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Introduction

Model Checking: program P, specification ϕ, does

P |= ϕ ?
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Introduction

Model Checking: program P, specification ϕ, does

P |= ϕ ?

Synthesis: environment E , specification ϕ. Generate program P

such that
E × P |= ϕ .

Synthesis as a game: no matter what the environment does, the
program has to guarantee ϕ.

Beautiful and rich theory based on infinite graph games.

typically: a player either wins or loses (zero-sum).

here: adding quantitative aspects to infinite games.
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Definitions

An arena A = (V , V0, V1, E , v0, l) consists of

a finite directed graph (V , E ) without dead-ends,
a partition {V0, V1} of V denoting the positions of Player 0
(circles) and Player 1 (squares),
an initial vertex v0 ∈ V ,
a labeling function l : V → 2P for some set P of atomic
propositions.

v0

p, q

v1

p

v2

∅

v3

q, r

v4

r
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Definitions cont’d

Play in A: infinite path ρ0ρ1ρ2 . . . starting in v0.
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Definitions cont’d

Play in A: infinite path ρ0ρ1ρ2 . . . starting in v0.

Strategy for Player i ∈ {0, 1}: mapping σ : V ∗Vi → V such
that (s, σ(ws)) ∈ E .

σ is finite-state: σ computable by finite automaton with
output.

ρ0ρ1ρ2 . . . is consistent with σ: ρn+1 = σ(ρ0 . . . ρn) for all n

such that ρn ∈ Vi .
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that (s, σ(ws)) ∈ E .

σ is finite-state: σ computable by finite automaton with
output.

ρ0ρ1ρ2 . . . is consistent with σ: ρn+1 = σ(ρ0 . . . ρn) for all n

such that ρn ∈ Vi .

Game: G = (A, Win) with Win ⊆ V ω.

ρ winning for Player 0: ρ ∈ Win.

ρ winning for Player 1: ρ ∈ V ω\Win.
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Definitions cont’d

Play in A: infinite path ρ0ρ1ρ2 . . . starting in v0.

Strategy for Player i ∈ {0, 1}: mapping σ : V ∗Vi → V such
that (s, σ(ws)) ∈ E .

σ is finite-state: σ computable by finite automaton with
output.

ρ0ρ1ρ2 . . . is consistent with σ: ρn+1 = σ(ρ0 . . . ρn) for all n

such that ρn ∈ Vi .

Game: G = (A, Win) with Win ⊆ V ω.

ρ winning for Player 0: ρ ∈ Win.

ρ winning for Player 1: ρ ∈ V ω\Win.

σ winning strategy for Player i : all plays ρ consistent with σ

are winning for Player i .

G determined: one player has a winning strategy.

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 5/32



Outline

1. Infinite Games

2. Poset Games

3. Parametric LTL Games

4. Finite-time Muller Games

5. Conclusion

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 6/32



Motivation

Request-Reponse conditions are a typical requirement on
reactive systems.

There is a natural definition of waiting times and they allow
time-optimal strategies.
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Motivation

Request-Reponse conditions are a typical requirement on
reactive systems.

There is a natural definition of waiting times and they allow
time-optimal strategies.

Goal:

Extend the Request-Response condition to partially ordered
objectives..

.. while retaining the notion of waiting times and the
existence of time-optimal strategies.
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0
t2 : 0
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1
t2 : 0 0

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 8/32



Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1 2
t2 : 0 0 0
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1 2 0
t2 : 0 0 0 0
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1 2 0 0
t2 : 0 0 0 0 1
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1 2 0 0 1
t2 : 0 0 0 0 1 2
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1 2 0 0 1 2
t2 : 0 0 0 0 1 2 3
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1 2 0 0 1 2 3
t2 : 0 0 0 0 1 2 3 4

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 8/32



Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1 2 0 0 1 2 3 4
t2 : 0 0 0 0 1 2 3 4 5
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1 2 0 0 1 2 3 4 5
t2 : 0 0 0 0 1 2 3 4 5 0
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1 2 0 0 1 2 3 4 5 0
t2 : 0 0 0 0 1 2 3 4 5 0 0
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1 2 0 0 1 2 3 4 5 0
t2 : 0 0 0 0 1 2 3 4 5 0 0

pi = t1 + t2 : 0 1 2 0 1 3 5 7 9 5 0
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Request-Response games

Request-response game: (A, (Qj , Pj)j=1,...,k) where Qj , Pj ⊆ V .
Player 0 wins a play if every visit to Qj (request) is responded by a
later visit to Pj .

