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Introduction

Büchi-Landweber: The winner of a zero-sum two-player game of
infinite duration with ω-regular winning condition can be
determined effectively.

Interaction between players typically described by a graph.

Simpler setting: realizability / Gale-Stewart games.
Players I/O alternatingly pick letters α(i) and β(i). O wins if(α(0)
β(0)

)(α(1)
β(1)

)
· · · is in winning condition L.

But assuming fixed interaction might be too strong in the presence
of buffers, asynchronous communication channels, etc.

Hosch & Landweber (’72), Holtmann, Kaiser & Thomas
(’10): allow one player to delay her moves, thereby gain a
lookahead on her opponents moves.
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The Delay Game Γf (L)

Delay function: f : N→ N+.

ω-language L ⊆ (ΣI × ΣO)ω.

Two players: Input (I ) vs. Output (O).

In round i:

I picks word ui ∈ Σ
f (i)
I (building α = u0u1 · · · ).

O picks letter vi ∈ ΣO (building β = v0v1 · · · ).

O wins iff
(α(0)
β(0)

)(α(1)
β(1)

)
· · · ∈ L.

Definition: f is constant, if f (i) = 1 for every i > 0.

Questions we are interested in:

Given L, is there an f such that O wins Γf (L)?

How large does f have to be?

How hard is the problem to solve?
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Examples

(α(0)
β(0)

)(α(1)
β(1)

)
· · · ∈ L1 ⊆ ({a, b} × {a, b})ω, if β(i) = α(i + 2).

I : b a b I : b a b b a b a · · ·
O: a a O: b b a b a · · ·

No delay

: I wins f (0) = 3, f (i + 1) = 1: O wins(α(0)
β(0)

)(α(1)
β(1)

)
· · · ∈ L2 ⊆ ({a, b, c} × {a, b, c})ω, if

α(i) = a for every i , or
β(0) = α(i), where i is minimal with α(i) 6= a.

I :

f (0)︷ ︸︸ ︷
a · · · a c

O: b

I wins for every f
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Previous Results

Theorem (Hosch & Landweber ’72)

The following problem is decidable: Given ω-regular L, does O win
Γf (L) for some constant f ?

Theorem (Holtmann, Kaiser & Thomas ’10)

1. TFAE for L given by deterministic parity automaton A:
O wins Γf (L) for some f .

O wins Γf (L) for some constant f with f (0) ≤ 22
|A|

.

2. Deciding whether this is the case is in 2ExpTime.

Theorem (Fridman, Löding & Z. ’11)

The following problem is undecidable: Given (one-counter, weak,
and deterministic) context-free L, does O win Γf (L) for some f ?
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Our Results

Theorem (Klein & Z. ’14)

1. TFAE for L given by deterministic parity automaton A with k
colors:

O wins Γf (L) for some f .
O wins Γf (L) for some constant f with f (0) ≤ 2|A|·k .

2. Deciding whether this is the case is ExpTime-complete.

3. Matching lower bound on necessary lookahead (already for
reachability and safety).

4. Solving reachability delay games is PSpace-complete.
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Outline

1. Reducing Delay Games to Delay-free Games

2. Beyond ω-regularity: WMSO+U conditions

3. Conclusion
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Upper Bounds for ω-regular Conditions

Start with deterministic parity automaton A recognizing the
winning condition.

Extend A to C to keep track of maximal color seen during run
using states of the form (q, c), which has color c .

Note: L(C) 6= L(A).

I :

O:

α(0) α(i) α(i)

β(0) β(j)

q0 q P

q: state reached by A after processing
(α(0)
β(0)

)
· · ·
(α(i)
β(i)

)
.

P: set of states reachable by pr0(C) from (q,Ω(q)) after
processing α(i + 1) · · ·α(j).
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Proof Continued

δP : transition function of powerset automaton of pr0(C).

Let w ∈ Σ∗I : define rDw : D → 2QC via

rDw (q, c) = δ∗P( { (q,Ω(q)) } ,w)

w is witness for rDw ⇒ Language Wr of witnesses.

R = {r |Wr infinite}.

Lemma
Fix domain D. If |w | ≥ 2|C|

2
, then w is witness of a unique r ∈ R

with domain D.
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The Game G(A)

Define new game G(A) between I and O:

In round 0:

I has to pick r0 ∈ R with dom(r0) = {qCI },
O has to pick q0 ∈ dom(r0) (i.e., q0 = qCI ).

Round i > 0 with play prefix r0q0 · · · ri−1qi−1:

I has to pick ri ∈ R with dom(ri ) = ri−1(qi−1),
O has to pick qi ∈ dom(ri ).

Let qi = (q′i , ci ). O wins play if c0c1c2 · · · satisfies parity
condition.

Lemma
O wins Γf (L(A)) for some f if and only if O wins G(A).
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O wins Γf (L(A)) ⇒ O wins G(A)

We can assume f to be constant [HKT10].

