
Finite-state Strategies in Delay Games

Martin Zimmermann

Saarland University

September 21st, 2017

GandALF 2017, Rome, Italy

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 1/17

Motivation

Two goals:

1. Lift the notion of finite-state strategies to delay games.

2. Present uniform framework for solving delay games (which
yields finite-state strategies whenever possible).

Questions:

What are delay games?

Why are finite-state strategies important?

Why do we need a uniform framework?

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 2/17

Motivation

Two goals:

1. Lift the notion of finite-state strategies to delay games.

2. Present uniform framework for solving delay games (which
yields finite-state strategies whenever possible).

Questions:

What are delay games?

Why are finite-state strategies important?

Why do we need a uniform framework?

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 2/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b a b a · · ·
O: a a · · · O: b b a b a · · ·
I wins O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b

a b · · · I : b a b b a b a · · ·

O:

a a · · · O: b b a b a · · ·
I wins O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b

a b · · · I : b a b b a b a · · ·

O: a

a · · · O: b b a b a · · ·
I wins O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a

b · · · I : b a b b a b a · · ·

O: a

a · · · O: b b a b a · · ·
I wins O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a

b · · · I : b a b b a b a · · ·

O: a a

· · · O: b b a b a · · ·
I wins O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b

· · · I : b a b b a b a · · ·

O: a a

· · · O: b b a b a · · ·
I wins O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · ·

I : b a b b a b a · · ·

O: a a · · ·

O: b b a b a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · ·

I : b a b b a b a · · ·

O: a a · · ·

O: b b a b a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b

a b b a b a · · ·

O: a a · · · O:

b b a b a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a

b b a b a · · ·

O: a a · · · O:

b b a b a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b

b a b a · · ·

O: a a · · · O:

b b a b a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b

b a b a · · ·

O: a a · · · O: b

b a b a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b

a b a · · ·

O: a a · · · O: b

b a b a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b

a b a · · ·

O: a a · · · O: b b

a b a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b a

b a · · ·

O: a a · · · O: b b

a b a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b a

b a · · ·

O: a a · · · O: b b a

b a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b a b

a · · ·

O: a a · · · O: b b a

b a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b a b

a · · ·

O: a a · · · O: b b a b

a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b a b a

· · ·

O: a a · · · O: b b a b

a · · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b a b a

· · ·

O: a a · · · O: b b a b a

· · ·

I wins

O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Delay Games

In this talk, a game is given by an ω-language L ⊆ (ΣI × ΣO)ω.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b a b a · · ·
O: a a · · · O: b b a b a · · ·
I wins O wins

In a delay game, Player O may delay her moves to gain a
lookahead on Player I ’s moves.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 3/17

Some History (1/2)

Hosch & Landweber (’72): ω-regular delay games with
respect to constant delay solvable.

Holtmann, Kaiser & Thomas (’10): Solving parity delay
games in 2ExpTime, doubly-exponential lookahead sufficient.

Fridman, Löding & Z. (’11): Nothing non-trivial is solvable
for ω-contextfree delay games, unbounded lookahead
necessary.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 4/17

Some History (1/2)

Hosch & Landweber (’72): ω-regular delay games with
respect to constant delay solvable.

Holtmann, Kaiser & Thomas (’10): Solving parity delay
games in 2ExpTime, doubly-exponential lookahead sufficient.

Fridman, Löding & Z. (’11): Nothing non-trivial is solvable
for ω-contextfree delay games, unbounded lookahead
necessary.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 4/17

Some History (1/2)

Hosch & Landweber (’72): ω-regular delay games with
respect to constant delay solvable.

Holtmann, Kaiser & Thomas (’10): Solving parity delay
games in 2ExpTime, doubly-exponential lookahead sufficient.

Fridman, Löding & Z. (’11): Nothing non-trivial is solvable
for ω-contextfree delay games, unbounded lookahead
necessary.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 4/17

Some History (2/2)

Klein & Z. (’15): Solving parity delay games is ExpTime-
complete, exponential lookahead sufficient and necessary.

Z. (’15): Max-regular delay games with respect to constant
delay solvable, unbounded lookahead necessary.

Klein & Z. (’16): Solving LTL delay games is 3ExpTime-
complete, triply-exponential lookahead sufficient and
necessary.

Z. (’17): Solving cost-parity delay games is ExpTime-com-
plete, exponential lookahead sufficient and necessary.

All recent (positive) results use variations of the same proof idea.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 5/17

Some History (2/2)

Klein & Z. (’15): Solving parity delay games is ExpTime-
complete, exponential lookahead sufficient and necessary.

