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Reactive Synthesis

The interaction between the robots can be modeled as an
infinite-duration two-player game on a graph. The
specification yields the winning condition of the game.
A winning strategy corresponds to an implementation for the
blue robot that satisfies the specification.

Even qualitative specifications have often quantitative aspects,
e.g., there is a preference order among winning strategies.
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Reactive Synthesis

The interaction between the robots can be modeled as an
infinite-duration two-player game on a graph. The
specification yields the winning condition of the game.
A winning strategy corresponds to an implementation for the
blue robot that satisfies the specification.
Even qualitative specifications have often quantitative aspects,
e.g., there is a preference order among winning strategies.

Reachability specifications:

Qualitative: reach a fixed set of vertices..

Quantitative: while minimizing the accumulated weight.

This problem has been solved before (often as special case of
more general problems): optimal strategies exist and can be
computed in polynomial time.
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Reactive Synthesis

The interaction between the robots can be modeled as an
infinite-duration two-player game on a graph. The
specification yields the winning condition of the game.
A winning strategy corresponds to an implementation for the
blue robot that satisfies the specification.
Even qualitative specifications have often quantitative aspects,
e.g., there is a preference order among winning strategies.

Recurrence specifications:

Qualitative: reach a fixed set of vertices infinitely often..

Quantitative: while minimizing the maximal accumulated
weight between such visits.

This problem can also be encoded in more general problems,
but a fine-grained analysis is missing
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Limit Games

Limit of a language K ⊆ V ∗:

lim(K ) = {α0α1α2 · · · ∈ V ω | α0 · · ·αj ∈ K for inf. many j}.

Weighted regular limit game: G = (A, lim(K )) with arena A
with weight function w : E → N and regular K .

Value of play ρ = v0v1v2 · · · :

valG(ρ) = sup
j∈N

min
j ′>j

v0···vj′∈K

w(vj · · · vj ′)

Value of a strategy σ for Player 0 from vertex v :
valG(σ, v) = supρ valG(ρ) where the supremum ranges over all
plays ρ that start in v and are consistent with σ.

σ is optimal if valG(σ, v)≤valG(σ′, v) for every σ′ and every v .
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An Example
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Note

Only Player 0 moves ⇒ identify strategies with plays
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Unique winning play (strategy) of value 18 ·W : every self-loop has
to be traversed exactly four times.
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A Refinement

Lemma

valG(ρ) <∞ implies ρ ∈ lim(K ).

valG(σ, v) <∞ implies that σ is a winning strategy for
Player 0 from v in G.

Note

The other directions of both implications can easily be shown to be
false. So, “having finite value” is a refinement of “winning”.

v0
1−→ v1

1−→ v0
1−→ v0

1−→ v1
1−→ v0

1−→ v0
1−→ v0

1−→ v1
1−→ v0

1−→ v0
1−→ v0

1−→ v0
1−→ v1

1−→ · · ·

with K = (v0 + v1)∗v1.
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Main Results

Theorem

1. Player 0 has an optimal finite-state strategy in every regular
weighted limit game.

2. The problem “Given an arena A and a DFA A, compute an
optimal strategy for Player 0 in (A, lim(L(A)))” is solvable in
time O(|V |3 · |E | · |Q|2 · |F |2), where (V ,E ) is the graph
underlying A and Q and F are the sets of states and
accepting states of A (using the unit-cost model).

Upper Bounds

Value: (|V | · |Q|+ 1) ·W , where W is the largest weight

Memory size: |V | · |Q| · |F |

Martin Zimmermann University of Liverpool Optimal Strategies in Weighted Limit Games 7/10



Lower Bounds: Value
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Generalization yields tight lower bound of |V | · |Q| ·W on value of
optimal strategy.

Martin Zimmermann University of Liverpool Optimal Strategies in Weighted Limit Games 8/10



Lower Bounds: Memory
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Optimal play from j-th vertex on the left has to use self-loop s − 2
times and then reach j-th vertex on the right ⇒ requires
n · (s − 1) memory states.
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The Last Slide

Thank you for watching.

Aniello Murano: murano@na.infn.it

Sasha Rubin: sasha.rubin@sydney.ed.au

Martin Zimmermann: martin.zimmermann@liverpool.ac.uk
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