Γ

I :

O:

G
I :

O:

r0

q0

r1

q′
0 q′

1

q1

r2

q′
2

q2

r3 r4 r5

q′
3 q′

4 q′
5 q′

6

q3 q4

Color encoded in qi is maximal one seen on run from q′i−1 to q′i in
play of Γ ⇒ Play in G winning for O.
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O wins Γf (L(A)) ⇐ O wins G(A)

Let d = 2|C|
2

and f (0) = 2d .

G

I :

O:

Γ

I :

O:

r0

q0

r1

q1

r2

q2

r3 r4 r5

q3 q4

q′
0 q′

1 q′
2 q′

3 q′
4 q′

5 q′
6

Color encoded in qi is maximal one seen on run from q′i−1 to q′i in
play of Γ ⇒ Play in Γ winning for O.

Martin Zimmermann Saarland University ω-regular and Max-regular Delay Games 12/20



O wins Γf (L(A)) ⇐ O wins G(A)

Let d = 2|C|
2

and f (0) = 2d .

G

I :

O:

Γ

I :

O:

︸ ︷︷ ︸
=d

︸ ︷︷ ︸
=d

r0

q0

r1

q1

r2

q2

r3 r4 r5

q3 q4

q′
0 q′

1 q′
2 q′

3 q′
4 q′

5 q′
6

Color encoded in qi is maximal one seen on run from q′i−1 to q′i in
play of Γ ⇒ Play in Γ winning for O.

Martin Zimmermann Saarland University ω-regular and Max-regular Delay Games 12/20



O wins Γf (L(A)) ⇐ O wins G(A)

Let d = 2|C|
2

and f (0) = 2d .

G

I :

O:

Γ

I :

O:

r0

q0

r1

witness−1

= qC0

q1

r2

q2

r3 r4 r5

q3 q4

q′
0 q′

1 q′
2 q′

3 q′
4 q′

5 q′
6

Color encoded in qi is maximal one seen on run from q′i−1 to q′i in
play of Γ ⇒ Play in Γ winning for O.

Martin Zimmermann Saarland University ω-regular and Max-regular Delay Games 12/20



O wins Γf (L(A)) ⇐ O wins G(A)

Let d = 2|C|
2

and f (0) = 2d .

G

I :

O:

Γ

I :

O:

r0

q0

r1

q1
According to w.s.

r2

q2

r3 r4 r5

q3 q4

q′
0 q′

1 q′
2 q′

3 q′
4 q′

5 q′
6

Color encoded in qi is maximal one seen on run from q′i−1 to q′i in
play of Γ ⇒ Play in Γ winning for O.

Martin Zimmermann Saarland University ω-regular and Max-regular Delay Games 12/20



O wins Γf (L(A)) ⇐ O wins G(A)

Let d = 2|C|
2

and f (0) = 2d .

G

I :

O:

Γ

I :

O:

r0

q0

r1

q1

r2

q2

r3 r4 r5

q3 q4

q′
0 q′

1 q′
2 q′

3 q′
4 q′

5 q′
6

Color encoded in qi is maximal one seen on run from q′i−1 to q′i in
play of Γ ⇒ Play in Γ winning for O.

Martin Zimmermann Saarland University ω-regular and Max-regular Delay Games 12/20



O wins Γf (L(A)) ⇐ O wins G(A)

Let d = 2|C|
2

and f (0) = 2d .

G

I :

O:

Γ

I :

O:

r0

q0

r1

q1

︸ ︷︷ ︸
=d

r2

q2

r3 r4 r5

q3 q4

q′
0 q′

1 q′
2 q′

3 q′
4 q′

5 q′
6

Color encoded in qi is maximal one seen on run from q′i−1 to q′i in
play of Γ ⇒ Play in Γ winning for O.

Martin Zimmermann Saarland University ω-regular and Max-regular Delay Games 12/20



O wins Γf (L(A)) ⇐ O wins G(A)

Let d = 2|C|
2

and f (0) = 2d .

G

I :

O:

Γ

I :

O:

r0

q0

r1

q1

r2

q2

r3 r4 r5

q3 q4

q′
0 q′

1 q′
2 q′

3 q′
4 q′

5 q′
6

Color encoded in qi is maximal one seen on run from q′i−1 to q′i in
play of Γ ⇒ Play in Γ winning for O.

Martin Zimmermann Saarland University ω-regular and Max-regular Delay Games 12/20



O wins Γf (L(A)) ⇐ O wins G(A)

Let d = 2|C|
2

and f (0) = 2d .

G

I :

O:

Γ

I :

O:

r0

q0

r1

q1

r2

q2
According to w.s.

r3 r4 r5

q3 q4

q′
0 q′

1 q′
2 q′

3 q′
4 q′

5 q′
6

Color encoded in qi is maximal one seen on run from q′i−1 to q′i in
play of Γ ⇒ Play in Γ winning for O.