Z. (’15): Max-regular delay games with respect to constant
delay solvable, unbounded lookahead necessary.

Klein & Z. (’16): Solving LTL delay games is 3ExpTime-
complete, triply-exponential lookahead sufficient and
necessary.

Z. (’17): Solving cost-parity delay games is ExpTime-com-
plete, exponential lookahead sufficient and necessary.

All recent (positive) results use variations of the same proof idea.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 5/17

Some History (2/2)

Klein & Z. (’15): Solving parity delay games is ExpTime-
complete, exponential lookahead sufficient and necessary.

Z. (’15): Max-regular delay games with respect to constant
delay solvable, unbounded lookahead necessary.

Klein & Z. (’16): Solving LTL delay games is 3ExpTime-
complete, triply-exponential lookahead sufficient and
necessary.

Z. (’17): Solving cost-parity delay games is ExpTime-com-
plete, exponential lookahead sufficient and necessary.

All recent (positive) results use variations of the same proof idea.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 5/17

Some History (2/2)

Klein & Z. (’15): Solving parity delay games is ExpTime-
complete, exponential lookahead sufficient and necessary.

Z. (’15): Max-regular delay games with respect to constant
delay solvable, unbounded lookahead necessary.

Klein & Z. (’16): Solving LTL delay games is 3ExpTime-
complete, triply-exponential lookahead sufficient and
necessary.

Z. (’17): Solving cost-parity delay games is ExpTime-com-
plete, exponential lookahead sufficient and necessary.

All recent (positive) results use variations of the same proof idea.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 5/17

Some History (2/2)

Klein & Z. (’15): Solving parity delay games is ExpTime-
complete, exponential lookahead sufficient and necessary.

Z. (’15): Max-regular delay games with respect to constant
delay solvable, unbounded lookahead necessary.

Klein & Z. (’16): Solving LTL delay games is 3ExpTime-
complete, triply-exponential lookahead sufficient and
necessary.

Z. (’17): Solving cost-parity delay games is ExpTime-com-
plete, exponential lookahead sufficient and necessary.

All recent (positive) results use variations of the same proof idea.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 5/17

Finite-state Strategies

A strategy in an infinite game is a map σ : Σ∗I → ΣO , i.e., not
necessarily finitely representable.

A finite-state strategy is implemented by a finite automaton
with output, and therefore finitely represented.

Example

0 1

a

a

b b w 7→ |w |a mod 2

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 6/17

Finite-state Strategies

A strategy in an infinite game is a map σ : Σ∗I → ΣO , i.e., not
necessarily finitely representable.

A finite-state strategy is implemented by a finite automaton
with output, and therefore finitely represented.

Example

0 1

a

a

b b w 7→ |w |a mod 2

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 6/17

Why Finite-state Strategies

Finite-state/positional strategies are crucial in many applications of
infinite games, e.g.:

In reactive synthesis, a finite-state winning strategy is a
correct-by-construction controller.

(Modern proofs of) Rabin’s theorem rely on positional
determinacy of parity games.

In general, the existence of finite-state strategies enables the
application of infinite games.

Determining the memory requirements is one of the most
fundamental tasks for a class of games.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 7/17

Finite-state Strategies for Delay Games

Disclaimer: We focus here on constant delay!

A strategy in a delay game is still a map σ : Σ∗I → ΣO .

So, the classical definition is still applicable.

By “hardcoding” constant lookahead into the rules of the
game, finite-state winning strategies are computable.

However, this notion does not distinguish “past” and “future”.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 8/17

Finite-state Strategies for Delay Games

Disclaimer: We focus here on constant delay!

A strategy in a delay game is still a map σ : Σ∗I → ΣO .

So, the classical definition is still applicable.

By “hardcoding” constant lookahead into the rules of the
game, finite-state winning strategies are computable.

However, this notion does not distinguish “past” and “future”.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 8/17

A (Cautionary) Example

Example

L = {
(
α

α

)
| α ∈ {0, 1}ω}

a a b a a b b b a a a b

a a b a a b b

d

I:

O:

b

Requires 2d memory states with constant lookahead d .

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 9/17

A (Cautionary) Example

Example

L = {
(
α

α

)
| α ∈ {0, 1}ω}

a a b a a b b b a a a b

a a b a a b b

d

I:

O:

b

Requires 2d memory states with constant lookahead d .

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 9/17

A (Cautionary) Example

Example

L = {
(
α

α

)
| α ∈ {0, 1}ω}

a a b a a b b b a a a b

a a b a a b b

d

I:

O: b

Requires 2d memory states with constant lookahead d .

