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Gale-Stewart Games

Büchi-Landweber: The winner of a zero-sum two-player game of
infinite duration with ω-regular winning condition can be deter-
mined effectively.

(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · ·
O: a a · · · I wins!

Many possible extensions... we consider two:
Interaction: one player may delay her moves.
Winning condition: quantitative instead of qualitative.
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Delay Games

Allow Player O to delay her moves:

(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b b a a b b · · ·
O: b b a a b b · · · O wins!

Typical questions:
How often does Player O have to delay to win?
How hard is determining the winner of a delay game?
Does the ability to delay allow Player O to improve the quality
of her strategies?
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Previous Work

If winning conditions given by deterministic parity automata:

Theorem (Klein, Z. ’15)

If Player O wins delay game induced by A, then also by
delaying at most 2|A|

2
times.

Lower bound 2|A| (already for safety automata).
Determining the winner is EXPTIME-complete (hardness
already for safety automata).

Note:
This improved similar results by Holtmann, Kaiser, and Thomas
with doubly-exponential upper bounds and no lower bounds.
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Previous Work

If winning conditions given by formula in (quantitative) linear
temporal logics:

Theorem (Klein, Z. ’16)

If Player O wins delay game induced by ϕ, then also by

delaying at most 222|ϕ|
times.

There is a matching lower bound.
Determining the winner is 3EXPTIME-complete.

Note:
Quantitative conditions not harder than qualitative ones.
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Uniformization of Relations

A strategy σ for O in a game induces a mapping fσ : Σω
I → Σω

O

σ is winning ⇔ {
(

α
fσ(α)

)
| α ∈ Σω

I } ⊆ L (fσ uniformizes L)

Continuity in terms of strategies (in Cantor metric):

Strategy without lookahead: i-th letter of fσ(α) only depends
on first i letters of α (very strong notion of continuity).
Strategy with bounded delay: fσ Lipschitz-continuous.
Strategy with arbitrary (finite) delay: fσ (uniformly)
continuous.

Holtmann, Kaiser, Thomas: for ω-regular L

L uniformizable by continuous function
⇔

L uniformizable by Lipschitz-continuous function
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Finitary Parity Automata

1 0 2a a

a

b

Parity acceptance: Almost every odd priority is followed by a
larger even one.

L(A) = a(b∗aaa)∗bω + a(b∗aaa)ω

Finitary parity acceptance: There is a bound n such that almost
every odd priority is followed by a larger even one
within n steps.

L(A) = a(b∗aaa)∗bω +
∑
n∈N

a(b≤naaa)ω
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Finitary Parity Automata

Remark
Safety automata can be transformed into finitary parity automata
of the same size.

Proof:
Turn all unsafe states into sinks with an odd color, all safe states
get even color.

Thus: exponential lower bounds on complexity and necessary
lookahead for delay games with finitary parity conditions.
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Results

If winning conditions given by deterministic finitary parity automata:

Theorem

If Player O wins delay game induced by A, then also by
delaying at most 2|A|

6
times.

Lower bound 2|A|.
Determining the winner is EXPTIME-complete.

Note:
Again, quantitative conditions not harder than qualitative ones.
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Tradeoff Lookahead vs. Quality

. . .

(∗
∗
)(∗

∗
)(∗

∗
)(∗

0

)
(∗
1

)
(0
∗
)

(1
∗
)

(1
∗
)

(0
∗
)

Theorem
For every n > 0, there is a language Ln recognized by a finitary
Büchi automaton with n + 2 states such that

an optimal strategy without delay has cost n, but
an optimal strategy delaying once has cost 1.
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Tradeoff Lookahead vs. Quality

Theorem
For every n > 0, there is a language L′n recognized by a finitary
Büchi automaton with O(n) states such that

an optimal strategy delaying 2n times has cost 0, and
an optimal strategy delaying less than 2n times has cost n.

· · ·
(∗
0

)

(∗
1

) delay 2n

cost 0
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Tradeoff Lookahead vs. Quality

bcdef a
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Theorem
For every n > 0, there is a language L′′n recognized by a finitary
Büchi automaton with O(n2) states such that for every 0 ≤ j ≤ n:
an optimal strategy delaying j times has cost 2(n + 1)− j .
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More Results

acceptance lookahead complexity

parity exp. EXPTIME-complete

finitary parity exp. EXPTIME-complete
parity w. costs exp. EXPTIME-complete

finitary Streett exp./doubly-exp. EXPTIME/2EXPTIME
Streett w. costs exp./doubly-exp. EXPTIME/2EXPTIME

Theorem
Optimal strategies in delay games with Streett conditions with
costs may require doubly-exponential lookahead.
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Conclusion

Quantitative delay games with parity conditions are not harder
than qualitative ones.
Lookahead allows to improve the quality of strategies.

Open Problems
Close the gaps for Streett conditions (qualitative and
quantitative).
Study other tradeoffs, e.g., lookahead vs. memory size.
Determine the complexity of finding optimal strategies
(smallest cost or smallest lookahead).
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