Martin Zimmermann Saarland University ω-regular and Max-regular Delay Games 12/20



O wins Γf (L(A)) ⇐ O wins G(A)

Let d = 2|C|
2

and f (0) = 2d .

G

I :

O:

Γ

I :

O:

r0

q0

r1

q1

r2

q2

r3 r4 r5

q3 q4

q′
0 q′

1 q′
2 q′

3 q′
4 q′

5 q′
6

Color encoded in qi is maximal one seen on run from q′i−1 to q′i in
play of Γ ⇒ Play in Γ winning for O.

Martin Zimmermann Saarland University ω-regular and Max-regular Delay Games 12/20



O wins Γf (L(A)) ⇐ O wins G(A)

Let d = 2|C|
2

and f (0) = 2d .

G

I :

O:

Γ

I :

O:

r0

q0

r1

q1

r2

q2

r3 r4 r5

q3 q4

q′
0 q′

1 q′
2 q′

3 q′
4 q′

5 q′
6

Color encoded in qi is maximal one seen on run from q′i−1 to q′i in
play of Γ ⇒ Play in Γ winning for O.

Martin Zimmermann Saarland University ω-regular and Max-regular Delay Games 12/20



Finishing the Proof

G(A) can be encoded as parity game of exponential size with
the same colors as A.
Such a game can be solved in exponential time in |A|.

Applying both directions of equivalence between Γf (L(A)) and
G(A) yields upper bound on lookahead.

Corollary

Let L = L(A) where A is a deterministic parity automaton with k
colors. The following are equivalent:

1. O wins Γf (L) for some delay function f .

2. O wins Γf (L) for some constant delay function f with
f (0) ≤ 2(|A|k)

2+1.

Note: f (0) ≤ 22|A|k+2 + 2 achievable by direct pumping argument.
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Outline

1. Reducing Delay Games to Delay-free Games

2. Beyond ω-regularity: WMSO+U conditions
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Delay Games with WMSO+U conditions

WMSO+U:

weak monadic
second-order logic with
the unbounding
quantifier U

UXϕ(X ): there are
arbitrarily large finite
sets X s.t. ϕ(X ) holds.

Max-automata

Deterministic finite
automata with counters

actions: incr, reset, max

acceptance: boolean
combination of “counter γ is
bounded”.

Example:

L = {α ∈ {a, b, c}ω | anb infix of α for every n}

Theorem
The following problem is decidable: Given a max-automaton A,
does Player O win Γf (L(A)) for some constant f ?
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Proof Sketch

Adapt parity proof: Instead of tracking maximal color, track effect
of words over ΣI × (ΣO)∗ on counters:

Transfers from counter γ to γ′.
Existence of increments, but not how many.
⇒ equivalence relation ≡ of exponential index.

Lemma
Let (xi )i∈N and (x ′i )i∈N be two sequences of words over Σ∗ with
supi |xi | <∞, supi |x ′i | <∞, and xi ≡ x ′i for all i . Then,
x = x0x1x2 · · · ∈ L(A) if and only if x ′ = x ′0x

′
1x
′
2 · · · ∈ L(A).

G(A) is now a game with weak MSO+U winning condition.
Can be solved as satisfiability problem for weak MSO+U with
path quantifiers over infinite tress [Bojańczyk ’14].
Doubly-exponential upper bound on constant delay.
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Constant Lookahead is not Sufficient

ΣI = {0, 1,#} and ΣO = {0, 1, ∗}.
Input block: #w with w ∈ {0, 1}+. Length: |w |.
Output block:(

#

b

)(
α(1)

∗

)(
α(2)

∗

)
· · ·
(
α(n)

∗

)(
b

b

)
∈ (ΣI × ΣO)+

for b ∈ {0, 1} and α(j) ∈ {0, 1}. Length: n + 1.

Define language L: if infinitely many # and arbitrarily long input
blocks, then arbitrarily long output blocks.

Theorem:
I wins Γf (L), if f is a bounded delay function, O if f is unbounded.
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Conclusion

Results for ω-regular conditions:

automaton lookahead complexity

(non)det. reachability exponential∗ PSpace-complete

det. safety exponential∗ ExpTime-complete
det. parity exponential∗ ExpTime-complete
safety ∩ det. reach. polynomial ΠP

2

∗: tight bound.

Open questions:

Consider non-deterministic automata and

Rabin, Streett, Muller automata.

Can we determine minimal lookahead that is sufficient to win?
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Conclusion

Results for max-regular conditions:

Decidable w.r.t. constant delay functions.

If O wins w.r.t. some constant delay function, then
doubly-exponential constant delay is sufficient.

But: constant delay is not always enough.

Open questions:

What kind of delay function is sufficient?

Decidability w.r.t. arbitrary delay functions.
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