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Hyperproperties

m Both properties are not trace properties, but hyperproperties,
i.e., sets of sets of traces.

m A system S satisfies a hyperproperty H, if Traces(S) € H.

m Many information flow properties can be expressed as
hyperproperties.
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Hyperproperties

m Both properties are not trace properties, but hyperproperties,
i.e., sets of sets of traces.

m A system S satisfies a hyperproperty H, if Traces(S) € H.

m Many information flow properties can be expressed as
hyperproperties.

Specification languages for hyperproperties [Clarkson et al. '14]

HyperLTL: Extend LTL by trace quantifiers.
HyperCTL*: Extend CTL* by trace quantifiers.
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HyperLTL

HyperLTL = LTL +

Yu=a | [V | Xy [pUp

where a € AP (atomic propositions)
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HyperLTL

HyperLTL = LTL + trace quantification

pu=3r. p|Vr. oY
Yi=ar | WYV | Xy YUy

where a € AP (atomic propositions) and 7 € V (trace variables).
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HyperLTL

HyperLTL = LTL + trace quantification

pu=3r. p|Vr. oY
Yi=ar | WYV | Xy YUy

where a € AP (atomic propositions) and 7 € V (trace variables).

Shortcuts as usual:
m Fy=trueUvy mGyY=-F-
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Semantics

© =Vr.V7r'. G (on; <> on,)

T C (24P)¢ is a model of ¢ iff
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Semantics

© =Vr.V7r'. G (on; <> on,)

T C (24P)¢ is a model of ¢ iff

{} E Vm.Vn'.G(on; <> on,/)
{mr—t} E V7'.G(on; <> ony) forallte T
{r=t,7' = t'} E G(on; <> on,) forallt' e T
{7 t[n,o0), 7’ — t'[n,c0)} | ong <> ongy forall ne N

on € t(n) < on € t'(n)
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LTL vs. HyperLTL

LTL has many desirable properties.
1. Every satisfiable LTL formula is satisfied by an ultimately
periodic trace, i.e., by a finite and finitely-represented model.
2. LTL and FO[<] are expressively equivalent.
3. LTL satisfiability and model-checking are PSPACE-complete.
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LTL vs. HyperLTL

LTL has many desirable properties.
1. Every satisfiable LTL formula is satisfied by an ultimately
periodic trace, i.e., by a finite and finitely-represented model.
2. LTL and FO[<] are expressively equivalent.
3. LTL satisfiability and model-checking are PSPACE-complete.

Only partial results for HyperLTL.

3a. HyperLTL satisfiability [F. & Hahn "16]:

m alternation-free: PSPACE-complete
m 3*V*: EXPSPACE-complete
m V*3*: undecidable

3b. HyperLTL model-checking is decidable [F. et al. "15].
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The Models of HyperLTL
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What about Finite Models?

Fix AP = {a} and consider the conjunction ¢ of
m V7. (—az)U(ax A XG—ay)
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What about Finite Models?

Fix AP = {a} and consider the conjunction ¢ of

m V7. (—az)U(ax A XG—ay)
m dr. a,

m V. 37’ F(ax A Xay)

{a} 0 0 0
0 {a} 0 0

=2 =
= =
= =
=2 =
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What about Finite Models?

Fix AP = {a} and consider the conjunction ¢ of

m V7. (—az)U(ax A XG—ay)
m dr. a,

m V. 37’ F(ax A Xay)

{a} 0 0
0 {a} 0
0 U {a}

ISSER SSRGS
S =
e =
S e =
[SSER SSRGS

The unique model of ¢ is {#" {a} 0* | n € N}.
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What about Finite Models?