Q1

Q2

P1
P2

t1 : 0 1 2 0 0 1 2 3 4 5 0
t2 : 0 0 0 0 1 2 3 4 5 0 0

pi = t1 + t2 : 0 1 2 0 1 3 5 7 9 5 0
1
n

∑n
i=1 pi : 0 1

2 1 3
4

4
5

7
6

12
7

19
8

28
9

34
10

34
11
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Request-Reponse Games: Results

Waiting times: start a clock for every request that is stopped
as soon as it is responded (and ignore subsequent requests).

Accumulated waiting time: sum up the clock values of a play
prefix (quadratic influence of open requests).

Value of a play: limit superior of the average accumulated
waiting time.

Value of a strategy: value of the worst play consistent with
the strategy.
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Request-Reponse Games: Results

Waiting times: start a clock for every request that is stopped
as soon as it is responded (and ignore subsequent requests).

Accumulated waiting time: sum up the clock values of a play
prefix (quadratic influence of open requests).

Value of a play: limit superior of the average accumulated
waiting time.

Value of a strategy: value of the worst play consistent with
the strategy.

Theorem (Horn, Thomas, Wallmeier)

If Player 0 has a winning strategy for an RR-game, then she also

has an optimal winning strategy, which is finite-state and

effectively computable.
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Extending Request-Reponse Games

red0 red1

lower0 lower1

train go

crossing free

raise0 raise1

green0 green1
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Extending Request-Reponse Games

red0 red1

lower0 lower1

train go

crossing free

raise0 raise1

green0 green1 Generalize RR-games to express more
complicated conditions, but retain notion
of time-optimality.

Request: still a singular event.

Response: partially ordered set of events.
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A Play

red0 red1

lower0 lower1

train go

{req}
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A Play

red0 red1

lower0 lower1

train go

{req} {red1}
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A Play

red0 red1

lower0 lower1

train go

{req} {red1} {red0}
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A Play

red0 red1

lower0 lower1

train go

{req} {red1} {red0} {lower0}
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A Play

red0 red1

lower0 lower1

train go

{req} {red1} {red0} {lower0} {lower1}
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A Play

red0 red1

lower0 lower1

train go

{req} {red1} {red0} {lower0} {lower1} {train go}

Winning condition for Player 0: every request qj is responded by a
later embedding of Pj .
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Solving Poset Games

Theorem
Poset games are determined with finite-state strategies, i.e., in

every poset games, one of the players has a finite-state winning

strategy.
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Solving Poset Games

Theorem
Poset games are determined with finite-state strategies, i.e., in

every poset games, one of the players has a finite-state winning

strategy.

Proof:
Reduction to Büchi games; memory is used

to store elements of the posets that still have to be embedded,

to deal with overlapping embeddings,

to implement a cyclic counter to ensure that every request is
responded by an embedding.

Size of the memory: exponential in the size of the posets Pj .
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Waiting Times

As desired, a natural definition of waiting times is retained:

Start a clock if a request is encountered...

... that is stopped as soon as the embedding is completed.

Need a clock for every request (even if another request is
already open).
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Waiting Times

As desired, a natural definition of waiting times is retained:

Start a clock if a request is encountered...

... that is stopped as soon as the embedding is completed.

Need a clock for every request (even if another request is
already open).

Value of a play: limit superior of the average accumulated
waiting time.

Value of a strategy: value of the worst play consistent with
the strategy.

Corresponding notion of optimal strategies.
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The Main Theorem

Theorem
If Player 0 has a winning strategy for a poset game G, then she

also has an optimal winning strategy, which is finite-state and

effectively computable.

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 14/32



The Main Theorem

Theorem
If Player 0 has a winning strategy for a poset game G, then she

also has an optimal winning strategy, which is finite-state and

effectively computable.

Proof:

If Player 0 has a winning strategy, then she also has one of
value less than a certain constant c (from reduction). This
bounds the value of an optimal strategy, too.

For every strategy of value ≤ c there is another strategy of
smaller or equal value, that also bounds all waiting times and
bounds the number of open requests.

If the waiting times and the number of open requests are
bounded, then G can be reduced to a mean-payoff game.
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Further research and Open Problems

Size of the mean-payoff game: super-exponential in the size of the
poset game (holds already for RR-games). Needed: tight bounds
on the length of a non-self-covering sequence of waiting time
vectors.

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 15/32



Further research and Open Problems

Size of the mean-payoff game: super-exponential in the size of the
poset game (holds already for RR-games). Needed: tight bounds
on the length of a non-self-covering sequence of waiting time
vectors.

