The First-Order Logic of Hyperproperties

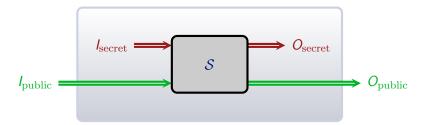
Joint work with Bernd Finkbeiner (Saarland University)

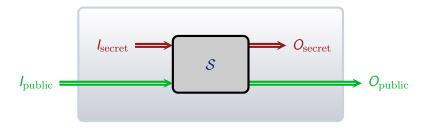
Martin Zimmermann

Saarland University

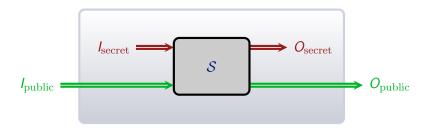
April, 6th 2017

Leibniz Universität Hannover, Hannover, Germany





■ The system $\mathcal S$ is input-deterministic: for all traces t,t' of $\mathcal S$ $t=_{l}t' \quad \text{implies} \quad t=_{O}t'$



- The system $\mathcal S$ is input-deterministic: for all traces t,t' of $\mathcal S$ $t=_{l}t' \quad \text{implies} \quad t=_{O}t'$
- Noninterference: for all traces t, t' of \mathcal{S} $t =_{I_{\mathrm{public}}} t' \quad \text{implies} \quad t =_{O_{\mathrm{public}}} t'$

- Both properties are not trace properties, but hyperproperties, i.e., sets of sets of traces.
- A system S satisfies a hyperproperty H, if $Traces(S) \in H$.
- Many information flow properties can be expressed as hyperproperties.

- Both properties are not trace properties, but hyperproperties, i.e., sets of sets of traces.
- A system S satisfies a hyperproperty H, if $Traces(S) \in H$.
- Many information flow properties can be expressed as hyperproperties.

Specification languages for hyperproperties [Clarkson et al. '14]

HyperLTL: Extend LTL by trace quantifiers.

HyperCTL*: Extend CTL* by trace quantifiers.

HyperLTL

$$\mathsf{HyperLTL} = \mathsf{LTL} + \\$$

$$\psi ::= \mathbf{a} \quad | \ \neg \psi \ | \ \psi \lor \psi \ | \ \mathbf{X} \ \psi \ | \ \psi \ \mathbf{U} \ \psi$$

where $a \in AP$ (atomic propositions)

HyperLTL

HyperLTL = LTL + trace quantification

$$\varphi ::= \exists \pi. \ \varphi \mid \forall \pi. \ \varphi \mid \psi$$
$$\psi ::= a_{\pi} \mid \neg \psi \mid \psi \lor \psi \mid \mathbf{X} \ \psi \mid \psi \ \mathbf{U} \ \psi$$

where $a \in AP$ (atomic propositions) and $\pi \in \mathcal{V}$ (trace variables).

HyperLTL

HyperLTL = LTL + trace quantification

$$\varphi ::= \exists \pi. \ \varphi \mid \forall \pi. \ \varphi \mid \psi$$
$$\psi ::= a_{\pi} \mid \neg \psi \mid \psi \lor \psi \mid \mathbf{X} \ \psi \mid \psi \ \mathbf{U} \ \psi$$

where $a \in AP$ (atomic propositions) and $\pi \in \mathcal{V}$ (trace variables).

Shortcuts as usual:

$$\blacksquare \mathbf{F} \psi = \operatorname{true} \mathbf{U} \psi$$

$$\blacksquare \mathbf{G} \psi = \neg \mathbf{F} \neg \psi$$

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \left(\mathsf{on}_{\pi} \leftrightarrow \mathsf{on}_{\pi'} \right)$$

 $\mathcal{T}\subseteq (2^{\mathrm{AP}})^\omega$ is a model of arphi iff

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, (\mathsf{on}_{\pi} \leftrightarrow \mathsf{on}_{\pi'})$$

 $\mathcal{T}\subseteq (2^{\mathrm{AP}})^\omega$ is a model of arphi iff

$$\{\} \models \forall \pi. \forall \pi'. \mathbf{G} (\mathsf{on}_{\pi} \leftrightarrow \mathsf{on}_{\pi'})$$

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right)$$

 $T\subseteq (2^{\mathrm{AP}})^{\omega}$ is a model of φ iff

$$\{\} \models \forall \pi. \forall \pi'. \mathbf{G} (\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'})$$

$$\{\pi \mapsto t\} \models \forall \pi'. \mathbf{G} (\mathtt{on}_{\pi} \leftrightarrow \mathtt{on}_{\pi'}) \quad \text{for all } t \in T$$