Fix AP = {a} and consider the conjunction ¢ of
m V7. (—az)U(ax A XG—ay)
m dr. a,
m V. 37’ F(ax A Xay)

@ 0 0 0 0 0 0 0
D {2} 0 0 0 0 0 0
0 o0 0 0 0

U {a}

The unique model of ¢ is {#" {a} 0* | n € N}.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by
any finite set of traces.
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What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.
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What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.
Proof
m W.lo.g. ¢ =Vmg. Ing. - Vmk. Im,. ¢ with quantifier-free 1.
m Fix a Skolem function f; for every existentially quantified 7rJ'-.
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What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.

Proof
m W.lo.g. ¢ =Vmg. Ing. - Vmk. Im,. ¢ with quantifier-free 1.
m Fix a Skolem function f; for every existentially quantified 7TJI-.

The limit is a model of ¢ and countable.
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What about Regular Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any w-regular set of traces.

Martin Zimmermann Saarland University The First-Order Logic of Hyperproperties 10/19



What about Regular Models?
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any w-regular set of traces.

Proof

Express that a model T contains..
1. .. ({a}{b})"0¥ for every n.
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What about Regular Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any w-regular set of traces.

Proof

Express that a model T contains.. {a} {b} {a} {b} {a} {b} ¢~
1. .. ({a}{b})"0“ for every n. {a} {a} {b} {b} {a} {b} ¢~

2. .. for every trace of the form

w(blalyin T alsothe  {a}{a} (b} {3} {b} {b} 0~
trace x{a}{b}y. {a} {a} {3} {b} {b} {b} 0

Then, T N{a}*{b}*0¥ = {{a}"{b}"0* | n € N} is not w-regular.
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What about Ultimately Periodic Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any set of traces that contains an ultimately periodic trace.
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What about Ultimately Periodic Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any set of traces that contains an ultimately periodic trace.

One can even encode the prime numbers in HyperLTL!
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First-order Logic for
Hyperproperties
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First-order Logic vs. LTL

FO[<]: first-order order logic over signature {<} U{P, | a € AP}
over structures with universe N.

Theorem (Kamp '68, Gabbay et al. ’80)
LTL and FO[<] are expressively equivalent.
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First-order Logic vs. LTL

FO[<]: first-order order logic over signature {<} U{P, | a € AP}
over structures with universe N.

Theorem (Kamp '68, Gabbay et al. ’80)
LTL and FO[<] are expressively equivalent.

Example
Vx(Pg(x) A =Pp(x)) = Jy(x < y A Pp(y))
and
G(qg—Fp)

are equivalent.
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First-order Logic for Hyperproperties
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First-order Logic for Hyperproperties
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L] L] L] ° L] o L] L] L] L] .
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First-order Logic for Hyperproperties

N
7 A S
. . o\ o\o;—o/o . * .-
. . o F o . . . . . .

m FO[<, E]: first-order logic with equality over the signature
{<,E} U{P, | a € AP} over structures with universe T x N.

Example

\V/XVX/ E(X,X/) — (Pon(X) < POH(X/))
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First-order Logic for Hyperproperties

N
7 A S
. . o\ o\o;—o/o . .
. . o F o . . . . . .

m FO[<, E]: first-order logic with equality over the signature
{<,E} U{P, | a € AP} over structures with universe T x N.

Proposition
For every HyperLTL sentence there is an equivalent FO[<, E]
sentence.
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A Setback

m Let o be the following property of sets T C (2{P})«:

There is an n such that p ¢ t(n) for every t € T.

Theorem (Bozzelli et al. ’15)
 is not expressible in HyperLTL.

Martin Zimmermann Saarland University The First-Order Logic of Hyperproperties 15/19



A Setback

m Let o be the following property of sets T C (2{P})«:

There is an n such that p ¢ t(n) for every t € T.