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 9/17

A (Cautionary) Example

Example

L = {
(
α

α

)
| α ∈ {0, 1}ω}

a a b a a b b b a a a b

a a b a a b b

d

I:

O: b

Requires 2d memory states with constant lookahead d .

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 9/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b a b a b b a b · · ·
O: b a b a b b a b · · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I :

b a b a b a b b a b · · ·

O:

b a b a b b a b · · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a

b a b a b b a b · · ·

O:

b a b a b b a b · · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b a

b a b b a b · · ·

O:

b a b a b b a b · · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b a

b a b b a b · · ·

O: b a

b a b b a b · · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b a b a

b b a b · · ·

O: b a

b a b b a b · · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b a b a

b b a b · · ·

O: b a b a

b b a b · · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b a b a b b

a b · · ·

O: b a b a

b b a b · · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b a b a b b

a b · · ·

O: b a b a b b

a b · · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b a b a b b a b

· · ·

O: b a b a b b

a b · · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b a b a b b a b

· · ·

O: b a b a b b a b

· · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Block Games

Distinguishing between past and future: block games

Fix a block length d > 0.
Player I picks blocks ai ∈ Σd

I .
Player O picks blocks bi ∈ Σd

O .

Player O wins, if
(a0a1a2···
b0b1b2···

)
∈ L

To account for (constant) lookahead, Player 1 is one move
ahead.

Example(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b a b a b b a b · · ·
O: b a b a b b a b · · ·

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 10/17

Finite-state Strategies for Block Games

A finite-state strategy in a block game reads blocks over ΣI

and outputs blocks in ΣO :

I:

O:

a0 a1 ai−2 ai−1 ai

b0 b1 bi−2

q

bi−1
=

λ(q, ai−1, ai)

Note:

Alphabet now exponential in block length!

But, we distinguish past and future.

In particular, state complexity only concerned with past.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 11/17

Finite-state Strategies for Block Games

A finite-state strategy in a block game reads blocks over ΣI

and outputs blocks in ΣO :

I:

O:

a0 a1 ai−2 ai−1 ai

b0 b1 bi−2

q

bi−1
=

λ(q, ai−1, ai)

Note:

Alphabet now exponential in block length!

But, we distinguish past and future.

In particular, state complexity only concerned with past.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 11/17

Finite-state Strategies for Block Games

A finite-state strategy in a block game reads blocks over ΣI

and outputs blocks in ΣO :

I:

O:

a0 a1 ai−2 ai−1 ai

b0 b1 bi−2

q

bi−1
=

λ(q, ai−1, ai)

Note:

Alphabet now exponential in block length!

But, we distinguish past and future.

In particular, state complexity only concerned with past.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 11/17

Finite-state Strategies for Block Games

A finite-state strategy in a block game reads blocks over ΣI

and outputs blocks in ΣO :

I:

O:

a0 a1 ai−2 ai−1 ai

b0 b1 bi−2

q

bi−1
=

λ(q, ai−1, ai)

Note:

Alphabet now exponential in block length!

But, we distinguish past and future.

In particular, state complexity only concerned with past.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 11/17

Aggregations

Fix ω-automaton A and a finite set M.
s : Q+ → M is an aggregation for A, if for all
runs ρ = π0π1π2 · · · and ρ′ = π′0π

′
1π
′
2 · · · with

s(π0)s(π1)s(π2) · · · = s(π′0)s(π′1)s(π′2) · · · : ρ is accepting ⇔
ρ′ is accepting.

π0 π1 π2 π3 π4

m0 m1 m3 m3 m4

π0 π1 π2 π3 π4

Example
q0 · · · qi 7→ max0≤j≤i Ω(qj) is an aggregation for a max-parity
automaton with coloring Ω.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 12/17

Aggregations

Fix ω-automaton A and a finite set M.
s : Q+ → M is an aggregation for A, if for all
runs ρ = π0π1π2 · · · and ρ′ = π′0π

′
1π
′
2 · · · with

s(π0)s(π1)s(π2) · · · = s(π′0)s(π′1)s(π′2) · · · : ρ is accepting ⇔
ρ′ is accepting.