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right)$$

 $T\subseteq (2^{\mathrm{AP}})^{\omega}$ is a model of φ iff

$$\{\} \models \ \forall \pi. \, \forall \pi'. \, \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right)$$

$$\{\pi \mapsto t\} \models \ \forall \pi'. \, \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right) \quad \text{for all } t \in T$$

$$\{\pi \mapsto t, \pi' \mapsto t'\} \models \ \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right) \quad \text{for all } t' \in T$$

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right)$$

 $T\subseteq (2^{\mathrm{AP}})^{\omega}$ is a model of φ iff

$$\{\} \models \ \forall \pi. \, \forall \pi'. \, \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right)$$

$$\{\pi \mapsto t\} \models \ \forall \pi'. \, \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right) \quad \text{for all } t \in \mathcal{T}$$

$$\{\pi \mapsto t, \pi' \mapsto t'\} \models \ \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right) \quad \text{for all } t' \in \mathcal{T}$$

$$\{\pi \mapsto t[n, \infty), \pi' \mapsto t'[n, \infty)\} \models \quad \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \quad \text{for all } n \in \mathbb{N}$$

$$\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, (\mathsf{on}_\pi \leftrightarrow \mathsf{on}_{\pi'})$$

 $\mathcal{T}\subseteq (2^{\mathrm{AP}})^\omega$ is a model of arphi iff

$$\{\} \models \ \forall \pi. \, \forall \pi'. \, \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right)$$

$$\{\pi \mapsto t\} \models \ \forall \pi'. \, \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right) \qquad \text{for all } t \in T$$

$$\{\pi \mapsto t, \pi' \mapsto t'\} \models \ \mathbf{G} \left(\mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \right) \qquad \text{for all } t' \in T$$

$$\{\pi \mapsto t[n, \infty), \pi' \mapsto t'[n, \infty)\} \models \ \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'} \qquad \text{for all } n \in \mathbb{N}$$

$$\mathrm{on} \in t(n) \Leftrightarrow \mathrm{on} \in t'(n)$$

LTL vs. HyperLTL

LTL has many desirable properties.

- Every satisfiable LTL formula is satisfied by an ultimately periodic trace, i.e., by a finite and finitely-represented model.
- 2. LTL and FO[<] are expressively equivalent.
- 3. LTL satisfiability and model-checking are PSPACE-complete.

LTL vs. HyperLTL

LTL has many desirable properties.

- 1. Every satisfiable LTL formula is satisfied by an ultimately periodic trace, i.e., by a finite and finitely-represented model.
- 2. LTL and FO[<] are expressively equivalent.
- 3. LTL satisfiability and model-checking are PSPACE-complete.

Only partial results for HyperLTL.

- 3a. HyperLTL satisfiability [F. & Hahn '16]:
 - alternation-free: PSPACE-complete
 - \blacksquare \exists * \forall *: EXPSPACE-complete
 - ∀*∃*: undecidable
- 3b. HyperLTL model-checking is decidable [F. et al. '15].

The Models of HyperLTL

Fix $AP = \{a\}$ and consider the conjunction φ of

 $\blacksquare \ \forall \pi. \ (\neg a_{\pi}) \ \mathbf{U} \ (a_{\pi} \wedge \mathbf{X} \ \mathbf{G} \ \neg a_{\pi})$

Fix $AP = \{a\}$ and consider the conjunction φ of

- $\blacksquare \ \forall \pi. \ (\neg a_{\pi}) \ \mathbf{U} \ (a_{\pi} \wedge \mathbf{X} \ \mathbf{G} \ \neg a_{\pi})$
- $\blacksquare \exists \pi. \ a_{\pi}$

Fix $AP = \{a\}$ and consider the conjunction φ of

- $\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathbf{U} \ (a_{\pi} \wedge \mathbf{X} \ \mathbf{G} \ \neg a_{\pi})$
- $\blacksquare \exists \pi. \ a_{\pi}$

 $\{a\} \qquad \emptyset \qquad \emptyset \qquad \emptyset \qquad \emptyset \qquad \emptyset \qquad \cdots$

Fix $AP = \{a\}$ and consider the conjunction φ of

- $\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathbf{U} \ (a_{\pi} \wedge \mathbf{X} \ \mathbf{G} \ \neg a_{\pi})$
- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathbf{F} (a_{\pi} \wedge \mathbf{X} \ a_{\pi'})$
 - $\{a\}$ \emptyset \emptyset