Also:

Heuristic algorithms and approximatively optimal strategies.

Lower bounds on the memory size of an optimal strategy.

Direct computation of optimal strategies (without reduction
to mean-payoff games).

Other valuation functions for plays (e.g., discounting,
lim sup

∑k
i=1 ti ).

Tradeoff between size and value of a strategy.
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Outline

1. Infinite Games

2. Poset Games

3. Parametric LTL Games

4. Finite-time Muller Games

5. Conclusion
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Motivation

Here, we consider winning conditions in linear temporal logic
(LTL). Advantages of LTL as specification language are

compact, variable-free syntax,

intuitive semantics,

successfully employed in model checking tools.

Drawback: LTL lacks capabilities to express timing constraints.
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Motivation

Here, we consider winning conditions in linear temporal logic
(LTL). Advantages of LTL as specification language are

compact, variable-free syntax,

intuitive semantics,

successfully employed in model checking tools.

Drawback: LTL lacks capabilities to express timing constraints.

Solution: Consider games with winning conditions in extensions of
LTL that can express timing constraints.
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LTL

Formulae of Linear temporal logic over P:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ
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LTL

Formulae of Linear temporal logic over P:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ

LTL is evaluated at positions i of infinite words ρ over 2p:

(ρ, i) |= Gϕ: ρ

i

ϕ ϕ ϕ ϕ ϕ ϕ

(ρ, i) |= Fϕ: ρ
i

ϕ

(ρ, i) |= Xϕ: ρ
i

ϕ
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Parametric LTL

Let X and Y be two disjoint sets of variables. PLTL adds
bounded temporal operators to LTL:

F≤x for x ∈ X ,

G≤y for y ∈ Y.
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Parametric LTL

Let X and Y be two disjoint sets of variables. PLTL adds
bounded temporal operators to LTL:

F≤x for x ∈ X ,

G≤y for y ∈ Y.

Semantics defined w.r.t. variable valuation α : X ∪ Y → N.

(ρ, i , α) |= G≤yϕ: ρ

i i + α(y)

ϕ ϕ ϕ ϕ ϕ

(ρ, i , α) |= F≤xϕ: ρ
i i + α(x)

ϕ
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Parametric LTL Games

PLTL game (A, ϕ):

σ is a winning strategy for Player 0 w.r.t. α iff for all plays ρ

consistent with σ: (ρ, 0, α) |= ϕ.

τ is a winning strategy for Player 1 w.r.t. α iff for all plays ρ

consistent with τ : (ρ, 0, α) 6|= ϕ.
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Parametric LTL Games

PLTL game (A, ϕ):

σ is a winning strategy for Player 0 w.r.t. α iff for all plays ρ

consistent with σ: (ρ, 0, α) |= ϕ.

τ is a winning strategy for Player 1 w.r.t. α iff for all plays ρ

consistent with τ : (ρ, 0, α) 6|= ϕ.

The set of winning valuations for Player i is

W i
G = {α | Player i has winning strategy for G w.r.t. α} .

We are interested in the emptiness, finiteness, and universality
problem for W i

G and in finding optimal valuations in W i
G .
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PLTL Games: Example

Winning condition G(q → F≤xp): “Every request q is eventually
responded by p”.

Player 0’s goal: uniformly bound the waiting times between
requests q and responses p by α(x).

q p q p

≤ α(x) ≤ α(x)
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Winning condition G(q → F≤xp): “Every request q is eventually
responded by p”.

Player 0’s goal: uniformly bound the waiting times between
requests q and responses p by α(x).

q p q p

≤ α(x) ≤ α(x)

Player 1’s goal: enforce waiting time greater than α(x).
q,¬p ¬p ¬p ¬p

≥ α(x)
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PLTL Games: Example

Winning condition G(q → F≤xp): “Every request q is eventually
responded by p”.

Player 0’s goal: uniformly bound the waiting times between
requests q and responses p by α(x).

q p q p

≤ α(x) ≤ α(x)

Player 1’s goal: enforce waiting time greater than α(x).
q,¬p ¬p ¬p ¬p

≥ α(x)

Note: the winning condition induces an optimization problem (for
Player 0): minimize α(x).
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PLTL: Results

Theorem (Pnueli, Rosner ’89)

Determining the winner of an LTL game is 2EXPTIME-complete.
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PLTL: Results

Theorem (Pnueli, Rosner ’89)

Determining the winner of an LTL game is 2EXPTIME-complete.

