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Motivation

Playing infinite games in finite time:
Ehrenfeucht, Mycielski: positional determinacy of
mean-payoff games.

Jurdziński: small progress measures for parity games.
Bernet, Janin, Walukiewicz: permissive strategies for parity
games.
Björklund, Sandberg, Vorobyov: positional determinacy of
parity games.
McNaughton: playing Muller games in finite time using
so-called scoring functions.
Fearnley, Neider, Rabinovich, Z.: strong bounds on
McNaughton’s scoring functions: yields reduction from Muller
to safety games, new memory structure, permissive strategies.

Results hold only for finite arenas. What about infinite ones?
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Parity Games

Arena A = (V ,V0,V1,E , vin):
directed (possibly countable) graph (V ,E ).
positions of the players: partition {V0,V1} of V .
initial vertex vin ∈ V .
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Parity game G = (A, col) with col : V → {0, . . . , d}.
Player 0 wins play ⇔ minimal color seen infinitely often even.
(Winning / positional) strategies defined as usual.
Player i wins G ⇔ she has winning strategy from vin.
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Scoring Functions for Parity Games

For c ∈ N and w ∈ V ∗: Scc(w) denotes the number of occurrences
of c in the suffix of w after the last occurrence of a smaller color.

Formally: Scc(ε) = 0 and

Scc(wv) =


Scc(w) if col(v) > c ,

Scc(w) + 1 if col(v) = c ,

0 if col(v) < c .

Remark
In a finite arena, a positional winning strategy for Player 0 bounds
the scores for all odd c by |V |.
Corollary
In a finite arena, Player 0 wins ⇔ she can prevent a score of
|V |+ 1 for all odd c (safety condition).

The remark does not hold in infinite arenas:
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Pushdown Arenas

Pushdown arena A = (V ,V0,V1,E , vin) induced by Pushdown
System P = (Q, Γ,∆, qin):

(V ,E ): configuration graph of P.
{V0,V1} induced by partition {Q0,Q1} of Q.
vin = (qin,⊥).
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Pushdown parity game G = (arena, col) where col is lifting of
col : Q → {0, . . . , d} to configurations.
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Stairs and Stair-Scores

reset(w) lstBmp(w)

st
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w finite path starting in vin:
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w finite path starting in vin:
Stair in w : position s. t. no subsequent position has smaller
stack height (first and last position are always a stair).
reset(w): prefix of w up to second-to-last stair.
lstBmp(w): suffix after second-to-last stair.
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For every color c , define StairScc : V ∗ → N by StairScc(ε) = 0 and

StairScc(w) =


StairScc(reset(w)) if minCol(lstBmp(w)) > c ,

StairScc(reset(w)) + 1 if minCol(lstBmp(w)) = c ,

0 if minCol(lstBmp(w)) < c .
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Main Theorem

Finite-time pushdown game: (A, col, k) with pushdown arena A,
coloring col, and k ∈ N \ {0}.

Rules:
Play until StairScc = k is reached for the first time for some
color c (which is unique).
Player 0 wins ⇔ c is even.

Let d = |col(V )|.

Theorem
Let G = (A, col) be a pushdown game and k > |Q| · |Γ| · 2|Q|·d · d .
Player i wins G if and only if Player i wins (A, col, k).

Note: (A, col, k) is a reachability game in finite arena.
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Lower Bounds

· · ·
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· · ·
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· · ·

mod2

mod3

For first n primes p1, . . . , pn: Player 0 has to reach stack height∏n
j=1 pj > 2n in upper row ⇒ cannot prevent losing player from

reaching exponentially high scores (in the number of states).
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Conclusion

Playing pushdown parity games in finite time:
Adapt scores to stair-scores.
Exponential threshold stair-score yields equivalent
finite-duration game (reachability game in finite tree).
(Almost) matching lower bounds on threshold stair-score.

Further research:
Turn winning strategy for finite-duration game into winning
strategy for pushdown game.
Permissive strategies for pushdown parity games.
Extensions to more general classes of arenas, e.g., higher-order
pushdown systems.
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