π0 π1 π2 π3 π4

m0 m1 m3 m3 m4

π0 π1 π2 π3 π4

Example
q0 · · · qi 7→ max0≤j≤i Ω(qj) is an aggregation for a max-parity
automaton with coloring Ω.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 12/17

Aggregations

Fix ω-automaton A and a finite set M.
s : Q+ → M is an aggregation for A, if for all
runs ρ = π0π1π2 · · · and ρ′ = π′0π

′
1π
′
2 · · · with

s(π0)s(π1)s(π2) · · · = s(π′0)s(π′1)s(π′2) · · · : ρ is accepting ⇔
ρ′ is accepting.

π0 π1 π2 π3 π4

m0 m1 m3 m3 m4

π0 π1 π2 π3 π4

Example
q0 · · · qi 7→ max0≤j≤i Ω(qj) is an aggregation for a max-parity
automaton with coloring Ω.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 12/17

Aggregations

Fix ω-automaton A and a finite set M.
s : Q+ → M is an aggregation for A, if for all
runs ρ = π0π1π2 · · · and ρ′ = π′0π

′
1π
′
2 · · · with

s(π0)s(π1)s(π2) · · · = s(π′0)s(π′1)s(π′2) · · · : ρ is accepting ⇔
ρ′ is accepting.

π0 π1 π2 π3 π4

m0 m1 m3 m3 m4

π0 π1 π2 π3 π4

Example
q0 · · · qi 7→ max0≤j≤i Ω(qj) is an aggregation for a max-parity
automaton with coloring Ω.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 12/17

Aggregations

Fix ω-automaton A and a finite set M.
s : Q+ → M is an aggregation for A, if for all
runs ρ = π0π1π2 · · · and ρ′ = π′0π

′
1π
′
2 · · · with

s(π0)s(π1)s(π2) · · · = s(π′0)s(π′1)s(π′2) · · · : ρ is accepting ⇔
ρ′ is accepting.

π0 π1 π2 π3 π4

m0 m1 m3 m3 m4

π0 π1 π2 π3 π4

Example
q0 · · · qi 7→ max0≤j≤i Ω(qj) is an aggregation for a max-parity
automaton with coloring Ω.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 12/17

Automata Computing Aggregations

Every automaton M with input alphabet Q and state set M
computes an aggregation sM : Q+ → M: sM(π) is the state
reached by M when processing π.

Example
q0 · · · qi 7→ max0≤j≤i Ω(qj) computable by automaton with state
set Ω(Q).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 13/17

Automata Computing Aggregations

Every automaton M with input alphabet Q and state set M
computes an aggregation sM : Q+ → M: sM(π) is the state
reached by M when processing π.

Example
q0 · · · qi 7→ max0≤j≤i Ω(qj) computable by automaton with state
set Ω(Q).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 13/17

Abstract Block Games

Fix A recognizing winning condition L(A) ⊆ (ΣI × ΣO)ω and let
sM : Q+ → M be aggregation for A computed by some M.

Define x ≡ x ′ iff x and x ′ induce the same behavior in A, i.e.,
the same state changes and the corresponding runs have the
same sM-value.

y ∈ Σ∗O :

x ∈ Σ∗I :

q0

q1
...
qn

q′0

q′1
...
q′n

m0

m1
...
mn

≡ has index at most 2|Q|
2|M|.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 14/17

Abstract Block Games

Fix A recognizing winning condition L(A) ⊆ (ΣI × ΣO)ω and let
sM : Q+ → M be aggregation for A computed by some M.

Define x ≡ x ′ iff x and x ′ induce the same behavior in A, i.e.,
the same state changes and the corresponding runs have the
same sM-value.

y ∈ Σ∗O :

x ∈ Σ∗I :

q0

q1
...
qn

q′0

q′1
...
q′n

m0

m1
...
mn

≡ has index at most 2|Q|
2|M|.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 14/17

Abstract Block Games

Fix A recognizing winning condition L(A) ⊆ (ΣI × ΣO)ω and let
sM : Q+ → M be aggregation for A computed by some M.

Define x ≡ x ′ iff x and x ′ induce the same behavior in A, i.e.,
the same state changes and the corresponding runs have the
same sM-value.

y ∈ Σ∗O :

x ∈ Σ∗I :

q0

q1
...
qn

q′0

q′1
...
q′n

m0

m1
...
mn

≡ has index at most 2|Q|
2|M|.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 14/17

Abstract Block Games

Fix A recognizing winning condition L(A) ⊆ (ΣI × ΣO)ω and let
sM : Q+ → M be aggregation for A computed by some M.