Theorem
Let G be a PLTL game. The emptiness, finiteness, and

universality problem for W i
G are 2EXPTIME-complete.
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PLTL: Results

Theorem (Pnueli, Rosner ’89)

Determining the winner of an LTL game is 2EXPTIME-complete.

Theorem
Let G be a PLTL game. The emptiness, finiteness, and

universality problem for W i
G are 2EXPTIME-complete.

So, adding bounded temporal operators does increase the
complexity of solving games.

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 22/32



PLTL: Results

If ϕ contains only F≤x respectively only G≤y , then solving games
is an optimization problem: which is the best valuation in W0

G?
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PLTL: Results

If ϕ contains only F≤x respectively only G≤y , then solving games
is an optimization problem: which is the best valuation in W0

G?

Theorem
Let ϕF be G≤y -free and ϕG be F≤x -free, let GF = (A, ϕF) and

GG = (A, ϕG). Then, the following values are computable:

min
α∈W0

GF

maxx∈var(ϕF) α(x).
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PLTL: Results

If ϕ contains only F≤x respectively only G≤y , then solving games
is an optimization problem: which is the best valuation in W0

G?

Theorem
Let ϕF be G≤y -free and ϕG be F≤x -free, let GF = (A, ϕF) and

GG = (A, ϕG). Then, the following values are computable:

min
α∈W0

GF

maxx∈var(ϕF) α(x).

min
α∈W0

GF

minx∈var(ϕF) α(x).

max
α∈W0

GG

maxy∈var(ϕG) α(y).

max
α∈W0

GG

miny∈var(ϕG) α(y).
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PLTL: Results

If ϕ contains only F≤x respectively only G≤y , then solving games
is an optimization problem: which is the best valuation in W0

G?

Theorem
Let ϕF be G≤y -free and ϕG be F≤x -free, let GF = (A, ϕF) and

GG = (A, ϕG). Then, the following values are computable:

min
α∈W0

GF

maxx∈var(ϕF) α(x).

min
α∈W0

GF

minx∈var(ϕF) α(x).

max
α∈W0

GG

maxy∈var(ϕG) α(y).

max
α∈W0

GG

miny∈var(ϕG) α(y).

Proof idea: obtain (double-exponential) upper bound k on the
optimal value by a reduction to an LTL game. Then, perform
binary search in the interval (0, k) to find the optimum.
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Further research and Open Problems

Again: tradeoff between size and quality of a finite-state
strategy.

Better algorithms for the optimization problems.

Hardness results for the optimization problems.
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Outline

1. Infinite Games

2. Poset Games

3. Parametric LTL Games

4. Finite-time Muller Games

5. Conclusion
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Motivation

σ positional strategy: σ(w) only depends on the last vertex of w .
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Motivation

σ positional strategy: σ(w) only depends on the last vertex of w .

Assume a game allows positional winning strategies for both
players.

Then, we can stop a play as soon as the first loop is closed.

Winner is determined by infinite repetition of this loop.
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Motivation

σ positional strategy: σ(w) only depends on the last vertex of w .

Assume a game allows positional winning strategies for both
players.

Then, we can stop a play as soon as the first loop is closed.

Winner is determined by infinite repetition of this loop.

Is there an analogous notion for games with finite-state strategies?
Here, we consider Muller games.
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Muller Games

Inf(ρ) = {v ∈ V | ∃ωn ∈ N such that ρn = v}.

Muller game: (A,F0,F1) such that {F0,F1} is a partition of
2V \{∅}. A play ρ is winning for Player i , if Inf(ρ) ∈ Fi .
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Muller Games

Inf(ρ) = {v ∈ V | ∃ωn ∈ N such that ρn = v}.

Muller game: (A,F0,F1) such that {F0,F1} is a partition of
2V \{∅}. A play ρ is winning for Player i , if Inf(ρ) ∈ Fi .

Theorem
Muller games are determined with finite-state strategies of size

|V | · |V |!.
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Finite-time Muller Games

Finite-time Muller game: (A,F0,F1, k) such that {F0,F1} is a
partition of 2V \{∅} and k ≥ 2. A finite play w is winning for
Player i , if F ∈ Fi , where F is the first loop that is seen k times in
a row.
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Finite-time Muller Games

Finite-time Muller game: (A,F0,F1, k) such that {F0,F1} is a
partition of 2V \{∅} and k ≥ 2. A finite play w is winning for
Player i , if F ∈ Fi , where F is the first loop that is seen k times in
a row.

