo, F1} is a
partition of 2Y\ {0} and k > 2. A finite play w is winning for
Player i, if F € F;, where F is the first loop that is seen k times in
a row.

Example

1
Vi %) (%

Let k =2: play www
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Finite-time Muller Games

Finite-time Muller game: (A, Fo, F1, k) such that {Fo, F1} is a
partition of 2Y\ {0} and k > 2. A finite play w is winning for
Player i, if F € F;, where F is the first loop that is seen k times in
a row.

Example

1
Vi %) (%

Let k =2: play wwwwwv
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Finite-time Muller Games

Finite-time Muller game: (A, Fo, F1, k) such that {Fo, F1} is a
partition of 2Y\ {0} and k > 2. A finite play w is winning for
Player i, if F € F;, where F is the first loop that is seen k times in
a row.

Example

1
Vi %) (%

Let k=2: play wywwww
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Finite-time Muller Games

Finite-time Muller game: (A, Fo, F1, k) such that {Fo, F1} is a
partition of 2Y\ {0} and k > 2. A finite play w is winning for
Player i, if F € F;, where F is the first loop that is seen k times in
a row.

Example

1
Vi %) (%

Let k =2: play wywvviviw.
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Finite-time Muller Games

Finite-time Muller game: (A, Fo, F1, k) such that {Fo, F1} is a
partition of 2Y\ {0} and k > 2. A finite play w is winning for
Player i, if F € F;, where F is the first loop that is seen k times in
a row.

Example

1
Vi %) (%

Let k=2:play wywwvwwvivivg. F ={w,v} seen twice.
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Finite-time Muller Games

Finite-time Muller game: (A, Fo, F1, k) such that {Fo, F1} is a
partition of 2Y\ {0} and k > 2. A finite play w is winning for
Player i, if F € F;, where F is the first loop that is seen k times in
a row.

Example \
vi Vo V2
Let k=2:play wywwvwwvivivg. F ={w,v} seen twice.

Theorem
Finite-time Muller games are determined.
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First Results

Theorem

Let A be an arena and k = |V/|? - |V|! + 1. Player i wins the

Muller game (A, Fo, F1) iff she wins the finite-time Muller game
(A, Fo, F1, k).
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First Results

Theorem

Let A be an arena and k = |V/|? - |V|! + 1. Player i wins the
Muller game (A, Fo, F1) iff she wins the finite-time Muller game
(A, Fo, F1, k).

Proof:

A finite-state winning strategy for Player i does not see F € F1_;
k times in a row.
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Further research and Open Problems

Conjecture

Player i wins the Muller game (A, Fo, F1) iff she wins the
finite-time Muller game (A, Fo, F1,2).
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Further research and Open Problems

Conjecture

Player i wins the Muller game (A, Fo, F1) iff she wins the
finite-time Muller game (A, Fo, F1,2).

Also:
m Is there a natural definition of eager strategies?

m Complexity of solving a finite-time Muller game? It is just a
reachability game (albeit a large one), so simple algorithms
exist.

m Starting with a winning strategy for a finite-time Muller game,
can we construct a (finite-state) winning strategy for the
Muller game.
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Outline

5. Conclusion
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Collaboration

Three suggestions from my side:
m Request-response games and Poset games
m PLTL games

m Finite-time Muller games

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games

32/32



Collaboration

Three suggestions from my side:
m Request-response games and Poset games
m PLTL games

m Finite-time Muller games

Thank youl!
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