Theorem (Bozzelli et al. ’15)
 is not expressible in HyperLTL.

m But, ¢ is easily expressible in FO[<, E]:

IxVy E(x,y) = —Pp(y)

Corollary
FO[<, E] strictly subsumes HyperLTL.
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HyperFO

m 3"x and YMx: quantifiers restricted to initial positions.

m 3% > x and V®y > x: if x is initial, then quantifiers
restricted to positions on the same trace as x.
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HyperFO

m 3"x and YMx: quantifiers restricted to initial positions.

m 3% > x and V®y > x: if x is initial, then quantifiers
restricted to positions on the same trace as x.

HyperFO: sentences of the form

0=Qx1. QMx. QCy1 > Xg- - QFyi > xg,. b

m Qe {3V}
m {x1,...,xk} and {y1,...,ys} are disjoint,
m every guard xg; is in{xy,..., X}, and

m ¢ is quantifier-free over signature {<,E} U{P, | a € AP}
with free variables in {y1,...,y}.
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Equivalence

Theorem
HyperLTL and HyperFO are equally expressive.
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Equivalence

Theorem
HyperLTL and HyperFO are equally expressive.
Proof

m From HyperLTL to HyperFO: structural induction.
m From HyperFO to HyperLTL: reduction to Kamp's theorem.
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From HyperFO to HyperLTL

VxVx E(x,x") = (Pon(x) > Pon(x"))
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From HyperFO to HyperLTL

VxVx E(x,x") = (Pon(x) > Pon(x"))

YMx; VMxy Yey1 > 3V > %E(y1,¥2) — (Pon(y1) > Pon(y2))

X1 — {on} {on} 0 {on}

xp —  {on} 0 0 {on}

Martin Zimmermann Saarland University The First-Order Logic of Hyperproperties 18/19



From HyperFO to HyperLTL

VxVx E(x,x") = (Pon(x) > Pon(x"))

Ve > x1 ¥y > xE(y1,y2) = (Pon(y1) <+ Pon(y2))

X1 — {on} {on} 0 {on}

xp —  {on} 0 0 {on}
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From HyperFO to HyperLTL

VxVx E(x,x") = (Pon(x) > Pon(x"))
Ve > x1 ¥y > xE(y1,y2) = (Pon(y1) <+ Pon(y2))

Vy1¥y2 (y1 = y2) = (Pon,1)(¥1) <> Pcon,2)(2))

{(on, 1),
(on,2)}

{(on, 1),

O
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From HyperFO to HyperLTL

VxVx E(x,x") = (Pon(x) > Pon(x"))
Vey1 > X1V > xE(y1,¥2) = (Pon(y1) ¢+ Pon(y2))
Yy1Vy2 (y1 = y2) = (Pcon,1)(¥1) € Pon,2)(y2))
G ((on, 1) <> (on,2))

{(on,1), {(on.1).
(on,2)} {(om, 1)} 0 (on,2)}
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From HyperFO to HyperLTL

VxVx E(x,x") = (Pon(x) > Pon(x"))
YMx1VMxo VOy1 > X1V > x0E(y1,y2) = (Pon(y1) ¢+ Pon(y2))
Yy1Vy2 (1 = y2) = (Pcon,1>(y1) € Pton,2)(32))
G ((on, 1) <> (on,2))

V1 Vo G (ong, <> ong,)
T — {on} {on} @ {On}

m = {on} 0 0 {on}
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Conclusion

Our Results
m The models of HyperLTL are rather not well-behaved, i.e., in
general (countably) infinite, non-regular, and non-periodic.
m FO[<, E] is strictly more expressive than HyperLTL.
m HyperFO is expressively equivalent to HyperLTL.
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Conclusion

Our Results
m The models of HyperLTL are rather not well-behaved, i.e., in
general (countably) infinite, non-regular, and non-periodic.
m FO[<, E] is strictly more expressive than HyperLTL.
m HyperFO is expressively equivalent to HyperLTL.

Open Problems
m Is there a class of languages £ such that every satisfiable
HyperLTL sentence has a model from L7?

m s there a temporal logic that is expressively equivalent to
FO[<, E]?

m What about HyperCTL*?
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