Define x ≡ x ′ iff x and x ′ induce the same behavior in A, i.e.,
the same state changes and the corresponding runs have the
same sM-value.

y ∈ Σ∗O :

x ∈ Σ∗I :

q0

q1
...
qn

q′0

q′1
...
q′n

m0

m1
...
mn

≡ has index at most 2|Q|
2|M|.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 14/17

Abstract Block Games

Fix A recognizing winning condition L(A) ⊆ (ΣI × ΣO)ω and let
sM : Q+ → M be aggregation for A computed by some M.

Define x ≡ x ′ iff x and x ′ induce the same behavior in A, i.e.,
the same state changes and the corresponding runs have the
same sM-value.

y ∈ Σ∗O :

x ∈ Σ∗I :

q0

q1
...
qn

q′0

q′1
...
q′n

m0

m1
...
mn

≡ has index at most 2|Q|
2|M|.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 14/17

Abstract Block Games

Fix A recognizing winning condition L(A) ⊆ (ΣI × ΣO)ω and let
sM : Q+ → M be aggregation for A computed by some M.

Define x ≡ x ′ iff x and x ′ induce the same behavior in A, i.e.,
the same state changes and the corresponding runs have the
same sM-value.

y ∈ Σ∗O :

x ∈ Σ∗I :

q0

q1
...
qn

q′0

q′1
...
q′n

m0

m1
...
mn

≡ has index at most 2|Q|
2|M|.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 14/17

Abstract Block Games

Fix A recognizing winning condition L(A) ⊆ (ΣI × ΣO)ω and let
sM : Q+ → M be aggregation for A computed by some M.

Define x ≡ x ′ iff x and x ′ induce the same behavior in A, i.e.,
the same state changes and the corresponding runs have the
same sM-value.

y ∈ Σ∗O :

x ∈ Σ∗I :

q0

q1
...
qn

q′0

q′1
...
q′n

m0

m1
...
mn

≡ has index at most 2|Q|
2|M|.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 14/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1

∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1

∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1

∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1

∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Abstract Block Games

The abstract block game is played as follows:

Player I picks equivalence classes S0S1 · · · .
Player O picks compatible sequence (q0, ∗)(q1,m1) · · · .

S0

qI

S1
∈

q1
m1

S2

∈

q2
m2

Player O wins if m1m2 · · · is aggregation of accepting run.

This is a delay-free Gale-Stewart game!

Automaton reconizing winning condition is (roughly) of
size O(index(≡)).

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 15/17

Main Theorem

Theorem
Let A be an ω-automaton, let sM be an aggregation for A, and
define d = 2|Q|

2·|M|.

1. If Player O wins the delay game with winning condition L(A)
for any lookahead, then she also wins the corresponding
abstract block game.

2. If Player O wins the abstract block game, then she also wins
the block game with winning condition L(A) and block size d .

3. Moreover, if she has a finite-state winning strategy for the
abstract game, then she has a finite-state winning strategy of
the same size for the block game.

Corollary
Solving delay games equivalent to solving abstract block games
and constant lookahead 2d is sufficient.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 16/17

Main Theorem

Theorem
Let A be an ω-automaton, let sM be an aggregation for A, and
define d = 2|Q|

2·|M|.

1. If Player O wins the delay game with winning condition L(A)
for any lookahead, then she also wins the corresponding
abstract block game.

2. If Player O wins the abstract block game, then she also wins
the block game with winning condition L(A) and block size d .

3. Moreover, if she has a finite-state winning strategy for the
abstract game, then she has a finite-state winning strategy of
the same size for the block game.

Corollary
Solving delay games equivalent to solving abstract block games
and constant lookahead 2d is sufficient.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 16/17

Conclusion

Also in the Paper:

1. Another type of aggregation suitable for quantitative
acceptance conditions.

2. The same framework yields decidability and finite-state
strategies for quantitative delay games w.r.t. constant
lookahead.

Unpublished (with Sarah Winter):
Recall that automata implementing finite-state strategies in block
games process blocks ⇒ Exponentially-sized alphabets.

1. Implement transition and output function as transducers.

2. Upper and lower bounds on size in both models.

3. Tradeoffs between these models.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 17/17

Conclusion

Also in the Paper:

1. Another type of aggregation suitable for quantitative
acceptance conditions.

2. The same framework yields decidability and finite-state
strategies for quantitative delay games w.r.t. constant
lookahead.

Unpublished (with Sarah Winter):
Recall that automata implementing finite-state strategies in block
games process blocks ⇒ Exponentially-sized alphabets.

1. Implement transition and output function as transducers.

2. Upper and lower bounds on size in both models.

3. Tradeoffs between these models.

Martin Zimmermann Saarland University Finite-state Strategies in Delay Games 17/17