Fix $AP = \{a\}$ and consider the conjunction φ of

- $\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathbf{U} \ (a_{\pi} \wedge \mathbf{X} \ \mathbf{G} \ \neg a_{\pi})$
- $\blacksquare \exists \pi. a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathbf{F} (a_{\pi} \wedge \mathbf{X} \ a_{\pi'})$

Fix $AP = \{a\}$ and consider the conjunction φ of

$$\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathbf{U} \ (a_{\pi} \wedge \mathbf{X} \ \mathbf{G} \ \neg a_{\pi})$$

- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathbf{F} (a_{\pi} \wedge \mathbf{X} \ a_{\pi'})$

The unique model of φ is $\{\emptyset^n \{a\} \emptyset^\omega \mid n \in \mathbb{N}\}.$

Fix $AP = \{a\}$ and consider the conjunction φ of

$$\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathbf{U} \ (a_{\pi} \wedge \mathbf{X} \ \mathbf{G} \ \neg a_{\pi})$$

- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathsf{F} (a_{\pi} \wedge \mathsf{X} \ a_{\pi'})$

The unique model of φ is $\{\emptyset^n \{a\} \emptyset^\omega \mid n \in \mathbb{N}\}.$

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any finite set of traces.

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Theorem

Every satisfiable HyperLTL sentence has a countable model.

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0. \cdots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .

Theorem

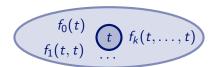
Every satisfiable HyperLTL sentence has a countable model.

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0. \dots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_i .

Theorem

Every satisfiable HyperLTL sentence has a countable model.

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0. \dots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_i .



Theorem

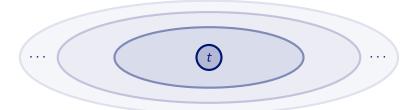
Every satisfiable HyperLTL sentence has a countable model.

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0. \dots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .

Theorem

Every satisfiable HyperLTL sentence has a countable model.

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0. \cdots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_i for every existentially quantified π'_i .

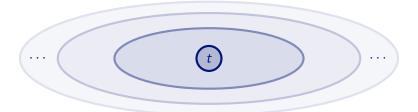


Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

- W.l.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0. \cdots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_i for every existentially quantified π'_i .



The limit is a model of φ and countable.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Saarland University

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

1. .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains.. $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ \emptyset^{ω} **1.** .. $(\{a\}\{b\})^n\emptyset^{\omega}$ for every n.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains.. $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ \emptyset^{ω}

- **1.** .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.
- ... for every trace of the form x{b}{a}y in T, also the trace x{a}{b}y.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model
$${\mathcal T}$$
 contains..

- 1. .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.

$$\{a\}$$
 $\{b\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ \emptyset^{ω}

$$\{a\}$$
 $\{a\}$ $\{b\}$ $\{b\}$ $\{a\}$ $\{b\}$ \emptyset^{ω}

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

- **1.** .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.

$$\{a\}$$
 $\{b\}$ $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ \emptyset^{ω}

$$\{a\} \ \{a\} \ \{b\} \ \{b\} \ \{a\} \ \{b\} \ \emptyset^{\omega}$$
 $\{a\} \ \{a\} \ \{b\} \ \{a\} \ \{b\} \ \emptyset^{\omega}$

$$\{a\}$$
 $\{a\}$ $\{b\}$ $\{a\}$ $\{b\}$ $\{b\}$ \emptyset

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

- **1.** .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.

```
{a} {b} {a} {b} {a} {b} \emptyset^{\omega}
{a} {a} {b} {b} {a} {b} \emptyset^{\omega}
{a} {a} {b} {b} {b} {a} {b} \emptyset^{\omega}
{a} {a} {b} {b} {b} {b} \emptyset^{\omega}
{a} {a} {a} {b} {b} {b} {b} \emptyset^{\omega}
```

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

- **1.** .. $(\{a\}\{b\})^n\emptyset^\omega$ for every n.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.

{a} {b} {a} {b} {a} {b}
$$\emptyset^{\omega}$$

{a} {b} {b} {b} {a} {b} \emptyset^{ω}

$$\{a\} \ \{a\} \ \{b\} \ \{a\} \ \{b\} \ \emptyset^{\omega}$$

$$\{a\}$$
 $\{a\}$ $\{\overline{a}\}$ $\{\overline{b}\}$ $\{b\}$ $\{b\}$ \emptyset^{ω}

Then, $T \cap \{a\}^* \{b\}^* \emptyset^\omega = \{\{a\}^n \{b\}^n \emptyset^\omega \mid n \in \mathbb{N}\}$ is not ω -regular.

