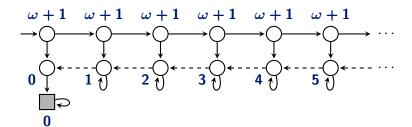
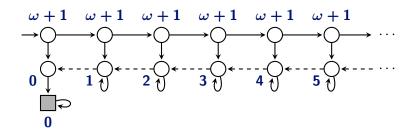
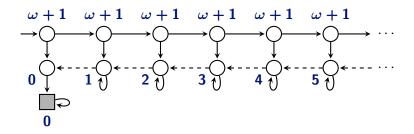

Optimally Resilient Strategies in Pushdown Safety Games


Joint work with Daniel Neider (MPI-SWS) and Patrick Totzke (Liverpool) Artwork by Paulina Zimmermann


Martin Zimmermann

University of Liverpool

September 2020 Highlights 2020

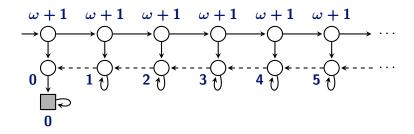


Theorem

Player 0 has a (globally) optimally resilient strategy in every pushdown safety game with disturbances.

Note

No longer true in infinitely branching arenas!

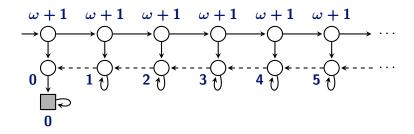


Lemma

Let $\mathcal G$ be a pushdown safety game with initial vertex v_I . If $r(v_I) \neq \omega + 1$, then $r(v_I) < 2^{|\mathcal G|} \cdot |\Gamma|^{2^{|\mathcal G|}}$ (not the actual value).

Note

Bound is tight for pushdown and one-counter arenas.



Theorem

The following problem can be solved in triply-exponential time: "Given a pushdown safety game \mathcal{G} with initial vertex v_I , determine the resilience value of v_I ". Also, an optimally resilient strategy from v_I can be computed in triply-exponential time.

Note

None.

Theorem

The following problem can be solved in polynomial space: "Given a one-counter safety game \mathcal{G} with initial vertex v_I , determine the resilience value of v_I ".

Note

No strategy computed.

Thank you for watching.

A longer version of this talk is available on the YouTube channel of MFCS 2020 (linked from my homepage)

Daniel Neider: neider@mpi-sws.org

Patrick Totzke: totzke@liverpool.ac.uk

Martin Zimmermann: martin.zimmermann@liverpool.ac.uk