Example

v0v1 v2

Let k = 2: play
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Finite-time Muller Games

Finite-time Muller game: (A,F0,F1, k) such that {F0,F1} is a
partition of 2V \{∅} and k ≥ 2. A finite play w is winning for
Player i , if F ∈ Fi , where F is the first loop that is seen k times in
a row.

Example

v0v1 v2

Let k = 2: play v0
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Finite-time Muller Games

Finite-time Muller game: (A,F0,F1, k) such that {F0,F1} is a
partition of 2V \{∅} and k ≥ 2. A finite play w is winning for
Player i , if F ∈ Fi , where F is the first loop that is seen k times in
a row.

Example

v0v1 v2

Let k = 2: play v0 v2
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Finite-time Muller Games

Finite-time Muller game: (A,F0,F1, k) such that {F0,F1} is a
partition of 2V \{∅} and k ≥ 2. A finite play w is winning for
Player i , if F ∈ Fi , where F is the first loop that is seen k times in
a row.

Example

v0v1 v2

Let k = 2: play v0 v2 v0
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Finite-time Muller Games

Finite-time Muller game: (A,F0,F1, k) such that {F0,F1} is a
partition of 2V \{∅} and k ≥ 2. A finite play w is winning for
Player i , if F ∈ Fi , where F is the first loop that is seen k times in
a row.

Example

v0v1 v2

Let k = 2: play v0 v2 v0 v1

Martin Zimmermann RWTH Aachen University Time-optimal Strategies for Infinite Games 28/32



Finite-time Muller Games

Finite-time Muller game: (A,F0,F1, k) such that {F0,F1} is a
partition of 2V \{∅} and k ≥ 2. A finite play w is winning for
Player i , if F ∈ Fi , where F is the first loop that is seen k times in
a row.

Example

v0v1 v2

Let k = 2: play v0 v2 v0 v1 v1
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Finite-time Muller Games

Finite-time Muller game: (A,F0,F1, k) such that {F0,F1} is a
partition of 2V \{∅} and k ≥ 2. A finite play w is winning for
Player i , if F ∈ Fi , where F is the first loop that is seen k times in
a row.

Example

v0v1 v2

Let k = 2: play v0 v2 v0 v1 v1 v0.
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Finite-time Muller Games

Finite-time Muller game: (A,F0,F1, k) such that {F0,F1} is a
partition of 2V \{∅} and k ≥ 2. A finite play w is winning for
Player i , if F ∈ Fi , where F is the first loop that is seen k times in
a row.

Example

v0v1 v2

Let k = 2: play v0 v2 v0 v1 v1 v0. F = {v0, v1} seen twice.
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Finite-time Muller Games

Finite-time Muller game: (A,F0,F1, k) such that {F0,F1} is a
partition of 2V \{∅} and k ≥ 2. A finite play w is winning for
Player i , if F ∈ Fi , where F is the first loop that is seen k times in
a row.

Example

v0v1 v2

Let k = 2: play v0 v2 v0 v1 v1 v0. F = {v0, v1} seen twice.

Theorem
Finite-time Muller games are determined.
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First Results

Theorem
Let A be an arena and k = |V |2 · |V |! + 1. Player i wins the

Muller game (A,F0,F1) iff she wins the finite-time Muller game

(A,F0,F1, k).
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First Results

Theorem
Let A be an arena and k = |V |2 · |V |! + 1. Player i wins the

Muller game (A,F0,F1) iff she wins the finite-time Muller game

(A,F0,F1, k).

Proof:

A finite-state winning strategy for Player i does not see F ∈ F1−i

k times in a row.
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Further research and Open Problems

Conjecture

Player i wins the Muller game (A,F0,F1) iff she wins the

finite-time Muller game (A,F0,F1, 2).
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Further research and Open Problems

Conjecture

Player i wins the Muller game (A,F0,F1) iff she wins the

finite-time Muller game (A,F0,F1, 2).

Also:

Is there a natural definition of eager strategies?

Complexity of solving a finite-time Muller game? It is just a
reachability game (albeit a large one), so simple algorithms
exist.

Starting with a winning strategy for a finite-time Muller game,
can we construct a (finite-state) winning strategy for the
Muller game.
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Outline

1. Infinite Games

2. Poset Games

3. Parametric LTL Games

4. Finite-time Muller Games

5. Conclusion
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Collaboration

Three suggestions from my side:

Request-response games and Poset games

PLTL games

Finite-time Muller games
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Collaboration

Three suggestions from my side:

Request-response games and Poset games

PLTL games

Finite-time Muller games

Thank you!
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