What about Ultimately Periodic Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any set of traces that contains an ultimately periodic trace.

Saarland University

What about Ultimately Periodic Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any set of traces that contains an ultimately periodic trace.

One can even encode the prime numbers in HyperLTL!

First-order Logic vs. LTL

FO[<]: first-order order logic over signature $\{<\} \cup \{P_a \mid a \in AP\}$ over structures with universe \mathbb{N} .

Theorem (Kamp '68, Gabbay et al. '80)

LTL and FO[<] are expressively equivalent.

First-order Logic vs. LTL

FO[<]: first-order order logic over signature $\{<\} \cup \{P_a \mid a \in AP\}$ over structures with universe \mathbb{N} .

Theorem (Kamp '68, Gabbay et al. '80)

LTL and FO[<] are expressively equivalent.

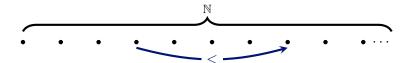
Example

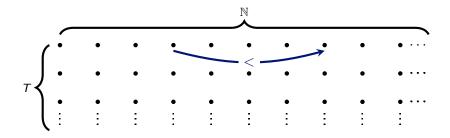
$$\forall x (P_q(x) \land \neg P_p(x)) \rightarrow \exists y (x < y \land P_p(y))$$

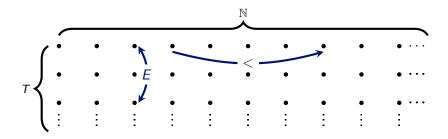
and

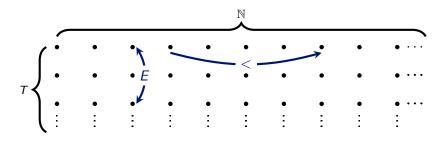
$$G(q \rightarrow F p)$$

are equivalent.





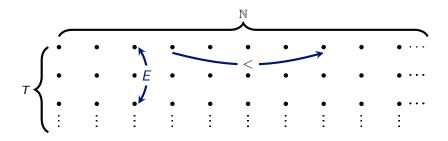




■ FO[<, E]: first-order logic with equality over the signature $\{<, E\} \cup \{P_a \mid a \in AP\}$ over structures with universe $T \times \mathbb{N}$.

Example

$$\forall x \forall x' \ E(x, x') \rightarrow (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$



■ FO[<, E]: first-order logic with equality over the signature $\{<, E\} \cup \{P_a \mid a \in AP\}$ over structures with universe $T \times \mathbb{N}$.

Proposition

For every HyperLTL sentence there is an equivalent FO[<, E] sentence.

A Setback

■ Let φ be the following property of sets $T \subseteq (2^{\{p\}})^{\omega}$:

There is an n such that $p \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15)

 φ is not expressible in HyperLTL.

A Setback

■ Let φ be the following property of sets $\mathcal{T} \subseteq (2^{\{p\}})^{\omega}$:

There is an n such that $p \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15)

 φ is not expressible in HyperLTL.

■ But, φ is easily expressible in FO[<, E]:

$$\exists x \, \forall y \, E(x,y) \rightarrow \neg P_p(y)$$

Corollary

FO[<, E] strictly subsumes HyperLTL.

HyperFO

- $\blacksquare \exists^M x$ and $\forall^M x$: quantifiers restricted to initial positions.
- $\exists^G y \ge x$ and $\forall^G y \ge x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

HyperFO

- $\exists^M x$ and $\forall^M x$: quantifiers restricted to initial positions.
- $\exists^G y \ge x$ and $\forall^G y \ge x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

HyperFO: sentences of the form

$$\varphi = Q_1^M x_1 \cdots Q_k^M x_k. \ Q_1^G y_1 \ge x_{g_1} \cdots Q_\ell^G y_\ell \ge x_{g_\ell}. \ \psi$$

- $\mathbf{Q} \in \{\exists, \forall\},$
- $\{x_1,\ldots,x_k\}$ and $\{y_1,\ldots,y_\ell\}$ are disjoint,
- \blacksquare every guard x_{g_j} is in $\{x_1,\ldots,x_k\}$, and
- ψ is quantifier-free over signature $\{<, E\} \cup \{P_a \mid a \in AP\}$ with free variables in $\{y_1, \ldots, y_\ell\}$.

Equivalence

Theorem

HyperLTL and HyperFO are equally expressive.

Equivalence

Theorem

HyperLTL and HyperFO are equally expressive.

Proof

- From HyperLTL to HyperFO: structural induction.
- From HyperFO to HyperLTL: reduction to Kamp's theorem.

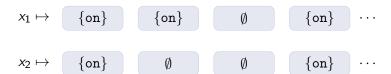
$$\forall x \forall x' \quad E(x, x') \rightarrow (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall_X \forall_{X'} \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall^M x_1 \forall^M x_2 \quad \forall^G y_1 \ge x_1 \forall^G y_2 \ge x_2 E(y_1, y_2) \to (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$

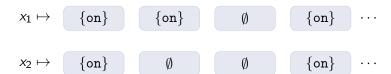
$$\forall_X \forall_{X'} \ E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall^M x_1 \forall^M x_2 \ \forall^G y_1 \ge x_1 \forall^G y_2 \ge x_2 E(y_1, y_2) \to (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$



$$\forall x \forall x' \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall^G y_1 \ge x_1 \forall^G y_2 \ge x_2 E(y_1, y_2) \to (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$



$$\forall x \forall x' \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall^G y_1 \ge x_1 \,\forall^G y_2 \ge x_2 E(y_1, y_2) \to (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$

$$\forall y_1 \,\forall y_2 \, (y_1 = y_2) \to (P_{(\text{on}, 1)}(y_1) \leftrightarrow P_{(\text{on}, 2)}(y_2))$$

$$\{(\text{on}, 1), \\ (\text{on}, 2)\}$$
 $\{(\text{on}, 1)\}$ \emptyset $\{(\text{on}, 1), \\ (\text{on}, 2)\}$...

$$\forall x \forall x' \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall^G y_1 \ge x_1 \forall^G y_2 \ge x_2 E(y_1, y_2) \to (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$

$$\forall y_1 \forall y_2 \ (y_1 = y_2) \to (P_{(\text{on}, 1)}(y_1) \leftrightarrow P_{(\text{on}, 2)}(y_2))$$

$$\mathbf{G} ((\text{on}, 1) \leftrightarrow (\text{on}, 2))$$

$$\forall x \forall x' \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall^{M} x_{1} \forall^{M} x_{2} \quad \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E(y_{1}, y_{2}) \to (P_{\text{on}}(y_{1}) \leftrightarrow P_{\text{on}}(y_{2}))$$

$$\forall y_{1} \forall y_{2} \ (y_{1} = y_{2}) \to (P_{(\text{on}, 1)}(y_{1}) \leftrightarrow P_{(\text{on}, 2)}(y_{2}))$$

$$\mathbf{G} ((\text{on}, 1) \leftrightarrow (\text{on}, 2))$$

$$\{(\text{on},1), \\ (\text{on},2)\}\$$
 $\{(\text{on},1)\}\$ \emptyset $\{(\text{on},1), \\ (\text{on},2)\}\$...

$$\forall x \forall x' \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$

$$\forall^{M} x_{1} \forall^{M} x_{2} \quad \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E(y_{1}, y_{2}) \to (P_{\text{on}}(y_{1}) \leftrightarrow P_{\text{on}}(y_{2}))$$

$$\forall y_{1} \forall y_{2} \ (y_{1} = y_{2}) \to (P_{(\text{on}, 1)}(y_{1}) \leftrightarrow P_{(\text{on}, 2)}(y_{2}))$$

$$\mathbf{G} ((\text{on}, 1) \leftrightarrow (\text{on}, 2))$$

$$\forall \pi_{1} \forall \pi_{2} \quad \mathbf{G} (\text{on}_{\pi_{1}} \leftrightarrow \text{on}_{\pi_{2}})$$

$$\pi_{1} \mapsto \{\text{on}\} \quad \{\text{on}\} \quad \emptyset \quad \{\text{on}\} \quad \cdots$$

$$\pi_{2} \mapsto \{\text{on}\} \quad \emptyset \quad \{\text{on}\} \quad \cdots$$

Conclusion

Our Results

- The models of HyperLTL are rather not well-behaved, i.e., in general (countably) infinite, non-regular, and non-periodic.
- FO[<, E] is strictly more expressive than HyperLTL.
- HyperFO is expressively equivalent to HyperLTL.

Conclusion

Our Results

- The models of HyperLTL are rather not well-behaved, i.e., in general (countably) infinite, non-regular, and non-periodic.
- FO[<, E] is strictly more expressive than HyperLTL.
- HyperFO is expressively equivalent to HyperLTL.

Open Problems

- Is there a class of languages \mathcal{L} such that every satisfiable HyperLTL sentence has a model from \mathcal{L} ?
- Is there a temporal logic that is expressively equivalent to FO[<, E]?
- What about HyperCTL*?